1
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Feng D, Hwang S, Guillot A, Wang Y, Guan Y, Chen C, Maccioni L, Gao B. Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets. Cell Mol Gastroenterol Hepatol 2024; 18:101352. [PMID: 38697358 PMCID: PMC11234022 DOI: 10.1016/j.jcmgh.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
Collapse
Affiliation(s)
- Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yang Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
6
|
Kharbanda KK, Chokshi S, Tikhanovich I, Weinman SA, New-Aaron M, Ganesan M, Osna NA. A Pathogenic Role of Non-Parenchymal Liver Cells in Alcohol-Associated Liver Disease of Infectious and Non-Infectious Origin. BIOLOGY 2023; 12:255. [PMID: 36829532 PMCID: PMC9953685 DOI: 10.3390/biology12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE5 8AF, UK
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
| | - Steven A. Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66160, USA
- Research Service, Kansas City Veterans Administration Medical Center, Kansas City, MO 64128, USA
| | - Moses New-Aaron
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
8
|
Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD). Int J Mol Sci 2022; 23:ijms23136996. [PMID: 35805998 PMCID: PMC9266719 DOI: 10.3390/ijms23136996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD), recently also re-defined as metabolic dysfunction associated fatty liver disease (MAFLD), is rapidly increasing, affecting ~25% of the world population. MALFD/NAFLD represents a spectrum of liver pathologies including the more benign hepatic steatosis and the more advanced non-alcoholic steatohepatitis (NASH). NASH is associated with enhanced risk for liver fibrosis and progression to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells (HSC) activation underlies NASH-related fibrosis. Here, we discuss the profibrogenic pathways, which lead to HSC activation and fibrogenesis, with a particular focus on the intercellular hepatocyte–HSC and macrophage–HSC crosstalk.
Collapse
|
9
|
The Hepatic Sinusoid in Chronic Liver Disease: The Optimal Milieu for Cancer. Cancers (Basel) 2021; 13:cancers13225719. [PMID: 34830874 PMCID: PMC8616349 DOI: 10.3390/cancers13225719] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development of chronic liver disease, the hepatic sinusoid undergoes major changes that further compromise the hepatic function, inducing persistent inflammation and the formation of scar tissue, together with alterations in liver hemodynamics. This diseased background may induce the formation and development of hepatocellular carcinoma (HCC), which is the most common form of primary liver cancer and a major cause of mortality. In this review, we describe the ways in which the dysregulation of hepatic sinusoidal cells—including liver sinusoidal cells, Kupffer cells, and hepatic stellate cells—may have an important role in the development of HCC. Our review summarizes all of the known sinusoidal processes in both health and disease, and possible treatments focusing on the dysregulation of the sinusoid; finally, we discuss how some of these alterations occurring during chronic injury are shared with the pathology of HCC and may contribute to its development. Abstract The liver sinusoids are a unique type of microvascular beds. The specialized phenotype of sinusoidal cells is essential for their communication, and for the function of all hepatic cell types, including hepatocytes. Liver sinusoidal endothelial cells (LSECs) conform the inner layer of the sinusoids, which is permeable due to the fenestrae across the cytoplasm; hepatic stellate cells (HSCs) surround LSECs, regulate the vascular tone, and synthetize the extracellular matrix, and Kupffer cells (KCs) are the liver-resident macrophages. Upon injury, the harmonic equilibrium in sinusoidal communication is disrupted, leading to phenotypic alterations that may affect the function of the whole liver if the damage persists. Understanding how the specialized sinusoidal cells work in coordination with each other in healthy livers and chronic liver disease is of the utmost importance for the discovery of new therapeutic targets and the design of novel pharmacological strategies. In this manuscript, we summarize the current knowledge on the role of sinusoidal cells and their communication both in health and chronic liver diseases, and their potential pharmacologic modulation. Finally, we discuss how alterations occurring during chronic injury may contribute to the development of hepatocellular carcinoma, which is usually developed in the background of chronic liver disease.
Collapse
|
10
|
Han H, Zhang Y, Peng G, Li L, Yang J, Yuan Y, Xu Y, Liu ZR. Extracellular PKM2 facilitates organ-tissue fibrosis progression. iScience 2021; 24:103165. [PMID: 34693222 PMCID: PMC8517170 DOI: 10.1016/j.isci.2021.103165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023] Open
Abstract
Persistent activation of fibroblasts and resistance of myofibroblasts to turnover play important roles in organ-tissue fibrosis development and progression. The mechanism that mediates apoptosis resistance of myofibroblasts is not understood. Here, we report that myofibroblasts express and secrete PKM2. Extracellular PKM2 (EcPKM2) facilitates progression of fibrosis by protecting myofibroblasts from apoptosis. EcPKM2 upregulates arginase-1 expression in myofibroblasts and therefore facilitates proline biosynthesis and subsequent collagen production. EcPKM2 interacts with integrin αvβ3 on myofibroblasts to activate FAK-PI3K signaling axis. Activation of FAK-PI3K by EcPKM2 activates downstream NF-κB survival pathway to prevent myofibroblasts from apoptosis. On the other hand, activation of FAK- PI3K by EcPKM2 suppresses PTEN to subsequently upregulate arginase-1 in myofibroblasts. Our studies uncover an important mechanism for organ fibrosis progression. More importantly, an antibody disrupting the interaction between PKM2 and integrin αvβ3 is effective in reversing fibrosis, suggesting a possible therapeutic strategy and target for treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Liangwei Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yiting Xu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Turaga RC, Satyanarayana G, Sharma M, Yang JJ, Wang S, Liu C, Li S, Yang H, Grossniklaus H, Farris AB, Gracia-Sancho J, Liu ZR. Targeting integrin αvβ3 by a rationally designed protein for chronic liver disease treatment. Commun Biol 2021; 4:1087. [PMID: 34531529 PMCID: PMC8445973 DOI: 10.1038/s42003-021-02611-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic Liver Diseases (CLD) are characterized by abnormal accumulation of collagen fibrils, neo-angiogenesis, and sinusoidal remodeling. Collagen deposition along with intrahepatic angiogenesis and sinusoidal remodeling alters sinusoid structure resulting in portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for CLDs. However, the success of such treatments is limited and unpredictable. We report a strategy for CLD treatment by induction of integrin αvβ3 mediated cell apoptosis using a rationally designed protein (ProAgio). ProAgio is designed to target integrin αvβ3 at a novel site. Integrin αvβ3 is highly expressed in activated Hepatic Stellate Cells (HSC), angiogenic endothelium, and capillarized Liver Sinusoidal Endothelial Cells (LSEC). ProAgio induces apoptosis of these disease causative cells. Tests with liver fibrosis mouse models demonstrate that ProAgio reverses liver fibrosis and relieves blood flow resistance by depleting activated HSC and capillarized LSEC. Our studies demonstrate an effective approach for CLD treatment.
Collapse
Affiliation(s)
- Ravi Chakra Turaga
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA
| | | | - Malvika Sharma
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, USA
| | | | | | - Sun Li
- Department of Chemistry, Georgia State University, Atlanta, USA
| | - Hua Yang
- Department Ophthalmology, Emory University, Atlanta, GA, 30322, USA
| | | | | | | | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30324, USA.
| |
Collapse
|
12
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
13
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Ahn SY, Maeng YS, Kim YR, Choe YH, Hwang HS, Hyun YM. In vivo monitoring of dynamic interaction between neutrophil and human umbilical cord blood-derived mesenchymal stem cell in mouse liver during sepsis. Stem Cell Res Ther 2020; 11:44. [PMID: 32014040 PMCID: PMC6998265 DOI: 10.1186/s13287-020-1559-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Sepsis is a global inflammatory disease that causes death. It has been reported that mesenchymal stem cell (MSC) treatment can attenuate inflammatory and septic symptoms. In this study, we investigated how interactions between neutrophils and human umbilical cord blood (hUCB)-MSCs in the liver of septic mice are involved in mitigating sepsis that is mediated by MSCs. Accordingly, we aimed to determine whether hUCB-MSC application could be an appropriate treatment for sepsis. Methods To induce septic condition, lipopolysaccharide (LPS) was intraperitoneally (i.p.) injected into mice 24 h after the intravenous (i.v.) injection of saline or hUCB-MSCs. To determine the effect of hUCB-MSCs on the immune response during sepsis, histologic analysis, immunoassays, and two-photon intravital imaging were performed 6 h post-LPS injection. For the survival study, mice were monitored for 6 days after LPS injection. Results The injection (i.v.) of hUCB-MSCs alleviated the severity of LPS-induced sepsis by increasing IL-10 levels (p < 0.001) and decreasing mortality (p < 0.05) in septic mice. In addition, this significantly reduced the recruitment of neutrophils (p < 0.001) to the liver. In hUCB-MSC-treated condition, we also observed several distinct patterns of dynamic interactions between neutrophils and hUCB-MSCs in the inflamed mouse liver, as well as vigorous interactions between hepatic stellate cells (HSCs or ito cells) and hUCB-MSCs. Interestingly, hUCB-MSCs that originated from humans were not recognized as foreign in the mouse body and consequently did not cause graft rejection. Conclusions These distinct interaction patterns between innate immune cells and hUCB-MSCs demonstrated that hUCB-MSCs have beneficial effects against LPS-induced sepsis through associations with neutrophils. In addition, the immunomodulatory properties of hUCB-MSCs might enable immune evasion in the host. Taken together, our results suggest the prospects of hUCB-MSCs as a therapeutic tool to inhibit inflammation and alleviate pathological immune responses such as sepsis.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Rim Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ho Choe
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea. .,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Zongyi Y, Xiaowu L. Immunotherapy for hepatocellular carcinoma. Cancer Lett 2020; 470:8-17. [DOI: 10.1016/j.canlet.2019.12.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
|
16
|
Johnston MP, Khakoo SI. Immunotherapy for hepatocellular carcinoma: Current and future. World J Gastroenterol 2019; 25:2977-2989. [PMID: 31293335 PMCID: PMC6603808 DOI: 10.3748/wjg.v25.i24.2977] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises on the background of chronic liver disease. Despite the development of effective anti-viral therapeutics HCC is continuing to rise, in part driven by the epidemic of non-alcoholic fatty liver disease. Many patients present with advanced disease out with the criteria for transplant, resection or even locoregional therapy. Currently available therapeutics for HCC are effective in a small minority of individuals. However, there has been a major global interest in immunotherapies for cancer and although HCC has lagged behind other cancers, great opportunities now exist for treating HCC with newer and more sophisticated agents. Whilst checkpoint inhibitors are at the forefront of this revolution, other therapeutics such as inhibitory cytokine blockade, oncolytic viruses, adoptive cellular therapies and vaccines are emerging. Broadly these may be categorized as either boosting existing immune response or stimulating de novo immune response. Although some of these agents have shown promising results as monotherapy in early phase trials it may well be that their future role will be as combination therapy, either in combination with one another or in combination with treatment modalities such as locoregional therapy. Together these agents are likely to generate new and exciting opportunities for treating HCC, which are summarized in this review.
Collapse
Affiliation(s)
- Michael P Johnston
- Department of Hepatology, Southampton General Hospital, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
| | - Salim I Khakoo
- Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
17
|
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G, Van Ginderachter JA. The role of hepatic macrophages in liver metastasis. Cell Immunol 2018; 330:202-215. [PMID: 29661474 DOI: 10.1016/j.cellimm.2018.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The liver is a major target organ for metastasis of both gastrointestinal and extra-gastrointestinal cancers. Due to its frequently inoperable nature, liver metastasis represents a leading cause of cancer-associated death worldwide. In the past years, the pivotal role of the immune system in this process is being increasingly recognised. In particular, the role of the hepatic macrophages, both recruited monocyte-derived macrophages (Mo-Mfs) and tissue-resident Kupffer cells (KCs), has been shown to be more versatile than initially imagined. However, the lack of tools to easily distinguish between these two macrophage populations has hampered the assignment of particular functionalities to specific hepatic macrophage subsets. In this Review, we highlight the most remarkable findings regarding the origin and functions of hepatic macrophage populations, and we provide a detailed description of their distinct roles in the different phases of the liver metastatic process.
Collapse
Affiliation(s)
- Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xenia Geeraerts
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
18
|
Liu Y, Li L, Liu J, She WM, Shi JM, Li J, Wang JY, Jiang W. Activated hepatic stellate cells directly induce pathogenic Th17 cells in chronic hepatitis B virus infection. Exp Cell Res 2017; 359:129-137. [PMID: 28780305 DOI: 10.1016/j.yexcr.2017.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Th17 cells are involved in liver fibrosis by activating hepatic stellate cells (HSCs). We aimed to investigate whether HSCs are able to regulate the function of Th17 cells and to determine the relevant mechanism. Sixty-five patients diagnosed with chronic hepatitis B (CHB) were enrolled in this study. To determine the effect of HSCs on T cells, naïve CD4+T cells and Th17 cells were sorted from CHB patients and cultured with or without activated-HSCs, and cytokine expression and gene transcription were analyzed. In addition, the regulatory mechanism of HSCs was investigated. ELISA and qRT-PCR showed that Th17 cells from CHB patients were more pathogenic, on the basis of the expression of IL-17A, IL-23R, RORC, CCL20 and CCR6, and meanwhile, they could activate the primary HSCs. Co-culture experiments indicated that activated HSCs dramatically promoted proliferation of CD4+T cells in a time- and dose-dependent manner. In addition, they could induce naïve CD4+T cells to become Th17 cells which had a more pathogenic phenotype. Moreover, activated HSCs-mediated induction of Th17 cells might depend on the release of IL-1β and IL-6 as well as on the COX-PGE2 pathway. Th17 cells cooperated with HSCs in a proinflammatory feedback loop might provide a better understanding of the pathogenic role of Th17 cells in the chronicity of HBV infection.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Gastroenterology, Huzhou Central Hospital, Zhejiang 313003, China
| | - Wei-Min She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Min Shi
- Department of Gastroenterology, Huzhou Central Hospital, Zhejiang 313003, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
19
|
Panebianco C, Oben JA, Vinciguerra M, Pazienza V. Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med 2016; 17:269-280. [PMID: 27655446 DOI: 10.1007/s10238-016-0438-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022]
Abstract
Hepatic stellate cells (HSCs), also known as perisinusoidal cells, are pericytes found in the perisinusoidal space of the liver. HSCs are the major cell type involved in liver fibrosis, which is the formation of scar tissue in response to liver damage. When the liver is damaged, stellate cells can shift into an activated state, characterized by proliferation, contractility and chemotaxis. The activated HSCs secrete collagen scar tissue, which can lead to cirrhosis. Recent studies have shown that in vivo activation of HSCs by fibrogenic agents can eventually lead to senescence of these cells, which would contribute to reversal of fibrosis although it may also favor the insurgence of liver cancer. HSCs in their non-active form store huge amounts of retinoic acid derivatives in lipid droplets, which are progressively depleted upon cell activation in injured liver. Retinoic acid is a metabolite of vitamin A (retinol) that mediates the functions of vitamin A, generally required for growth and development. The precise function of retinoic acid and its alterations in HSCs has yet to be elucidated, and nonetheless in various cell types retinoic acid and its receptors (RAR and RXR) are known to act synergistically with peroxisome proliferator-activated receptor gamma (PPAR-gamma) signaling through the activity of transcriptional heterodimers. Here, we review the recent advancements in the understanding of how retinoic acid signaling modulates the fibrogenic potential of HSCs and proposes a synergistic combined action with PPAR-gamma in the reversal of liver fibrosis.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, San Giovanni Rotondo, FG, Italy
| | - Jude A Oben
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London (UCL), London, UK
| | - Manlio Vinciguerra
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London (UCL), London, UK.,Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.,Centro Studi Fegato (CSF)-Liver Research Center, Fondazione Italiana Fegato, Trieste, Italy
| | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital, Viale dei Cappuccini, 1, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
20
|
Ding C, Li Y, Guo F, Jiang Y, Ying W, Li D, Yang D, Xia X, Liu W, Zhao Y, He Y, Li X, Sun W, Liu Q, Song L, Zhen B, Zhang P, Qian X, Qin J, He F. A Cell-type-resolved Liver Proteome. Mol Cell Proteomics 2016; 15:3190-3202. [PMID: 27562671 PMCID: PMC5054343 DOI: 10.1074/mcp.m116.060145] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/16/2023] Open
Abstract
Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level.
Collapse
Affiliation(s)
- Chen Ding
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- ¶School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feifei Guo
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Ying Jiang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wantao Ying
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Dong Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Dong Yang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Xia Xia
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wanlin Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yan Zhao
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yangzhige He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; ¶School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianyu Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wei Sun
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Qiongming Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Lei Song
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Bei Zhen
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Pumin Zhang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Xiaohong Qian
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China;
| | - Jun Qin
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Fuchu He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Rosa-Toledo O, Almeida-Chuffa LG, Martinez M, Felipe-Pinheiro PF, Padovani CR, Martinez FE. Maternal separation on the ethanol-preferring adult rat liver structure. Ann Hepatol 2016; 14:910-8. [PMID: 26436364 DOI: 10.5604/16652681.1171783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. We designed to test whether there is interaction of maternal separation (MS) on the ethanol-preferring rats liver structure. The UCh rat pups were separated daily from their mothers during the stress hyporesponsive period (SHRP), between four and 14 days-old, always at the same time for four hours in a cage containing eight subdivisions, one for each pup. Subsequently, rats that presented the highest (UChB) and the lowest (UChA) ethanol (EtOH) consumption were selected to the study. Both UChB and UChA rats received 10% (v/v) EtOH and distilled water ad libitum until the end of the experiment (120 days-old). The liver was collected to histological routine for morphometric and stereological analyses, and immunohistochemistry. RESULTS There was an interaction of MS and EtOH on the liver: increased liver mass, peritubular vessels, stellate cell numbers, steatosis and cell death, decreased necrosis, sinusoidal capillary diameters and cell proliferation. While there was a decrease in FSH, testosterone and 5α-di-hidrotestosterone, and increasing corticosterone and cholesterol. CONCLUSIONS There is interaction of MS and EtOH on the liver structure, dependent on the amount of EtOH intake. Furthermore, the interaction of stress and drugs can increase or decrease their effects on the liver or indirectly via hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes.
Collapse
Affiliation(s)
| | | | - Marcelo Martinez
- Department of Morphology and Pathology, UFSCar-Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Carlos R Padovani
- Department of Biostatistic, Biosciences Institute, UNESP-Univ. Estadual Paulista, Botucatu, SP, Brazil
| | | |
Collapse
|
22
|
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13:277-92. [PMID: 27041638 PMCID: PMC4856800 DOI: 10.1038/cmi.2015.112] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the "liver tolerance effect". Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Linda Diehl
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg D-20246, Germany
| |
Collapse
|
23
|
Pasztoi M, Pezoldt J, Huehn J. Microenvironment Matters: Unique Conditions Within Gut-Draining Lymph Nodes Favor Efficient De Novo Induction of Regulatory T Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:35-56. [PMID: 26615091 DOI: 10.1016/bs.pmbts.2015.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gastrointestinal tract constitutes the largest surface of the body and thus has developed multitude mechanisms to either prevent pathogen entry or to efficiently eliminate invading pathogens. At the same time, the gastrointestinal system has to avoid unwanted immune responses against self and harmless nonself antigens, such as nutrients and commensal microbiota. Therefore, it is somewhat not unexpected that the gastrointestinal mucosa serves as the largest repository of immune cells throughout the body, harboring both potent pro- as well as anti-inflammatory properties. One additional key element of this regulatory machinery is created by trillions of symbiotic commensal bacteria in the gut. The microbiota not only simply contribute to the breakdown of nutrients, but are essential in limiting the expansion of pathogens, directing the development of the intestinal immune system, and establishing mucosal tolerance by fostering the induction of regulatory T cells (Tregs). In this review, we will discuss our current understanding about the microenvironmental factors fostering the de novo generation of Tregs within the gastrointestinal immune system, focusing on unique properties of antigen-presenting cells, tolerogenic cytokines, commensal-derived metabolites and the contribution of lymph node stromal cells.
Collapse
Affiliation(s)
- Maria Pasztoi
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
24
|
Eckert C, Klein N, Kornek M, Lukacs-Kornek V. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front Immunol 2015; 6:179. [PMID: 25941527 PMCID: PMC4403526 DOI: 10.3389/fimmu.2015.00179] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
In recent years, it has been an explosion of information regarding the role of various myeloid cells in liver pathology. Macrophages and dendritic cell (DC) play crucial roles in multiple chronic liver diseases such as fibrosis and non-alcoholic fatty liver disease (NAFLD). The complexity of myeloid cell populations and the missing exclusive marker combination make the interpretation of the data often extremely difficult. The current review aims to summarize the multiple roles of macrophages and DCs in chronic liver diseases, especially pointing out how these cells influence liver immune and parenchymal cells thereby altering liver function and pathology. Moreover, the review outlines the currently known marker combinations for the identification of these cell populations for the study of their role in liver immunology.
Collapse
Affiliation(s)
- Christoph Eckert
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Niklas Klein
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
25
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Resheq YJ, Li KK, Ward ST, Wilhelm A, Garg A, Curbishley SM, Blahova M, Zimmermann HW, Jitschin R, Mougiakakos D, Mackensen A, Weston CJ, Adams DH. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2578-86. [PMID: 25667417 DOI: 10.4049/jimmunol.1401046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p < 0.05). Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy.
Collapse
Affiliation(s)
- Yazid J Resheq
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Ka-Kit Li
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stephen T Ward
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Annika Wilhelm
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Abhilok Garg
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Stuart M Curbishley
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Miroslava Blahova
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Henning W Zimmermann
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Medicine III, University Hospital RWTH Aachen, 25074 Aachen, Germany
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; and
| | - Chris J Weston
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David H Adams
- Division of Immunity and Infection, Centre for Liver Research and Biomedical Research Unit, National Institute for Health Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
27
|
Strauss O, Dunbar PR, Bartlett A, Phillips A. The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver--a systematic review. J Hepatol 2015; 62:458-68. [PMID: 25315649 DOI: 10.1016/j.jhep.2014.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
The mononuclear phagocytic system (MPS), comprised of monocytes, macrophages, and dendritic cells, is essential in tissue homeostasis and in determining the balance of the immune response through its role in antigen presentation. It has been identified as a therapeutic target in infectious disease, cancer, autoimmune disease and transplant rejection. Here, we review the current understanding of the immunophenotype and function of the MPS in normal human liver. Using well-defined selection criteria, a search of MEDLINE and EMBASE databases identified 76 appropriate studies. The majority (n=67) described Kupffer cells (KCs), although the definition of KC differs between sources, and little data were available regarding their function. Only 10 papers looked at liver dendritic cells (DCs), and largely confirmed the presence of the major dendritic cell subsets identified in human blood. Monocytes were thoroughly characterized in four studies that utilized flow cytometry and fluorescent microscopy and highlighted their prominent role in liver homeostasis and displayed subtle differences from circulating monocytes. There was some limited evidence that liver DCs are tolerogenic but neither liver dendritic cell subsets nor macrophages have been thoroughly characterized, using either multi-colour flow cytometry or multi-parameter fluorescence microscopy. The lobular distribution of different subsets of liver MPS cells was also poorly described, and the ability to distinguish between passenger leukocytes and tissue resident cells remains limited. It was apparent that further research, using modern immunological techniques, is now required to accurately characterize the cells of the MPS in human liver.
Collapse
Affiliation(s)
- Otto Strauss
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - P Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Adam Bartlett
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Anthony Phillips
- Department of Surgery, Faculty of Medical Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Abstract
Hepatocytes comprise the majority of liver mass and cell number. However, in order to understand liver biology, the non-parenchymal cells (NPCs) must be considered. Herein, a relatively rapid and efficient method for isolating liver NPCs from a mouse is described. Using this method, liver sinusoidal endothelial cells, Kupffer cells, natural killer (NK) and NK-T cells, dendritic cells, CD4+ and CD8+ T cells, and quiescent hepatic stellate cells can be purified. This protocol permits the collection of peripheral blood, intact liver tissue, and hepatocytes, in addition to NPCs. In situ perfusion via the portal vein leads to efficient liver digestion. NPCs are enriched from the resulting single-cell suspension by differential and gradient centrifugation. The NPCs can by analyzed or sorted into highly enriched populations using flow cytometry. The isolated cells are suitable for flow cytometry, protein, and mRNA analyses as well as primary culture.
Collapse
|
29
|
Sutti S, Rigamonti C, Vidali M, Albano E. CYP2E1 autoantibodies in liver diseases. Redox Biol 2014; 3:72-78. [PMID: 25462068 PMCID: PMC4297929 DOI: 10.1016/j.redox.2014.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022] Open
Abstract
Autoimmune reactions involving cytochrome P4502E1 (CYP2E1) are a feature of idiosyncratic liver injury induced by halogenated hydrocarbons and isoniazid, but are also detectable in about one third of the patients with advanced alcoholic liver disease (ALD) and chronic hepatitis C (CHC). In these latter the presence of anti-CYP2E1 auto-antibodies is an independent predictor of extensive necro-inflammation and fibrosis and worsens the recurrence of hepatitis following liver transplantation, indicating that CYP2E1-directed autoimmunity can contribute to hepatic injury. The molecular characterization of the antigens recognized by anti-CYP2E1 auto-antibodies in ALD and CHC has shown that the targeted conformational epitopes are located in close proximity on the molecular surface. Furthermore, these epitopes can be recognized on CYP2E1 expressed on hepatocyte plasma membranes where they can trigger antibody-mediated cytotoxicity. This does not exclude that T cell-mediated responses against CYP2E1 might also be involved in causing hepatocyte damage. CYP2E1 structural modifications by reactive metabolites and molecular mimicry represent important factors in the breaking of self-tolerance against CYP2E1 in, respectively, ALD and CHC. However, genetic or acquired interferences with the mechanisms controlling the homeostasis of the immune system are also likely to contribute. More studies are needed to better characterize the impact of anti-CYP2E1 autoimmunity in liver diseases particularly in relation to the fact that common metabolic alterations such as obesity and diabetes stimulates hepatic CYP2E1 expression.
Collapse
Affiliation(s)
- Salvatore Sutti
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont and Interdepartmental Research Centre for Autoimmune Diseases (IRCAD), Novara, Italy
| | | | - Matteo Vidali
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Emanuele Albano
- Department of Health Sciences, University "Amedeo Avogadro" of East Piedmont and Interdepartmental Research Centre for Autoimmune Diseases (IRCAD), Novara, Italy.
| |
Collapse
|
30
|
He X, Pu G, Tang R, Zhang D, Pan W. Activation of nuclear factor kappa B in the hepatic stellate cells of mice with schistosomiasis japonica. PLoS One 2014; 9:e104323. [PMID: 25116007 PMCID: PMC4130550 DOI: 10.1371/journal.pone.0104323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/08/2014] [Indexed: 01/22/2023] Open
Abstract
Schistosomiasis japonica is a serious tropical parasitic disease in humans, which causes inflammation and fibrosis of the liver. Hepatic stellate cells (HSCs) are known to play an important role in schistosome-induced fibrosis, but their role in schistosome-induced inflammation is still largely unknown. Here, we use a murine model of schistosomiasis japonica to investigate the role that nuclear factor kappa B (NF-κB), a critical mediator of inflammatory responses, plays in schistosome-induced inflammation. We revealed that NF-κB was significantly activated in HSCs at the early stage of infection, but not at later stages. We also show that the expression levels of several chemokines regulated by NF-κB signaling (Ccl2, Ccl3 and Ccl5) were similarly elevated at early infection. TLR4 signaling, one of the strongest known inducers of NF-κB activation, seemed not activated in HSCs post-infection. Importantly, we found that levels of miR-146 (a known negative regulator of NF-κB signaling) in HSCs opposed those of NF-κB signaling, elevating at later stage of infection. These results indicate that HSCs might play an important role in the progression of hepatic schistosomiasis japonica by linking liver inflammation to fibrosis via NF-κB signaling. Moreover, our work suggests that miR-146 appeared to regulate this process. These findings are significant and imply that manipulating the function of HSCs by targeting either NF-κB signaling or miR-146 expression may provide a novel method of treating hepatic schistosomiasis japonica.
Collapse
Affiliation(s)
- Xing He
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Guangbin Pu
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
- * E-mail: (DMZ); (WQP)
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
- * E-mail: (DMZ); (WQP)
| |
Collapse
|
31
|
Bi Y, Mukhopadhyay D, Drinane M, Ji B, Li X, Cao S, Shah VH. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics. Am J Physiol Cell Physiol 2014; 307:C622-33. [PMID: 25080486 DOI: 10.1152/ajpcell.00086.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9.
Collapse
Affiliation(s)
- Yan Bi
- GI Research Unit, Department of Gastroenterology and Hepatology
| | | | - Mary Drinane
- GI Research Unit, Department of Gastroenterology and Hepatology
| | - Baoan Ji
- Department of Biochemistry and Molecular Biology
| | - Xing Li
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minneosota
| | - Sheng Cao
- GI Research Unit, Department of Gastroenterology and Hepatology
| | - Vijay H Shah
- GI Research Unit, Department of Gastroenterology and Hepatology,
| |
Collapse
|
32
|
Burghardt S, Claass B, Erhardt A, Karimi K, Tiegs G. Hepatocytes induce Foxp3⁺ regulatory T cells by Notch signaling. J Leukoc Biol 2014; 96:571-7. [PMID: 24970859 DOI: 10.1189/jlb.2ab0613-342rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The liver plays a pivotal role in maintaining immunological tolerance, although the exact molecular mechanism is still largely unknown. The induction of systemic tolerance by liver resident APCs has been attributed to peripheral deletion and to the induction of Tregs. HCs, the parenchymal cells in the liver, could function as nonprofessional APCs and interact and establish cell-cell contact with T lymphocytes. We hypothesized that HCs from healthy or regenerated livers may contribute to induction of functional Tregs. Here, we show that murine HCs induced Foxp3(+) Tregs within CD4(+) T cells in vitro, which increased in the presence of TGF-β. Interestingly, a further Foxp3(+) Treg expansion was observed if HCs were isolated from regenerated livers. Additionally, the induction of Foxp3(+) Tregs was associated with the Notch signaling pathway, as the ability of HCs to enhance Foxp3 was abolished by γ-secretase inhibition. Furthermore, HC-iTregs showed ability to suppress the proliferative response of CD4(+) T cells to anti-CD3 stimulation in vitro. Thus, HCs may play a pivotal role in the induction of tolerance via Notch-mediated conversion of CD4(+) T cells into Foxp3(+) Tregs upon TCR stimulation.
Collapse
Affiliation(s)
- Sven Burghardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Benjamin Claass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Annette Erhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Paschos KA, Majeed AW, Bird NC. Natural history of hepatic metastases from colorectal cancer - pathobiological pathways with clinical significance. World J Gastroenterol 2014; 20:3719-3737. [PMID: 24744570 PMCID: PMC3983432 DOI: 10.3748/wjg.v20.i14.3719] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.
Collapse
|
34
|
The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol 2014; 7:359-68. [PMID: 23945546 DOI: 10.1038/mi.2013.54] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/28/2013] [Indexed: 02/04/2023]
Abstract
De novo induction of Foxp3⁺ regulatory T cells (Tregs) is particularly efficient in gut-draining mesenteric and celiac lymph nodes (mLN and celLN). Here we used LN transplantations to dissect the contribution of stromal cells and environmental factors to the high Treg-inducing capacity of these LN. After transplantation into the popliteal fossa, mLN and celLN retained their high Treg-inducing capacity, whereas transplantation of skin-draining LN into the gut mesenteries did not enable efficient Treg induction. However, de novo Treg induction was abolished in the absence of dendritic cells (DC), indicating that this process depends on synergistic contributions of stromal and DC. Stromal cells themselves were influenced by environmental signals as mLN grafts taken from germ-free donors and celLN grafts taken from vitamin A-deficient donors did not show any superior Treg-inducing capacity. Collectively, our observations reveal a hitherto unrecognized role of LN stromal cells for the de novo induction of Foxp3⁺ Tregs.
Collapse
|
35
|
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2013; 343:147-55. [PMID: 24141189 DOI: 10.1016/j.canlet.2013.09.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.
Collapse
Affiliation(s)
- Serena Lunardi
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Ruth J Muschel
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK
| | - Thomas B Brunner
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, RRI, Oxford OX3 7LJ, UK; Department of Radiation Oncology, University Hospitals Freiburg, Robert-Koch-Straße 3, 79106 Freiburg, Germany.
| |
Collapse
|
36
|
Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 2013; 19:859-68. [PMID: 23836236 DOI: 10.1038/nm.3251] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections account for 57% of cases of liver cirrhosis and 78% of cases of primary liver cancer worldwide and cause a million deaths per year. Although HBV and HCV differ in their genome structures, replication strategies and life cycles, they have common features, including their noncytopathic nature and their capacity to induce chronic liver disease, which is thought to be immune mediated. However, the rate of disease progression from chronic hepatitis to cirrhosis varies greatly among infected individuals, and the factors that regulate it are largely unknown. This review summarizes our current understanding of the roles of antigen-specific and nonspecific immune cells in the pathogenesis of chronic hepatitis B and C and discusses recent findings that identify natural killer cells as regulators of T cell function and liver inflammation.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| |
Collapse
|
37
|
Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol 2013; 14:996-1006. [PMID: 24048121 DOI: 10.1038/ni.2691] [Citation(s) in RCA: 774] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
Receiving both portal vein blood and arterial blood, the liver is an important and critical component in the defense against blood-borne infection. To accomplish this role, the liver contains numerous innate and adaptive immune cells that specialize in detection and capture of pathogens from the blood. Further, these immune cells participate in coordinated immune responses leading to pathogen clearance, leukocyte recruitment and antigen presentation to lymphocytes within the vasculature. Finally, this role in host defense must be tightly regulated to ensure that inappropriate immune responses are not raised against nonpathogenic exogenous blood-borne molecules, such as those derived from food. It is this balance between activation and tolerance that characterizes the liver as a frontline immunological organ.
Collapse
Affiliation(s)
- Craig N Jenne
- 1] Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada. [2] Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
38
|
Hintermann E, Ehser J, Bayer M, Pfeilschifter JM, Christen U. Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6. J Autoimmun 2013; 44:49-60. [PMID: 23809878 DOI: 10.1016/j.jaut.2013.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 01/03/2023]
Abstract
Autoimmune hepatitis type 2 (AIH-2) is a severe autoimmune liver disease with unknown etiology. We recently developed the CYP2D6 mouse model for AIH-2, in which mice are challenged with an adenovirus (Ad-2D6) expressing human cytochrome P450 2D6 (hCYP2D6), the major autoantigen in AIH-2. Such mice develop chronic hepatitis with cellular infiltrations and generation of hCYP2D6-specific antibodies and T cells. Importantly, the CYP2D6 model represents the only model displaying chronic fibrosis allowing for a detailed investigation of the mechanisms of chronic autoimmune-mediated liver fibrogenesis. We found that hCYP2D6-dependent chronic activation of hepatic stellate cells (HSC) resulted in an increased extracellular matrix deposition and elevated expression of α-smooth muscle actin predominantly in and underneath the liver capsule. The route of Ad-2D6 infection dramatically influenced the activation and trafficking of inflammatory monocytes, NK cells and hCYP2D6-specific T cells. Intraperitoneal Ad-2D6 infection caused subcapsular fibrosis and persistent clustering of inflammatory monocytes. In contrast, intravenous infection caused an accumulation of hCYP2D6-specific CD4 T cells throughout the liver parenchyma and induced a strong NK cell response preventing chronic HSC activation and fibrosis. In summary, we found that the location of the initial site of inflammation and autoantigen expression caused a differential cellular trafficking and activation and thereby determined the outcome of AIH-2-like hepatic damage and fibrosis.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
39
|
Chan KM, Fu YH, Wu TJ, Hsu PY, Lee WC. Hepatic stellate cells promote the differentiation of embryonic stem cell-derived definitive endodermal cells into hepatic progenitor cells. Hepatol Res 2013; 43:648-657. [PMID: 23072626 DOI: 10.1111/j.1872-034x.2012.01110.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
AIM Hepatic non-parenchymal cells are well known to be capable of providing an important microenvironment and growth factors for hepatic regeneration, but their capacity for directing embryonic stem cells (ESC) toward hepatocytes remains to be assessed. Thus, this study aims to investigate the role of hepatic stellate cells (HSC), the major type of hepatic non-parenchymal cells, in the differentiation of ESC as well as exploring the potentiality of ESC in regeneration medicine for cell-based therapy. METHODS A two-step differentiation procedure that utilized the capability of HSC to regulate proliferation and differentiation of hepatocytes was used to develop an approach for directing the differentiation of ESC towards hepatic progenitor cells. Mouse ESC were cultivated in a serum-free medium containing Activin A and fibroblast growth factor to generate definitive endodermal cells characterized by the CXCR4 cell-surface marker. After 6-8 days in culture, approximately 60% of the differentiated cells expressed CXCR4, and more than 90% of the CXCR4 positive cells could be recovered by cell sorting. The purified CXCR4 positive cells were co-cultured with mouse HSC as feeder cells in basal medium without additional hepatocyte growth factors. Differentiation was complete after 10-12 days of co-culture, and hepatic progenitor cell markers such as α-fetoprotein (afp) and albumin (alb) were detected in the terminally differentiated ESC. CONCLUSION These results show that HSC provide an appropriate microenvironment and pivotal growth factors for generation of hepatic progenitor cells from ESC-derived definitive endodermal cells, and suggest that this approach possibly allows for hepatic differentiation of ESC imitating the process of hepatic regeneration.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Impaired lymphocyte reactivity measured by immune function testing in untransplanted patients with cirrhosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:526-9. [PMID: 23389930 DOI: 10.1128/cvi.00595-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune function test is an integrated measure of total mitogen-inducible CD4(+) T cell metabolic activity in the peripheral blood, and it is used to guide the dosing of immunosuppressive medications after solid organ transplantation. Recently, low CD4(+) T cell metabolic activity due to pharmacologic immunosuppression has been linked to rapidly progressive cirrhosis in hepatitis C virus (HCV)-infected liver transplant recipients. We speculate that either cirrhosis or HCV might adversely affect the CD4(+) T cell reactivity even in the absence of immunosuppressive medications. We thus performed this assay on a cohort of untransplanted hepatology patients who were not taking immunomodulatory drugs. Low mitogen-stimulated CD4(+) T cell metabolic reactivity was more commonly seen in untransplanted patients with HCV cirrhosis or with cirrhosis due to other causes but not in control patients or in those with chronic HCV in the absence of cirrhosis. The lowest mean CD4(+) T cell reactivities were seen in patients with both cirrhosis and HCV. Caution should be exercised when immune function test results are used to guide immunomodulatory therapy in transplant recipients with suspected cirrhosis, as low immune function test results may be a consequence of hepatic cirrhosis or of pharmacologic immunosuppression.
Collapse
|
41
|
Tu CT, Li J, Wang FP, Li L, Wang JY, Jiang W. Glycyrrhizin regulates CD4+T cell response during liver fibrogenesis via JNK, ERK and PI3K/AKT pathway. Int Immunopharmacol 2012; 14:410-421. [PMID: 22940540 DOI: 10.1016/j.intimp.2012.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/06/2012] [Accepted: 08/15/2012] [Indexed: 12/16/2022]
Abstract
The aims of this study were to elucidate the immunomodulatory effects of glycyrrhizin (GL) on CD4(+)T cell responses during liver fibrogenesis. To obtain in vivo evidence about the effects of GL on CD4(+)T cells in livers and spleens of concanavalin A (ConA)-induced mouse model, mice were administrated with ConA together with or without GL for 8 weeks. Mice treated with GL dramatically prevented liver inflammation and fibrosis. Besides, GL inhibited the infiltration of T helper (Th) cell type 1, Th2, Th17 and regulatory T cells (Treg) in livers and spleens of mouse fibrosis models, and regulated the Th1/Th2 and Treg/Th17 balances respectively to a relative dominance of Th1 and Treg lineages in livers. Moreover, GL dramatically enhanced the antifibrotic cytokine interferon (IFN)-γ and interleukin (IL)-10. GL at a concentration of 10 or 100 μg/mL was respectively incubated with ConA-stimulated splenic CD4(+)T cells in vitro, and JNK inhibitor (SP600125), ERK inhibitor (U0126), p38 inhibitor (SB203580) or PI3K/AKT inhibitor (LY29400225) was added during the incubation. Notably, GL not only inhibited ConA-induced proliferation of splenic CD4(+)T cells but also enhanced the mRNAs of IFN-γ and IL-10 in these cells. Be similar to the effects of GL, SP600125, U0126 and LY29400225, however not SB203580, also inhibited ConA-induced CD4(+)T cell proliferation, indicating the involvement of JNK, ERK and PI3K/AKT in this process. Moreover, GL significantly inhibited ConA-induced phosphorylation of JNK, ERK and PI3K/AKT in vitro. Collectively, GL might alleviate liver injury and fibrosis progression via regulation of CD4(+)T cell response in JNK, ERK and PI3K/AKT-dependent pathways.
Collapse
Affiliation(s)
- Chuan-tao Tu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
42
|
Boyd SE, Nair B, Ng SW, Keith JM, Orian JM. Computational characterization of 3' splice variants in the GFAP isoform family. PLoS One 2012; 7:e33565. [PMID: 22479412 PMCID: PMC3316583 DOI: 10.1371/journal.pone.0033565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/16/2012] [Indexed: 12/26/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3' end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene--it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3' end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3' end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences.
Collapse
Affiliation(s)
- Sarah E. Boyd
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Betina Nair
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Sze Woei Ng
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
43
|
Kučera O, Roušar T, Staňková P, Haňáčková L, Lotková H, Podhola M, Cervinková Z. Susceptibility of rat non-alcoholic fatty liver to the acute toxic effect of acetaminophen. J Gastroenterol Hepatol 2012; 27:323-330. [PMID: 21649732 DOI: 10.1111/j.1440-1746.2011.06807.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Acetaminophen overdose is the most frequent cause of acute liver failure. Non-alcoholic fatty liver disease is the most common chronic condition of the liver. The aim was to assess whether non-alcoholic steatosis sensitizes rat liver to acute toxic effect of acetaminophen. METHODS Male Sprague-Dawley rats were fed a standard diet (ST-1, 10% kcal fat) and high-fat gelled diet (HFGD, 71% kcal fat) for 6 weeks and then acetaminophen was applied in a single dose (1 g/kg body weight). Animals were killed 24, 48 and 72 h after acetaminophen administration. Serum biochemistry, activities of mitochondrial complexes, hepatic malondialdehyde, reduced and oxidized glutathione, triacylglycerol and cholesterol contents, and concentrations of serum and liver cytokines (TNF-α, TGF-β1) were measured and histopathological samples were prepared. RESULTS The degree of liver inflammation and hepatocellular necrosis were significantly higher in HFGD fed animals after acetaminophen administration. Serum markers of liver injury were elevated only in acetaminophen treated HFGD fed animals. Concentration of hepatic reduced glutathione and ratio of reduced/oxidized glutathione were decreased in both ST-1 and HFGD groups at 24 h after acetaminophen application. Mild oxidative stress induced by acetaminophen was confirmed by measurement of malondialdehyde. Liver content of TNF-α was not significantly altered, but hepatic TGF-β1 was elevated in acetaminophen treated HFGD rats. We did not observe acetaminophen-induced changes in activities of respiratory complexes I, II, and IV and activity of caspase-3. CONCLUSION Liver from rats fed HFGD is more susceptible to acute toxic effect of acetaminophen, compared to non-steatotic liver.
Collapse
Affiliation(s)
- Otto Kučera
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Stimulation of innate immunity is increasingly recognized to play an important role in the pathogenesis of alcoholic liver disease (ALD), while the contribution of adaptive immunity has received less attention. Clinical and experimental data show the involvement of Th-1 and Th-17 T-lymphocytes in alcoholic hepatitis. Nonetheless, the mechanisms by which alcohol triggers adaptive immunity are still incompletely characterized. Patients with advanced ALD have circulating IgG and T-lymphocytes recognizing epitopes derived from protein modification by hydroxyethyl free radicals and end products of lipid-peroxidation. High titers of IgG against lipid peroxidation-derived antigens are associated with an increased hepatic production of proinflammatory cytokines/chemokines. Moreover, the same antigens favor the breaking of self-tolerance towards liver constituents. In particular, autoantibodies against cytochrome P4502E1 (CYP2E1) are evident in a subset of ALD patients. Altogether these results suggest that allo- and autoimmune reactions triggered by oxidative stress might contribute to hepatic inflammation during the progression of ALD.
Collapse
|
45
|
Abstract
In the steady state, hepatic antigen (Ag)-presenting cells (APC) generally dampen systemic inflammatory responses to gut-derived Ags. Our studies focus on the role of specific liver APC populations, both non-parenchymal cells (dendritic cells [DC], Kupffer cells, and hepatic stellate cells [HSC]) and parenchymal cells, in the molecular regulation of tissue damage (ischemia and reperfusion [I/R] injury) and immunity following liver transplantation. We focus on factors that either promote or overwhelm the natural tendency of the liver to suppress inflammatory/immune responses. We are also examining molecular mechanisms that regulate liver DC maturation and function and that determine their role in the control of allogeneic T-cell function and the fate of the transplanted liver. Our studies are also aimed at elucidating mechanisms by which HSC regulate DC and T-cell function. These investigations may provide new targets for therapeutic intervention in liver inflammation.
Collapse
|
46
|
Palumbo K, Zerr P, Tomcik M, Vollath S, Dees C, Akhmetshina A, Avouac J, Yaniv M, Distler O, Schett G, Distler JHW. The transcription factor JunD mediates transforming growth factor {beta}-induced fibroblast activation and fibrosis in systemic sclerosis. Ann Rheum Dis 2011; 70:1320-6. [PMID: 21515915 DOI: 10.1136/ard.2010.148296] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Transforming growth factor β (TGFβ) has been identified as a key player in fibrotic diseases. However, the molecular mechanisms by which TGFβ activates fibroblasts are incompletely understood. Here, the role of JunD, a member of the activator protein 1 (AP-1) family of transcription factors, as a downstream mediator of TGFβ signalling in systemic sclerosis (SSc), was investigated. METHODS The expression of JunD was analysed by real-time PCR, immunofluorescence, western blotting and immunohistochemistry. The canonical Smad pathway was specifically targeted by small interfering (si)RNA. The expression of extracellular matrix proteins in JunD deficient (JunD(-/-)) fibroblasts was analysed by real-time PCR and hydroxyproline assays. The mouse model of bleomycin-induced dermal fibrosis was used to assess the role of JunD in experimental fibrosis. RESULTS JunD was overexpressed in SSc skin and in cultured fibroblasts in a TGFβ dependent manner. The expression of JunD colocalised with pSmad 3 in fibrotic skin and silencing of Smad 3 or Smad 4 by siRNA prevented the induction of JunD by TGFβ. JunD(-/-) fibroblasts were less responsive to TGFβ and released less collagen upon stimulation with TGFβ. Moreover, JunD(-/-) mice were protected from bleomycin-induced fibrosis with reduced dermal thickening, decreased myofibroblast counts and lower collagen content of lesional skin. CONCLUSIONS These data demonstrate that JunD is overexpressed in SSc and that JunD is a mediator of the profibrotic effects of TGFβ. Considering that inhibitors of AP-1 signalling have recently been developed and are available for clinical trials in SSc, these findings may have translational implications.
Collapse
Affiliation(s)
- Katrin Palumbo
- Department of Internal Medicine, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suh YG, Jeong WI. Hepatic stellate cells and innate immunity in alcoholic liver disease. World J Gastroenterol 2011; 17:2543-51. [PMID: 21633659 PMCID: PMC3103812 DOI: 10.3748/wjg.v17.i20.2543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/25/2011] [Accepted: 03/04/2011] [Indexed: 02/06/2023] Open
Abstract
Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.
Collapse
|
48
|
Giannelli G, Mazzocca A, Fransvea E, Lahn M, Antonaci S. Inhibiting TGF-β signaling in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2011; 1815:214-23. [PMID: 21129443 DOI: 10.1016/j.bbcan.2010.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 12/17/2022]
|
49
|
Perlaza BL, Sauzet JP, Brahimi K, BenMohamed L, Druilhe P. Interferon-γ, a valuable surrogate marker of Plasmodium falciparum pre-erythrocytic stages protective immunity. Malar J 2011; 10:27. [PMID: 21303495 PMCID: PMC3046914 DOI: 10.1186/1475-2875-10-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023] Open
Abstract
Immunity against the pre-erythrocytic stages of malaria is the most promising, as it is strong and fully sterilizing. Yet, the underlying immune effectors against the human Plasmodium falciparum pre-erythrocytic stages remain surprisingly poorly known and have been little explored, which in turn prevents any rational vaccine progress. Evidence that has been gathered in vitro and in vivo, in higher primates and in humans, is reviewed here, emphasizing the significant role of IFN-γ, either as a critical immune mediator or at least as a valuable surrogate marker of protection. One may hope that these results will trigger investigations in volunteers immunized either by optimally irradiated or over-irradiated sporozoites, to quickly delineate better surrogates of protection, which are essential for the development of a successful malaria vaccine.
Collapse
Affiliation(s)
- Blanca-Liliana Perlaza
- Malaria Vaccine Development Laboratory, Pasteur Institute, 25-28 Rue du Dr, Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | |
Collapse
|
50
|
SHP-dependent and -independent induction of peroxisome proliferator-activated receptor-γ by the bile acid sensor farnesoid X receptor counter-regulates the pro-inflammatory phenotype of liver myofibroblasts. Inflamm Res 2011; 60:577-87. [PMID: 21279417 DOI: 10.1007/s00011-010-0306-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The regulation of hepatic stellate cells (HSCs) by bacterial lipopolysaccharide (LPS) represents a recently-discovered and novel mechanism for hepatic injury and fibrosis. Stimulation of HSCs with LPS results in a rapid and marked induction of interleukin (IL)1β, IL6 and tumor necrosis factor α. These events lead to the development of the activated phenotype in the HSCs associated with fibrosis and inflammation in the injured liver. We have previously demonstrated that farnesoid X receptor (FXR) activation increases transcription of rat peroxisome proliferator-activated receptor-γ (PPARγ) gene in HSCs. We aimed at evaluating the molecular mechanism of the transcriptional regulation of the PPARγ gene by FXR. METHODS Real-time PCR, ELISA, transactivations, EMSA and ChIP experiments were performed in HSC-T6 cells, in primary HSCs, in HEK293T cells and in CCl(4)-treated rats. RESULTS In vivo and in vitro activation of FXR downregulates cytokines and collagen(α)1 while inducing PPARγ and small heterodimer partner (SHP). NUBIScan analysis of rat PPARγ promoter revealed the presence of a putative FXR response element. Cotransfection with FXR/retinoic acid receptor significantly enhanced chenodeoxycholic acid-induced luciferase activity. EMSA experiments demonstrated that FXR was able to bind to an inverted repeat-1 sequence and ChIP experiments confirmed that FXR is recruited on the PPARγ promoter. CONCLUSION The present study provides a molecular basis for the physiological cross-talk between FXR and PPARγ pathways in HSCs.
Collapse
|