1
|
Long Q, Wang H, He Q, Liu W, Zhang C, Zhang Z, Luo L. Effectiveness of rBS/WC cholera vaccine against bacterial infectious diarrhea: A test-negative study on children aged 2-6 years in Guangzhou China. Vaccine 2025; 56:127139. [PMID: 40294478 DOI: 10.1016/j.vaccine.2025.127139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/23/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Recombinant B-subunit/Whole Cell Cholera Vaccine (rBS/WC) represents a new and effective way to protect against and control diarrhea. A test-negative case-control study was conducted to investigate the cross-protective effect of cholera vaccine immunization against bacterial infectious diarrhea in a real-world setting. METHODS Using a test-negative design, children aged 2-6 years with infectious diarrhea in Guangzhou City were selected as study subjects. A 1:4 propensity score matching based on the basic characteristics of the included study subjects, and vaccine effects were calculated after correcting for confounders. RESULTS A total of 2796 children with laboratory-confirmed infectious diarrhea were enrolled in the study, and 316 pairs were successfully enrolled in the matching after Propensity Score Matching(PSM), totaling 1306. By conditional logistic regression analysis, The results showed that the total protective effect of ≥1 dose of rBS/WC vaccine against bacterial infectious diarrhea in children aged 2-6 years was 57.7 % (95 % CI: 30.3-74.3); the rBS/WC vaccine had the best protective effect of 74.8 % (95 % CI: 16.8-95.6) within 6 months of vaccination and then showed a decreasing trend. The vaccine's protective effect was 54.6 % (95 % CI: 22.1-73.5) against Salmonella and 69.2 % (95 % CI: -133.7-95.9) against Escherichia coli. Stratified analyses revealed higher point estimates of the protective effect obtained by vaccination among healthy children with good hygiene. CONCLUSIONS These findings support the idea that the rBS/WC vaccination program is effective in the real world in preventing bacterial diarrhea in children. For people who are susceptible to bacterial diarrhea, the cholera vaccine is a good preventive option.
Collapse
Affiliation(s)
- Qianyi Long
- School of Basic Medical Sciences and Public Health, Jinan University, Guangzhou 510630, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hui Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Qing He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wenhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Chunhuan Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zhoubin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Luo
- School of Basic Medical Sciences and Public Health, Jinan University, Guangzhou 510630, China; Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| |
Collapse
|
2
|
Fares M, Imberty A, Titz A. Bacterial lectins: multifunctional tools in pathogenesis and possible drug targets. Trends Microbiol 2025:S0966-842X(25)00083-6. [PMID: 40307096 DOI: 10.1016/j.tim.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/02/2025]
Abstract
Glycans are vital macromolecules with diverse biological roles, decoded by lectins - specialized carbohydrate-binding proteins crucial in pathogenesis. The WHO identifies bacterial antimicrobial resistance (AMR) as a critical global health challenge, necessitating innovative strategies that also target non-antibiotic pathways. Recent studies highlight bacterial lectins as key players in pathogenesis and promising therapeutic targets, with early clinical success using glycomimetics and vaccines to treat and prevent AMR-related infections. This review covers the current knowledge on bacterial lectins, their classifications, and roles in host recognition and adhesion, biofilm formation, cytotoxicity, and host immune evasion, with examples of well-characterized lectins. It also explores their therapeutic potential and highlights novel lectins with unknown functions, encouraging further research.
Collapse
Affiliation(s)
- Mario Fares
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 601 rue de la chimie, Grenoble 38000, France
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Akhtar M, Begum YA, Isfat Ara Rahman S, Afrad MH, Parvin N, Akter A, Tauheed I, Amin MA, Ryan ET, Khan AI, Chowdhury F, Bhuiyan TR, Qadri F. Age-dependent pathogenic profiles of enterotoxigenic Escherichia coli diarrhea in Bangladesh. Front Public Health 2024; 12:1484162. [PMID: 39726651 PMCID: PMC11669683 DOI: 10.3389/fpubh.2024.1484162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Background Age plays a significant role in susceptibility to enterotoxigenic Escherichia coli (ETEC) infections, yet the distribution of ETEC virulence factors across age groups remains understudied. This study investigated the differential pathogenic profiles ETEC across various age groups, emphasizing the importance of selecting potential ETEC antigens tailored to infection patterns in infants and adults in Bangladesh. Methods This study utilized the icddr,b's 2% systematic hospital surveillance data of diarrheal patients (n = 14,515) from 2017 to 2022 to examine the age-specific pathogenesis and clinical manifestations of ETEC infections. Results In total ETEC was identified in 1,371 (9.4%) of surveillance samples. ETEC-associated diarrhea was higher in children aged 0-2 years and decreased significantly in the 3-17 years age group. Among all ETEC cases, 56% were adults (p = 0.0079) with severe dehydration. Distinct age-specific distribution of ETEC toxin types and colonization factors (CFs) were observed: heat labile toxin (LT)-associated ETEC infections decreased with age (p < 0.0001), while heat stable toxin (ST)-associated-ETEC was prevalent across all ages. Adults exhibited significantly higher rates of ETEC diarrhea with strains secreting both types of toxins. A high prevalence of antimicrobial resistance among ETEC strains, particularly in pediatric cases, with significant resistance observed against commonly used antibiotics such as azithromycin and in line with similar age specific toxin profiles. The most common CFs were CFA/I, CS3, CS5, CS6, and CS21. CFA/I positive ETEC infection was more common in children (p < 0.001), while CS5 and CS6 were more common in adults (p < 0.0001). Conclusion The findings provide valuable insights into ETEC epidemiology, pathogenesis, and clinical manifestations. These observations imply that age-related differences in host-pathogen interactions exist for ETEC infections and this may influence the development of targeted vaccines or therapeutics and use in specific populations.
Collapse
Affiliation(s)
- Marjahan Akhtar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sadia Isfat Ara Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mokibul Hassan Afrad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nasrin Parvin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Ashraful Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ashraful Islam Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
4
|
Abioye OE, Osunla CA, Nontongana N, Okoh AI. Occurrence of virulence determinants in vibrio cholerae, vibrio mimicus, vibrio alginolyticus, and vibrio parahaemolyticus isolates from important water resources of Eastern Cape, South Africa. BMC Microbiol 2023; 23:316. [PMID: 37891478 PMCID: PMC10612165 DOI: 10.1186/s12866-023-03060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Virulence determinants are crucial to the risk assessment of pathogens in an environment. This study investigated the presence of eleven key virulence-associated genes in Vibrio cholerae (n = 111) and Vibrio mimicus (n = 22) and eight virulence determinants in Vibrio alginolyticus (n = 65) and Vibrio parahaemolyticus (n = 17) isolated from six important water resources in Eastern Cape, South Africa, using PCR techniques. The multiple virulence gene indexes (MVGI) for sampling sites and isolates as well as hotspots for potential vibriosis outbreaks among sampling sites were determined statistically based on the comparison of MVGI. RESULT The PCR assay showed that all the V. cholerae isolates belong to non-O1/non-O139 serogroups. Of the isolates, Vibrio Cholera (84%), V. mimicus (73%), V. alginolyticus (91%) and V. parahaemolyticus (100%) isolates harboured at least one of the virulence-associated genes investigated. The virulence gene combinations detected in isolates varied at sampling site and across sites. Typical virulence-associated determinants of V. cholerae were detected in V. mimicus while that of V. parahaemolyticus were detected in V. alginolyticus. The isolates with the highest MVGI were recovered from three estuaries (Sunday river, Swartkopps river, buffalo river) and a freshwater resource (Lashinton river). The cumulative MVGI for V. cholerae, V. mimicus, V. alginolyticus and V. parahaemolyticus isolates were 0.34, 0.20, 0.45, and 0.40 respectively. The targeted Vibrio spp. in increasing order of the public health risk posed in our study areas based on the MVGI is V. alginolyticus > V. parahaemolyticus > V. cholerae > V. mimicus. Five (sites SR, PA5, PA6, EL4 and EL6) out of the seventeen sampling sites were detected as the hotspots for potential cholera-like infection and vibriosis outbreaks. CONCLUSIONS Our findings suggest that humans having contact with water resources in our study areas are exposed to potential public health risks owing to the detection of virulent determinants in human pathogenic Vibrio spp. recovered from the water resources. The study affirms the relevancy of environmental Vibrio species to the epidemiology of vibriosis, cholera and cholera-like infections. Hence we suggest a monitoring program for human pathogenic Vibrio spp. in the environment most especially surface water that humans have contact with regularly.
Collapse
Affiliation(s)
| | - Charles A Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
5
|
Tauheed I, Ahmed T, Akter A, Firoj MG, Ahmmed F, Rahman SIA, Afrad MH, Islam MN, Rahman A, Khan AI, Alam B, Bhuiyan TR, Chowdhury F, Qadri F. A snap-shot of a diarrheal epidemic in Dhaka due to enterotoxigenic Escherichia coli and Vibrio cholerae O1 in 2022. Front Public Health 2023; 11:1132927. [PMID: 37124777 PMCID: PMC10140589 DOI: 10.3389/fpubh.2023.1132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae O1 are most common bacterial causes of diarrheal diseases in Bangladesh. This analysis projected distribution of ETEC and V. cholerae O1 among diarrheal patients of icddr,b, Dhaka hospital in two diarrheal peaks of 2022. Methodology Under the 2% systematic surveillance system, stool samples collected from diarrheal patients of icddr,b hospital were cultured and diagnostic testing was done for ETEC and V. cholerae O1. Comparison of positive cases was done between first peak (March-April) and second peak (October-November) in 2022. Results A total of 2,937 stool specimens were tested of which 12% were ETEC and 20% were V. cholerae O1. About 40% of the severe dehydration cases were infected with V. cholerae O1. Predominant ETEC enterotoxin type was 'LT/ST' (41%). The LT enterotoxin significantly increased from 13% to 28% in the second peak (p = 0.015). The predominant colonization factors (CFs) on ETEC were CS5 + CS6 (23%), followed by CS6 (15%). CF-positive isolates was significantly higher in the second peak (36%) than in the first peak (22%) (p = 0.043). Total 14% cases were co-infected with ETEC and V. cholerae O1. Significant differences in the distribution of enterotoxin types were observed (p = 0.029) among the co-infection cases. Conclusion Changing patterns of enterotoxin and CFs observed in ETEC pathogens should be taken into consideration for ETEC vaccine development. Considering cholera and ETEC biannual trends in causing diarrheal epidemics and outbreaks, emphasizes the need for thoughts on combination vaccine strategies for preventing acute watery diarrhea due to the two major bacterial pathogens.
Collapse
Affiliation(s)
- Imam Tauheed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tasnuva Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Golam Firoj
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Faisal Ahmmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sadia Isfat Ara Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Aninda Rahman
- Directorate General of Health Services, Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Baharul Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- *Correspondence: Firdausi Qadri,
| |
Collapse
|
6
|
Calzada F, Bautista E, Hidalgo-Figueroa S, García-Hernández N, Velázquez C, Barbosa E, Valdes M, Solares-Pascasio JI. Understanding the Anti-Diarrhoeal Properties of Incomptines A and B: Antibacterial Activity against Vibrio cholerae and Its Enterotoxin Inhibition. Pharmaceuticals (Basel) 2022; 15:ph15020196. [PMID: 35215308 PMCID: PMC8875560 DOI: 10.3390/ph15020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Incomptines A (IA) and B (IB) are two sesquiterpene lactones with antiprotozoal, antibacterial, cytotoxic, antitumor, spermicidal, and phytotoxic properties. The antibacterial activity of IA and IB against bacteria causing diarrhoea have been reported; however, no information is available regarding their antibacterial activity on Vibrio cholerae. In this work, both compounds were evaluated for their anti-diarrhoeal potential using the bacterium V. cholerae, sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis on cholera toxin, and a cholera toxin-induced diarrhoea model in male Balb/c mice. In addition, a molecular docking study was carried out to understand the interaction of IA and IB with cholera toxin. In terms of antibacterial activity, IB was three times more active than IA on V. cholerae. In the case of SDS-PAGE analysis and the in silico study, IA was most effective, revealing its potential binding mode at a molecular level. In terms of anti-diarrhoeal activity, IA was 10 times more active than IB and racecadotril, an antisecretory drug used as positive control; the anti-diarrheal activity of IB was also closer than racecadotril. The results obtained from in vitro, in vivo, and computational studies on V. cholerae and cholera toxin support the potential of IA and IB as new anti-diarrhoeal compounds.
Collapse
Affiliation(s)
- Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
- Correspondence:
| | - Elihu Bautista
- CONACYT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico; (E.B.); (S.H.-F.)
| | - Sergio Hidalgo-Figueroa
- CONACYT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico; (E.B.); (S.H.-F.)
| | - Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría 2º Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | - Elizabeth Barbosa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Cd Mexico 11340, Mexico;
| | - Miguel Valdes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
| | - Jesús Iván Solares-Pascasio
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd Mexico 06725, Mexico; (M.V.); (J.I.S.-P.)
| |
Collapse
|
7
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
8
|
Balasubramanian D, Murcia S, Ogbunugafor CB, Gavilan R, Almagro-Moreno S. Cholera dynamics: lessons from an epidemic. J Med Microbiol 2021; 70. [PMID: 33416465 DOI: 10.1099/jmm.0.001298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera is a severe diarrhoeal disease that spreads rapidly and affects millions of people each year, resulting in tens of thousands of deaths. The disease is caused by Vibrio cholerae O1 and is characterized by watery diarrhoea that can be lethal if not properly treated. Cholera had not been reported in South America from the late 1800s until 1991, when it was introduced in Peru, wreaking havoc in one of the biggest epidemics reported to date. Within a year, the disease had spread to most of the Latin American region, resulting in millions of cases and thousands of deaths in all affected countries. Despite its aggressive entry, cholera virtually disappeared from the continent after 1999. The progression of the entire epidemic was well documented, making it an ideal model to understand cholera dynamics. In this review, we highlight how the synergy of socioeconomic, political and ecological factors led to the emergence, rapid spread and eventual disappearance of cholera in Latin America. We discuss how measures implemented during the cholera epidemic drastically changed its course and continental dynamics. Finally, we synthesize our findings and highlight potential lessons that can be learned for efficient and standardized cholera management programmes during future outbreaks in non-endemic areas.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- National Center for Integrated Coastal Research, University of Central Florida, Orlando FL 32816, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL 32816, USA
| | - Sebastian Murcia
- National Center for Integrated Coastal Research, University of Central Florida, Orlando FL 32816, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL 32816, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven CT 06511, USA
| | - Ronnie Gavilan
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.,Centro Nacional de Salud Publica, Instituto Nacional de Salud-Peru, Jesus Maria, Lima, Peru
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL 32816, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando FL 32816, USA
| |
Collapse
|
9
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
10
|
Sun J, Shi Y, Du Y, Wang Z, Liu Z, Wang H, Zhao G, Ma Y, Zheng M. Rapid Detection of Diarrheagenic Escherichia coli by a New Multiplex Real-Time Quantitative PCR Assay. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Holoidovsky L, Meijler MM. Synthesis and Evaluation of Indole-Based Autoinducers on Quorum Sensing in Vibrio cholerae. ACS Infect Dis 2020; 6:572-576. [PMID: 32182033 DOI: 10.1021/acsinfecdis.9b00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vibrio cholerae (V. cholerae) uses the autoinducer CAI-1 (cholera autoinducer 1) and several linked quorum sensing systems in order to efficiently sense its ever-changing environment and optimally coordinate population-wide gene expression. Indole has been reported as an important signal that is sensed by V. cholerae, and here, we report the synthesis and evaluation of a focused library of synthetic indole-CAI-1 derivatives as tools to probe quorum sensing (QS) in this human pathogen. Our results show interesting and diverging effects for several conjugates, as compared to CAI-1, on virulence factor production and biofilm formation.
Collapse
Affiliation(s)
- Lara Holoidovsky
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Michael M. Meijler
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| |
Collapse
|
12
|
Qadri F, Akhtar M, Bhuiyan TR, Chowdhury MI, Ahmed T, Rafique TA, Khan A, Rahman SIA, Khanam F, Lundgren A, Wiklund G, Kaim J, Löfstrand M, Carlin N, Bourgeois AL, Maier N, Fix A, Wierzba T, Walker RI, Svennerholm AM. Safety and immunogenicity of the oral, inactivated, enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi children and infants: a double-blind, randomised, placebo-controlled phase 1/2 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:208-219. [PMID: 31757774 PMCID: PMC6990395 DOI: 10.1016/s1473-3099(19)30571-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli causes diarrhoea, leading to substantial mortality and morbidity in children, but no specific vaccine exists. This trial tested an oral, inactivated, enterotoxigenic E coli vaccine (ETVAX), which has been previously shown to be safe and highly immuongenic in Swedish and Bangladeshi adults. We tested the safety and immunogenicity of ETVAX, consisting of four E coli strains overexpressing the most prevalent colonisation factors (CFA/I, CS3, CS5, and CS6) and a toxoid (LCTBA) administered with or without a double-mutant heat-labile enterotoxin (dmLT) as an adjuvant, in Bangladeshi children. METHODS We did a randomised, double-blind, placebo-controlled, dose-escalation, age-descending, phase 1/2 trial in Dhaka, Bangladesh. Healthy children in one of three age groups (24-59 months, 12-23 months, and 6-11 months) were eligible. Children were randomly assigned with block randomisation to receive either ETVAX, with or without dmLT, or placebo. ETVAX (half [5·5 × 1010 cells], quarter [2·5 × 1010 cells], or eighth [1·25 × 1010 cells] adult dose), with or without dmLT adjuvant (2·5 μg, 5·0 μg, or 10·0 μg), or placebo were administered orally in two doses 2 weeks apart. Investigators and participants were masked to treatment allocation. The primary endpoint was safety and tolerability, assessed in all children who received at least one dose of vaccine. Antibody responses to vaccine antigens, defined as at least a two-times increase in antibody levels between baseline and post-immunisation, were assessed as secondary endpoints. This trial is registered with ClinicalTrials.gov, NCT02531802. FINDINGS Between Dec 7, 2015, and Jan 10, 2017, we screened 1500 children across the three age groups, of whom 430 were enrolled and randomly assigned to the different treatment groups (130 aged 24-59 months, 100 aged 12-23 months, and 200 aged 6-11 months). All participants received at least one dose of vaccine. No solicited adverse events occurred that were greater than moderate in severity, and most were mild. The most common solicited event was vomiting (ten [8%] of 130 patients aged 24-59 months, 13 [13%] of 100 aged 12-23 months, and 29 [15%] of 200 aged 6-11 months; mostly of mild severity), which appeared related to dose and age. The addition of dmLT did not modify the safety profile. Three serious adverse events occurred but they were not considered related to the study drug. Mucosal IgA antibody responses in lymphocyte secretions were detected against all primary vaccine antigens (CFA/I, CS3, CS5, CS6, and the LCTBA toxoid) in most participants in the two older age groups, whereas such responses to four of the five antigens were less frequent and of lower magnitude in infants aged 6-11 months than in older children. Faecal secretory IgA immune responses were recorded against all vaccine antigens in infants aged 6-11 months. 78 (56%) of 139 infants aged 6-11 months who were vaccinated developed mucosal responses against at least three of the vaccine antigens versus 14 (29%) of 49 of the infants given placebo. Addition of the adjuvant dmLT enhanced the magnitude, breadth, and kinetics (based on number of responders after the first dose of vaccine) of immune responses in infants. INTERPRETATION The encouraging safety and immunogenicity of ETVAX and benefit of dmLT adjuvant in young children support its further assessment for protective efficacy in children in enterotoxigenic E coli-endemic areas. FUNDING PATH (Bill & Melinda Gates Foundation and the UK's Department for International Development), the Swedish Research Council, and The Swedish Foundation for Strategic Research.
Collapse
Affiliation(s)
- Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Marjahan Akhtar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Taufiqur R Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Mohiul I Chowdhury
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Tasnuva Ahmed
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Tanzeem A Rafique
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Arifuzzaman Khan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Sadia I A Rahman
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Anna Lundgren
- Gothenburg University Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gudrun Wiklund
- Gothenburg University Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Joanna Kaim
- Gothenburg University Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Löfstrand
- Gothenburg University Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | - Thomas Wierzba
- PATH, Washington DC, USA; Wake Forest School of Medicine, Section on Infectious Diseases, Department of Internal Medicine, Winston Salem, NC, USA
| | | | - Ann-Mari Svennerholm
- Gothenburg University Vaccine Research Institute, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
FtsA-FtsZ interaction in Vibrio cholerae causes conformational change of FtsA resulting in inhibition of ATP hydrolysis and polymerization. Int J Biol Macromol 2019; 142:18-32. [PMID: 31790740 DOI: 10.1016/j.ijbiomac.2019.11.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
Proper interaction between the divisome proteins FtsA and FtsZ is important for the bacterial cell division which is not well characterized till date. In this study, the objective was to understand the mechanism of FtsA-FtsZ interaction using full-length recombinant proteins. We cloned, over-expressed, purified and subsequently characterized FtsA of Vibrio cholerae (VcFtsA). We found that VcFtsA polymerization assembly was dependent on Ca2+ ions, which is unique among FtsA proteins reported until now. VcFtsA also showed ATPase activity and its assembly was ATP dependent. Binding parameters of the interaction between the two full-length proteins, VcFtsA, and VcFtsZ determined by fluorescence spectrophotometry yielded a Kd value of around 38 μM. The Kd value of the interaction was 3 μM when VcFtsA was in ATP bound state. We found that VcFtsZ after interacting with VcFtsA causes a change of secondary structure in the later one leading to loss of its ability to hydrolyze ATP, subsequently halting the VcFtsA polymerization. On the other hand, a double-mutant of VcFtsA (VcFtsA-D242E,R300E), that does not bind to VcFtsZ, polymerized in the presence of VcFtsZ. Though FtsA proteins among different organisms show 70-80% homology in their sequences, assembly of VcFtsA showed a difference in its regulatory processes.
Collapse
|
14
|
Feng N, Guan W. Expression fusion immunogen by live attenuated Escherichia coli against enterotoxins infection in mice. Microb Biotechnol 2019; 12:946-961. [PMID: 31210426 PMCID: PMC6680629 DOI: 10.1111/1751-7915.13447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
Previous epidemiological studies have shown that enterotoxins from enterotoxigenic Escherichia coli (ETEC) appear to be the most important causes of neonatal piglet and porcine post-weaning diarrhoea (PWD). Thus, it is necessary to develop an effective vaccine against ETEC infection. In the present study, the Kil cassette was inserted into the pseudogene yaiT by homologous recombination to create an attenuated E. coli double selection platform O142(yaiT-Kil). After that, PRPL-Kil was replaced with a fusion gene (LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) to establish oral vaccines O142(yaiT::LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) (ER-T). Subsequently, BALB/c mice were orally immunized with ER-T. Results showed that serum IgG and faecal sIgA responded against all ETEC enterotoxins and induced F41 antibody in BALB/c mice by orogastrically inoculation with recombinant E. coli ER-T. Moreover, the determination of cellular immune response demonstrated that the stimulation index (SI) was significantly higher in immunized mice than in control mice, and a clear trend in the helper T-cell (Th) response was Th2-cell (IL-4) exceed Th1-cell (IFN-γ).Our results indicated that recombinant E. coli ER-T provides effective protection against ETEC infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Diarrhea/microbiology
- Diarrhea/prevention & control
- Diarrhea/veterinary
- Enterotoxigenic Escherichia coli/immunology
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/genetics
- Enterotoxins/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/prevention & control
- Escherichia coli Infections/veterinary
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/immunology
- Feces/chemistry
- Immunity, Cellular
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Swine
- Swine Diseases/microbiology
- Swine Diseases/prevention & control
- Treatment Outcome
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Ni Feng
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| | - Weikun Guan
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| |
Collapse
|
15
|
Komiazyk M, Palczewska M, Sitkiewicz I, Pikula S, Groves P. Neutralization of cholera toxin by Rosaceae family plant extracts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:140. [PMID: 31221152 PMCID: PMC6587261 DOI: 10.1186/s12906-019-2540-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cholera is one of the most deadly diarrheal diseases that require new treatments. We investigated the neutralization of cholera toxin by five plant extracts obtained from the Rosaceae family that have been traditionally used in Poland to treat diarrhea (of unknown origin). METHODS Hot water extracts were prepared from the dried plant materials and lyophilized before phytochemical analysis and assessment of antimicrobial activity using microdilution assays. The ability of the plant extracts to neutralize cholera toxin was analyzed by measurement of cAMP levels in cell cultures, enzyme-linked immunosorbent assay and electrophoresis, as well as flow cytometry and fluorescence microscopy studies of fluorescent-labeled cholera toxins with cultured human fibroblasts. RESULTS The antimicrobial assays displayed modest bacteriostatic potentials. We found that the plant extracts modulate the effects of cholera toxin on intracellular cAMP levels. Three plant extracts (Agrimonia eupatoria L., Rubus fruticosus L., Fragaria vesca L.) suppressed the binding of subunit B of cholera toxin to the cell surface and immobilized ganglioside GM1 while two others (Rubus idaeus L., Rosa.canina L.) interfered with the toxin internalization process. CONCLUSIONS The traditional application of the Rosaceae plant infusions for diarrhea appears relevant to cholera, slowing the growth of pathogenic bacteria and either inhibiting the binding of cholera toxin to receptors or blocking toxin internalization. The analyzed plant extracts are potential complements to standard antibiotic treatment and Oral Rehydration Therapy for the treatment of cholera.
Collapse
Affiliation(s)
- Magdalena Komiazyk
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
- Laboratory of Molecular Interactions and NMR, Instituto de Tecnologia Química e Biológica, Av. da República, 2780-157, Oeiras, Portugal
| | - Malgorzata Palczewska
- Laboratory of Molecular Interactions and NMR, Instituto de Tecnologia Química e Biológica, Av. da República, 2780-157, Oeiras, Portugal
- Department of Molecular Biotechnology, Chemistry Faculty, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdańsk, Poland
| | - Izabela Sitkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska Street, 00-725, Warsaw, Poland
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Patrick Groves
- Laboratory of Molecular Interactions and NMR, Instituto de Tecnologia Química e Biológica, Av. da República, 2780-157, Oeiras, Portugal.
- Department of Biomedicinal Chemistry, Chemistry Faculty, University of Gdansk, ul. 63 Wita Stwosza Street, 80-308, Gdańsk, Poland.
| |
Collapse
|
16
|
Akhtar M, Chowdhury MI, Bhuiyan TR, Kaim J, Ahmed T, Rafique TA, Khan A, Rahman SIA, Khanam F, Begum YA, Sharif MZ, Islam LN, Carlin N, Maier N, Fix A, Wierzba TF, Walker RI, Bourgeois AL, Svennerholm AM, Qadri F, Lundgren A. Evaluation of the safety and immunogenicity of the oral inactivated multivalent enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi adults in a double-blind, randomized, placebo-controlled Phase I trial using electrochemiluminescence and ELISA assays for immunogenicity analyses. Vaccine 2018; 37:5645-5656. [PMID: 30473185 PMCID: PMC6717083 DOI: 10.1016/j.vaccine.2018.11.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
The safety and immunogenicity of the second generation oral enterotoxigenic Escherichia coli (ETEC) vaccine ETVAX, consisting of inactivated recombinant E. coli strains over-expressing the colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the heat labile toxoid LCTBA, were evaluated in Bangladeshi volunteers. To enable analysis of antibody responses against multiple vaccine antigens for subsequent use in small sample volumes from children, a sensitive electrochemiluminescence (ECL) assay for analysis of intestine-derived antibody-secreting cell responses using the antibodies in lymphocyte secretions (ALS) assay was established using Meso Scale Discovery technology. Three groups of Bangladeshi adults (n = 15 per group) received two oral doses of ETVAX with or without double mutant LT (dmLT) adjuvant or placebo in the initial part of a randomized, double-blind, placebo-controlled, age-descending, dose-escalation trial. CF- and LTB-specific ALS and plasma IgA responses were analyzed by ECL and/or ELISA. ETVAX was safe and well tolerated in the adults. Magnitudes of IgA ALS responses determined by ECL and ELISA correlated well (r = 0.85 to 0.98 for the five primary antigens, P < 0.001) and ECL was selected as the ALS readout method. ALS IgA responses against each of the primary antigens were detected in 87-100% of vaccinees after the first and in 100% after the second vaccine dose. Plasma IgA responses against different CFs and LTB were observed in 62-93% and 100% of vaccinees, respectively. No statistically significant adjuvant effect of dmLT on antibody responses to any antigen was detected, but the overall antigenic breadth of the plasma IgA response tended to favor the adjuvanted vaccine when responses to 4 or more or 5 vaccine antigens were considered. Responses in placebo recipients were infrequent and mainly detected against single antigens. The promising results in adults supported testing ETVAX in descending age groups of children. ClinicalTrials.gov Identifier: NCT02531802.
Collapse
Affiliation(s)
- Marjahan Akhtar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohiul I Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur R Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Joanna Kaim
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden
| | - Tasnuva Ahmed
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Tanzeem A Rafique
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Arifuzzaman Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sadia I A Rahman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Yasmin A Begum
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mir Z Sharif
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Laila N Islam
- Dept. of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | | | | | | | | | | | | - Ann-Mari Svennerholm
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anna Lundgren
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden.
| |
Collapse
|
17
|
Nagpal G, Usmani SS, Raghava GPS. A Web Resource for Designing Subunit Vaccine Against Major Pathogenic Species of Bacteria. Front Immunol 2018; 9:2280. [PMID: 30356876 PMCID: PMC6190870 DOI: 10.3389/fimmu.2018.02280] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Evolution has led to the expansion of survival strategies in pathogens including bacteria and emergence of drug resistant strains proved to be a major global threat. Vaccination is a promising strategy to protect human population. Reverse vaccinology is a more robust vaccine development approach especially with the availability of large-scale sequencing data and rapidly dropping cost of the techniques for acquiring such data from various organisms. The present study implements an immunoinformatic approach for screening the possible antigenic proteins among various pathogenic bacteria to systemically arrive at epitope-based vaccine candidates against 14 pathogenic bacteria. Thousand four hundred and fifty nine virulence factors and Five hundred and forty six products of essential genes were appraised as target proteins to predict potential epitopes with potential to stimulate different arms of the immune system. To address the self-tolerance, self-epitopes were identified by mapping on 1000 human proteome and were removed. Our analysis revealed that 21proteins from 5 bacterial species were found as virulent as well as essential to their survival, proved to be most suitable vaccine target against these species. In addition to the prediction of MHC-II binders, B cell and T cell epitopes as well as adjuvants individually from proteins of all 14 bacterial species, a stringent criteria lead us to identify 252 unique epitopes, which are predicted to be T-cell epitopes, B-cell epitopes, MHC II binders and Vaccine Adjuvants. In order to provide service to scientific community, we developed a web server VacTarBac for designing of vaccines against above species of bacteria. This platform integrates a number of tools that includes visualization tools to present antigenicity/epitopes density on an antigenic sequence. These tools will help users to identify most promiscuous vaccine candidates in a pathogenic antigen. This server VacTarBac is available from URL (http://webs.iiitd.edu.in/raghava/vactarbac/).
Collapse
Affiliation(s)
- Gandharva Nagpal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.,Centre for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Salman Sadullah Usmani
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Computational Biology, Indraprastha Institute of Information Technology, Okhla, India
| |
Collapse
|
18
|
Begum YA, Rydberg HA, Thorell K, Kwak YK, Sun L, Joffré E, Qadri F, Sjöling Å. In Situ Analyses Directly in Diarrheal Stool Reveal Large Variations in Bacterial Load and Active Toxin Expression of Enterotoxigenic Escherichiacoli and Vibrio cholerae. mSphere 2018; 3:e00517-17. [PMID: 29404412 PMCID: PMC5784243 DOI: 10.1128/msphere.00517-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogens enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae are major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), while V. cholerae produces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102 and 108 bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102 to 104 of either ETEC or V. cholerae toxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCE The cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenic E. coli (ETEC) and Vibrio cholerae directly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Hanna A. Rydberg
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Young-Keun Kwak
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Enrique Joffré
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Aref NEM, Nasr M, Osman R. Construction and immunogenicity analysis of nanoparticulated conjugate of heat-stable enterotoxin (STa) of enterotoxigenic Escherichia coli. Int J Biol Macromol 2017; 106:730-738. [PMID: 28823704 DOI: 10.1016/j.ijbiomac.2017.08.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
Abstract
The ultimate goal of this research was to overcome the low immunogenicity of the biological macromolecule (heat stable enterotoxin STa) via its conjugation to biodegradable PLGA nanoparticles (NP). STa was first isolated from Enterotoxigenic Escherichia coli (ETEC), purified and identified using reported HPLC procedures. Optimized homogenous PLGA NP, prepared using the nanoprecipitation technique were used for conjugating STa using the carbodiimide synthesis. Covalent binding of STa to PLGA NP was confirmed via FTIR and 1HNMR analysis. Safety and tolerability of the developed nanoparticulated STa-PLGA conjugate were confirmed by MTT assay on A549 lung cancer cells. After subcutaneous immunization, STA-PLGA NP conjugate induced a significant immune response in mice showing a strong binding and neutralizing antibody titer. The developed novel STa-PLGA NP conjugate is expected to provide promising protection against enterotoxigenic Escherichia coli (ETEC).
Collapse
Affiliation(s)
- Nasr-Eldin M Aref
- Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt.
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
20
|
Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017; 114:116-131. [PMID: 28438674 PMCID: PMC6132247 DOI: 10.1016/j.addr.2017.04.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
While vaccination remains the most cost effective strategy for disease prevention, communicable diseases persist as the second leading cause of death worldwide. There is a need to design safe, novel vaccine delivery methods to protect against unaddressed and emerging diseases. Development of vaccines administered orally is preferable to traditional injection-based formulations for numerous reasons including improved safety and compliance, and easier manufacturing and administration. Additionally, the oral route enables stimulation of humoral and cellular immune responses at both systemic and mucosal sites to establish broader and long-lasting protection. However, oral delivery is challenging, requiring formulations to overcome the harsh gastrointestinal (GI) environment and avoid tolerance induction to achieve effective protection. Here we address the rationale for oral vaccines, including key biological and physicochemical considerations for next-generation oral vaccine design.
Collapse
Affiliation(s)
- Julia E Vela Ramirez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Lindsey A Sharpe
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
21
|
Desai SN, Pezzoli L, Alberti KP, Martin S, Costa A, Perea W, Legros D. Achievements and challenges for the use of killed oral cholera vaccines in the global stockpile era. Hum Vaccin Immunother 2017; 13:579-587. [PMID: 27813703 PMCID: PMC5360144 DOI: 10.1080/21645515.2016.1245250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/13/2022] Open
Abstract
Cholera remains an important but neglected public health threat, affecting the health of the poorest populations and imposing substantial costs on public health systems. Cholera can be eliminated where access to clean water, sanitation, and satisfactory hygiene practices are sustained, but major improvements in infrastructure continue to be a distant goal. New developments and trends of cholera disease burden, the creation of affordable oral cholera vaccines (OCVs) for use in developing countries, as well as recent evidence of vaccination impact has created an increased demand for cholera vaccines. The global OCV stockpile was established in 2013 and with support from Gavi, has assisted in achieving rapid access to vaccine in emergencies. Recent WHO prequalification of a second affordable OCV supports the stockpile goals of increased availability and distribution to affected populations. It serves as an essential step toward an integrated cholera control and prevention strategy in emergency and endemic settings.
Collapse
|
22
|
Gheibi Hayat SM, Mousavi Gargari SL, Nazarian S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals 2016; 44:503-510. [DOI: 10.1016/j.biologicals.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023] Open
|
23
|
Lääveri T, Sterne J, Rombo L, Kantele A. Systematic review of loperamide: No proof of antibiotics being superior to loperamide in treatment of mild/moderate travellers' diarrhoea. Travel Med Infect Dis 2016; 14:299-312. [PMID: 27363327 DOI: 10.1016/j.tmaid.2016.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Looking at the worldwide emergency of antimicrobial resistance, international travellers appear to have a central role in spreading the bacteria across the globe. Travellers' diarrhoea (TD) is the most common disease encountered by visitors to the (sub)tropics. Both TD and its treatment with antibiotics have proved significant independent risk factors of colonization by resistant intestinal bacteria while travelling. Travellers should therefore be given preventive advice regarding TD and cautioned about taking antibiotics: mild or moderate TD does not require antibiotics. Logical alternatives are medications with effects on gastrointestinal function, such as loperamide. The present review explores literature on loperamide in treating TD. Adhering to manufacturer's dosage recommendations, loperamide offers a safe and effective alternative for relieving mild and moderate symptoms. Moreover, loperamide taken singly does no predispose to contracting MDR bacteria. Most importantly, we found no proof that would show antibiotics to be significantly more effective than loperamide in treating mild/moderate TD.
Collapse
Affiliation(s)
- Tinja Lääveri
- Inflammation Center, Division of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, POB 348, FIN-00029 HUS, Finland.
| | - Jesper Sterne
- Centre for Clinical Research, Sörmland County Council, Eskilstuna and University of Uppsala, SE 631 88 Eskilstuna, Sweden.
| | - Lars Rombo
- Centre for Clinical Research, Sörmland County Council, Eskilstuna and University of Uppsala, SE 631 88 Eskilstuna, Sweden; Karolinska Institutet, Department of Medicine/Solna, Unit for Infectious Diseases, SE 17176 Stockholm, Sweden.
| | - Anu Kantele
- Inflammation Center, Division of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, POB 348, FIN-00029 HUS, Finland; Karolinska Institutet, Department of Medicine/Solna, Unit for Infectious Diseases, SE 17176 Stockholm, Sweden; Department of Medicine, University of Helsinki, Finland.
| |
Collapse
|
24
|
Kazemi R, Akhavian A, Amani J, Salimian J, Motamedi MJ, Mousavi A, Jafari M, Salmanian AH. Immunogenic properties of trivalent recombinant protein composed of B-subunits of LT, STX-2, and CT toxins. Microbes Infect 2016; 18:421-429. [DOI: 10.1016/j.micinf.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/31/2023]
|
25
|
Sousa NA, Barros FCN, Araújo TS, Costa DS, Souza LKM, Sousa FBM, Leódido ACM, Pacífico DM, Araújo SD, Bezerra FF, Freitas ALP, Medeiros JVR. The efficacy of a sulphated polysaccharide fraction from Hypnea musciformis against diarrhea in rodents. Int J Biol Macromol 2016; 86:865-75. [DOI: 10.1016/j.ijbiomac.2016.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
26
|
|
27
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
28
|
Gonzales-Siles L, Sjöling Å. The different ecological niches of enterotoxigenic Escherichia coli. Environ Microbiol 2015; 18:741-51. [PMID: 26522129 PMCID: PMC4982042 DOI: 10.1111/1462-2920.13106] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/17/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a water and food-borne pathogen that infects the small intestine of the human gut and causes diarrhoea. Enterotoxigenic E. coli adheres to the epithelium by means of colonization factors and secretes two enterotoxins, the heat labile toxin and/or the heat stable toxin that both deregulate ion channels and cause secretory diarrhoea. Enterotoxigenic E. coli as all E. coli, is a versatile organism able to survive and grow in different environments. During transmission and infection, ETEC is exposed to various environmental cues that have an impact on survivability and virulence. The ability to cope with exposure to different stressful habitats is probably shaping the pool of virulent ETEC strains that cause both endemic and epidemic infections. This review will focus on the ecology of ETEC in its different habitats and interactions with other organisms as well as abiotic factors.
Collapse
Affiliation(s)
- Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Davitt CJ, Lavelle EC. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 2015; 91:52-69. [PMID: 25817337 DOI: 10.1016/j.addr.2015.03.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 01/22/2023]
Abstract
While the majority of human pathogens infect the body through mucosal sites, most licensed vaccines are injectable. In fact the only mucosal vaccine that has been widely used globally for infant and childhood vaccination programs is the oral polio vaccine (OPV) developed by Albert Sabin in the 1950s. While oral vaccines against Cholera, rotavirus and Salmonella typhi have also been licensed, the development of additional non-living oral vaccines against these and other enteric pathogens has been slow and challenging. Mucosal vaccines can elicit protective immunity at the gut mucosa, in part via antigen-specific secretory immunoglobulin A (SIgA). However, despite their advantages over the injectable route, oral vaccines face many hurdles. A key challenge lies in design of delivery strategies that can protect antigens from degradation in the stomach and intestine, incorporate appropriate immune-stimulatory adjuvants and control release at the appropriate gastrointestinal site. A number of systems including micro and nanoparticles, lipid-based strategies and enteric capsules have significant potential either alone or in advanced combined formulations to enhance intestinal immune responses. In this review we will outline the opportunities, challenges and potential delivery solutions to facilitate the development of improved oral vaccines for infectious enteric diseases.
Collapse
|
30
|
Leitner DR, Lichtenegger S, Temel P, Zingl FG, Ratzberger D, Roier S, Schild-Prüfert K, Feichter S, Reidl J, Schild S. A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Front Microbiol 2015; 6:823. [PMID: 26322032 PMCID: PMC4531250 DOI: 10.3389/fmicb.2015.00823] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022] Open
Abstract
Enteric infections induced by pathogens like Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) remain a massive burden in developing countries with increasing morbidity and mortality rates. Previously, we showed that the immunization with genetically detoxified outer membrane vesicles (OMVs) derived from V. cholerae elicits a protective immune response based on the generation of O antigen antibodies, which effectively block the motility by binding to the sheathed flagellum. In this study, we investigated the potential of lipopolysaccharide (LPS)-modified and toxin negative OMVs isolated from V. cholerae and ETEC as a combined OMV vaccine candidate. Our results indicate that the immunization with V. cholerae or ETEC OMVs induced a species-specific immune response, whereas the combination of both OMV species resulted in a high-titer, protective immune response against both pathogens. Interestingly, the immunization with V. cholerae OMVs alone resulted in a so far uncharacterized and cholera toxin B-subunit (CTB) independent protection mechanism against an ETEC colonization. Furthermore, we investigated the potential use of V. cholerae OMVs as delivery vehicles for the heterologously expression of the ETEC surface antigens, CFA/I, and FliC. Although we induced a detectable immune response against both heterologously expressed antigens, none of these approaches resulted in an improved protection compared to a simple combination of V. cholerae and ETEC OMVs. Finally, we expanded the current protection model from V. cholerae to ETEC by demonstrating that the inhibition of motility via anti-FliC antibodies represents a relevant protection mechanism of an OMV-based ETEC vaccine candidate in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Stefan Schild
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| |
Collapse
|
31
|
|
32
|
Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 2015; 305:85-95. [PMID: 25466205 PMCID: PMC4300426 DOI: 10.1016/j.ijmm.2014.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5×10(5) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively.
Collapse
Affiliation(s)
- Wesam Salem
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria; South Valley University, Faculty of Science, Qena, Egypt
| | - Deborah R Leitner
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Franz G Zingl
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Gebhart Schratter
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Schmiedlstraße 6, 8042 Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Schmiedlstraße 6, 8042 Graz, Austria
| | - Walter Goessler
- Institute for Chemistry, Analytical Chemistry, University of Graz, BioTechMed-Graz, 8010 Graz, Austria
| | - Joachim Reidl
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Stefan Schild
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria.
| |
Collapse
|
33
|
Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors. J Bacteriol 2014; 197:392-403. [PMID: 25404692 DOI: 10.1128/jb.02050-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant cause of morbidity and mortality in the developing world. ETEC-mediated diarrhea is orchestrated by heat-labile toxin (LT) and heat-stable toxins (STp and STh), acting in concert with a repertoire of more than 25 colonization factors (CFs). LT, the major virulence factor, induces fluid secretion after delivery of a monomeric ADP-ribosylase (LTA) and its pentameric carrier B subunit (LTB). A study of ETEC isolates from humans in Brazil reported the existence of natural LT variants. In the present study, analysis of predicted amino acid sequences showed that the LT amino acid polymorphisms are associated with a geographically and temporally diverse set of 192 clinical ETEC strains and identified 12 novel LT variants. Twenty distinct LT amino acid variants were observed in the globally distributed strains, and phylogenetic analysis showed these to be associated with different CF profiles. Notably, the most prevalent LT1 allele variants were correlated with major ETEC lineages expressing CS1 + CS3 or CS2 + CS3, and the most prevalent LT2 allele variants were correlated with major ETEC lineages expressing CS5 + CS6 or CFA/I. LTB allele variants generally exhibited more-stringent amino acid sequence conservation (2 substitutions identified) than LTA allele variants (22 substitutions identified). The functional impact of LT1 and LT2 polymorphisms on virulence was investigated by measuring total-toxin production, secretion, and stability using GM1-enzyme-linked immunosorbent assays (GM1-ELISA) and in silico protein modeling. Our data show that LT2 strains produce 5-fold more toxin than LT1 strains (P < 0.001), which may suggest greater virulence potential for this genetic variant. Our data suggest that functionally distinct LT-CF variants with increased fitness have persisted during the evolution of ETEC and have spread globally.
Collapse
|
34
|
Bhatia B, Solanki AK, Kaushik H, Dixit A, Garg LC. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: Expression, purification and characterization of the chimeric protein. Protein Expr Purif 2014; 102:38-44. [DOI: 10.1016/j.pep.2014.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
35
|
Chatterjee A, Chakrabarti G. Dimethyl sulphoxide and Ca2+ stimulate assembly of Vibrio cholerae FtsZ. Biochimie 2014; 105:64-75. [DOI: 10.1016/j.biochi.2014.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
36
|
Zeinalzadeh N, Salmanian AH, Ahangari G, Sadeghi M, Amani J, Bathaie SZ, Jafari M. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: a bioinformatic approach. Biotechnol Appl Biochem 2014; 61:517-27. [PMID: 24372617 DOI: 10.1002/bab.1196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 12/19/2013] [Indexed: 05/14/2025]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are the most common cause of bacterial diarrhea in children in developing countries and travelers to these areas. Enterotoxins and colonization factors (CFs) are two key virulence factors in ETEC pathogenesis, and the heterogeneity of the CFs is the bottleneck in reaching an effective vaccine. In this study, a candidate subunit vaccine, which is composed of CfaB, CssA and CssB, structural subunits of colonization factor antigen I and CS6 CFs, labile toxin subunit B, and the binding subunit of heat-labile and heat-stable toxoid, was designed to provide broad-spectrum protection against ETEC. The different features of chimeric gene, its mRNA stability, and chimeric protein properties were analyzed by using bioinformatic tools. The optimized chimeric gene was chemically synthesized and expressed successfully in a prokaryotic host. The purified protein was used for assessment of bioinformatic data by experimental methods.
Collapse
Affiliation(s)
- Narges Zeinalzadeh
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e-Pajoohesh, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
37
|
Desai SN, Cravioto A, Sur D, Kanungo S. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines. Hum Vaccin Immunother 2014; 10:1457-65. [PMID: 24861554 PMCID: PMC5396246 DOI: 10.4161/hv.29199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022] Open
Abstract
When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.
Collapse
Affiliation(s)
| | | | - Dipika Sur
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| |
Collapse
|
38
|
Alam MM, Aktar A, Afrin S, Rahman MA, Aktar S, Uddin T, Rahman MA, Mahbuba DA, Chowdhury F, Khan AI, Bhuiyan TR, Begum YA, Ryan ET, Calderwood SB, Svennerholm AM, Qadri F. Antigen-specific memory B-cell responses to enterotoxigenic Escherichia coli infection in Bangladeshi adults. PLoS Negl Trop Dis 2014; 8:e2822. [PMID: 24762744 PMCID: PMC3998937 DOI: 10.1371/journal.pntd.0002822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/11/2014] [Indexed: 11/18/2022] Open
Abstract
Background Multiple infections with diverse enterotoxigenic E. coli (ETEC) strains lead to broad spectrum protection against ETEC diarrhea. However, the precise mechanism of protection against ETEC infection is still unknown. Therefore, memory B cell responses and affinity maturation of antibodies to the specific ETEC antigens might be important to understand the mechanism of protection. Methodology In this study, we investigated the heat labile toxin B subunit (LTB) and colonization factor antigens (CFA/I and CS6) specific IgA and IgG memory B cell responses in Bangladeshi adults (n = 52) who were infected with ETEC. We also investigated the avidity of IgA and IgG antibodies that developed after infection to these antigens. Principal Findings Patients infected with ETEC expressing LT or LT+heat stable toxin (ST) and CFA/I group or CS6 colonization factors developed LTB, CFA/I or CS6 specific memory B cell responses at day 30 after infection. Similarly, these patients developed high avidity IgA and IgG antibodies to LTB, CFA/I or CS6 at day 7 that remained significantly elevated at day 30 when compared to the avidity of these specific antibodies at the acute stage of infection (day 2). The memory B cell responses, antibody avidity and other immune responses to CFA/I not only developed in patients infected with ETEC expressing CFA/I but also in those infected with ETEC expressing CFA/I cross-reacting epitopes. We also detected a significant positive correlation of LTB, CFA/I and CS6 specific memory B cell responses with the corresponding increase in antibody avidity. Conclusion This study demonstrates that natural infection with ETEC induces memory B cells and high avidity antibodies to LTB and colonization factor CFA/I and CS6 antigens that could mediate anamnestic responses on re-exposure to ETEC and may help in understanding the requirements to design an effective vaccination strategies. Enterotoxigenic Escherichia coli (ETEC) is a non-invasive pathogen causing diarrhea in children as well as in adults and travelers in developing countries. After colonizing the intestine using colonization factors, the organisms secrete heat-stable (ST) and/or heat-labile (LT) enterotoxin to cause watery diarrhea. Natural infection with ETEC provides protection against subsequent infection; however, the precise mechanism is unknown. In this study, we have shown that adult patients with diarrhea infected with ETEC develop toxin (LTB) and colonization factor (CFA/I and CS6) specific memory B cell responses as well as highly avid antigen-specific antibodies. The antibody avidity indices were shown to be positively associated with memory B cell responses, suggesting that these processes may occur in concert. This study encourages further evaluation of such responses in children as well as in vaccinees.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sadia Afrin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Arif Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sarmin Aktar
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taher Uddin
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Arifur Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Deena Al Mahbuba
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ann-Mari Svennerholm
- Gothenburg University Vaccine Research Institute (GUVAX), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
39
|
Regulatory T-cell vaccination independent of auto-antigen. Exp Mol Med 2014; 46:e82. [PMID: 24626168 PMCID: PMC3972794 DOI: 10.1038/emm.2014.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022] Open
Abstract
To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25+ Treg cells are stimulated, but for arthritis CD39+ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.
Collapse
|
40
|
Escherichia coli Capsular Polysaccharide Synthesis, Antibiotic Susceptibility, and Red Blood Cell Agglutination. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.jecm.2014.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Svennerholm AM, Tobias J. Vaccines against enterotoxigenicEscherichia coli. Expert Rev Vaccines 2014; 7:795-804. [DOI: 10.1586/14760584.7.6.795] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Sousa MÂB, Mendes EN, Collares GB, Péret-Filho LA, Penna FJ, Magalhães PP. Shigella in Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and virulence genes. Mem Inst Oswaldo Cruz 2013; 108:30-5. [PMID: 23440111 PMCID: PMC3974317 DOI: 10.1590/s0074-02762013000100005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance.
Collapse
Affiliation(s)
- Mireille Ângela Bernardes Sousa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | | | |
Collapse
|
43
|
Yuen ASW, Kolappan S, Ng D, Craig L. Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol Microbiol 2013; 90:898-918. [PMID: 24106767 DOI: 10.1111/mmi.12407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2013] [Indexed: 01/19/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera-like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co-regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β-sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side-chains at one end and structural homology to the pore-forming proteins perfringolysin O and α-haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.
Collapse
Affiliation(s)
- Alex S W Yuen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | | | |
Collapse
|
44
|
Nazarian S, Gargari SLM, Rasooli I, Hasannia S, Pirooznia N. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res 2013; 169:205-12. [PMID: 23906742 DOI: 10.1016/j.micres.2013.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/20/2013] [Accepted: 06/14/2013] [Indexed: 01/14/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures.
Collapse
Affiliation(s)
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
| | - Sadegh Hasannia
- Tarbiat Modares University, Faculty of Biological Sciences, Tehran, Iran
| | - Nazanin Pirooznia
- Faculty of Science, Department of Biology, University of Guilan, Rasht, Iran
| |
Collapse
|
45
|
Kaushik H, Deshmukh S, Mathur DD, Tiwari A, Garg LC. Recombinant expression of in silico identified Bcell epitope of epsilon toxin of Clostridium perfringens in translational fusion with a carrier protein. Bioinformation 2013; 9:617-21. [PMID: 23904738 PMCID: PMC3725002 DOI: 10.6026/97320630009617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens. ABBREVIATIONS aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.
Collapse
Affiliation(s)
- Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Sachin Deshmukh
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Deepika Dayal Mathur
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Archana Tiwari
- School of Biotechnololgy, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP – 462036, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| |
Collapse
|
46
|
Haque F, Hossain MJ, Kundu SK, Naser AM, Rahman M, Luby SP. Cholera Outbreaks in Urban Bangladesh In 2011. EPIDEMIOLOGY (SUNNYVALE, CALIF.) 2013; 3:126. [PMID: 26702366 PMCID: PMC4686147 DOI: 10.4172/2161-1165.1000126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In 2011, a multidisciplinary team investigated two diarrhoea outbreaks affecting urban Bangladeshi communities from the districts of Bogra and Kishorganj to identify etiology, pathways of transmission, and factors contributing to these outbreaks. METHODS We defined case-patients with severe diarrhoea as residents from affected communities admitted with ≥3 loose stools per day. We listed case-patients, interviewed and examined them, and collected rectal swabs. We visited the affected communities to explore the water and sanitation infrastructure. We tested the microbial load of water samples from selected case household taps, tube wells, and pump stations. We conducted anthropological investigations to understand community perceptions regarding the outbreaks. RESULTS We identified 21 case-patients from Bogra and 84 from Kishorganj. The median age in Bogra was 23 years, and 21 years in Kishorganj. There were no reported deaths. We isolated Vibrio in 29% (5/17) of rectal swabs from Bogra and in 40% (8/20) from Kishorganj. We found Vibrio in 1/8 tap water samples from Bogra and in both of the samples from Kishorganj. We did not find Vibrio in water samples from pumps or tube wells in either outbreak. Ground water extracted through deep tube wells was supplied intermittently through interconnected pipes without treatment in both areas. We found leakages in the water pipes in Bogra, and in Kishorganj water pipes passed through open sewers. CONCLUSION The rapid onset of severe diarrhoea predominantly affecting adults and the isolation of cholera in rectal swabs confirmed that these outbreaks were caused by Vibrio cholerae. The detection of Vibrio in water samples organisms from taps but not from pumps or tube wells, suggested contamination within the pipes. Safe water provision is difficult in municipalities where supply is intermittent, and where pipes commonly leak. Research to develop and evaluate water purification strategies could identify appropriate approaches for ensuring safe drinking water in resource-poor cities.
Collapse
Affiliation(s)
- Farhana Haque
- Centre for Communicable Diseases (CCD), International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - M. Jahangir Hossain
- Centre for Communicable Diseases (CCD), International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)
| | - Subodh Kumar Kundu
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Abu Mohd. Naser
- Centre for Communicable Diseases (CCD), International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Stephen P. Luby
- Centre for Communicable Diseases (CCD), International Centre for Diarrheal Disease Research, Bangladesh (icddr,b)
- Global Disease Detection and Emergency Response, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
47
|
Bovine lactoferrin decreases cholera-toxin-induced intestinal fluid accumulation in mice by ganglioside interaction. PLoS One 2013; 8:e59253. [PMID: 23580005 PMCID: PMC3620325 DOI: 10.1371/journal.pone.0059253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Secretory diarrhea caused by cholera toxin (CT) is initiated by binding of CT’s B subunit (CTB) to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF) on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01). We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea.
Collapse
|
48
|
Chatterjee D, Chaudhuri K. Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 cell responses. J Biol Chem 2012; 288:4299-309. [PMID: 23275338 DOI: 10.1074/jbc.m112.408302] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like other Gram-negative pathogens, Vibrio cholerae, the causative agent of the diarrheal disease cholera, secretes outer membrane vesicles (OMVs). OMVs are complex entities composed of a subset of envelope lipid and protein components and play a role in the delivery of effector molecules to host cells. We previously showed that V. cholerae O395 cells secrete OMVs that are internalized by host cells, but their role in pathogenesis has not been well elucidated. In the present study, we evaluated the interaction of OMVs with intestinal epithelial cells. These vesicles induced expression of proinflammatory cytokines such as IL-8 and GM-CSF and chemokines such as CCL2, CCL20, and thymic stromal lymphopoietin in epithelial cells through activation of MAPK and NF-κB pathways in NOD1-dependent manner. Epithelial cells stimulated with OMVs activated dendritic cells (DCs) in a direct co-culture system. Activated DCs expressed high levels of co-stimulatory molecules; released inflammatory cytokines IL-1β, IL-6, TNF-α, and IL-23 and chemokines CCL22 and CCL17; and subsequently primed CD4(+) T cells leading to IL-4, IL-13, and IL-17 expression. These results suggest that V. cholerae O395 OMVs modulate the epithelial proinflammatory response and activate DCs, which promote T cell polarization toward an inflammatory Th2/Th17 response.
Collapse
Affiliation(s)
- Debashree Chatterjee
- Molecular and Human Genetics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | |
Collapse
|
49
|
Svennerholm AM, Lundgren A. Recent progress toward an enterotoxigenic Escherichia coli vaccine. Expert Rev Vaccines 2012; 11:495-507. [PMID: 22551034 DOI: 10.1586/erv.12.12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enterotoxigenic Escherichia coli(ETEC) is the most common cause of bacterial diarrhea in children in Africa, Asia and Latin America and in travelers to these regions. Despite this, no effective vaccine for ETEC is available. ETEC causes disease by colonizing the small intestine with colonization factors, most of which are fimbriae, and production of heat-labile and/or heat-stable enterotoxins. Antibodies against heat-labile enterotoxin and the colonization factors have been shown to be protective, and local immunity in the gut seems to be of prime importance for protection. Hence, several inactivated and live candidate ETEC vaccines consisting of toxin antigens, alone or together with colonization factors, have been evaluated in clinical trials. In this review, the authors describe ETEC vaccine development in progress and the rationale for constructing different types of vaccines. They also discuss possibilities of enhancing immune responses to candidate ETEC vaccines, particularly in children.
Collapse
Affiliation(s)
- Ann-Mari Svennerholm
- Gothenburg University Vaccine Research Institute and Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | |
Collapse
|
50
|
A totally synthetic lipopeptide-based self-adjuvanting vaccine induces neutralizing antibodies against heat-stable enterotoxin from enterotoxigenic Escherichia coli. Vaccine 2012; 30:4800-6. [DOI: 10.1016/j.vaccine.2012.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/27/2012] [Accepted: 05/11/2012] [Indexed: 11/20/2022]
|