1
|
Fang B, Wang X, Sun Y, Xiong X, Meng X, Li W, Yi Z. Hypoxia-induced CCL2/CCR2 axis in adipose-derived stem cells (ADSCs) promotes angiogenesis by human dermal microvascular endothelial cells (HDMECs) in flap tissues. J Physiol Biochem 2023:10.1007/s13105-023-00944-6. [PMID: 36786974 DOI: 10.1007/s13105-023-00944-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Flap expansion has become an important method widely used in wound repair and organ reconstruction. However, distal skin flap ischemic necrosis remains a problematic complication. In this study, integrative bioinformatics analyses indicated the upregulation of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) in reperfusion-exposed skin flap tissues. In adipose-derived stem cells (ADSCs, CD90-positive, CD29-positive, CD34-negative, and CD106-negative) exposed to hypoxia, HIF-1α and CCL2 levels were significantly elevated. Conditioned medium (CM) from hypoxia-stimulated ADSCs promoted HDMEC proliferation, migration, and tube formation, partially inhibited by sh-CCL2-induced CCL2 knockdown or neutralized antibody-induced CCL2 depletion in ADSCs. Consistently, CCL2, CCR2, TNF-α, TLR2, and TLR4 protein levels in HDMECs were significantly increased by hypoxia-treated ADSCs CM, and partially decreased by sh-CCL2-induced CCL2 knockdown or neutralizing antibody-induced CCL2 knockdown in ADSCs. In the flap expansion model, ADSCs transplantation significantly improved flap survival and angiogenesis by endothelial cells in flap tissues, whereas CCL2 knockdown in ADSCs partially eliminated the improvement by ADSCs transplantation; overexpression of CCL2 in ADSCs further promoted the effects of ADSCs transplantation on skin flap. In conclusion, the CCL2/CCR2 axis in ADSCs could be induced by hypoxia, promoting HDMEC proliferation, migration, and tube formation and improving flap survival and angiogenesis in flap tissues.
Collapse
Affiliation(s)
- Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiancheng Wang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Sun
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiang Xiong
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
2
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
3
|
Mert T, Sahin E, Yaman S, Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1293-1302. [PMID: 32361779 DOI: 10.1007/s00210-020-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
In this study, we hypothesized that reduction of immune cell activation as well as their oxidant or inflammatory mediators with minocycline (MCN), liposome-encapsulated clodronate (LEC), or anti-Ly6G treatments can be neuroprotective approaches in diabetic neuropathy. MCN (40 mg/kg) for reduction of microglial activation, LEC (25 mg/kg) for of macrophage inhibition, or anti-Ly6G (150 μg/kg) for neutrophil suppression injected to streptozotocin (STZ)-induced diabetic rats twice, 3 days, and 1 week (half dose) after STZ. Animal mass and blood glucose levels were measured; thermal and mechanical sensitivities were tested for in pain sensations. The levels of chemokine C-X-C motif ligand 1 (CXCL1), CXCL8, and C-C motif ligand 2 (CCL2), CCL3, and total oxidant status (TOS) and total antioxidant status (TAS) were measured in the spinal cord and sciatic nerve tissues of rats. LEC significantly reduced the glucose level of diabetic rats compared with drug control. However, MCN or anti-LY6G did not change the glucose level. While diabetic rats showed a marked decrease in both thermal and mechanical sensations, all treatments alleviated these abnormal sensations. The levels of chemokines and oxidative stress parameters increased in diabetic rats. All drug treatments significantly decreased the CCL2, CXCL1, and CXCL8 levels of spinal cord tissues and ameliorated the neuronal oxidative stress compared with control treatments. Present findings suggest that the neuroprotective actions of MCN, LEC, or anti-Ly6G treatments may be due to the modulation of neuronal oxidative stress and/or inflammatory mediators of immune cells in diabetic rats with neuropathy.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Emel Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
4
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, AL-Ayadhi LY, Alotaibi MR, Alhoshani AR, Alshammari MA, Attia SM. Dysregulation of T cell immunoglobulin and mucin domain 3 (TIM-3) signaling in peripheral immune cells is associated with immune dysfunction in autistic children. Mol Immunol 2019; 106:77-86. [DOI: 10.1016/j.molimm.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 02/05/2023]
|
5
|
Abstract
Stroke is the fifth leading cause of death among Americans each year. Current standard-of-care treatment for stroke deploys intravenous tissue-type plasminogen activator (tPA), mechanical thrombolysis, or delivery of fibrinolytics. Although these therapies have reduced stroke-induced damage, therapeutic options still remain limited. Transplantation of patient-specific neural stem (NS) cells represents a promising strategy for the treatment of stroke. Basic science research has shown that transplanted NS cells can differentiate in the brain of rodent models of stroke and promote behavioral recovery. Clinical trials exploring the feasibility of stem cell treatment for stroke are currently being conducted. However, questions remain regarding the optimal means of delivering NS cells, including cell dose, infusion speed, timing of transplantation, anatomic site, and imaging-assisted monitoring and guidance. Of the different available delivery modalities, intravascular NS delivery after stroke represents one practical approach. In this chapter, I provide methods for intravascular delivery of NS cells in a mouse model of stroke. The techniques involved include cell culture of NS cells, flow cytometry of NS cells, modeling stroke via unilateral common carotid artery occlusion, intra-arterial injection of NS cells into the brain, behavior analyses, and immunohistochemistry. Intra-arterial NS cell therapy has the potential to improve functional recovery after ischemic stroke.
Collapse
|
6
|
Walker TL, Schallenberg S, Rund N, Grönnert L, Rust R, Kretschmer K, Kempermann G. T Lymphocytes Contribute to the Control of Baseline Neural Precursor Cell Proliferation but Not the Exercise-Induced Up-Regulation of Adult Hippocampal Neurogenesis. Front Immunol 2018; 9:2856. [PMID: 30619254 PMCID: PMC6297802 DOI: 10.3389/fimmu.2018.02856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Cross-talk between the peripheral immune system and the central nervous system is important for physiological brain health. T cells are required to maintain normal baseline levels of neural precursor proliferation in the hippocampus of adult mice. We show here that neither T cells, B cells, natural killer cells nor natural killer T cells are required for the increase in hippocampal precursor proliferation that occurs in response to physical exercise. In addition, we demonstrate that a subpopulation of T cells, regulatory T cells, is not involved in maintaining baseline levels of neural precursor proliferation. Even when applied at supraphysiological numbers, populations of both naive and stimulated lymphocytes had no effect on hippocampal precursor proliferation in vitro. In addition, physical activity had no effect on peripheral immune cells in terms of distribution in the bone marrow, lymph nodes or spleen, activation state or chemokine receptor (CXCR4 and CCR9) expression. Together these results suggest that lymphocytes are not involved in translating the peripheral effects of exercise to the neurogenic niche in the hippocampus and further support the idea that the exercise-induced regulation of adult neurogenesis is mechanistically distinct from its baseline control.
Collapse
Affiliation(s)
- Tara L Walker
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Sonja Schallenberg
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Lisa Grönnert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Ruslan Rust
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
7
|
Wimer CL, Schnabel CL, Perkins G, Babasyan S, Freer H, Stout AE, Rollins A, Osterrieder N, Goodman LB, Glaser A, Wagner B. The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS One 2018; 13:e0206679. [PMID: 30440016 PMCID: PMC6237298 DOI: 10.1371/journal.pone.0206679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
The equine herpesvirus type 1 (EHV-1) ORF1 and ORF71 genes have immune modulatory effects in vitro. Experimental infection of horses using virus mutants with multiple deletions including ORF1 and ORF71 showed promise as vaccine candidates against EHV-1. Here, the combined effects of ORF1 and ORF71 deletions from the neuropathogenic EHV-1 strain Ab4 on clinical disease and host immune response were further explored. Three groups of EHV-1 naïve horses were experimentally infected with the ORF1/71 gene deletion mutant (Ab4ΔORF1/71), the parent Ab4 strain, or remained uninfected. In comparison to Ab4, horses infected with Ab4ΔORF1/71 did not show the initial high fever peak characteristic of EHV-1 infection. Ab4ΔORF1/71 infection had reduced nasal shedding (1/5 vs. 5/5) and, simultaneously, decreased intranasal interferon (IFN)-α, interleukin (IL)-10 and soluble CD14 secretion. However, Ab4 and Ab4ΔORF1/71 infection resulted in comparable viremia, suggesting these genes do not regulate the infection of the mononuclear cells and subsequent viremia. Intranasal and serum anti-EHV-1 antibodies to Ab4ΔORF1/71 developed slightly slower than those to Ab4. However, beyond day 12 post infection (d12pi) serum antibodies in both virus-infected groups were similar and remained increased until the end of the study (d114pi). EHV-1 immunoglobulin (Ig) G isotype responses were dominated by short-lasting IgG1 and long-lasting IgG4/7 antibodies. The IgG4/7 response closely resembled the total EHV-1 specific antibody response. Ex vivo re-stimulation of PBMC with Ab4 resulted in IFN-γ and IL-10 secretion by cells from both infected groups within two weeks pi. Flow cytometric analysis showed that IFN-γ producing EHV-1-specific T-cells were mainly CD8+/IFN-γ+ and detectable from d32pi on. Peripheral blood IFN-γ+ T-cell percentages were similar in both infected groups, albeit at low frequency (~0.1%). In summary, the Ab4ΔORF1/71 gene deletion mutant is less virulent but induced antibody responses and cellular immunity similar to the parent Ab4 strain.
Collapse
Affiliation(s)
- Christine L. Wimer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane L. Schnabel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gillian Perkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alison E. Stout
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Laura B. Goodman
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Amy Glaser
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Ayadhi LY, Attia SM. Upregulation of peripheral CXC and CC chemokine receptor expression on CD4 + T cells is associated with immune dysregulation in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:211-220. [PMID: 28986277 DOI: 10.1016/j.pnpbp.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by disturbances in social interactions and communication, restricted repetitive interests, and stereotyped behavior. Cumulative evidence recommends that there are immune alterations in ASD. Chemokine receptors are known to play an important role in the central nervous system (CNS) and in many neuro inflammatory disorders. The main objective of this study was to explore the role of CXC and CC chemokine receptors signaling in children with autism. We examined chemokine receptor production of CXCR2, CXCR3, CXCR5, and CXCR7 in all peripheral blood mononuclear cells (PBMCs) and in CD4+ T cells of typically developing control children (TD) and autistic children (AU). We also examined chemokine receptor production of CCR3, CCR5, CCR7, and CCR9 in all PBMCs and in CD4+ T cells of AU and TD samples using flow cytometric analysis. In addition, we measured mRNA expression levels of CXC and CC chemokine receptors using quantitative RT-PCR analysis. Our results showed the increased production of CXCR2+, CXCR3+, CXCR5+, and CXCR7+ and CCR3+, CCR5+, CCR7+, and CCR9+ in all PBMCs and in CD4+ T cells of children with AU as compared to TD controls. Our results show that chemokine receptor signaling components might provide unique therapeutic targets for children with AU and other neurological disorders.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Yousef Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Transcriptomic analysis reveals differential activation of microglial genes after ischemic stroke in mice. Neuroscience 2017; 348:212-227. [DOI: 10.1016/j.neuroscience.2017.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
10
|
Zhao J, Poelaert KCK, Van Cleemput J, Nauwynck HJ. CCL2 and CCL5 driven attraction of CD172a + monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC). Vet Res 2017; 48:14. [PMID: 28241864 PMCID: PMC5327560 DOI: 10.1186/s13567-017-0419-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and neurological disorders in horses. Besides epithelial cells, CD172a+ monocytic cells become infected with EHV-1 in the respiratory mucosa and transport the virus from the apical side of the epithelium to the lamina propria en route to the lymph and blood circulation. Whether CD172a+ monocytic cells are specifically recruited to the infection sites in order to pick up virus is unknown. In our study, equine nasal mucosa explants were inoculated with EHV-1 neurological strains 03P37 and 95P105 or the non-neurological strains 97P70 and 94P247 and the migration of monocytic cells was examined by immunofluorescence. Further, the role of monokines CCL2 and CCL5 was determined and the effect of migration inhibitors rosiglitazone (RSG) or quinacrine was analyzed. It was shown that with neurological strains but not with the non-neurological strains, CD172a+ cells specifically migrated towards EHV-1 infected regions and that CCL2 and CCL5 were involved. CCL2 started to be expressed in infected epithelial cells at 24 h post-incubation (hpi) and CCL5 at 48 hpi, which corresponded with the CD172a+ migration. RSG treatment of EHV-1-inoculated equine nasal mucosa had no effect on the virus replication in the epithelium, but decreased the migration of CD172a+ cells in the lamina propria. Overall, these findings bring new insights in the early pathogenesis of EHV-1 infections, illustrate differences between neurological and non-neurological strains and show the way for EHV-1 treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Jolien Van Cleemput
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
Menasria R, Canivet C, Piret J, Gosselin J, Boivin G. Both Cerebral and Hematopoietic Deficiencies in CCR2 Result in Uncontrolled Herpes Simplex Virus Infection of the Central Nervous System in Mice. PLoS One 2016; 11:e0168034. [PMID: 27930721 PMCID: PMC5145225 DOI: 10.1371/journal.pone.0168034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
CCR2 is a chemokine receptor expressed on the surface of blood leukocytes, particularly «Ly6Chi» inflammatory monocytes and microglia. Signaling through this receptor is thought to influence the immune activity of microglia as well as monocytes egress from the bone marrow (BM) and their trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CCR2 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CCR2 expressed in cells of the CNS or peripheral monocytes in the protection against HSE remains unclear. To dissect the differential role of CCR2 during HSE, chimeric mice with receptor deficiency in the brain or blood cells were generated by transplanting wild-type (WT) C57BL/6 or CCR2-/- BM-derived cells in CCR2-/- (WT→CCR2-/-) and WT (CCR2-/-→WT) mice, respectively. Our results indicate that following intranasal infection with 1.2x106 plaque forming units of HSV-1, CCR2 deficiency in hematopoietic cells and, to a lesser extent, in CNS exacerbates the outcome of HSE. Mortality rates of CCR2-/- (71.4%) and CCR2-/-→WT (57.1%) mice were significantly higher than that of WT (15.3%; P<0.01 and P<0.05, respectively) but the difference did not reach statistical significance for WT→CCR2-/- animals (42.8%; P = 0.16). Both peripheral and CNS deficiencies in CCR2 resulted in increased infectious viral titers and wider dissemination of HSV antigens in the brain as well as an overproduction of inflammatory cytokines and chemokines including IL-1β, IL-6, CCL2, CCL3 and CCL5. Furthermore, CCR2 deficiency in the hematopoietic system altered monocytes egress from the BM and their recruitment to the CNS, which may contribute to the failure in HSV-1 containment. Collectively, these data suggest that CCR2 expressed on cells of CNS and especially on peripheral monocytes is important for the control of HSV-1 replication and inflammatory environment during experimental HSE.
Collapse
Affiliation(s)
- Rafik Menasria
- Research Center in Infectious Diseases, CHU of Quebec Research Center, Department of microbiology-immunology and infectious diseases, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Coraline Canivet
- Research Center in Infectious Diseases, CHU of Quebec Research Center, Department of microbiology-immunology and infectious diseases, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU of Quebec Research Center, Department of microbiology-immunology and infectious diseases, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunity, CHU of Quebec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU of Quebec Research Center, Department of microbiology-immunology and infectious diseases, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
12
|
Herrera MI, Kölliker-Frers R, Barreto G, Blanco E, Capani F. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration. Front Aging Neurosci 2016; 8:81. [PMID: 27199733 PMCID: PMC4844606 DOI: 10.3389/fnagi.2016.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.
Collapse
Affiliation(s)
- María I Herrera
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina; Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires, Argentina
| | - George Barreto
- Department of Nutrition and Biochemistry, Faculty of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida Lleida, Spain
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina; Facultad de Psicología, Universidad Católica ArgentinaBuenos Aires, Argentina; Departamento de Biología, Universidad Argentina John F. KennedyBuenos Aires, Argentina; Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
13
|
Larsson A, Carlsson L, Lind AL, Gordh T, Bodolea C, Kamali-Moghaddam M, Thulin M. The body mass index (BMI) is significantly correlated with levels of cytokines and chemokines in cerebrospinal fluid. Cytokine 2015; 76:514-518. [PMID: 26188367 DOI: 10.1016/j.cyto.2015.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
Cytokines and chemokines regulate many functions in the body including the brain. The interactions between adipose tissue and the central nervous system (CNS) are important for the regulation of energy balance. CNS function is also influenced by age. The aim of the present study was to investigate the effects of body mass index (BMI) and age on cytokine and chemokine levels in cerebrospinal fluid. Cerebrospinal fluid samples (n=89) were collected from patients undergoing routine surgical procedures. The samples were analyzed using the multiplex proximity extension assay (PEA) in which 92 different cytokines are measured simultaneously using minute sample volume. We found no significant correlations between age and cytokine levels for any of the studied markers. In contrast, at a false discovery rate of 10%, 19 markers were significantly associated with BMI (in decreasing significance: FGF-5, ADA, Beta-NGF, CD40, IL-10RB, CCL19, TGF-alpha, SIRT2, TWEAK, SCF, CSF-1, 4E-BP1, DNER, LIF-R, STAMPB, CXCL10, CXCL6, VEGF-A and CX3CL1). This study reveals a clear effect of BMI on cytokine and chemokine levels in cerebrospinal fluid.
Collapse
Affiliation(s)
- Anders Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Lena Carlsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anne-Li Lind
- Department of Surgical Sciences, Anesthesiology and Intensive Care and Uppsala Berzelii Technology Center for Neurodiagnostics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anesthesiology and Intensive Care and Uppsala Berzelii Technology Center for Neurodiagnostics, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Constantin Bodolea
- Department of Anaesthesia and Intensive Care, University of Cluj Napoca, Romania
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Måns Thulin
- Department of Statistics, Uppsala University, SE-751 05 Uppsala, Sweden
| |
Collapse
|
14
|
Choi EY, Lim JH, Neuwirth A, Economopoulou M, Chatzigeorgiou A, Chung KJ, Bittner S, Lee SH, Langer H, Samus M, Kim H, Cho GS, Ziemssen T, Bdeir K, Chavakis E, Koh JY, Boon L, Hosur K, Bornstein SR, Meuth SG, Hajishengallis G, Chavakis T. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 2015; 20:880-888. [PMID: 25385367 PMCID: PMC4351922 DOI: 10.1038/mp.2014.146] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Calcium-Binding Proteins
- Capillary Permeability/drug effects
- Capillary Permeability/physiology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- Homeostasis/drug effects
- Homeostasis/physiology
- Intercellular Signaling Peptides and Proteins
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/physiology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/metabolism
- Severity of Illness Index
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jong-Hyung Lim
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ales Neuwirth
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Matina Economopoulou
- Clinic for Ophthalmology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | | | - Seung-Hwan Lee
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harald Langer
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medizinische Klinik III, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Maryna Samus
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hyesoon Kim
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Geum-Sil Cho
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emmanouil Chavakis
- Department of Internal Medicine, Cardiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Kavita Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sven G. Meuth
- Department for Neurology, University Münster, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
15
|
Experimental autoimmune encephalomyelitis development is aggravated by Candida albicans infection. J Immunol Res 2015; 2015:635052. [PMID: 25969836 PMCID: PMC4417602 DOI: 10.1155/2015/635052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory/autoimmune disease of the central nervous system (CNS) mainly mediated by myelin specific T cells. It is widely believed that environmental factors, including fungal infections, contribute to disease induction or evolution. Even though Candida infection among MS patients has been described, the participation of this fungus in this pathology is not clear. The purpose of this work was to evaluate the effect of a Candida albicans infection on experimental autoimmune encephalomyelitis (EAE) that is a widely accepted model to study MS. Female C57BL/6 mice were infected with C. albicans and 3 days later, animals were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein. Previous infection increased the clinical score and also the body weight loss. EAE aggravation was associated with expansion of peripheral CD4+ T cells and production of high levels of TNF-α, IFN-γ IL-6, and IL-17 by spleen and CNS cells. In addition to yeast and hyphae, fungus specific T cells were found in the CNS. These findings suggest that C. albicans infection before EAE induction aggravates EAE, and possibly MS, mainly by CNS dissemination and local induction of encephalitogenic cytokines. Peripheral production of encephalitogenic cytokines could also contribute to disease aggravation.
Collapse
|
16
|
Castellanos J, Bello J, Velandia-Romero M. Manifestaciones neurológicas durante la infección por el virus del dengue. INFECTIO 2014. [DOI: 10.1016/j.infect.2014.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Sawada A, Niiyama Y, Ataka K, Nagaishi K, Yamakage M, Fujimiya M. Suppression of bone marrow-derived microglia in the amygdala improves anxiety-like behavior induced by chronic partial sciatic nerve ligation in mice. Pain 2014; 155:1762-1772. [PMID: 24907405 DOI: 10.1016/j.pain.2014.05.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 12/25/2022]
Abstract
Chronic neuropathic pain causes abnormal sensitivities such as hyperalgesia and allodynia, and emotional abnormalities such as anxiety and depression. Although spinal cord microglia are involved in abnormal sensitivity to neuropathic pain, no previous studies have examined the mechanism of neuropathic pain-induced anxiety. Here, we examined the involvement of bone marrow (BM)-derived microglia aggregated in the amygdalae of mice with chronic neuropathic pain in the development of anxiety-like behavior. We prepared partial sciatic nerve ligations (PSNL) in mice that received bone marrow transplantation from green fluorescent protein (GFP)-Tg mice after irradiation with head protection, and examined GFP-positive microglia in the central nuclei of the amygdalae (CeA). On day 28 after PSNL, BM-derived microglia aggregated in the CeA concurrent with anxiety-like behavior. BM-derived microglia in the CeA highly expressed interleukin (IL)-1β and C-C chemokine receptor type 2 (CCR2). In addition, neurons in the CeA highly expressed monocyte chemotactic protein-1 (MCP-1), a ligand for CCR2, in PSNL-treated mice compared to sham-operated mice, suggesting that the MCP-1/CCR2 axis is involved in the recruitment of BM-derived microglia. Oral administration of a CCR2 antagonist decreased the number of BM-derived microglia in the CeA, and successfully reversed the anxiety-like behavior and hypersensitivity to mechanical stimuli in PSNL-treated mice. Microinjections of an IL-1β receptor antagonist directly into the CeA successfully reversed the anxiety-like behavior in the PSNL-treated mice even though the neuropathic pain persisted. These results suggest that the recruitment of BM-derived microglia to the CeA via the MCP-1/CCR2 axis and neuron-microglia interactions might be important in the pathogenesis of neuropathic pain-induced anxiety.
Collapse
Affiliation(s)
- Atsushi Sawada
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Japan Department of Anatomy, Sapporo Medical University, School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Byun JS, Kwak BK, Kim JK, Jung J, Ha BC, Park S. Engraftment of human mesenchymal stem cells in a rat photothrombotic cerebral infarction model : comparison of intra-arterial and intravenous infusion using MRI and histological analysis. J Korean Neurosurg Soc 2013; 54:467-76. [PMID: 24527188 PMCID: PMC3921273 DOI: 10.3340/jkns.2013.54.6.467] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/17/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023] Open
Abstract
Objective This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. Methods Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. Results Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. Conclusion In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.
Collapse
Affiliation(s)
- Jun Soo Byun
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung Kook Kwak
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Kyun Kim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jisung Jung
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Bon Chul Ha
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Serah Park
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Shi G, Han J, Liu G, Hao Y, Ma Y, Li T, Wu X, Zhang H, Liu Y, Wang B, Kong Y, Zhou J, Zeng H. Expansion of activated regulatory T cells by myeloid‐specific chemokines via an alternative pathway in CSF of bacterial meningitis patients. Eur J Immunol 2013; 44:420-30. [DOI: 10.1002/eji.201343572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Guangzhi Shi
- Intensive Care UnitBeijing Tiantan HospitalCapital Medical UniversityBeijing China
| | - Junyan Han
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Gang Liu
- Department of Infectious DiseasesBeijing Children's HospitalCapital Medical UniversityBeijing China
| | - Yu Hao
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Yaluan Ma
- Institute of Basic Medical Theory of Chinese MedicineChina Academy of Chinese Medical SciencesBeijing China
| | - Tong Li
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Xueying Wu
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Henghui Zhang
- Peking University People's HospitalPeking University Hepatology InstituteBeijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijing China
| | - Yanan Liu
- Laboratory Diagnosis CenterBeijing Tiantan HospitalCapital Medical UniversityBeijing China
| | - Beibei Wang
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Yaxian Kong
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| | - Jianxin Zhou
- Intensive Care UnitBeijing Tiantan HospitalCapital Medical UniversityBeijing China
| | - Hui Zeng
- Institute of Infectious DiseasesBeijing Ditan HospitalCapital Medical UniversityBeijing China
- Beijing Key Laboratory of Emerging Infectious DiseasesBeijing China
| |
Collapse
|
20
|
Losy J. Is MS an inflammatory or primary degenerative disease? J Neural Transm (Vienna) 2013; 120:1459-62. [PMID: 24057507 PMCID: PMC3779312 DOI: 10.1007/s00702-013-1079-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/02/2013] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is characterized by multiple areas of inflammation, demyelination and neurodegeneration. Multiple molecular and cellular components mediate neuroinflammation in MS. They involve: adhesion molecules, chemokines, cytokines, matalloproteases and the following cells: CD4+ T cells, CD8+ T cells, B cells, microglia and macrophages. Infiltrating Th1 CD4+ T cells secrete proinflammatory cytokines. They stimulate the release of chemokines, expression of adhesion molecules and can be factors that cause damage to the myelin sheath and axons. Chemokines stimulate integrin activation, mediate leukocyte locomotion on endothelial cells and participate in transendothelial migration. CD8+ cells can directly damage axons. B cells are involved in the production of antibodies which can participate in demyelination. B cells can also function as antigen presenting cells and contribute to T cell activation. Neuroinflammation is not only present in relapsing-remitting MS, but also in the secondary and primary progressive forms of the disease. The association between inflammation consisting of T cells, B cells, plasma cells and macrophages and axonal injury exists in MS patients including the progressive forms of the disease. The above association does not exclude the possibility that neurodegeneration can exist independently from inflammation. Very little inflammation is seen in cortical MS plaques. Anti-inflammatory therapies with different mode of action change the course of MS. Anti-inflammatory and immunomodulatory treatments are beneficial in the early relapsing stage of MS, but these treatments are ineffective in secondary progressive and primary progressive MS. In the stage of progressive MS, inflammation becomes trapped behind a closed or repaired blood-brain barrier. In such a situation current immunomodulatory, immunosuppressive or anti-inflammatory treatments might not reach this inflammatory process to exert a beneficial effect.
Collapse
Affiliation(s)
- Jacek Losy
- Department of Clinical Neuroimmunology, University School of Medicine, Poznan, Poland,
| |
Collapse
|
21
|
Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, Sharp FR. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. [PMID: 24007566 PMCID: PMC3846739 DOI: 10.1186/2040-2392-4-30] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022] Open
Abstract
Background Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling. The only pathways significant after multiple comparison corrections (FDR <0.05) were the Nrf2-mediated reactive oxygen species (ROS) oxidative response (superoxide dismutase 2, catalase, peroxiredoxin 1, PIK3C3, DNAJC17, microsomal glutathione S-transferase 3) and superoxide radical degradation (SOD2, CAT). Conclusions These data support differences in alternative splicing of mRNA in blood of ASD subjects compared to TD controls that differ related to head size. The findings are preliminary, need to be replicated in independent cohorts, and predicted alternative splicing differences need to be confirmed using direct analytical methods.
Collapse
Affiliation(s)
- Boryana S Stamova
- MIND Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
De Marinis E, Acaz-Fonseca E, Arevalo MA, Ascenzi P, Fiocchetti M, Marino M, Garcia-Segura LM. 17β-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor β-mediated neuroglobin up-regulation. J Neuroendocrinol 2013. [PMID: 23190172 DOI: 10.1111/jne.12007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroglobin (Ngb), so named after its initial discovery in brain neurones, has received great attention as a result of its neuroprotective effects both in vitro and in vivo. Recently, we demonstrated that, in neurones, Ngb is a 17β-oestradiol (E(2) ) inducible protein that is pivotal for hormone-induced anti-apoptotic effects against H(2) O(2) toxicity. The involvement of Ngb in other brain cell populations, as well as in other neuroprotective effects of E(2) , is completely unknown at present. We demonstrate Ngb immunoreactivity in reactive astrocytes located in the proximity of a penetrating cortical injury in vivo and the involvement of Ngb in the E(2) -mediated anti-inflammatory effect in primary cortical astrocytes. Upon binding to oestrogen receptor (ER)β, E(2) enhances Ngb levels in a dose-dependent manner. Although with a lesser degree than E(2) , the pro-inflammatory stimulation with lipopolysaccharide (LPS) also induces the increase of Ngb protein levels via nuclear factor-(NF)κB signal(s). Moreover, a negative cross-talk between ER subtypes and NFκB signal(s) has been demonstrated. In particular, ERα-activated signals prevent the NFκB-mediated Ngb increase, whereas LPS impairs the ERβ-induced up-regulation of Ngb. Therefore, the co-expression of both ERα and ERβ is pivotal for mediating E(2) -induced Ngb expression in the presence of NFκB-activated signals. Interestingly, Ngb silencing prevents the effect of E(2) on the expression of inflammatory markers (i.e. interleukin 6 and interferon γ-inducible protein 10). Ngb can be regarded as a key mediator of the different protective effects of E(2) in the brain, including protection against oxidative stress and the control of inflammation, both of which are at the root of several neurodegenerative diseases.
Collapse
Affiliation(s)
- E De Marinis
- Department of Biology, University Roma Tre, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Eagar TN, Miller SD. Helper T-cell subsets and control of the inflammatory response. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Sashinami H, Asano K, Yoshimura S, Mori F, Wakabayashi K, Nakane A. Salmon proteoglycan suppresses progression of mouse experimental autoimmune encephalomyelitis via regulation of Th17 and Foxp3+ regulatory T cells. Life Sci 2012; 91:1263-9. [PMID: 23069584 DOI: 10.1016/j.lfs.2012.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/06/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
|
25
|
Minten C, Terry R, Deffrasnes C, King NJC, Campbell IL. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 2012; 7:e49851. [PMID: 23166780 PMCID: PMC3498170 DOI: 10.1371/journal.pone.0049851] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/15/2012] [Indexed: 01/13/2023] Open
Abstract
IFN regulatory factor (IRF) 8 is a transcription factor that has a key role in the cellular response to IFN-γ and is pivotal in myeloid cell differentiation. Whether IRF8 plays a role in the development and function of microglia, the tissue-resident myeloid cells of the brain, is unknown. Here, we show IRF8 is a constitutively produced nuclear factor in microglia, which suggested that IRF8 might also be a key homeostatic transcriptional determinant of the microglial cell phenotype. In support of this, in mice with a targeted disruption of the IRF8 gene, microglia were increased in number and showed gross alterations in morphology and surface area. In situ analysis of some key myeloid markers revealed that IRF8-deficient microglia had significantly reduced levels of Iba1, but increased levels of CD206 (mannose receptor) and F4/80 as well as increased tomato lectin binding. Analysis of microglia ex vivo revealed IRF8-deficient microglia had significantly increased levels of CD45, CD11b and F4/80, but significantly decreased levels of the chemokine receptors CCR2, CCR5 and CX3CR1. The known involvement of some of these molecular markers in membrane dynamics and phagocytosis led us to examine the phagocytic capacity of cultured IRF8-deficient microglia, however, this was found to be similar to wild type microglia. We conclude IRF8 is a constitutively produced nuclear factor in resident microglia of the CNS being a crucial transcriptional determinant of the phenotype of these cells in the healthy brain.
Collapse
Affiliation(s)
- Carsten Minten
- The School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
| | - Rachael Terry
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
| | - Celine Deffrasnes
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
| | - Nicholas J. C. King
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, New South Wales, Australia
| | - Iain L. Campbell
- The School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
26
|
Mishra PK, Teale JM. Transcriptome analysis of the ependymal barrier during murine neurocysticercosis. J Neuroinflammation 2012; 9:141. [PMID: 22731103 PMCID: PMC3527296 DOI: 10.1186/1742-2094-9-141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/23/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) barriers play a pivotal role in the protection and homeostasis of the CNS by enabling the exchange of metabolites while restricting the entry of xenobiotics, blood cells and blood-borne macromolecules. While the blood-brain barrier and blood-cerebrospinal fluid barrier (CSF) control the interface between the blood and CNS, the ependyma acts as a barrier between the CSF and parenchyma, and regulates hydrocephalic pressure and metabolic toxicity. Neurocysticercosis (NCC) is an infection of the CNS caused by the metacestode (larva) of Taenia solium and a major cause of acquired epilepsy worldwide. The common clinical manifestations of NCC are seizures, hydrocephalus and symptoms due to increased intracranial pressure. The majority of the associated pathogenesis is attributed to the immune response against the parasite. The properties of the CNS barriers, including the ependyma, are affected during infection, resulting in disrupted homeostasis and infiltration of leukocytes, which correlates with the pathology and disease symptoms of NCC patients. RESULTS In order to characterize the role of the ependymal barrier in the immunopathogenesis of NCC, we isolated ependymal cells using laser capture microdissection from mice infected or mock-infected with the closely related parasite Mesocestoides corti, and analyzed the genes that were differentially expressed using microarray analysis. The expression of 382 genes was altered. Immune response-related genes were verified by real-time RT-PCR. Ingenuity Pathway Analysis (IPA) software was used to analyze the biological significance of the differentially expressed genes, and revealed that genes known to participate in innate immune responses, antigen presentation and leukocyte infiltration were affected along with the genes involved in carbohydrate, lipid and small molecule biochemistry. Further, MHC class II molecules and chemokines, including CCL12, were found to be upregulated at the protein level using immunofluorescence microscopy. This is important, because these molecules are members of the most significant pathways by IPA analyses. CONCLUSION Thus, our study indicates that ependymal cells actively express immune mediators and likely contribute to the observed immunopathogenesis during infection. Of particular interest is the major upregulation of antigen presentation pathway-related genes and chemokines/cytokines. This could explain how the ependyma is a prominent source of leukocyte infiltration into ventricles through the disrupted ependymal lining by way of pial vessels present in the internal leptomeninges in murine NCC.
Collapse
Affiliation(s)
- Pramod Kumar Mishra
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
27
|
Moniuszko A, Pancewicz S, Czupryna P, Grygorczuk S, Świerzbińska R, Kondrusik M, Penza P, Zajkowska J. ssICAM-1, IL-21 and IL-23 in patients with tick borne encephalitis and neuroborreliosis. Cytokine 2012; 60:468-72. [PMID: 22705151 PMCID: PMC7128343 DOI: 10.1016/j.cyto.2012.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/02/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022]
Abstract
Objective There have been few reports on the role of Intercellular Adhesion Molecule 1 (ICAM-1), but not interleukin-21 (IL-21) and interleukin-23 (IL-23) in tick-borne encephalitis (TBE) and neuroborreliosis (NB). We postulate that these two interleukins may participate in the early phase of TBE and NB. The aim of the study was to measure serum and cerebrospinal fluid (CSF) concentration of ICAM-1, IL-21 and IL-23 in patients with TBE and NB before treatment and to assess their usefulness in the diagnosis and monitoring of inflammatory process in TBE and NB. Methods Forty-three patients hospitalized in The Department of Infectious Diseases and Neuroinfections of Medical University in Bialystok, Poland, were included in the study. Patients were divided into three groups: TBE, NB and CG. Pre-treatment blood and CSF samples were obtained from all patients. ELISA kits (DRG Instruments, Germany) were used to measure the concentration of IL-21, IL-23 and sICAM-1. Results Significant differences between TBE/CG and NB/CG concentration of sICAM-1 were found only in the CSF. CSF IL-21 levels in NB were lower than in TBE. In TBE, a strong negative correlation between CSF concentration of IL-21 and IL-23 and monocyte count in CSF was observed. Negative correlation between IL-21 in CSF and neutrophil count was also noted. Serum IL-23 correlated positively with leukocytes and platelet count in serum. In NB, a strong positive correlation between serum IL-21 and platelet count and negative correlation between IL-21 in serum and CSF with pleocytosis was observed. Conclusions Increased sICAM-1 concentration in TBE and NB may be a proof of brain–blood barrier disturbances in the early phase of these diseases. IL-21 and IL-23 do not appear to play an important role in the pathogenesis of the early stages of TBE and NB.
Collapse
Affiliation(s)
- Anna Moniuszko
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L. A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J Neurosci Methods 2012; 209:79-89. [PMID: 22659341 DOI: 10.1016/j.jneumeth.2012.05.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Microglia are the innate immune cells of the central nervous system. They help maintaining physiological homeostasis and contribute significantly to inflammatory responses in the course of infection, injury and degenerative processes. To date, there is no standardized simple model available to investigate the biology of human microglia. The aim of this study was to establish a new human microglia model. For that purpose, human peripheral blood monocytes were cultured in serum free medium in the presence of M-CSF, GM-CSF, NGF and CCL2 to generate monocyte-derived microglia (M-MG). M-MG were clearly different in morphology, phenotype and function from freshly isolated monocytes, cultured monocytes in the absence of the cytokines and monocyte-derived dendritic cells (M-DC) cultured in the presence of GM-CSF and IL-4. M-MG acquired a ramified morphology with primary and secondary processes. M-MG displayed a comparable phenotype to the human microglia cell line HMC3, expressing very low levels of CD45, CD14 and HLA-DR, CD11b and CD11c; and undetectable levels of CD40, CD80 and CD83, and a distinct pattern of chemokine receptors (positive for CCR1, CCR2, CCR4, CCR5, CXCR1, CXCR3, CX3CR1; negative for CCR6 and CCR7). In comparison with M-DC, M-MG displayed lower T-lymphocyte stimulatory capacity, as well as lower phagocytosis activity. The described protocol for the generation of human monocyte-derived microglia is feasible, well standardized and reliable, as it uses well defined culture medium and recombinant cytokines, but no serum or conditioned medium. This protocol will certainly be very helpful for future studies investigating the biology and pathology of human microglia.
Collapse
Affiliation(s)
- Samar Etemad
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA 6009, Australia
| | | | | | | |
Collapse
|
29
|
Tarasiuk J, Kułakowska A, Drozdowski W, Kornhuber J, Lewczuk P. CSF markers in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2012; 119:747-57. [DOI: 10.1007/s00702-012-0806-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/16/2012] [Indexed: 11/29/2022]
|
30
|
Role of SDF1/CXCR4 interaction in experimental hemiplegic models with neural cell transplantation. Int J Mol Sci 2012; 13:2636-2649. [PMID: 22489115 PMCID: PMC3317678 DOI: 10.3390/ijms13032636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022] Open
Abstract
Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES) cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1) in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.
Collapse
|
31
|
Dhote F, Carpentier P, Barbier L, Peinnequin A, Baille V, Pernot F, Testylier G, Beaup C, Foquin A, Dorandeu F. Combinations of ketamine and atropine are neuroprotective and reduce neuroinflammation after a toxic status epilepticus in mice. Toxicol Appl Pharmacol 2012; 259:195-209. [PMID: 22245128 DOI: 10.1016/j.taap.2011.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 01/30/2023]
Abstract
Epileptic seizures and status epilepticus (SE) induced by the poisoning with organophosphorus nerve agents (OP), like soman, are accompanied by neuroinflammation whose role in seizure-related brain damage (SRBD) is not clear. Antagonists of the NMDA glutamate ionotropic receptors are currently among the few compounds able to arrest seizures and provide neuroprotection even during refractory status epilepticus (RSE). Racemic ketamine (KET), in combination with atropine sulfate (AS), was previously shown to counteract seizures and SRBD in soman-poisoned guinea-pigs. In a mouse model of severe soman-induced SE, we assessed the potentials of KET/AS combinations as a treatment for SE/RSE-induced SRBD and neuroinflammation. When starting 30min after soman challenge, a protocol involving six injections of a sub-anesthetic dose of KET (25mg/kg) was evaluated on body weight loss, brain damage, and neuroinflammation whereas during RSE, anesthetic protocols were considered (KET 100mg/kg). After confirming that during RSE, KET injection was to be repeated despite some iatrogenic deaths, we used these proof-of-concept protocols to study the changes in mRNA and related protein contents of some inflammatory cytokines, chemokines and adhesion molecules in cortex and hippocampus 48h post-challenge. In both cases, the KET/AS combinations showed important neuroprotective effects, suppressed neutrophil granulocyte infiltration and partially suppressed glial activation. KET/AS could also reduce the increase in mRNA and related pro-inflammatory proteins provoked by the poisoning. In conclusion, the present study confirms that KET/AS treatment has a strong potential for SE/RSE management following OP poisoning. The mechanisms involved in the reduction of central neuroinflammation remain to be studied.
Collapse
Affiliation(s)
- Franck Dhote
- Département de Toxicologie et risques chimiques, Institut de Recherche Biomédicale des armées - Centre de recherches du Service de santé des armées IRBA-CRSSA, La Tronche cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun 2012; 26:170-6. [PMID: 21933705 DOI: 10.1016/j.bbi.2011.09.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/02/2011] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls. MATERIAL AND METHODS A Danish Historic Birth Cohort (HBC) kept at Statens Serum Institute, Copenhagen was utilized. Using data from Danish nation-wide health registers, a case-control study design of 414 cases and 820 controls was adopted. Levels of MCP-1, MIP-1α and RANTES were analyzed using Luminex xMAP technology. Case-control differences were assessed as dichotomized at below the 10th percentile or above the 90th percentile cut-off points derived from the control biomarker distributions (logistic regression) or continuous measures (tobit regression). RESULTS AND CONCLUSION AF volume for 331 cases and 698 controls was sufficient for Luminex analysis. Including all individuals in the cohort yielded no significant differences in chemokine levels in cases versus controls. Logistic regression analyses, performed on individuals diagnosed using ICD-10 only, showed increased risk for ASD with elevated MCP-1 (elevated 90th percentile adjusted OR: 2.32 [95% CI: 1.17-4.61]) compared to controls. An increased risk for infantile autism with elevated MCP-1 was also found (adjusted OR: 2.28 [95% CI: 1.16-4.48]). Elevated levels of MCP-1 may decipher an etiologic immunologic dysfunction or play rather an indirect role in the pathophysiology of ASD. Further studies to confirm its role and to identify the potential pathways through which MCP-1 may contribute to the development of ASD are necessary.
Collapse
Affiliation(s)
- Morsi W Abdallah
- Department of Epidemiology, Aarhus University School of Public Health, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
33
|
Arevalo MA, Diz-Chaves Y, Santos-Galindo M, Bellini MJ, Garcia-Segura LM. Selective oestrogen receptor modulators decrease the inflammatory response of glial cells. J Neuroendocrinol 2012; 24:183-90. [PMID: 21564348 DOI: 10.1111/j.1365-2826.2011.02156.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinflammation comprises a feature of many neurological disorders that is accompanied by the activation of glial cells and the release of pro-inflammatory cytokines and chemokines. Such activation is a normal response oriented to protect neural tissue and it is mainly regulated by microglia and astroglia. However, excessive and chronic activation of glia may lead to neurotoxicity and may be harmful for neural tissue. The ovarian hormone oestradiol exerts protective actions in the central nervous system that, at least in part, are mediated by a reduction of reactive gliosis. Several selective oestrogen receptor modulators may also exert neuroprotective effects by controlling glial inflammatory responses. Thus, tamoxifen and raloxifene decrease the inflammatory response caused by lipopolysaccharide, a bacterial endotoxin, in mouse and rat microglia cells in vitro. Tamoxifen and raloxifene are also able to reduce microglia activation in the brain of male and female rats in vivo after the peripheral administration of lipopolysaccharide. In addition, tamoxifen decreases the microglia inflammatory response induced by irradiation. Furthermore, treatment with tamoxifen and raloxifene resulted in a significant reduction of the number of reactive astrocytes in the hippocampus of young, middle-aged and older female rats after a stab wound injury. Tamoxifen, raloxifene and the new selective oestrogen receptor modulators ospemifene and bazedoxifene decrease the expression and release of interleukine-6 and interferon-γ inducible protein-10 in cultured astrocytes exposed to lipopolysaccharide. Ospemifene and bazedoxifene exert anti-inflammatory effects in astrocytes by a mechanism involving classical oestrogen receptors and the inhibition of nuclear factor-kappa B p65 transactivation. These data suggest that oestrogenic compounds are candidates to counteract brain inflammation under neurodegenerative conditions by targeting the production and release of pro-inflammatory molecules by glial cells.
Collapse
|
34
|
Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, Chua JY, Lee SW, Palmer TD, Steinberg GK, Guzman R. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 2011; 42:2923-31. [PMID: 21836091 DOI: 10.1161/strokeaha.110.606368] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia. METHODS Twenty-four hours after induction of stroke using the hypoxia-ischemia model in mice CCR2+/+ and CCR2-/- reporter NSC were intra-arterially delivered. Histology and bioluminescence imaging were used to investigate NSC homing to the ischemic brain. Functional outcome was assessed with the horizontal ladder test. RESULTS Using NSC isolated from CCR2+/+ and CCR2-/- mice, we show that receptor deficiency significantly impaired transendothelial diapedesis specifically in response to CCL2. Accordingly, wild-type NSC injected into CCL2-/- mice exhibited significantly decreased homing. Bioluminescence imaging showed robust recruitment of CCR2+/+ cells within 6 hours after transplantation in contrast to CCR2-/- cells. Mice receiving CCR2+/+ grafts after ischemic injury showed a significantly improved recovery of neurological deficits as compared to animals with transplantation of CCR2-/- NSC. CONCLUSIONS The CCL2/CCR2 interaction is critical for transendothelial recruitment of intravascularly delivered NSC in response to ischemic injury. This finding could have significant implications in advancing minimally invasive intravascular therapeutics for regenerative medicine or cell-based drug delivery systems for central nervous system diseases.
Collapse
Affiliation(s)
- Robert H Andres
- Department of Neurosurgery, Stanford Stroke Center, Stanford University, School of Medicine, 300 Pasteur Drive R211, Stanford, CA 94305-5327, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alexander JS, Zivadinov R, Maghzi AH, Ganta VC, Harris MK, Minagar A. Multiple sclerosis and cerebral endothelial dysfunction: Mechanisms. ACTA ACUST UNITED AC 2011; 18:3-12. [PMID: 20663648 DOI: 10.1016/j.pathophys.2010.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/30/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is believed to be an immune-mediated neurodegenerative disorder of the human central nervous system which usually affects younger adults with certain genetic backgrounds. The causes and cure for MS remain elusive. Based on the recent advances in our understanding of the pathogenic mechanisms of MS, it appears to represents a heterogeneous group of disorders with dissimilar pathophysiology and neuropathology. Currently, there is no unifying hypothesis to explain the pathogenesis of this complex disease. The three prevailing concepts on the pathogenesis of MS include viral, immunological, and vascular hypotheses. This review presents MS as a neuroinflammatory disease with a significant vascular component and examines the existing evidence for the role of cerebral endothelial cell dysfunction in the pathogenesis of this progressive central nervous system (CNS) inflammatory disorder.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
36
|
Microglia and Astrocyte Activation by Toll-Like Receptor Ligands: Modulation by PPAR-gamma Agonists. PPAR Res 2011; 2008:453120. [PMID: 18584038 PMCID: PMC2435222 DOI: 10.1155/2008/453120] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/05/2008] [Indexed: 12/12/2022] Open
Abstract
Microglia and astrocytes express numerous members of the Toll-like receptor (TLR) family that are pivotal for recognizing conserved microbial motifs expressed by a wide array of pathogens. Despite the critical role for TLRs in pathogen recognition, when dysregulated these pathways can also exacerbate CNS tissue destruction. Therefore, a critical balance must be achieved to elicit sufficient immunity to combat CNS infectious insults and downregulate these responses to avoid pathological tissue damage. We performed a comprehensive survey on the efficacy of various PPAR-γ agonists to modulate proinflammatory mediator release from primary microglia and astrocytes in response to numerous TLR ligands relevant to CNS infectious diseases. The results demonstrated differential abilities of select PPAR-γ agonists to modulate glial activation. For example, 15d-PGJ2 and pioglitazone were both effective at reducing IL-12 p40 release by TLR ligand-activated glia, whereas CXCL2 expression was either augmented or inhibited by 15d-PGJ2, effects that were dependent on the TLR ligand examined. Pioglitazone and troglitazone demonstrated opposing actions on microglial CCL2 production that were TLR ligand-dependent. Collectively, this information may be exploited to modulate the host immune response during CNS infections to maximize host immunity while minimizing inappropriate bystander tissue damage that is often characteristic of such diseases.
Collapse
|
37
|
Wagner B, Wimer C, Freer H, Osterrieder N, Erb HN. Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains. Vet Immunol Immunopathol 2011; 143:116-24. [PMID: 21764140 DOI: 10.1016/j.vetimm.2011.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 12/25/2022]
Abstract
The recent increase in incidence, morbidity, and mortality of neurological disease induced by equine herpesvirus type 1 (EHV-1) has suggested a change of virulence of the virus. The exact mechanisms by which EHV-1 induces neurologic disease are not known. Environmental, viral, and host risk factors might contribute to neurological manifestation. Here, we investigated innate interferon-α (IFN-α), interleukin-10 (IL-10) and IL-4 responses after infection of equine peripheral blood mononuclear cells (PBMC) with EHV-1 using an available cytokine multiplex assay. Three viral strains representing an older isolate (RacL11), a recent abortigenic (NY03) and a neuropathogenic isolate (Ab4) were compared to identify differences in cytokine induction that might explain the increased pathogenicity of Ab4. Cytokine concentrations were also compared between foals, mares after birth, pregnant and non-pregnant mares to investigate whether immune responses to EHV-1 infection are influenced by age or pregnancy status. PBMC from all groups secreted high concentrations of anti-viral IFN-α in response to EHV-1. A reduced response was observed in foals compared to non-pregnant mares. EHV-1 infection induced moderate IL-10 and overall low IL-4 secretion. Ab4 infection resulted in a significant reduction of IL-10 responses in adult horses. IL-10 and IL-4 responses were lower in foals than in most mare groups. These data suggested that EHV-1 induces robust IFN-α secretion without major differences between viral strains. However, anti-inflammatory IL-10 production was significantly reduced after infection with neuropathogenic Ab4. The ability of this EHV-1 isolate to down-regulate IL-10 production might contribute to increased local inflammation and a higher risk for neurological manifestation of the disease after infection with Ab4.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
38
|
Lee H, Sunden Y, Ochiai K, Umemura T. Experimental intracerebral vaccination protects mouse from a neurotropic virus by attracting antibody secreting cells to the CNS. Immunol Lett 2011; 139:102-9. [PMID: 21645547 DOI: 10.1016/j.imlet.2011.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/02/2011] [Accepted: 05/20/2011] [Indexed: 12/25/2022]
Abstract
In previous studies, we showed that intracerebrally (IC) immunized mice had antigen-specific antibodies (Abs) in cerebrospinal fluid and could survive lethal doses of transneurally spreading viruses. To better understand the mechanisms behind this, immune responses in both the central nervous system (CNS) and lymphoid organs following intracerebral immunization against pseudorabies virus (PRV) were investigated by focusing on antibody secreting cells (ASCs). IC immunized mice had significantly higher PRV-specific serum Abs and neutralizing Abs titers than SC immunized mice. Spleen and cervical lymph nodes (CLNs) of IC immunized mice produced significantly more PRV-specific Abs than that of SC immunized mice. ASCs, immunoglobulin and mRNAs of IgG, CXCL9, 10, 13 and BAFF were predominantly detected in the brain of IC immunized mice, but not in SC immunized mice. IC immunized mice (86%) survived more than subcutaneously (SC) immunized mice (33%) by suppression of virus propagation, when PRV was inoculated directly into the brain. In conclusion, IC immunization induced more effective immune responses to protect the CNS from PRV infection by attracting ASCs into the CNS and inducing much more PRV-specific serum neutralizing Abs. This approach may have important implications as a novel treatment procedure for neurotropic virus infections in both humans and animals.
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Sapporo 060-0818, Hokkaido, Japan
| | | | | | | |
Collapse
|
39
|
Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol 2011; 140:266-74. [DOI: 10.1016/j.vetimm.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
40
|
Tag SNP polymorphism of CCL2 and its role in clinical tuberculosis in Han Chinese pediatric population. PLoS One 2011; 6:e14652. [PMID: 21556333 PMCID: PMC3084193 DOI: 10.1371/journal.pone.0014652] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 01/14/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chemokine (C-C motif) ligand 2 CCL2/MCP-1 is among the key signaling molecules of innate immunity; in particular, it is involved in recruitment of mononuclear and other cells in response to infection, including tuberculosis (TB) and is essential for granuloma formation. METHODOLOGY/PRINCIPAL FINDINGS We identified a tag SNP for the CCL2/MCP-1 gene (rs4586 C/T). In order to understand whether this SNP may serve to evaluate the contribution of the CCL2 gene to the expression of TB disease, we further analysed distribution of its alleles and genotypes in 301 TB cases versus 338 non-infected controls (all BCG vaccinated) representing a high-risk pediatric population of North China. In the male TB subgroup, the C allele was identified in a higher rate (P = 0.045), and, acting dominantly, was found to be a risk factor for clinical TB (P = 0.029). Homozygous TT genotype was significantly associated with lower CSF mononuclear leukocyte (ML) counts in patients with tuberculous meningitis (TBM) (P = 0.001). CONCLUSIONS/SIGNIFICANCE The present study found an association of the CCL2 tag SNP rs4586 C allele and pediatric TB disease in males, suggesting that gender may affect the susceptibility to TB even in children. The association of homozygous TT genotype with decreased CSF mononuclear leukocyte (ML) count not only suggests a clinical significance of this SNP, but indicates its potential to assist in the clinical assessment of suspected TBM, where delay is critical and diagnosis is difficult.
Collapse
|
41
|
Azcoitia I, Santos-Galindo M, Arevalo MA, Garcia-Segura LM. Role of astroglia in the neuroplastic and neuroprotective actions of estradiol. Eur J Neurosci 2010; 32:1995-2002. [DOI: 10.1111/j.1460-9568.2010.07516.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 2010; 232:196-9. [PMID: 21095018 DOI: 10.1016/j.jneuroim.2010.10.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/11/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022]
Abstract
A role for immune dysfunction has been suggested in autism spectrum disorders (ASD). Elevated levels of chemokines have been detected in the brain and CSF of individuals with ASD but, to date, no study has examined chemokine levels in the plasma of children with this disorder. In the current study, we determined whether there were differential profiles of chemokines in the plasma of children with ASD compared to age-matched typically developing controls and children with developmental disabilities other than ASD. Increased MCP-1, RANTES and eotaxin levels were observed in ASD children compared with both control groups (p<0.03), and increased chemokine production was associated with higher aberrant behavior scores and more impaired developmental and adaptive function.. Elevated MCP-1, RANTES and eotaxin in some ASD children and their association with more impaired behaviors may have etiological significance. Chemokines and their receptors might provide unique targets for future therapies in ASD.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA, United States.
| | | | | | | | | | | |
Collapse
|
43
|
Actions of estrogens on glial cells: Implications for neuroprotection. Biochim Biophys Acta Gen Subj 2010; 1800:1106-12. [DOI: 10.1016/j.bbagen.2009.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/21/2023]
|
44
|
Peron JPS, Yang K, Chen ML, Brandao WN, Basso AS, Commodaro AG, Weiner HL, Rizzo LV. Oral tolerance reduces Th17 cells as well as the overall inflammation in the central nervous system of EAE mice. J Neuroimmunol 2010; 227:10-7. [DOI: 10.1016/j.jneuroim.2010.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 12/17/2022]
|
45
|
Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2010; 1812:252-64. [PMID: 20619340 DOI: 10.1016/j.bbadis.2010.06.017] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/10/2010] [Accepted: 06/28/2010] [Indexed: 12/30/2022]
Abstract
The delicate microenvironment of the central nervous system (CNS) is protected by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCB). These barriers function in distinct CNS compartments and their anatomical basis lay on the junctional proteins present in endothelial cells for the BBB and in the choroidal epithelium for the BCB. During neuroinflammatory conditions like multiple sclerosis (MS) and its murine model experimental autoimmune encephalomyelitis (EAE), activation or damage of the various cellular components of these barriers facilitate leukocyte infiltration leading to oligodendrocyte death, axonal damage, demyelination and lesion development. This manuscript will review in detail the features of these barriers under physiological and pathological conditions, particularly when focal immune activation promotes the loss of the BBB and BCB phenotype, the upregulation of cell adhesion molecules (CAMs) and the recruitment of immune cells.
Collapse
Affiliation(s)
- Jorge Ivan Alvarez
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CHUM-Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
46
|
Derecki NC, Cardani AN, Yang CH, Quinnies KM, Crihfield A, Lynch KR, Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. ACTA ACUST UNITED AC 2010; 207:1067-80. [PMID: 20439540 PMCID: PMC2867291 DOI: 10.1084/jem.20091419] [Citation(s) in RCA: 617] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proinflammatory cytokines have been shown to impair cognition; consequently, immune activity in the central nervous system was considered detrimental to cognitive function. Unexpectedly, however, T cells were recently shown to support learning and memory, though the underlying mechanism was unclear. We show that one of the steps in the cascade of T cell-based support of learning and memory takes place in the meningeal spaces. Performance of cognitive tasks led to accumulation of IL-4-producing T cells in the meninges. Depletion of T cells from meningeal spaces skewed meningeal myeloid cells toward a proinflammatory phenotype. T cell-derived IL-4 was critical, as IL-4(-/-) mice exhibited a skewed proinflammatory meningeal myeloid cell phenotype and cognitive deficits. Transplantation of IL-4(-/-) bone marrow into irradiated wild-type recipients also resulted in cognitive impairment and proinflammatory skew. Moreover, adoptive transfer of T cells from wild-type into IL-4(-/-) mice reversed cognitive impairment and attenuated the proinflammatory character of meningeal myeloid cells. Our results point to a critical role for T cell-derived IL-4 in the regulation of cognitive function through meningeal myeloid cell phenotype and brain-derived neurotrophic factor expression. These findings might lead to the development of new immune-based therapies for cognitive impairment associated with immune decline.
Collapse
Affiliation(s)
- Noël C Derecki
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010; 58:93-102. [PMID: 19533603 DOI: 10.1002/glia.20904] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of proinflammatory molecules by glial cells is involved in the pathophysiological changes associated with chronic neurological diseases. Under pathological conditions, astrocytes release a number of proinflammatory molecules, such as interleukin-6 (IL-6) and interferon-gamma-inducible protein-10 (IP-10). The ovarian hormone estradiol exerts protective effects in the central nervous system that, at least in part, may be mediated by a reduction of local inflammation. This study was designed to assess whether estradiol affects the production of IL-6 and IP-10 by primary cultures of newborn mice astrocytes exposed to lipopolysaccharide (LPS), a bacterial endotoxin known to cause neuroinflammation. In addition, the possible anti-inflammatory effect of several selective estrogen receptor modulators (SERMs) was also assessed. LPS induced an increase in the expression of IL-6 and IP-10 mRNA levels in astrocytes and an increase in IL-6 and IP-10 protein levels in the culture medium. These effects of LPS were impaired by estradiol and by the four SERMs tested in our study: tamoxifen, raloxifene, ospemifene, and bazedoxifene. All SERMs tested showed a similar effect on IL-6 and IP-10 mRNA levels, but raloxifene and ospemifene were more effective than tamoxifen and bazedoxifene in reducing protein levels in LPS-treated cultures. Finally, we report that news SERMs, ospemifene and bazedoxifene, exert anti-inflammatory actions by a mechanism involving classical estrogen receptors and by the inhibition of LPS-induced NFkappaB p65 transactivation. The results suggest that estrogenic compounds may be candidates to counteract brain inflammation under neurodegenerative conditions by targeting the production and release of proinflammatory molecules by astrocytes.
Collapse
Affiliation(s)
- M Cerciat
- Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Hines DJ, Hines RM, Mulligan SJ, Macvicar BA. Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia 2009; 57:1610-8. [PMID: 19382211 DOI: 10.1002/glia.20874] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microglia cells exhibit two forms of motility, constant movement of filopodia probing surrounding brain tissue, and outgrowth of larger processes in response to nearby damage. The mechanisms and functions of filopodia sensing and process outgrowth are not well characterized but are likely critical for normal immune function in the brain. Using two photon laser scanning microscopy we investigated microglia process outgrowth in response to damage, and explored the relationship between process outgrowth and filopodia movement. Further, we examined the roles of Cl(-) or K(+) channel activation, as well as actin polymerization in these two distinct processes, because mechanistic understanding could provide a strategy to modulate microglia function. We found that volume sensitive Cl(-) channel blockers (NPPB, tamoxifen, DIDS) prevented the rapid process outgrowth of microglia observed in response to damage. In contrast, filopodia extension during sensing was resistant to Cl(-) channel inhibitors, indicating that these motile processes have different cellular mechanisms. However, both filopodia sensing and rapid process outgrowth were blocked by inhibition of actin polymerization. Following lesion formation under control conditions, rapidly outgrowing processes contacted the damaged area and this was associated with a 37% decrease in lesion volume. Inhibition of process outgrowth by Cl(-) channel block, prevention of actin polymerization, or by selectively ablating microglia all allowed lesion volume to increase and spread into the surrounding tissue. Therefore, process outgrowth in response to focal brain damage is beneficial by preventing lesion expansion and suggests microglia represent a front line defence against damage in the brain.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychiatry, Brain Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia Canada
| | | | | | | |
Collapse
|
49
|
Mishra MK, Dutta K, Saheb SK, Basu A. Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochem Int 2009; 55:717-23. [DOI: 10.1016/j.neuint.2009.07.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 01/13/2023]
|
50
|
Wainwright DA, Xin J, Mesnard NA, Politis CM, Sanders VM, Jones KJ. Effects of facial nerve axotomy on Th2- and Th1-associated chemokine expression in the facial motor nucleus of wild-type and presymptomatic mSOD1 mice. J Neuroimmunol 2009; 216:66-75. [PMID: 19818514 DOI: 10.1016/j.jneuroim.2009.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
We have previously demonstrated a neuroprotective mechanism of facial motoneuron (FMN) survival after facial nerve axotomy that is dependent on CD4(+) Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS resident microglia. To investigate this mechanism, we chose to study the Th2-associated chemokine, CCL11, and Th1-associated chemokine, CXCL11, in wild-type and presymptomatic mSOD1 mice after facial nerve axotomy. In this report, the results indicate that CCL11 is constitutively expressed in the uninjured facial motor nucleus, but CXCL11 is not expressed at all. Facial nerve axotomy induced a shift in CCL11 expression from FMN to astrocytes, whereas CXCL11 was induced in FMN. Differences in the number of CCL11- and CXCL11-expressing cells were observed between WT and mSOD1 mice after facial nerve axotomy.
Collapse
Affiliation(s)
- Derek A Wainwright
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|