1
|
Zamora D, Dasgupta S, Stevens-Ayers T, Edmison B, Winston DJ, Razonable RR, Mehta AK, Lyon GM, Boeckh M, Singh N, Koelle DM, Limaye AP. Cytomegalovirus immunity in high-risk liver transplant recipients following preemptive antiviral therapy versus prophylaxis. JCI Insight 2024; 9:e180115. [PMID: 39099206 PMCID: PMC11457861 DOI: 10.1172/jci.insight.180115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
CMV-specific T cells, NK cells, and neutralizing antibodies (nAbs) were assessed in a randomized trial of CMV prevention with preemptive antiviral therapy (PET) versus prophylactic antiviral therapy (PRO) in donor-seropositive/recipient-seronegative (D+R-) liver transplant recipients (LTxR) at 100 days (end of intervention) and at 6 and 12 months after transplant. The PET group had significantly increased numbers of circulating polyfunctional T cells, NK cells, and nAbs compared with the PRO group at day 100, and several CMV immune parameters remained significantly higher by 12 months after transplant. Among PET recipients, preceding CMV viremia (vs. no preceding viremia) was associated with significantly higher levels of most CMV immune parameters at day 100. Higher numbers of CMV-specific polyfunctional T cells and NKG2C+ NK cells at day 100 were associated with a decreased incidence of CMV disease in multivariable Cox regression. The strongest associations with protection against CMV disease were with increased numbers of CMV-specific polyfunctional CD4+ T cells, CD3negCD56dimCD57negNKG2Cpos cells, and CD3negCD56dimCD57posNKG2Cpos NK cells. Our results suggest that PET is superior to PRO for CMV disease prevention by allowing low-level CMV replication and associated antigen exposure that is promptly controlled by antiviral therapy and facilitates enhanced CMV protective immunity in D+R- LTxR.
Collapse
Affiliation(s)
- Danniel Zamora
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sayan Dasgupta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Bradley Edmison
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Drew J. Winston
- Division of Infectious Diseases, UCLA Medical Center, Los Angeles, California, USA
| | - Raymund R. Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aneesh K. Mehta
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G. Marshall Lyon
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nina Singh
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Transplant Infectious Diseases, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - David M. Koelle
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Ajit P. Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Raviola S, Griffante G, Iannucci A, Chandel S, Lo Cigno I, Lacarbonara D, Caneparo V, Pasquero S, Favero F, Corà D, Trisolini E, Boldorini R, Cantaluppi V, Landolfo S, Gariglio M, De Andrea M. Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells. Commun Biol 2024; 7:292. [PMID: 38459109 PMCID: PMC10924099 DOI: 10.1038/s42003-024-05957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Collapse
Affiliation(s)
- Stefano Raviola
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Andrea Iannucci
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Shikha Chandel
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Irene Lo Cigno
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Lacarbonara
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
| | - Selina Pasquero
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Francesco Favero
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Corà
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy.
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| |
Collapse
|
3
|
Saldan A, Mengoli C, Sgarabotto D, Fedrigo M, Angelini A, Feltrin G, Gambino A, Gerosa G, Barzon L, Abate D. Human cytomegalovirus and Epstein-Barr virus infections occurring early after transplantation are risk factors for antibody-mediated rejection in heart transplant recipients. Front Immunol 2023; 14:1171197. [PMID: 37256129 PMCID: PMC10225529 DOI: 10.3389/fimmu.2023.1171197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is a serious complication affecting the survival of patients receiving transplantation. Human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common viral infections that occur after transplantation, frequently emerging as viral reactivation in donor grafts or transplant recipients. The present study aimed to investigate the association between CMV and EBV infections and early-onset AMR. Materials and methods This study was conducted at the Heart Transplantation Center of Padova General Hospital and included a cohort of 47 heart transplant recipients (HTxs), including 24 HTxs diagnosed with AMR and 23 control HTxs with no episodes of AMR. Only early cases of CMV and/or EBV infections (1-90 days after transplantation) were considered. Fisher's exact test and logistic regression analysis were used to statistically analyze the correlation and association between AMR and CMV or EBV infection. Results We observed a positive statistical association between CMV and EBV infections (two-sided Fisher's exact test, p = 0.0136) and between EBV infection and AMR (two-sided Fisher's exact test, p = 0.0034). Logistic regression analysis revealed a direct statistical association between CMV and EBV infections and AMR risk (p = 0.037 and 0.006 and odds ratio = 1.72 and 2.19, respectively). AMR occurrence was associated with increased viral loads of both CMV and EBV early after transplantation. Discussion These findings suggest the role of CMV and EBV infections as relevant risk factors for AMR in HTxs for the first time.
Collapse
Affiliation(s)
- Alda Saldan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Carlo Mengoli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Dino Sgarabotto
- Transplant Infectious Disease Unit, Padova General Hospital, Padova, Italy
| | - Marny Fedrigo
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Annalisa Angelini
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Antonio Gambino
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Abate
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Vietzen H, Jaksch P, Puchhammer-Stöckl E. The human cytomegalovirus-specific and UL40-mediated imprint in the natural killer cell repertoire is associated with antibody-mediated rejection in lung transplant recipients. J Heart Lung Transplant 2023; 42:305-314. [PMID: 36376218 DOI: 10.1016/j.healun.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND CD16+ natural killer (NK-) cells play, together with donor-specific antibodies (DSA) and via antibody-dependent cellular cytotoxicity (ADCC), an important role in the pathogenesis of antibody-mediated rejection (ABMR) in lung-transplant recipients (LTRs). Cytotoxic CD16+NKG2C+ NK cells proliferate in response to human Cytomegalovirus (HCMV) infections via the presentation of HCMV-encoded and highly polymorphic UL40 peptides. In our study, we aimed to clarify whether infections with HCMV-strains carrying different UL40 peptide variants are associated with the shift of the NK cell repertoire and the development of ABMR in LTRs. METHODS We included 30 DSA+ABMR+, 30 DSA+ABMR- and 90 DSA-ABMR- LTRs. In all patients, 1 episode of high-level HCMV-replication occurred. In all DSA+ABMR+ LTRs, HCMV-replication occurred prior to ABMR diagnosis. The association of HCMV UL40 variants with the expansion of CD16+ NK cell subsets and ABMR was assessed in NK cell proliferation and ADCC assays. RESULTS Our study revealed that the VMAPRTLIL and VMTPRTLVL UL40 variants were significantly overrepresented in DSA+ABMR+ LTRs. Both peptides were associated with a pronounced proliferation of cytotoxic and proinflammatory CD16+NKG2C+ NK cells. The stimulation with both peptides led to a shift of the NK cell repertoire towards CD16+NKG2C+ NK cells, which was associated with strong ADCC responses after stimulation with endothelial cells and plasma from DSA+ABMR+ LTRs. CONCLUSIONS Distinct UL40 peptide variants of the infecting HCMV-strain are associated with the development of ABMR after lung transplantation, due to a shift towards a highly cytotoxic CD16+NKG2C+ NK cell population. These peptides are thus potential prognostic markers for ABMR.
Collapse
Affiliation(s)
- Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Peter Jaksch
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
5
|
Parhizgari N, Zarei Ghobadi M, Rezaei F, Maraashi SM, Khatami MR, Mokhtari-Azad T. Transcriptomic analysis of human cytomegalovirus to survey the indirect effects on renal transplant recipients. Transpl Immunol 2023; 78:101746. [PMID: 36796459 DOI: 10.1016/j.trim.2022.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2023]
Abstract
Post-transplant human cytomegalovirus (HCMV) viremia has been linked to adverse "indirect effects" among transplant patients. HCMV-created immunomodulatory mechanisms could be associated with the indirect effects. OBJECTIVE In the present study, the RNA-Seq whole transcriptome of renal transplant (RT) patients was analyzed to seek the underlying pathobiologic pathways associated with the long-term indirect effects of HCMV. METHODS To investigate the activated biological pathways in HCMV infection, total RNA was extracted from PBMCs of 2 RT patients with active HCMV and 2 RT patients without infection and then were sequenced using RNA-Seq. The resulted raw data were analyzed by conventional RNA-Seq software to determine the Differentially Expressed Genes (DEGs). Afterward, Gene Ontology (GO) and pathway enrichment analyses were conducted to determine the enriched pathways and biological processes by DEGs. Eventually, the relative expressions of some significant genes were validated in the twenty external RT patients. RESULT The analysis of RNA-Seq data related to RT patients with HCMV active viremia led to the identification of 140 up-regulated and 100 down-regulated DEGs. KEGG pathway analysis revealed the enrichment of DEGs in IL18 signaling, AGE-RAGE signaling pathway in diabetic complications, signaling by GPCR, Platelet activation, signaling and aggregation, Estrogen signaling pathway and signaling by Wnt due to HCMV infection. The expression levels of six genes involved in enriched pathways including F3, PTX3, ADRA2B, GNG11, GP9, HBEGF were then verified using RT-qPCR. The results were in consistent with RNA-Seq resultsoutcomes. CONCLUSION This study specifies some pathobiological pathways which are activated in HCMV active infection and could be linked to the adverse indirect effects caused by HCMV infection in transplant patients.
Collapse
Affiliation(s)
- Najmeh Parhizgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Zarei Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahdi Maraashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ong DSY, Chong GLM, Chemaly RF, Cremer OL. Comparative clinical manifestations and immune effects of cytomegalovirus infections following distinct types of immunosuppression. Clin Microbiol Infect 2022; 28:1335-1344. [PMID: 35709902 DOI: 10.1016/j.cmi.2022.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a well-recognized complication of solid organ and hematopoietic cell transplantation. However, CMV infection also occurs in patients with human immunodeficiency virus (HIV) infection, previously immunocompetent intensive care unit (ICU) patients, and individuals on immunosuppressive medications for various underlying diseases. OBJECTIVES This review describes the comparative effects of CMV infection in distinct types of acquired immunosuppression. SOURCES Selected peer-reviewed publications on CMV infections published until December 2021. CONTENT CMV infection affects various organ systems through direct cytolytic mechanisms, but may also exert indirect effects by promoting pro-inflammatory and immunosuppressive responses. This has been well studied in transplant recipients, for whom antiviral prophylaxis and pre-emptive therapy have now become standard practice. These strategies not only prevent direct CMV disease manifestations, but also mitigate various immunopathological processes to reduce graft-versus-host disease, graft rejection, and the occurrence of secondary bacterial and fungal infections. The efficacy of neither prophylactic nor pre-emptive treatment of CMV infection has been demonstrated for patients with critical illness- or medication-induced immunosuppression. Many observational studies have shown an independent association between CMV reactivation and a prolonged duration of mechanical ventilation or increased mortality in the ICU. Furthermore, data suggest that CMV reactivation may increase pulmonary inflammation and prolong the duration of mechanical ventilation. IMPLICATIONS A large number of observational and experimental studies suggest attributable morbidity and mortality related to CMV infection, not only in transplant recipients and patients with HIV infection but also in patients with critically illness- or medication-induced immunosuppression. Adequately powered randomized controlled trials investigating the efficacy of prophylaxis or pre-emptive treatment of CMV infection in these patients are lacking, with a notable exception for transplant recipients.
Collapse
Affiliation(s)
- David S Y Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands; Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Ga-Lai M Chong
- Erasmus University Medical Center, Department of Medical Microbiology & Infectious Diseases, Rotterdam, the Netherlands
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Erol Ç, Akdur A, Arslan H, Haberal M. Cytomegalovirus Viremia in Solid-Organ Transplant Patients in the First Year After Transplantation. EXP CLIN TRANSPLANT 2022; 20:125-128. [PMID: 35384821 DOI: 10.6002/ect.mesot2021.p54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Cytomegalovirus infection is an important problem for transplantation. Although effective antivirals for prophylaxis or preemptive therapy have reduced the severity and consequences of infection, cytomegalovirus viremia and cytomegalovirusrelated disease are still matters for patients and for graft survival. The aim of our study was to determine the frequency of cytomegalovirus infections during the first year after transplant. MATERIALS AND METHODS In this study, we analyzed the data of 252 liver and kidney transplant patients who had procedures between May 2016 and May 2020. Demographic and laboratory data of patients were recorded retrospectively and analyzed with the SPSS version 25 statistical program. RESULTS Our study included 35 liver (14%) and 217 kidney transplant recipients. The ratio of male to female was 3.8, and the median age was 41 years (range, 18-71 years). In our study group, there were 32 patients (12.7%) with cytomegalovirus DNAemia, 13 patients (5%) with cytomegalovirus syndrome, and 6 patients (2.4%) with cytomegalovirus endorgan diseases. Four patients were diagnosed with gastrointestinal disease with histopathology, and 2 patients were diagnosed with cytomegalovirus pneumonia with bronchoscopy and radiology. The mortality rate was 0.8% in the first year. CONCLUSIONS Cytomegalovirus reactivations in the first year after transplant play a critical role on graft survival in solid-organ transplant. Regular follow-up of cytomegalovirus DNAemia is crucial for modifying prophylactic and preemptive antiviral regimens.
Collapse
Affiliation(s)
- Çiğdem Erol
- From the Department of Infectious Diseases, Başkent University Medical School, Ankara, Turkey
| | | | | | | |
Collapse
|
8
|
Are CMV and SARS-CoV-2 Infections Mutual Risk Factors in Kidney Transplant Recipients? TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Throughout the years, much progress has been made in the field of renal transplantation; however, along with new developments, new problems have arisen. While transplantation is the optimal choice in patients suffering from end-stage renal disease, it is always connected to certain commonly associated risks, in particular those caused by opportunistic infections. One such risk includes the reactivation of cytomegalovirus (CMV), an issue commonly affecting all kinds of transplant recipients. Similarly, with the rise of the ever-evolving global SARS-CoV-2 pandemic, patients must be constantly monitored for any respiratory symptoms, and observed closely under the care of their attending physician. Treating these patients has become extremely difficult due to limitations caused by COVID-19 protocols (for instance, the reduction of immunosuppression dosages and the avoidance of lymphocyte-depleting induction therapy) and the lack of knowledge surrounding this relatively new and worsening risk factor. In order to give patients optimal care, these arising problems need to be studied and addressed.
Collapse
|
9
|
Saeed H, Thoendel M, Razonable RR. Individualized management of cytomegalovirus in solid organ transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
10
|
Saunders U, Li M, Boddeda SR, Maher S, Ghere J, Kaptsan I, Dhital R, Velazquez V, Guo L, Chen B, Zeng Q, Schoeb TR, Cianciolo R, Shimamura M. Murine Cytomegalovirus-induced Complement-fixing Antibodies Deposit in Murine Renal Allografts During Acute Rejection. Transplantation 2021; 105:1718-1729. [PMID: 33214535 PMCID: PMC8128940 DOI: 10.1097/tp.0000000000003548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Human cytomegalovirus (CMV) infection is associated with renal allograft dysfunction and loss, particularly in combination with acute rejection. Emerging literature suggests that non-HLA antibodies may contribute to antibody-mediated rejection, but pathogen-induced antibodies have not been investigated in this context. This study examines the presence of CMV-induced antibodies in murine CMV (MCMV)-infected renal allografts during acute rejection. METHODS Intragraft immunoglobulin G (IgG) and complement C3 immunostaining were compared among allogeneic MCMV D-/R-, D+/R-, and D+/R+ renal transplants. Intragraft antibody deposition was examined in B cell-deficient recipients treated with MCMV immune sera. Antibody binding and complement-dependent cytotoxicity (CDC) of D-/R- and D+/R+ sera against infected renal tubular epithelial cells (TECs) were measured in vitro. IgG immunostaining was performed in D+/R+ allografts and native kidneys and in D+/R- allografts treated with ganciclovir to inhibit viral replication. RESULTS D+/R- and D+/R+ transplants had more abundant IgG and C3 deposition compared with D-/R- recipients. Greater IgG deposition was associated with more severe allograft injury in B cell-deficient recipients treated with MCMV immune sera compared with nonimmune sera. D+/R+ sera induced greater CDC of infected TECs compared with D-/R- sera. Native kidneys had lower IgG deposition compared with allografts, despite similar organ viral loads. Ganciclovir-treated allografts had reduced IgG deposition compared with untreated allografts. CONCLUSIONS In this murine model, complement-fixing antibodies can deposit into MCMV-infected renal allografts, are associated with allograft damage, and can induce CDC of MCMV-infected renal TECs. The allogeneic response and viral replication may also contribute to intragraft antibody deposition.
Collapse
Affiliation(s)
- Ute Saunders
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL USA
| | - Mao Li
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham AL USA
| | - Srinivasa R. Boddeda
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Sonya Maher
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Jessica Ghere
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Irina Kaptsan
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Victoria Velazquez
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Lingling Guo
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham AL USA
| | - Bo Chen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham AL USA
| | - Qiang Zeng
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham AL USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus OH USA
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus OH USA
| |
Collapse
|
11
|
Hanka I, Stamminger T, Ramsperger-Gleixner M, Kuckhahn AV, Müller R, Weyand M, Heim C. Role of CMV chemokine receptor M33 in airway graft rejection in a mouse transplant model. Transpl Immunol 2021; 67:101415. [PMID: 34033867 DOI: 10.1016/j.trim.2021.101415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a risk factor for bronchiolitis obliterans (BO), one form of chronic lung allograft dysfunction (CLAD). The viral chemokine receptor M33 is essential for successful spread of murine CMV to host salivary glands. In the present study we investigated the impact of M33 on chronic airway rejection. METHODS MHC I-mismatched tracheas of C·B10-H2b/LilMcdJ mice were transplanted into BALB/c (H2d) recipients and infected at different dates with wild type (WT) or M33-deleted (delM33) MCMV representing clinical settings of viral recipient (R)-donor (D)-serostatus: (D-/R+) or (D+/R-). Grafts were recovered for gene expression and histological / immunofluorescence analysis, respectively. RESULTS Evaluations showed significantly increased signs of chronic rejection in WT-infected mice compared to uninfected allografts seen in lower epithelium/lamina propria-ratio (ELR) (ELR 0.46 ± 0.07 [WT post] vs. ELR 0.66 ± 0.10 [non-inf.]; p < 0.05). The rejection in delM33-infected groups was significantly reduced vs. WT-infected groups (0.67 ± 0.04 [delM33 post]; vs. WT post p < 0.05). Furthermore, decreased rejection was observed in WT pre-infected compared to post-infected groups (0.56 ± 0.08 [WT pre]; vs. WT post p < 0.05). CD8+ T cell infiltration was significantly higher in WT-post compared to the delM33 infected or non-infected allografts. CONCLUSIONS These data support the role of the CMV in accelerating CLAD. The deletion of chemokine receptor M33 leads to attenuated rejection.
Collapse
Affiliation(s)
- Isabella Hanka
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Virology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Annika V Kuckhahn
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Regina Müller
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstaße 12, 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Bonavita CM, Cardin RD. Don't Go Breaking My Heart: MCMV as a Model for HCMV-Associated Cardiovascular Diseases. Pathogens 2021; 10:619. [PMID: 34069957 PMCID: PMC8157551 DOI: 10.3390/pathogens10050619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is a widespread pathogen that causes lifelong latent infection and is associated with the exacerbation of chronic inflammatory diseases in seropositive individuals. Of particular impact, HCMV infection is known to worsen many cardiovascular diseases including myocarditis, atherosclerosis, hypertension, and transplant vasculopathy. Due to its similarity to HCMV, murine CMV (MCMV) is an appropriate model to understand HCMV-induced pathogenesis in the heart and vasculature. MCMV shares similar sequence homology and recapitulates much of the HCMV pathogenesis, including HCMV-induced cardiovascular diseases. This review provides insight into HCMV-associated cardiovascular diseases and the murine model of MCMV infection, which has been used to study the viral pathogenesis and mechanisms contributing to cardiovascular diseases. Our new functional studies using echocardiography demonstrate tachycardia and hypertrophy in the mouse, similar to HCMV-induced myocarditis in humans. For the first time, we show long term heart dysfunction and that MCMV reactivates from latency in the heart, which raises the intriguing idea that HCMV latency and frequent virus reactivation perturbs long term cardiovascular function.
Collapse
Affiliation(s)
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
13
|
Localization of the WD repeat-containing protein 5 to the Virion Assembly Compartment Facilitates Human Cytomegalovirus Assembly. J Virol 2021; 95:JVI.02101-20. [PMID: 33504601 PMCID: PMC8103678 DOI: 10.1128/jvi.02101-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously reported that human cytomegalovirus (HCMV) utilizes the cellular protein WD repeat-containing protein 5 (WDR5) to facilitate capsid nuclear egress. Here, we further show that HCMV infection results in WDR5 localization in a juxtanuclear region, and that its localization to this cellular site is associated with viral replication and late viral gene expression. Furthermore, WDR5 accumulated in the virion assembly compartment (vAC) and co-localized with vAC markers of gamma-tubulin (γ-tubulin), early endosomes, and viral vAC marker proteins pp65, pp28, and glycoprotein B (gB). WDR5 co-immunoprecipitated with multiple virion proteins, including MCP, pp150, pp65, pIRS1, and pTRS1, which may explain WDR5 accumulation in the vAC during infection. WDR5 fractionated with virions either in the presence or absence of Triton X-100 and was present in purified viral particles, suggesting that WDR5 was incorporated into HCMV virions. Thus, WDR5 localized to the vAC and was incorporated into virions, raising the possibility that in addition to capsid nuclear egress, WDR5 could also participate in cytoplasmic HCMV virion morphogenesis.Importance Human cytomegalovirus (HCMV) has a large (∼235-kb) genome that contains over 170 ORFs and exploits numerous cellular factors to facilitate its replication. In the late phase of HCMV infection cytoplasmic membranes are reorganized to establish the virion assembly compartment (vAC), which has been shown to necessary for efficient assembly of progeny virions. We previously reported that WDR5 facilitates HCMV nuclear egress. Here, we show that WDR5 is localized to the vAC and incorporated into virions, perhaps contributing to efficient virion maturation. Thus, findings in this study identified a potential role for WDR5 in HCMV assembly in the cytoplasmic phase of virion morphogenesis.
Collapse
|
14
|
|
15
|
Fragkou PC, Moschopoulos CD, Karofylakis E, Kelesidis T, Tsiodras S. Update in Viral Infections in the Intensive Care Unit. Front Med (Lausanne) 2021; 8:575580. [PMID: 33708775 PMCID: PMC7940368 DOI: 10.3389/fmed.2021.575580] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of highly sensitive molecular diagnostic techniques has improved our ability to detect viral pathogens leading to severe and often fatal infections that require admission to the Intensive Care Unit (ICU). Viral infections in the ICU have pleomorphic clinical presentations including pneumonia, acute respiratory distress syndrome, respiratory failure, central or peripheral nervous system manifestations, and viral-induced shock. Besides de novo infections, certain viruses fall into latency and can be reactivated in both immunosuppressed and immunocompetent critically ill patients. Depending on the viral strain, transmission occurs either directly through contact with infectious materials and large droplets, or indirectly through suspended air particles (airborne transmission of droplet nuclei). Many viruses can efficiently spread within hospital environment leading to in-hospital outbreaks, sometimes with high rates of mortality and morbidity, thus infection control measures are of paramount importance. Despite the advances in detecting viral pathogens, limited progress has been made in antiviral treatments, contributing to unexpectedly high rates of unfavorable outcomes. Herein, we review the most updated data on epidemiology, common clinical features, diagnosis, pathogenesis, treatment and prevention of severe community- and hospital-acquired viral infections in the ICU settings.
Collapse
Affiliation(s)
- Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Emmanouil Karofylakis
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| |
Collapse
|
16
|
Gugliesi F, Pasquero S, Griffante G, Scutera S, Albano C, Pacheco SFC, Riva G, Dell’Oste V, Biolatti M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021; 13:260. [PMID: 33567734 PMCID: PMC7914970 DOI: 10.3390/v13020260] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency in poorly differentiated myeloid precursors from where it can reactivate at later times to cause recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases, whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay between HCMV and the immune system has led many to hypothesize that HCMV could also be involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic diseases. In addition, HCMV infection has been frequently linked to increased production of autoantibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus (SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the potential role of HCMV-mediated immune activation at disease onset.
Collapse
Affiliation(s)
- Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Gloria Griffante
- Department of Translational Medicine, Molecular Virology Unit, University of Piemonte Orientale Medical School, 28100 Novara, Italy;
| | - Sara Scutera
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Sergio Fernando Castillo Pacheco
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Giuseppe Riva
- Otorhinolaryngology Division, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy;
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (F.G.); (S.P.); (S.S.); (C.A.); (S.F.C.P.); (V.D.)
| |
Collapse
|
17
|
Fritz NM, Stamminger T, Ramsperger-Gleixner M, Kuckhahn AV, Müller R, Weyand M, Heim C. Cytomegalovirus chemokine receptor M33 knockout reduces chronic allograft rejection in a murine aortic transplant model. Transpl Immunol 2020; 64:101359. [PMID: 33301898 DOI: 10.1016/j.trim.2020.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Numerous studies suggest that cytomegalovirus (CMV) infection may act as isolated risk factor in the development of cardiac allograft vasculopathy (CAV). Viral G protein-coupled receptors (GPCRs) are thought to contribute to the pathogenic changes associated with CMV infection. The aim of this study was to investigate the role of murine cytomegalovirus GPCR M33 in the development of CAV in a murine aortic allograft model. METHODS MHC I-mismatched aortas of C.B10 (H2b) mice were transplanted into BALB/c (H2d) recipients, which were either mock-infected, infected with wild type (WT) MCMV or MCMV with a deleted M33-receptor gene (delM33). Persistence of cytomegalovirus infection was confirmed by qPCR and by luciferase assay to ensure active viral replication. Grafts were harvested on days 21 and 37 for intragraft mRNA expression and histological analysis. RESULTS Active viral replication was demonstrated and MCMV presence was confirmed by PCR within spleen, liver, salivary glands, lung and the aortic transplant. Infection with delM33 resulted in significantly less intimal proliferation compared to WT-MCMV but more pronounced proliferation than in mock-infected allografts (32.19% [delM33] vs. 41.71% [WT-MCMV] vs. 24.33% [MCMV-]). Intragraft expression of most analyzed genes was significantly increased in infected mice. VCAM-1, ICAM-1, PDGFβ, CXCR3 and Granzyme B were distinctly less expressed in grafts of delM33 infected compared to WT infected mice. Cellular infiltration revealed reduced dendritic cells and T cells in grafts infected with delM33 compared to WT MCMV. CONCLUSIONS These data suggest that the MCMV encoded receptor M33 plays an important role as a viral effector mechanism contributing to the development of CAV in a murine aortic transplant model.
Collapse
Affiliation(s)
- Niklas M Fritz
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Virology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Annika V Kuckhahn
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Regina Müller
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
18
|
Minz RW, Kumar M, Kanwar DB, Sharma A, Singh P, Singh J, Singh S, Anand S, Sakhuja V, Minz M. Cytomegalovirus Infection in Postrenal Transplant Recipients: 18 Years’ Experience From a Tertiary Referral Center. Transplant Proc 2020; 52:3173-3178. [DOI: 10.1016/j.transproceed.2020.02.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
|
19
|
Goodwin ML, Webster HS, Wang HY, Jenks JA, Nelson CS, Tu JJ, Mangold JF, Valencia S, Pollara J, Edwards W, McLellan JS, Wrapp D, Fu TM, Zhang N, Freed DC, Wang D, An Z, Permar SR. Specificity and effector functions of non-neutralizing gB-specific monoclonal antibodies isolated from healthy individuals with human cytomegalovirus infection. Virology 2020; 548:182-191. [PMID: 32838941 PMCID: PMC7447913 DOI: 10.1016/j.virol.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Hsuan-Yuan Wang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jesse F Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
20
|
Sen P, Wilkie AR, Ji F, Yang Y, Taylor IJ, Velazquez-Palafox M, Vanni EAH, Pesola JM, Fernandez R, Chen H, Morsett LM, Abels ER, Piper M, Lane RJ, Hickman SE, Means TK, Rosenberg ES, Sadreyev RI, Li B, Coen DM, Fishman JA, El Khoury J. Linking indirect effects of cytomegalovirus in transplantation to modulation of monocyte innate immune function. SCIENCE ADVANCES 2020; 6:eaax9856. [PMID: 32494628 PMCID: PMC7176434 DOI: 10.1126/sciadv.aax9856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/30/2020] [Indexed: 05/08/2023]
Abstract
Cytomegalovirus (CMV) is an important cause of morbidity and mortality in the immunocompromised host. In transplant recipients, a variety of clinically important "indirect effects" are attributed to immune modulation by CMV, including increased mortality from fungal disease, allograft dysfunction and rejection in solid organ transplantation, and graft-versus-host-disease in stem cell transplantation. Monocytes, key cellular targets of CMV, are permissive to primary, latent and reactivated CMV infection. Here, pairing unbiased bulk and single cell transcriptomics with functional analyses we demonstrate that human monocytes infected with CMV do not effectively phagocytose fungal pathogens, a functional deficit which occurs with decreased expression of fungal recognition receptors. Simultaneously, CMV-infected monocytes upregulate antiviral, pro-inflammatory chemokine, and inflammasome responses associated with allograft rejection and graft-versus-host disease. Our study demonstrates that CMV modulates both immunosuppressive and immunostimulatory monocyte phenotypes, explaining in part, its paradoxical "indirect effects" in transplantation. These data could provide innate immune targets for the stratification and treatment of CMV disease.
Collapse
Affiliation(s)
- Pritha Sen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Adrian R. Wilkie
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Fei Ji
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yiming Yang
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Emilia A. H. Vanni
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Rosio Fernandez
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liza M. Morsett
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik R. Abels
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Mary Piper
- Harvard Bioinformatics Core, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Rebekah J. Lane
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Suzanne E. Hickman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Terry K. Means
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Autoimmunity Cluster, Immunology and Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Eric S. Rosenberg
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bo Li
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Greer M, Werlein C, Jonigk D. Surveillance for acute cellular rejection after lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:410. [PMID: 32355854 PMCID: PMC7186718 DOI: 10.21037/atm.2020.02.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cellular rejection (ACR) is a common complication following lung transplantation (LTx), affecting almost a third of recipients in the first year. Established, comprehensive diagnostic criteria exist but they necessitate allograft biopsies which in turn increases clinical risk and can pose certain logistical and economic problems in service delivery. Undermining these challenges further, are known problems with inter-observer interpretation of biopsies and uncertainty as to the long-term implications of milder or indeed asymptomatic episodes. Increased risk of chronic lung allograft dysfunction (CLAD) has long been considered the most significant consequence of ACR. Consensus is lacking as to whether this applies to mild ACR, with contradictory evidence available. Given these issues, research into alternative, minimal or non-invasive biomarkers represents the main focus of research in ACR. A number of potential markers have been proposed, but none to date have demonstrated adequate sensitivity and specificity to allow translation from bench to bedside.
Collapse
Affiliation(s)
- Mark Greer
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany
| | | | - Danny Jonigk
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Centre for Lung Research (DZL), Hannover, Germany.,Institute for Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
NKG2C Natural Killer Cells in Bronchoalveolar Lavage Are Associated With Cytomegalovirus Viremia and Poor Outcomes in Lung Allograft Recipients. Transplantation 2019; 103:493-501. [PMID: 30211828 DOI: 10.1097/tp.0000000000002450] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a risk factor for chronic lung allograft dysfunction (CLAD), which limits survival in lung allograft recipients. Natural killer (NK) cells that express the NKG2C receptor mediate CMV-specific immune responses. We hypothesized that NKG2C NK cells responding to CMV in the lung allograft would reduce CMV-related inflammation and would improve CLAD-free survival. METHODS We prospectively followed 130 subjects who underwent lung transplantation from 2012 to 2016. Bronchoalveolar lavage (BAL) NK cells were immunophenotyped for NKG2C, maturation, and proliferation markers. CMV viral load, serologies, serial spirometry, and mortality were recorded from medical records. Natural killer cell subset association with CMV endpoints were made using generalized estimating equation-adjusted linear models. BAL NKG2C NK cell association with CLAD-free survival was assessed by Cox proportional hazards modeling. RESULTS NKG2C NK cells were more mature and proliferative than NKG2C NK cells and represented a median of 7.8% of BAL NK cells. The NKG2C NK cell proportion increased prior to the first detection of viremia and was nearly tripled in subjects with high level viremia (>1000 copies/mL) compared with no detected viremia. Subjects with increased BAL NKG2C NK cells, relative to the median, had a significantly increased risk for CLAD or death (hazard ratio, 4.2; 95% confidence interval, 1.2-13.3). CONCLUSIONS The BAL NKG2C NK cell proportion may be a relevant biomarker for assessing risk of CMV viremia and quantifying potential CMV-related graft injury that can lead to CLAD or death.
Collapse
|
23
|
Kim JE, Han A, Lee H, Ha J, Kim YS, Han SS. Impact of Pneumocystis jirovecii pneumonia on kidney transplant outcome. BMC Nephrol 2019; 20:212. [PMID: 31182046 PMCID: PMC6558901 DOI: 10.1186/s12882-019-1407-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Backgrounds Pneumocystis jirovecii pneumonia (PCP) remains an important cause of morbidity and mortality in kidney transplant recipients. While the acute phase toxicity in patients with PCP is well-characterized, there is a lack of data on the effects of PCP on long-term graft outcome. Method This retrospective observational study analyzed 1502 adult patients who underwent kidney transplantation at Seoul National University Hospital between 2000 and 2017. After a propensity score matching was performed, the graft and survival outcomes were compared between PCP-negative and PCP-positive groups. Results A total of 68 patients (4.5%) developed PCP after transplantation. The multivariable Cox analysis showed that positivity for cytomegalovirus and lack of initial oral antibiotic prophylaxis were risk factors of post-transplant PCP. The PCP-positive group had higher hazard ratios of graft failure [adjusted hazard ratio (HR), 3.1 (1.14–8.26); P = 0.027] and mortality [adjusted HR, 11.0 (3.68–32.80); P < 0.001] than the PCP-negative group. However, the PCP event was not related with subsequent development of de novo donor-specific antibodies or pathologic findings, such as T-cell or antibody mediated rejection and interstitial fibrosis and tubular atrophy. Conclusions PCP is a risk factor of long-term graft failure and mortality, irrespective of rejection. Accordingly, appropriate prophylaxis and treatment is needed to avoid adverse transplant outcomes of PCP. Electronic supplementary material The online version of this article (10.1186/s12882-019-1407-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Eun Kim
- Transplantation Center, Seoul National University Hospital, Seoul, South Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, South Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, South Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
24
|
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is implicated in endothelial dysfunction and graft damage after pediatric heart transplantation. CMV-specific immune responses are thought to be necessary for CMV viral control but there is little data in pediatric heart transplantation. METHODS We studied 28 consecutive pediatric heart transplant recipients for 1 year posttransplant. CMV T-cell expressing IFN-γ, TNF-α, and IL-2 in response to ex vivo stimulation with CMV lysates or peptides were measured. Circulating cytokines were measured in plasma. Generalized Additive Models were applied to the data to model changes of cell population dynamics over time. RESULTS CMV-specific T cell-mediated responses were impaired in the first 8 weeks posttransplant. During this period, 25% of patients had CMV viremia, of which those with VLs of 10 000 or more CMV deoxyribonucleic acid copies/mL were given ganciclovir. In this group, the frequency of CD4+ and CD8+ T cells producing IFN-γ and the CD8+CD57+ granzyme B+ T-cell population increased at 12 to 24 weeks and remained elevated for the duration of the study. CONCLUSIONS We have shown that CMV viremia is associated with CMV-specific immune responses and increased CD8+CD57+ granzyme B+ cells at 1 year posttransplant; however, early responses were not predictive of impending CMV viremia. It remains to be seen if the early CMV immune response detected is associated with endothelial and allograft damage, in light of previous studies demonstrating increased vasculopathy in pediatric patients with CMV viremia.
Collapse
|
25
|
Metheny L, de Lima M. Hematopoietic stem cell transplant with HLA-mismatched grafts: impact of donor, source, conditioning, and graft versus host disease prophylaxis. Expert Rev Hematol 2018; 12:47-60. [PMID: 30582393 DOI: 10.1080/17474086.2019.1562331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic cell transplantation is frequently used to treat malignant and non-malignant conditions, and many patients lack a human leukocyte antigen (HLA) matched related or unrelated donor. For those patients, available alternative graft sources include HLA mismatched unrelated donors, cord blood, or haplo-identical donors. These graft sources have unique characteristics and associated outcomes requiring graft-specific variations to conditioning regimens, graft-versus-host disease prophylaxis, and post-transplant care. Areas covered: This manuscript will cover approaches in selecting donors, conditioning regimens, graft versus host disease prophylaxis, post-transplant care, and ongoing clinical trials related to mismatched grafts. Expert commentary: In the setting, haplo-identical grafts are increasingly popular due to low graft versus host disease (GVHD) risk and control of cellular dose. We recommend young male donors, utilizing bone marrow with post-transplant cyclophosphamide for GVHD prophylaxis. Cord blood transplant is appropriate for young healthy patients, and we recommend 6/8 HLA matched grafts with at least 2.0 × 107/kg total nucleated cell dose. For mismatched unrelated donors we recommend young male donors, utilizing bone marrow with in vivo T-cell conditioning with post-transplant cyclophosphamide, alemtuzumab, or ATG. With these transplants, significant post-transplant surveillance and infectious prophylaxis is key to reducing treatment-related mortality.
Collapse
Affiliation(s)
- Leland Metheny
- a Stem Cell Transplant Program, University Hospitals Cleveland Medical Center , Case Western Reserve University , Cleveland , OH , USA
| | - Marcos de Lima
- a Stem Cell Transplant Program, University Hospitals Cleveland Medical Center , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
26
|
Liu J, Jardetzky TS, Chin AL, Johnson DC, Vanarsdall AL. The Human Cytomegalovirus Trimer and Pentamer Promote Sequential Steps in Entry into Epithelial and Endothelial Cells at Cell Surfaces and Endosomes. J Virol 2018; 92:e01336-18. [PMID: 30111564 PMCID: PMC6189492 DOI: 10.1128/jvi.01336-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a wide variety of human cell types by different entry pathways that involve distinct envelope glycoprotein complexes that include gH/gL, a trimer complex consisting of gHgL/gO, and a pentamer complex consisting of gH/gL/UL128/UL130/UL131. We characterized the effects of soluble forms of these proteins on HCMV entry. Soluble trimer and pentamer blocked entry of HCMV into epithelial and endothelial cells, whereas soluble gH/gL did not. Trimer inhibited HCMV entry into fibroblast cells, but pentamer and gH/gL did not. Both trimer and pentamer bound to the surfaces of fibroblasts and epithelial cells, whereas gH/gL did not bind to either cell type. Cell surface binding of trimer and pentamer did not involve heparin sulfate moieties. The ability of soluble trimer to block entry of HCMV into epithelial cells did not involve platelet-derived growth factor PDGFRα, which has been reported as a trimer receptor for fibroblasts. Soluble trimer reduced the amount of virus particles that could be adsorbed onto the surface of epithelial cells, whereas soluble pentamer had no effect on virus adsorption. However, soluble pentamer reduced the ability of virus particles to exit from early endosomes into the cytoplasm and then travel to the nucleus. These studies support a model in which both the trimer and pentamer are required for HCMV entry into epithelial and endothelial cells, with trimer interacting with cell surface receptors other than PDGFR and pentamer acting later in the entry pathway to promote egress from endosomes.IMPORTANCE HCMV infects nearly 80% of the world's population and causes significant morbidity and mortality. The current antiviral agents used to treat HCMV infections are prone to resistance and can be toxic to patients, and there is no current vaccine against HCMV available. The data in this report will lead to a better understanding of how essential HCMV envelope glycoproteins function during infection of biologically important cell types and will have significant implications for understanding HCMV pathogenesis for developing new therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ted S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea L Chin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam L Vanarsdall
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
27
|
Calabrese DR, Lanier LL, Greenland JR. Natural killer cells in lung transplantation. Thorax 2018; 74:397-404. [PMID: 30381399 DOI: 10.1136/thoraxjnl-2018-212345] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells that have been increasingly recognised as important in lung allograft tolerance and immune defence. These cells evolved to recognise alterations in self through a diverse set of germline-encoded activating and inhibitory receptors and display a broad range of effector functions that play important roles in responding to infections, malignancies and allogeneic tissue. Here, we review NK cells, their diverse receptors and the mechanisms through which NK cells are postulated to mediate important lung transplant clinical outcomes. NK cells can promote tolerance, such as through the depletion of donor antigen-presenting cells. Alternatively, these cells can drive rejection through cytotoxic effects on allograft tissue recognised as 'non-self' or 'stressed', via killer cell immunoglobulin-like receptor (KIR) or NKG2D receptor ligation, respectively. NK cells likely mediate complement-independent antibody-mediated rejection of allografts though CD16A Fc receptor-dependent activation induced by graft-specific antibodies. Finally, NK cells play an important role in response to infections, particularly by mediating cytomegalovirus infection through the CD94/NKG2C receptor. Despite these sometimes-conflicting effects on allograft function, enumeration of NK cells may have an important role in diagnosing allograft dysfunction. While the effects of immunosuppression agents on NK cells may currently be largely unintentional, further understanding of NK cell biology in lung allograft recipients may allow these cells to serve as biomarkers of graft injury and as therapeutic targets.
Collapse
Affiliation(s)
- Daniel R Calabrese
- Department of Medicine, University of California, San Francisco, California, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA.,The Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, California, USA
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, California, USA.,Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
28
|
Lee MS, Tadwalkar RV, Fearon WF, Kirtane AJ, Patel AJ, Patel CB, Ali Z, Rao SV. Cardiac allograft vasculopathy: A review. Catheter Cardiovasc Interv 2018; 92:E527-E536. [DOI: 10.1002/ccd.27893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/29/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Michael S. Lee
- Division of Cardiology, UCLA Medical Center Los Angeles California
| | | | - William F. Fearon
- Division of CardiologyStanford University School of Medicine Stanford California
| | - Ajay J. Kirtane
- Division of CardiologyColumbia University Medical Center New York New York
| | - Amisha J. Patel
- Division of CardiologyColumbia University Medical Center New York New York
| | - Chetan B. Patel
- Division of CardiologyDuke University Medical Center Durham North Carolina
| | - Ziad Ali
- Division of CardiologyColumbia University Medical Center New York New York
| | - Sunil V. Rao
- Division of CardiologyDuke University Medical Center Durham North Carolina
| |
Collapse
|
29
|
Britt WJ, Prichard MN. New therapies for human cytomegalovirus infections. Antiviral Res 2018; 159:153-174. [PMID: 30227153 DOI: 10.1016/j.antiviral.2018.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
The recent approval of letermovir marks a new era of therapy for human cytomegalovirus (HCMV) infections, particularly for the prevention of HCMV disease in hematopoietic stem cell transplant recipients. For almost 30 years ganciclovir has been the therapy of choice for these infections and by today's standards this drug exhibits only modest antiviral activity that is often insufficient to completely suppress viral replication, and drives the selection of drug-resistant variants that continue to replicate and contribute to disease. While ganciclovir remains the therapy of choice, additional drugs that inhibit novel molecular targets, such as letermovir, will be required as highly effective combination therapies are developed not only for the treatment of immunocompromised hosts, but also for congenitally infected infants. Sustained efforts, largely in the biotech industry and academia, have identified additional highly active lead compounds that have progressed into clinical studies with varying levels of success and at least two have the potential to be approved in the near future. Some of the new drugs in the pipeline inhibit new molecular targets, remain effective against isolates that have developed resistance to existing therapies, and promise to augment existing therapeutic regimens. Here, we will describe some of the unique features of HCMV biology and discuss their effect on therapeutic needs. Existing drugs will also be discussed and some of the more promising candidates will be reviewed with an emphasis on those progressing through clinical studies. The in vitro and in vivo antiviral activity, spectrum of antiviral activity, and mechanism of action of new compounds will be reviewed to provide an update on potential new therapies for HCMV infections that have progressed significantly in recent years.
Collapse
Affiliation(s)
- William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA
| | - Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711, USA.
| |
Collapse
|
30
|
Pontejo SM, Murphy PM, Pease JE. Chemokine Subversion by Human Herpesviruses. J Innate Immun 2018; 10:465-478. [PMID: 30165356 DOI: 10.1159/000492161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022] Open
Abstract
Viruses use diverse molecular mechanisms to exploit and evade the immune response. Herpesviruses, in particular, encode functional chemokine and chemokine receptor homologs pirated from the host, as well as secreted chemokine-binding proteins with unique structures. Multiple functions have been described for herpesvirus chemokine components, including attraction of target cells, blockade of leukocyte migration, and modulation of gene expression and cell entry by the virus. Here we review current concepts about how human herpesvirus chemokines, chemokine receptors, and chemokine-binding proteins may be used to shape a proviral state in the host.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James E Pease
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United
| |
Collapse
|
31
|
Expression Levels of Glycoprotein O (gO) Vary between Strains of Human Cytomegalovirus, Influencing the Assembly of gH/gL Complexes and Virion Infectivity. J Virol 2018; 92:JVI.00606-18. [PMID: 29743375 DOI: 10.1128/jvi.00606-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
The tropism of human cytomegalovirus (HCMV) is influenced by the envelope glycoprotein complexes gH/gL/gO and gH/gL/UL128-131. During virion assembly, gO and the UL128-131 proteins compete for binding to gH/gL in the endoplasmic reticulum (ER). This assembly process clearly differs among strains, since Merlin (ME) virions contain abundant gH/gL/UL128-131 and little gH/gL/gO, whereas TR contains much higher levels of total gH/gL, mostly in the form of gH/gL/gO, but much lower levels of gH/gL/UL128-131 than ME. Remaining questions include (i) what are the mechanisms behind these assembly differences, and (ii) do differences reflect in vitro culture adaptations or natural genetic variations? Since the UL74(gO) open reading frame (ORF) differs in 25% of amino acids between TR and ME, we analyzed recombinant viruses in which the UL74(gO) ORF was swapped. TR virions were >40-fold more infectious than ME. Transcriptional repression of UL128-131 enhanced the infectivity of ME to the level of TR, despite still far lower levels of gH/gL/gO. Swapping the UL74(gO) ORF had no effect on either TR or ME. A quantitative immunoprecipitation approach revealed that gH/gL expression levels were within 4-fold between TR and ME, but the gO expression level was 20-fold lower for ME, which suggested differences in mRNA transcription, translation, or rapid ER-associated degradation of gO. trans-Complementation of gO expression during ME replication gave a 6-fold enhancement of infectivity beyond the 40-fold effect of UL128-131 repression alone. Overall, strain variations in the assembly of gH/gL complexes result from differences in the expression of gO and UL128-131, and selective advantages for reduced UL128-131 expression during fibroblast propagation are much stronger than those for higher gO expression.IMPORTANCE Specific genetic differences between independently isolated HCMV strains may result from purifying selection on de novo mutations arising during propagation in culture or random sampling among the diversity of genotypes present in clinical specimens. Results presented indicate that while reduced UL128-131 expression may confer a powerful selective advantage during cell-free propagation of HCMV in fibroblast cultures, selective pressures for increased gO expression are much weaker. Thus, variation in gO expression among independent strains may represent natural genotype variability present in vivo This may have important implications for virus-host interactions, such as immune recognition, and underscores the value of studying molecular mechanisms of replication using multiple HCMV strains.
Collapse
|
32
|
Czarnecka P, Czarnecka K, Tronina O, Durlik M. Cytomegalovirus Disease After Liver Transplant-A Description of a Treatment-Resistant Case: A Case Report and Literature Review. Transplant Proc 2018; 50:4015-4022. [PMID: 30577306 DOI: 10.1016/j.transproceed.2018.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Cytomegalovirus (CMV) infection is a common complication in solid organ transplant recipients. In patients receiving immunosuppressive treatment, CMV may lead to life-threatening organ complications or graft loss. We describe a case of 31-year-old CMV-seronegative patient who underwent liver transplant from a CMV-seropositive donor with an early acute resistant rejection of the transplanted organ followed by primary CMV infection, despite prophylaxis, and its severe organ complications. Routine treatment of acute allograft rejection through increasing the base immunosuppression and then administering methylprednisolone infusions did not yield significant therapeutic effect. This resulted in anti-thymocyte globulin and ultimately proteasome inhibitor introduction. The cholestasis remitted and liver parameters improved. But 4 weeks later the patient was admitted again due to incorrect liver function tests. Blood tests revealed high CMV viral load, and primary CMV infection was diagnosed. On diagnosis the patient was treated with ganciclovir (GCV) intravenously. As GCV resistance was suspected based on clinical premises, foscarnet (FOS) and leflunomide (LFM) were implemented with concomitant cautious immunosuppression reduction due to the history of recent graft rejection. Despite aggressive treatment introduction, viral clearance was not obtained. Ultimately the patient died due to respiratory distress resulting from lung fibrosis, most probably owing to CMV diseases with Pneumocystis jiroveci coinfection. The presented case proves the importance of strictly following the rules of prophylaxis, especially in patients with a high risk factor of CMV infection development. A quick diagnosis, implementation of appropriate treatment, and fast reaction to the lack of satisfying therapeutic effect can be the key to a successful treatment.
Collapse
Affiliation(s)
- P Czarnecka
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - K Czarnecka
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - O Tronina
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - M Durlik
- Department of Transplantation Medicine, Nephrology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells. mBio 2018; 9:mBio.00781-18. [PMID: 29739904 PMCID: PMC5941078 DOI: 10.1128/mbio.00781-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) replicates in many diverse cell types in vivo, and entry into different cells involves distinct entry mechanisms and different envelope glycoproteins. HCMV glycoprotein gB is thought to act as the virus fusogen, apparently after being triggered by different gH/gL proteins that bind distinct cellular receptors or entry mediators. A trimer of gH/gL/gO is required for entry into all cell types, and entry into fibroblasts involves trimer binding to platelet-derived growth factor receptor alpha (PDGFRα). HCMV entry into biologically relevant epithelial and endothelial cells and monocyte-macrophages also requires a pentamer, gH/gL complexed with UL128, UL130, and UL131, and there is evidence that the pentamer binds unidentified receptors. We screened an epithelial cell cDNA library and identified the cell surface protein CD147, which increased entry of pentamer-expressing HCMV into HeLa cells but not entry of HCMV that lacked the pentamer. A panel of CD147-specific monoclonal antibodies inhibited HCMV entry into epithelial and endothelial cells, but not entry into fibroblasts. shRNA silencing of CD147 in endothelial cells inhibited HCMV entry but not entry into fibroblasts. CD147 colocalized with HCMV particles on cell surfaces and in endosomes. CD147 also promoted cell-cell fusion induced by expression of pentamer and gB in epithelial cells. However, soluble CD147 did not block HCMV entry and trimer and pentamer did not bind directly to CD147, supporting the hypothesis that CD147 acts indirectly through other proteins. CD147 represents the first HCMV entry mediator that specifically functions to promote entry of pentamer-expressing HCMV into epithelial and endothelial cells.IMPORTANCE Human cytomegalovirus infects nearly 80% of the world's population and causes significant morbidity and mortality. The current method of treatment involves the use of antiviral agents that are prone to resistance and can be highly toxic to patients; currently, there is no vaccine against HCMV available. HCMV infections involve virus dissemination throughout the body, infecting a wide variety of tissues; however, the mechanism of spread is not well understood, particularly with regard to which cellular proteins are utilized by HCMV to establish infection. This report describes the characterization of a newly identified cellular molecule that affects HCMV entry into epithelial and endothelial cells. These results will lead to a better understanding of HCMV pathogenesis and have implications for the development of future therapeutics.
Collapse
|
34
|
Serrano-Alonso M, Guillen-Grima F, Martin-Moreno P, Rabago G, Manrique J, Garcia-del-Barrio M, Reina G, Torre-Cisneros J, Fernandez-Alonso M, Herrero J. Reduction in mortality associated with secondary cytomegalovirus prophylaxis after solid organ transplantation. Transpl Infect Dis 2018; 20:e12873. [DOI: 10.1111/tid.12873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/02/2018] [Accepted: 01/14/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - F. Guillen-Grima
- Preventive Medicine Department; Clínica Universidad de Navarra; Pamplona Spain
- Department of Health Sciences; Public University of Navarra; Pamplona Spain
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
| | - P. Martin-Moreno
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
- Nephrology Department; Clínica Universidad de Navarra; Pamplona Spain
| | - G. Rabago
- Cardiac Surgery Department; Clínica Universidad de Navarra; Pamplona Spain
| | - J. Manrique
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
- Nephrology Department; Complejo Hospitalario de Navarra; Pamplona Spain
| | | | - G. Reina
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
- Microbiology Department; Clínica Universidad de Navarra; Pamplona Spain
| | - J. Torre-Cisneros
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC); Reina Sofía University Hospital; University of Cordoba; Cordoba Spain
| | - M. Fernandez-Alonso
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
- Microbiology Department; Clínica Universidad de Navarra; Pamplona Spain
| | - J.I. Herrero
- Navarra's Health Research Institute (IdiSNA); Pamplona Spain
- Liver Unit; Clínica Universidad de Navarra; Pamplona Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd); Madrid Spain
| |
Collapse
|
35
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Pontejo SM, Murphy PM. Two glycosaminoglycan-binding domains of the mouse cytomegalovirus-encoded chemokine MCK-2 are critical for oligomerization of the full-length protein. J Biol Chem 2017; 292:9613-9626. [PMID: 28432120 DOI: 10.1074/jbc.m117.785121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/20/2017] [Indexed: 01/22/2023] Open
Abstract
Chemokines are essential for antimicrobial host defenses and tissue repair. Herpesviruses and poxviruses also encode chemokines, copied from their hosts and repurposed for multiple functions, including immune evasion. The CC chemokine MCK-2 encoded by mouse CMV (MCMV) has an atypical structure consisting of a classic chemokine domain N-terminal to a second unique domain, resulting from the splicing of MCMV ORFs m131 and m129 MCK-2 is essential for full MCMV infectivity in macrophages and for persistent infection in the salivary gland. However, information about its mechanism of action and specific biochemical roles for the two domains has been lacking. Here, using genetic, chemical, and enzymatic analyses of multiple mouse cell lines as well as primary mouse fibroblasts from salivary gland and lung, we demonstrate that MCK-2 binds glycosaminoglycans (GAGs) with affinities in the following order: heparin > heparan sulfate > chondroitin sulfate = dermatan sulfate. Both MCK-2 domains bound these GAGs independently, and computational analysis together with site-directed mutagenesis identified five basic residues distributed across the N terminus and the 30s and 50s loops of the chemokine domain that are important GAG binding determinants. Both domains were required for GAG-dependent oligomerization of full-length MCK-2. Thus, MCK-2 is an atypical viral chemokine consisting of a CC chemokine domain and a unique non-chemokine domain, both of which bind GAGs and are critical for GAG-dependent oligomerization of the full-length protein.
Collapse
Affiliation(s)
- Sergio M Pontejo
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip M Murphy
- From the Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Chapa TJ, Du Y, Sun R, Yu D, French AR. Proteomic and phylogenetic coevolution analyses of pM79 and pM92 identify interactions with RNA polymerase II and delineate the murine cytomegalovirus late transcription complex. J Gen Virol 2017; 98:242-250. [PMID: 27926822 DOI: 10.1099/jgv.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of the late viral gene expression in betaherpesviruses is largely undefined. We have previously shown that the murine cytomegalovirus proteins pM79 and pM92 are required for late gene transcription. Here, we provide insight into the mechanism of pM79 and pM92 activity by determining their interaction partners during infection. Co-immunoprecipitation-coupled MS studies demonstrate that pM79 and pM92 interact with an array of cellular and viral proteins involved in transcription. Specifically, we identify RNA polymerase II as a cellular target for both pM79 and pM92. We use inter-protein coevolution analysis to show how pM79 and pM92 likely assemble into a late transcription complex composed of late transcription regulators pM49, pM87 and pM95. Combining proteomic methods with coevolution computational analysis provides novel insights into the relationship between pM79, pM92 and RNA polymerase II and allows the generation of a model of the multi-component viral complex that regulates late gene transcription.
Collapse
Affiliation(s)
- Travis J Chapa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dong Yu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
38
|
Luganini A, Terlizzi ME, Gribaudo G. Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus. Front Microbiol 2016; 7:715. [PMID: 27242736 PMCID: PMC4865657 DOI: 10.3389/fmicb.2016.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
Following primary infection in humans, the human cytomegalovirus (HCMV) persists in a latent state throughout the host’s lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Maria E Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| |
Collapse
|
39
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
40
|
Scanning Mutagenesis of Human Cytomegalovirus Glycoprotein gH/gL. J Virol 2015; 90:2294-305. [PMID: 26656708 DOI: 10.1128/jvi.01875-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The core, conserved function of the herpesvirus gH/gL is to promote gB-mediated membrane fusion during entry, although the mechanism is poorly understood. The human cytomegalovirus (HCMV) gH/gL can exist as either the gH/gL/gO trimer or the gH/gL/UL128/UL130/UL131 (gH/gL/UL128-131) pentamer. One model suggests that gH/gL/gO provides the core fusion role during entry into all cells within the broad tropism of HCMV, whereas gH/gL/UL128-131 acts at an earlier stage, by a distinct receptor-binding mechanism to enhance infection of select cell types, such as epithelial cells, endothelial cells, and monocytes/macrophages. To further study the distinct functions of these complexes, mutants with individual charged cluster-to-alanine (CCTA) mutations of gH and gL were combined to generate a library of 80 mutant gH/gL heterodimers. The majority of the mutant gH/gL complexes were unable to facilitate gB-mediated membrane fusion in transient-expression cell-cell fusion experiments. In contrast, these mutants supported the formation of gH/gL/UL128-131 complexes that could block HCMV infection in receptor interference experiments. These results suggest that receptor interactions with gH/gL/UL128-131 involve surfaces contained on the UL128-131 proteins but not on gH/gL. gH/gL/UL128-131 receptor interference could be blocked with anti-gH antibodies, suggesting that interference is a cell surface phenomenon and that anti-gH antibodies can block gH/gL/UL128-131 in a manner that is distinct from that for gH/gL/gO. IMPORTANCE Interest in the gH/gL complexes of HCMV (especially gH/gL/UL128-131) as vaccine targets has far outpaced our understanding of the mechanism by which they facilitate entry and contribute to broad cellular tropism. For Epstein-Barr virus (EBV), gH/gL and gH/gL/gp42 are both capable of promoting gB fusion for entry into epithelial cells and B cells, respectively. In contrast, HCMV gH/gL/gO appears to be the sole fusion cofactor that promotes gB fusion activity, whereas gH/gL/UL128-131 expands cell tropism through a distinct yet unknown mechanism. This study suggests that the surfaces of HCMV gH/gL are critical for promoting gB fusion but are dispensable for gH/gL/UL128-131 receptor interaction. This underscores the importance of gH/gL/gO in HCMV entry into all cell types and reaffirms the complex as a candidate target for vaccine development. The two functionally distinct forms of gH/gL present in HCMV make for a useful model with which to study the fundamental mechanisms by which herpesvirus gH/gL regulates gB fusion.
Collapse
|
41
|
Abstract
Managing patients after heart transplantation is challenging, since these patients have unique clinical complications (associated with the immunosuppressive therapy and cardiac allograft rejection) together with atypical clinical presentations for infection and systemic inflammatory response syndrome. Survival rates have improved substantially with the use of new immunosuppressive drugs. High vigilance, early diagnosis, and appropriate intervention for allograft-related and non-allograft-related syndromes with significant morbidity and mortality are the keys to long-term survival of patients after transplantation.
Collapse
Affiliation(s)
- Edo Y Birati
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Eduardo Rame
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Human Cytomegalovirus gH/gL/gO Promotes the Fusion Step of Entry into All Cell Types, whereas gH/gL/UL128-131 Broadens Virus Tropism through a Distinct Mechanism. J Virol 2015; 89:8999-9009. [PMID: 26085146 DOI: 10.1128/jvi.01325-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Interaction between gH/gL and the fusion protein gB is likely a conserved feature of the entry mechanism for all herpesviruses. Human cytomegalovirus (HCMV) gH/gL can be bound by gO or by the set of proteins UL128, UL130, and UL131, forming gH/gL/gO and gH/gL/UL128-131. The mechanisms by which these complexes facilitate entry are poorly understood. Mutants lacking UL128-131 replicate well on fibroblasts but fail to enter epithelial/endothelial cells, and this has led to the general assumption that gH/gL/UL128-131 promotes gB-mediated fusion on epithelial/endothelial cells whereas gH/gL/gO provides this function on fibroblasts. This was challenged by observations that gO-null mutants were defective on all of these cell types, suggesting that entry into epithelial/endothelial cells requires both of the gH/gL complexes, but the severe replication defect of the gO mutants precluded detailed analysis. We previously reported that the ratio of gH/gL/gO and gH/gL/UL128-131 in the virion envelope varied dramatically among HCMV strains. Here, we show that strains not only differ in the ratio, but also vary in the total amount of gH/gL in the virion. Cell-type-specific particle-to-PFU ratios of HCMV strains that contained different amounts of gH/gL/gO and gH/gL/UL128-131 were determined. Infection of both fibroblasts and epithelial cells was generally correlated with the abundance of gH/gL/gO, but not with that of gH/gL/UL128-131. The low infectivity of virions rich in gH/gL/UL128-131 but low in gH/gL/gO could be overcome by treatment with the chemical fusogen polyethylene glycol (PEG), strongly arguing that gH/gL/gO provides the conserved herpesvirus gH/gL entry function of promoting gB-mediated fusion for entry into all cell types, whereas gH/gL/UL128-131 acts through a distinct mechanism to allow infection of select cell types. IMPORTANCE The functions of HCMV gH/gL complexes in entry are unclear. Unlike the well-studied Epstein-Barr virus (EBV), where gH/gL and gH/gL/gp42 complexes both seem capable of promoting gB fusion during entry into different cell types, our studies here suggest that for HCMV, gH/gL/gO promotes gB fusion on all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct, as yet unknown mechanism. To our knowledge, this is the first suggestion of a herpesvirus gH/gL that does not act by promoting gB fusion, which might make HCMV a useful model to study the fundamental mechanisms by which herpesvirus gH/gL regulates gB fusion. Moreover, gH/gL/UL128-131 is a candidate vaccine target. Our findings help to explain the cell-type-dependent virus neutralization exhibited by anti-gH/gL/UL128-131 antibodies and underscore the importance of gH/gL/gO as another important part of vaccine or therapeutic strategies.
Collapse
|
43
|
Lymphocytes as an Indicator for Initial Kidney Function: A Single Center Analysis of Outcome after Alemtuzumab or Basiliximab Induction. J Immunol Res 2015; 2015:985460. [PMID: 26171403 PMCID: PMC4480808 DOI: 10.1155/2015/985460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Alemtuzumab, an anti-CD52 T-cell and B-cell depleting monoclonal antibody, is established for induction therapy in renal transplantation (KTx). We herein provide a comparative analysis between alemtuzumab and basiliximab induction therapy and correlate lymphocyte depletion and recovery with the clinical course after KTx. This is a single center retrospective analysis of 225 patients/consecutive kidney transplantations treated with alemtuzumab for lymphocyte depletion and 205 recipients treated with basiliximab. Mean lymphocyte counts were 22.8 ± 9.41% before Tx and 2.61 ± 3.11% between week 1 and week 3 in the alemtuzumab group and 23.77 ± 10.42% before Tx and 13.92 ± 8.20% in the basiliximab group. Delayed graft function (DGF), cytomegalovirus (CMV) status, and recipient age showed a significant correlation with lymphocyte counts in the alemtuzumab group only. The outcome was read in reference to the velocity of lymphocyte recovery and in comparison to the control group. Lymphocyte counts early after transplantation, following alemtuzumab treatment, could be identified as a predictive factor for kidney function early after transplantation. A detailed analysis of phenotype and function of lymphocytes after alemtuzumab induction together with a correlation with the clinical course is warranted.
Collapse
|
44
|
A role for 3-O-sulfated heparan sulfate in promoting human cytomegalovirus infection in human iris cells. J Virol 2015; 89:5185-92. [PMID: 25717110 DOI: 10.1128/jvi.00109-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) has emerged as a clinically opportunistic pathogen that targets multiple types of ocular cells and tissues, including the iris region of the uveal tract during anterior uveitis. In this report, we used primary cultures of human iris stroma (HIS) cells derived from human eye donors to investigate HCMV entry. The following lines of evidence suggested the role of 3-O-sulfated heparan sulfate (3-OS HS) during HCMV-mediated entry and cell-to-cell fusion in HIS cells. First, 3-O-sulfotransferase-3 (3-OST-3) expression in HIS cells promoted HCMV internalization, while pretreatment of HIS cells with heparinase enzyme or with anti-3-OS HS (G2) peptide significantly reduced the HCMV-mediated formation of plaques/foci. Second, coculture of the HCMV-infected HIS cells with CHO-K1 cells expressing 3-OS HS significantly enhanced cell fusion. Finally, a similar trend of enhanced fusion was observed with cells expressing HCMV glycoproteins (gB, gO, and gH-gL) cocultured with 3-OS HS cells. Taken together, these results highlight the role of 3-OS HS during HCMV plaque formation and cell-to-cell fusion and identify a novel target for future therapeutic interventions.
Collapse
|
45
|
McWhorter AR, Smith LM, Shellam GR, Redwood AJ. Murine cytomegalovirus strains co-replicate at multiple tissue sites and establish co-persistence in salivary glands in the absence of Ly49H-mediated competition. J Gen Virol 2015; 96:1127-1137. [PMID: 25575707 DOI: 10.1099/vir.0.000047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
Infection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) occurs frequently in humans and mice. Profound, NK-cell-mediated (apparent) competition has been identified in C57BL/6 mice, and prevented the replication and shedding of certain co-infecting CMV strains. However, the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover, high rates of recombination in both human CMV and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of multi-strain infection in other mouse strains. In this study, co-replication of up to four strains of MCMV in the spleen, liver and salivary glands was observed in both MCMV-susceptible and MCMV-resistant mice. In the absence of apparent competition, no other forms of competition were unmasked. In addition, no evidence of complementation between viral strains was observed. Importantly, co-replication of MCMV strains was apparent for up to 90 days in the salivary glands. These data indicated that competition was not the default outcome of multi-strain CMV infection. Prolonged, essentially neutral, co-replication may be the norm, allowing for multi-strain transmission and prolonged opportunities for recombination.
Collapse
Affiliation(s)
- Andrea R McWhorter
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Lee M Smith
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Geoffrey R Shellam
- School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University, Building 390, Discovery Way, Murdoch, Western Australia 6150, Australia.,School of Pathology and Laboratory Medicine, M504, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
46
|
Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc Natl Acad Sci U S A 2014; 111:17965-70. [PMID: 25453106 DOI: 10.1073/pnas.1415310111] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The use of neutralizing antibodies to identify the most effective antigen has been proposed as a strategy to design vaccines capable of eliciting protective B-cell immunity. In this study, we analyzed the human antibody response to cytomegalovirus (human cytomegalovirus, HCMV) infection and found that antibodies to glycoprotein (g)B, a surface glycoprotein that has been developed as a HCMV vaccine, were primarily nonneutralizing. In contrast, most of the antibodies to the complex formed by gH, gL, protein (p)UL128, pUL130, and pUL131 (the gHgLpUL128L pentamer) neutralized HCMV infection with high potency. Based on this analysis, we developed a single polycistronic vector encoding the five pentamer genes separated by "self-cleaving" 2A peptides to generate a stably transfected CHO cell line constitutively secreting high levels of recombinant pentamer that displayed the functional antigenic sites targeted by human neutralizing antibodies. Immunization of mice with the pentamer formulated with different adjuvants elicited HCMV neutralizing antibody titers that persisted to high levels over time and that were a hundred- to thousand-fold higher than those found in individuals that recovered from primary HCMV infection. Sera from mice immunized with the pentamer vaccine neutralized infection of both epithelial cells and fibroblasts and prevented cell-to-cell spread and viral dissemination from endothelial cells to leukocytes. Neutralizing monoclonal antibodies from immunized mice showed the same potency as human antibodies and targeted the same as well as additional sites on the pentamer. These results illustrate with a relevant example a general and practical approach of analytic vaccinology for the development of subunit vaccines against complex pathogens.
Collapse
|
47
|
Human Cytomegalovirus Latency: Targeting Differences in the Latently Infected Cell with a View to Clearing Latent Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/313761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) is a human herpesvirus which causes little or no disease in the immunocompetent. However, in immunocompromised individuals, neonates, or patients on immune suppressive therapies, HCMV can cause significant morbidity and mortality in some patient groups. As with all herpesviruses, HCMV has two life cycle phases: a productive phase, where new virions are produced and a latent phase where there is a restricted gene transcription profile and no new virion production. Currently available antivirals target the productive phase of HCMV infection and, although these have greatly decreased the severity of HCMV-induced disease in immunocompromised or immunosuppressed individuals, they often have associated toxicities, routinely result in selection of drug resistant viral mutants, and, importantly, they do not target cells latently infected with virus. Thus, there is a real need to derive novel antiviral therapies which, not least, are also able to target latent infection. In this paper, we describe recent work which has begun to analyse changes in the cell associated with latent infection and the possibility that these latency-associated changes in cell phenotype could be targeted by novel chemo- or immunotherapeutic strategies in order to diminish, or even clear, latent infection at least in some specific clinical settings.
Collapse
|
48
|
Taveira A, Ponroy N, Mueller NJ, Millard AL. Entry of human cytomegalovirus into porcine endothelial cells depends on both the cellular vascular origin and the viral strain. Xenotransplantation 2014; 21:324-40. [PMID: 24712388 DOI: 10.1111/xen.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/14/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Primary infection and reactivation of human cytomegalovirus (HCMV) is associated with allograft rejection. Pig-to-human xenotransplantation is regarded as an alternative to circumvent donor organ shortage and inevitably, porcine endothelial cells (pEC) will be exposed to human pathogens, among them HCMV. Infection of pEC with HCMV induces apoptosis and entry is sufficient to induce phenotypic alterations, which have the potential to result in rejection and vasculopathy. We investigated the mechanisms used by HCMV to enter pEC from different anatomical origins and compared them with the entry mechanisms used to enter human endothelial cells (hEC). METHODS Immortalized porcine aortic (PEDSV.15) and porcine microvascular bone marrow derived EC (2A2) as well as primary human aortic (HAEC) and microvascular EC (HMVEC) were inoculated with the endotheliotropic (TB40/E) or the fibroblast propagated (TB40/F) HCMV strains at multiplicity of infection (MOI) ranging from 0.3 to 5. EC were analyzed for receptor expression and their involvement in HCMV entry. The role of endocytosis was evaluated by treating EC with specific inhibitors, and the involvement of the endolysosomal pathway was investigated by confocal microscopy. RESULTS Silencing of platelet-derived growth factor receptor alpha resulted in a reduced expression of viral immediate early (IE) antigen only in pEC infected with either TB40/E or TB40/F whereas silencing of β1 integrins reduced expression of IE proteins in all EC except for TB40/F-infected microvascular pEC. TB40/E enters hEC and pEC by a similar mechanism dependent on dynamin-2, lipid rafts, actin and pH, whereas entry of TB40/F in pEC occurs mainly by a dynamin-2-dependent, clathrin-, lipid rafts-independent mechanism and in a pH-dispensable manner. When actin polymerization was prevented, TB40/F could enter pEC in an actin-independent fashion. Disturbance of the microtubule cytoskeleton resulted in an inhibition of infection of TB40/E-infected EC, whereas infection of TB40/F-infected pEC was not modified. Finally, viral particles located in vesicles of the endolysosomal pathway, suggesting that HCMV uses this pathway for intracellular trafficking following entry. CONCLUSIONS Our findings demonstrate that HCMV uses a variety of entry mechanisms that are dependent on the strain and on the vascular origin of the cells. Given the profound effect of pEC infection with HCMV, prevention of such an infection will be crucial for clinical application of xenotransplantation. A potential avenue is to render porcine grafts resistant to HCMV infection by blocking viral entry and propagation.
Collapse
Affiliation(s)
- Aline Taveira
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital, Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Roman A, Manito N, Campistol JM, Cuervas-Mons V, Almenar L, Arias M, Casafont F, del Castillo D, Crespo-Leiro MG, Delgado JF, Herrero JI, Jara P, Morales JM, Navarro M, Oppenheimer F, Prieto M, Pulpón LA, Rimola A, Serón D, Ussetti P. The impact of the prevention strategies on the indirect effects of CMV infection in solid organ transplant recipients. Transplant Rev (Orlando) 2014; 28:84-91. [DOI: 10.1016/j.trre.2014.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/19/2014] [Indexed: 01/10/2023]
|
50
|
Reischig T. Cytomegalovirus-associated renal allograft rejection: new challenges for antiviral preventive strategies. Expert Rev Anti Infect Ther 2014; 8:903-10. [DOI: 10.1586/eri.10.63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|