1
|
Saylor LM, Cherukuri R, Kammala AK, Richardson L, Ferrer M, Antich C, Frebert S, Han A, Menon R. Exosomal Delivery of Interleukin-10 Reduces Infection-Associated Inflammation in a 3D-Printed Model of a Humanized Feto-Maternal Interface. FASEB J 2025; 39:e70634. [PMID: 40356417 DOI: 10.1096/fj.202500545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Spontaneous preterm birth (PTB) is associated with fetal inflammatory responses that are due to infections. Effective interventions to minimize these fetal responses are limited as drugs do not usually cross the feto-maternal interface (FMi) barrier, and reliable models to test drug efficacy and other pharmacologic parameters have not been available. We leveraged New Approach Methods (NAMs), including employing extracellular vesicles (exosomes of 30-200 nm) to deliver the anti-inflammatory cytokine interleukin (IL)-10 and using a high-throughput 3D-printed FMi model to test the efficacy of this delivery. IL-10 encapsulated exosomes were prepared by encapsulating recombinant IL-10 (rIL-10) using electroporation (eIL-10) or by transfecting RAW264.7 cells with an IL-10-expression plasmid (tIL-10) that enabled the expression of IL-10 in the cells during exosome biogenesis, which was then collected. Using a biocompatible polymer resin, we 3D printed a two-chambered FMi scaffold to mimic the amnion-decidual (feto-maternal) interface. Microchannels were integrated into the lower portions of the scaffold to facilitate intercellular communication. The device was composed of a mix of cells and gelatin methacrylate hydrogel material (lower part) and cell-specific culture medium (upper part). We showed that empty exosomes and IL-10-loaded exosomes delivered to the maternal side of the scaffold were able to cross to the fetal side of our FMi device. Furthermore, the effectiveness of eIL-10 and tIL-100 (500 ng) in reducing LPS-induced FMi inflammation on both the maternal and fetal sides was demonstrated by measuring pro-inflammatory IL-6 and IL-8 concentrations via multiplex assays at 6 h and 24 h timepoints. We determined that our 3D-printed two-chamber FMi model enabled the propagation of IL-10 encapsulated exosomes between the interconnected chambers. LPS treatment to the maternal decidua induced expression of pro-inflammatory IL-6 (p < 0.001) and IL-8 (p < 0.001) in both decidua and amnion compared with healthy (control) conditions. Co-treatment of LPS along with IL-10-loaded exosomes, regardless of its formulation, significantly reduced levels of the maternal and fetal inflammatory cytokines IL-6 and IL-8 at both 6 and 24 h after delivery. A high-throughput 3D-printed FMi model was used to show that IL-10 encapsulated exosomes can reduce infection-induced FMi inflammation. We describe two NAMs with the potential to significantly improve perinatal medicine: (1) an exosomal drug delivery method that protects the drug and can cross feto-maternal barriers and (2) a 3D-printed device that can be used for high-throughput drug screening.
Collapse
Affiliation(s)
- Leah M Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Ananth K Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Cristina Antich
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Shayne Frebert
- 3D Tissue Bioprinting Laboratory, National Center for Advancing Translational Sciences, National Institute of Sciences, Bethesda, Maryland, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
2
|
Zhang X, Zheng R, Zhang L. N4BP1 as a modulator of the NF-κB pathway. Cytokine Growth Factor Rev 2025:S1359-6101(25)00046-2. [PMID: 40312219 DOI: 10.1016/j.cytogfr.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
NEDD4-binding protein 1 (N4BP1) is emerging as a critical regulator of inflammation and immune responses, particularly through its effects on the nuclear factor-κ-gene binding (NF-κB) signaling pathway. This review summarizes the regulatory mechanisms by which N4BP1 inhibits NF-κB activation and its subsequent impact on inflammatory diseases, specifically psoriasis. We discuss its interaction with various components of the NF-κB pathway, revealing that N4BP1 serves as a negative regulator of NF-κB-related gene expression under both stimulated and unstimulated conditions. Evidence highlights that N4BP1 is pivotal in controlling keratinocyte behavior and immune cell dynamics, thus influencing psoriasis pathology. Furthermore, we explore the emerging role of N4BP1 in viral infections, demonstrating its inhibitory effects on human immunodeficiency virus (HIV) replication. The involvement of N4BP1 in Notch signaling and neurogenesis underscores its multifaceted roles in cellular development and response to external stimuli. Collectively, these findings position N4BP1 as a significant player in modulating immune responses and offer potential therapeutic avenues for managing inflammatory diseases and viral infections.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruoqi Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
3
|
Horsophonphong S, Roytrakul S, Lertruangpanya K, Kitkumthorn N, Surarit R. Proteomic analysis of dental pulp from deciduous teeth in comparison to permanent teeth: an in-vitro study. Eur Arch Paediatr Dent 2025:10.1007/s40368-025-01043-4. [PMID: 40249556 DOI: 10.1007/s40368-025-01043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
PURPOSE The aims of this study were to identify proteomic profiles of dental pulp from deciduous teeth and compare the profiles of the two dentitions. METHODS Teeth that were caries-free and had normal pulp conditions were collected from twelve healthy individuals. The obtained teeth consisted of deciduous teeth (n = 6) and permanent teeth (n = 6). Proteins were extracted from pulp tissue and then analysed using liquid chromatography-tandem mass spectrometry. MaxQuant was used to identify and quantify proteins from raw mass spectrometry data of the collected deciduous and previously analysed permanent dental pulp. Differentially expressed proteins (DEPs) between the dental pulp of the two dentitions were identified by a statistical analysis conducted using Metaboanalyst with criteria P-value < 0.05 and fold change > 2. RESULTS A total of 3,636 proteins were identified in the dental pulp of deciduous teeth. The biological process functional classifications of these proteins were primarily concerned with cellular process, biological regulation, metabolic process and response to stimulus. Dental pulp protein profiles differed significantly between deciduous and permanent teeth, with 736 proteins being differentially expressed, the majority of which were highly expressed in the pulp of deciduous teeth. Pathway analysis indicated DEPs to be involved in tumour necrosis factor (TNF) signalling, nuclear factor kappa B signalling, and odontoclast/osteoclast differentiation. CONCLUSION While the dental pulp of deciduous and permanent teeth shares some characteristics, there are also significant differences in protein expression, with the TNF signalling pathway and odontoclast/osteoclast differentiation being promoted in the dental pulp of deciduous teeth.
Collapse
Affiliation(s)
- S Horsophonphong
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, Thailand.
| | - S Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - K Lertruangpanya
- School of Dentistry, Mae Fah Luang University, Chiang Rai, Thailand
| | - N Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - R Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Faculty of Dentistry, Siam University, Bangkok, Thailand
| |
Collapse
|
4
|
Wu C, Wang X, Li X, Li H, Peng Q, Niu X, Wu Y, Wang Z, Zhou Z. TRIM21 interacts with IκBα and negatively regulates NF-κB activation in Corynebacterium pseudotuberculosis-infected macrophages. Vet Immunol Immunopathol 2025; 282:110910. [PMID: 40020570 DOI: 10.1016/j.vetimm.2025.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Corynebacterium pseudotuberculosis, a zoonotic intracellular bacteria, is responsible for abscesses and pyogranuloma formation of the infected host, which is essentially a chronic inflammatory response. Tripartite motif-containing protein 21 (TRIM21) negatively regulates pro-inflammatory cytokines production during C. pseudotuberculosis infection, the mechanism of which remains unclear. This study found that C. pseudotuberculosis infection in macrophages induced phosphorylation of IκB and p65. TRIM21 interacted with IκBα by PRY/SPRY domain, stabilizes IκBα and negatively regulates IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. In addition, TRIM21 positively regulates the ubiquitination of IκBα via K48 linkage rather than K63 linkage in C. pseudotuberculosis-infected macrophages. In brief, our research confirmed that TRIM21 negatively regulates canonical NF-κB activation by interacting with IκBα and decreasing IκBα phosphorylation in macrophages during C. pseudotuberculosis infection. Preventing inflammation induced by C. pseudotuberculosis infection through regulation of the NF-κB pathway is a potential way to control this pathogen.
Collapse
Affiliation(s)
- Chanyu Wu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaohan Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xincan Li
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiuyue Peng
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Xiaoxin Niu
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Yutong Wu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, No. 1 Laolipo Nanming District, Guiyang 550025, China.
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| | - Zuoyong Zhou
- College of Veterinary Medicine, Southwest University, No. 160 Xueyuan Road, Rongchang District, Chongqing 402460, China.
| |
Collapse
|
5
|
Wu CJ. NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease. Cells 2025; 14:304. [PMID: 39996775 PMCID: PMC11854354 DOI: 10.3390/cells14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The IκB kinase (IKK) complex plays a central role in many signaling pathways that activate NF-κB, which turns on a battery of genes important for immune response, inflammation, and cancer development. Ubiquitination is one of the most prevalent post-translational modifications of proteins and is best known for targeting substrates for proteasomal degradation. The investigations of NF-κB signaling pathway primed the unveiling of the non-degradative roles of protein ubiquitination. The NF-κB-essential modulator (NEMO) is the IKK regulatory subunit that is essential for IKK activation by diverse intrinsic and extrinsic stimuli. The studies centered on NEMO as a polyubiquitin-binding protein have remarkably advanced understandings of how NEMO transmits signals to NF-κB activation and have laid a foundation for determining the molecular events demonstrating non-degradative ubiquitination as a major driving element in IKK activation. Furthermore, these studies have largely solved the enigma that IKK can be activated by diverse pathways that employ distinct sets of intermediaries in transmitting signals. NEMO and NEMO-related proteins that include optineurin, ABIN1, ABIN2, ABIN3, and CEP55, as non-degradative ubiquitin chain receptors, play a key role in sensing and transmitting ubiquitin signals embodied in different topologies of polyubiquitin chains for a variety of cellular processes and body responses. Studies of these multifaceted proteins in ubiquitin sensing have promoted understanding about the functions of non-degradative ubiquitination in intracellular signaling, protein trafficking, proteostasis, immune response, DNA damage response, and cell cycle control. In this review, I will also discuss how dysfunction in the NEMO family of protein-mediated non-degradative ubiquitin signaling is associated with various diseases, including immune disorders, neurodegenerative diseases, and cancer, and how microbial virulence factors target NEMO to induce pathogenesis or manipulate host response. A profound understanding of the molecular bases for non-degradative ubiquitin signaling will be valuable for developing tailored approaches for therapeutic purposes.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
He YL, Zhang Y, Liu Q. Regulation of Postoperative Cognitive Dysfunction by Glutathione Under Various Pathways: A Narrative Review. J Biochem Mol Toxicol 2025; 39:e70154. [PMID: 39925043 DOI: 10.1002/jbt.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication after surgery and general anesthesia, and the incidence increases with age. Will have a negative impact on patients, family and society. At present, neuroinflammation and oxidative stress are the main recognized mechanisms. Glutathione (GSH) is a powerful reducing agent and may be related to POCD. DATA COLLECTION Using medical search engines such as PubMed, Web of Science, we analyzed articles on topics such as: POCD, GSH, microglia, astrocyte, oligodendrocyte, ferroptosis, BDNF, Neuroinflammation, oxidative stress. The above topics are searched in databases using Boolean operations. We included original articles, reviews and other article types such as medical books. RESULTS According to the reviewed literature, GSH may be a treatment for POCD. CONCLUSIONS Specific and targeted therapies for POCD still sparse, therefore, the implementation of preventive strategies appears to remain the optimal attitude. Further research is needed for a better understanding of GSH and POCD.
Collapse
Affiliation(s)
- Yan Lin He
- Department of Anesthesiology, He jiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Lu Zhou Key Laboratory of Research for Integrative on Pain and Perioperative Organ Protection, Luzhou, China
| | - Qing Liu
- Department of Anesthesiology, He jiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Kuang W, Zhuge R, Song P, Yi L, Zhang S, Zhang Y, Wong YK, Chen R, Zhang J, Wang Y, Liu D, Gong Z, Wang P, Ouyang X, Wang J. Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3. MedComm (Beijing) 2025; 6:e70034. [PMID: 39811801 PMCID: PMC11731104 DOI: 10.1002/mco2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time. We demonstrated that EB ameliorates periodontal inflammation and alveolar bone resorption with a ligated periodontitis mouse model. In addition, the impact of EB on macrophages inflammation was examined in the Raw264.7 cell line. We identified ubiquitin-conjugating enzyme, UBE2D3, as the direct covalent binding protein targets of EB by using a chemoproteomic method based on activity-based protein profiling, biolayer interferometry method, and cellular thermal shift assay. Furthermore, the direct binding site of EB to UBE2D3 was identified using high-resolution mass spectrometry and confirmed by experiments. Taken together, EB ameliorates periodontitis by targeting UBE2D3 to suppress the ubiquitination degradation of IκBα, leading to inactivation of nuclear transcription factor-κB signaling pathway. And this was confirmed by siRNA-mediated gene knockdown in inflammatory macrophages. Our results suggested that EB may be a new kind of UBE2D3 inhibitor and may become a promising therapeutic agent for anti-periodontitis.
Collapse
Affiliation(s)
- Wenhua Kuang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruishen Zhuge
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Ping Song
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Letai Yi
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Inner Mongolia Medical UniversityHohhotChina
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yin Kwan Wong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanbo Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zipeng Gong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Peili Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangying Ouyang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
8
|
Wang C, Jiang Z, Du M, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. Novel Ser74 of NF-κB/IκBα phosphorylated by MAPK/ERK regulates temperature adaptation in oysters. Cell Commun Signal 2024; 22:539. [PMID: 39529137 PMCID: PMC11552224 DOI: 10.1186/s12964-024-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorylation of Ser32 and Ser36 controls the degradation of IκBα is the conserved cascade mechanisms of immune core signaling pathway, NF-κB pathway in metazoans, but it's response to abiotic stress and the presence of novel phosphorylation mechanisms in other species remain unclear. Herein, we reported a novel heat-induced phosphorylation site (Ser74) at oysters' major IκBα, which independently regulated ubiquitination-proteasome degradation without the requirement of phosphorylation at S32 and S36. And this site was phosphorylated by ERK/MAPK pathway, which then promoted REL nuclear translocation to activate cell survival related genes to defend heat-stress. The MAPK-NF-κB cascade exhibited divergent thermal responses and adaptation patterns between two congeneric oyster species with differential habitat temperatures, indicating its involvement in shaping temperature adaptation. This study demonstrated that the existence of complex and unique phosphorylation-mediated signaling transduction mechanism in marine invertebrates, and expanded our understanding of the evolution and function of established classical pathway crosstalk mechanisms.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
9
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Saadh MJ, Pallathadka H, Abed HS, Menon SV, Sivaprasad GV, Hjazi A, Rizaev J, Suri S, Jawad MA, Husseen B. Detailed role of SR-A1 and SR-E3 in tumor biology, progression, and therapy. Cell Biochem Biophys 2024; 82:1735-1750. [PMID: 38884861 DOI: 10.1007/s12013-024-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Sahil Suri
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
| | | | - Beneen Husseen
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
11
|
Gao J, Yu G, Yan Y, Hu W, Hu D, Wang W, Yang G, Wei J, Yang S. ITIH1 suppresses carcinogenesis in renal cell carcinoma through regulation of the NF‑κB signaling pathway. Exp Ther Med 2024; 28:368. [PMID: 39091412 PMCID: PMC11292172 DOI: 10.3892/etm.2024.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is a common malignancy of the urinary system. Although traditional therapies, such as surgery assisted with chemotherapy have improved the quality of life and survival time of patients with RCC, patients with metastasis or recurrence benefit little from such therapies. At present, little is known about the underlying mechanisms of RCC, rendering treatment selection and implementation challenging. Therefore, investigating the cause and underlying mechanisms of RCC remain of importance to explore potential new avenues for its treatment. Inter-α-trypsin inhibitor heavy chain 1 (ITIH1) is an inflammation-associated gene reported to suppress the progression of liver cancer. However, its role in RCC remains poorly understood. Therefore, the present study aimed to investigate the role and mechanism of ITIH1 in RCC. Based on data obtained from The Cancer Genome Atlas database, ITIH1 expression was demonstrated to be significantly higher in tumor tissues compared with normal tissues, which was in turn negatively associated with the survival of patients with RCC. However, in RCC cells, ITIH1 was shown to be expressed at significantly lower levels compared with those in HK-2 cells. The discrepancy between tissues and cell lines might be due to the different environment of cell growth. ITIH1 knockdown in RCC cells significantly increased cell proliferation and invasion whilst significantly decreasing the apoptosis rate, compared with those in control cells (without ITIH1 knockdown). By contrast, overexpression of ITIH1 significantly inhibited cell proliferation and invasion in RCC cells. In terms of western blotting results, the phosphorylation levels of NF-κB were significantly increased following ITIH1 knockdown. The protein expression level of IκB significantly decreased whereas that of IKK, Cyclin D1, proliferating cell nuclear antigen and α-smooth muscle actin were significantly increased in ITIH1-knockdown cells, compared with those in the control cells (without ITIH1 knockdown). This suggests that the NF-κB pathway may be activated after ITIH1 knockdown. Following treatment with the NF-κB pathway inhibitor JSH-23 in combination with ITIH1 knockdown, RCC cell proliferation and invasion were significantly reduced compared with those after ITIH1 knockdown alone. In summary, results from the present study suggest that ITIH1 can serve an inhibitory role in the progression of RCC, which could potentially be inhibited through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Gao
- Department of General Practice, Xujiahui Community Healthcare Center of Xuhui District of Shanghai, Shanghai 200030, P.R. China
| | - Gang Yu
- Department of Nephrology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yan Yan
- Department of General Practice, Xujiahui Community Healthcare Center of Xuhui District of Shanghai, Shanghai 200030, P.R. China
| | - Weifeng Hu
- Department of Nephrology, Naval Medical Center of People's Liberation Army, Shanghai 200052, P.R. China
| | - Dayong Hu
- Department of Nephrology, The Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Weibing Wang
- Department of Epidemiology, School of Public Health of Fudan University, Shanghai 200032, P.R. China
| | - Guoxian Yang
- Department of General Practice, Xujiahui Community Healthcare Center of Xuhui District of Shanghai, Shanghai 200030, P.R. China
| | - Jing Wei
- Department of General Practice, Xujiahui Community Healthcare Center of Xuhui District of Shanghai, Shanghai 200030, P.R. China
| | - Shiquan Yang
- Department of General Practice, Xujiahui Community Healthcare Center of Xuhui District of Shanghai, Shanghai 200030, P.R. China
| |
Collapse
|
12
|
Liu L, Chen F, Li S, Yang T, Chen S, Zhou Y, Lin Z, Zeng G, Feng P, Shu HB, Zhou Q, Ding K, Chen L. Human/mouse CD137 agonist, JNU-0921, effectively shrinks tumors through enhancing the cytotoxicity of CD8 + T cells in cis and in trans. SCIENCE ADVANCES 2024; 10:eadp8647. [PMID: 39178257 PMCID: PMC11343023 DOI: 10.1126/sciadv.adp8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Agonistic antibodies against CD137 have been demonstrated to completely regress established tumors through activating T cell immunity. Unfortunately, current CD137 antibodies failed to benefit patients with cancer. Moreover, their antitumor mechanisms in vivo remain to be determined. Here, we report the development of a small molecular CD137 agonist, JNU-0921. JNU-0921 effectively activates both human and mouse CD137 through direct binding their extracellular domains to induce oligomerization and signaling and effectively shrinks tumors in vivo. Mechanistically, JNU-0921 enhances effector and memory function of cytotoxic CD8+ T cells (CTLs) and alleviates their exhaustion. JNU-0921 also skews polarization of helper T cells toward T helper 1 type and enhances their activity to boost CTL function. Meanwhile, JNU-0921 attenuates the inhibitory function of regulatory T cells on CTLs. Our current work shows that JNU-0921 shrinks tumors by enhancing the cytotoxicity of CTLs in cis and in trans and sheds light on strategy for developing CD137 small molecular agonists.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fenghua Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310018 Zhejiang, China
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuzhen Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zejian Lin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, Guangzhou 510632, China
| | - Hong-Bing Shu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
14
|
Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal 2024; 22:159. [PMID: 38439078 PMCID: PMC10910758 DOI: 10.1186/s12964-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
15
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Du K, Zheng C, Kuang Z, Sun Y, Wang Y, Li S, Meng D. Gastroprotective effect of eupatilin, a polymethoxyflavone from Artemisia argyi H.Lév. & Vaniot, in ethanol-induced gastric mucosal injury via NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116986. [PMID: 37536645 DOI: 10.1016/j.jep.2023.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi H.Lév. & Vaniot (AA) has been extensively utilized as an important medicine and food homology in China, Japan, Korea, and eastern parts of Russia, owing to its pharmacological effects, which include anti-inflammatory, antibacterial, antitussive, and antiallergic properties. Despite the extract of AA can significantly alleviate gastric mucosal injury, its precise material basis for effectiveness is not yet clear. As one of the polymethoxy flavonoids with high content in AA, the gastroprotective activity and molecular mechanism of eupatilin (EUP) require further investigation. AIM OF THE STUDY This study aims to investigate the gastroprotective effects and possible mechanisms of EUP by using an ethanol-induced gastric mucosal injury model in rats. MATERIALS AND METHODS EUP was isolated from 95% ethanol extract of AA using a systematic phytochemical method. The gastroprotective activity of EUP was evaluated using a male SD rat model with ethanol-induced gastric mucosa injury. Histopathology evaluation of gastric tissues was performed using hematoxylin and eosin (H&E) staining. The levels of cytokines in the plasma and tissues were tested using the ELISA kits, while western blot analysis was employed to assess the expressions of COX-2, iNOS, and NF-κB pathway proteins. RESULTS A sufficient amount of EUP was obtained from AA through chromatographic methods and identified by NMR experiment. In vivo, experimental results proved that EUP could significantly alleviate pathological features, increased SOD, GSH, and IL-10 levels, and decreased the contents of MDA, TNF-α, IL-1β, and IL-6. Further in vitro and in vivo Western blot experimental results showed that EUP significantly down-regulates the expressions of the NF-κB signal pathway to relieve inflammatory responses. CONCLUSION This study demonstrated that EUP could exert gastroprotective effects by inhibiting inflammation, enhancing gastric mucosal defense, and ameliorating oxidative stress, which is beneficial for providing scientific data for the development of gastric protection.
Collapse
Affiliation(s)
- Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Changwei Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhulingzhi Kuang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yiwei Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Shuang Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
17
|
Beiki H, Murdoch BM, Park CA, Kern C, Kontechy D, Becker G, Rincon G, Jiang H, Zhou H, Thorne J, Koltes JE, Michal JJ, Davenport K, Rijnkels M, Ross PJ, Hu R, Corum S, McKay S, Smith TPL, Liu W, Ma W, Zhang X, Xu X, Han X, Jiang Z, Hu ZL, Reecy JM. Enhanced bovine genome annotation through integration of transcriptomics and epi-transcriptomics datasets facilitates genomic biology. Gigascience 2024; 13:giae019. [PMID: 38626724 PMCID: PMC11020238 DOI: 10.1093/gigascience/giae019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/29/2023] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS These validated results show significant improvement over current bovine genome annotations.
Collapse
Affiliation(s)
- Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brenda M Murdoch
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Carissa A Park
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chandlar Kern
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Denise Kontechy
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Gabrielle Becker
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | | | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jacob Thorne
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jennifer J Michal
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Kimberly Davenport
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, TX 77843, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Rui Hu
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Sarah Corum
- Zoetis, Parsippany-Troy Hills, NJ 07054, USA
| | | | | | - Wansheng Liu
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Wenzhi Ma
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Xiaohui Zhang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Xiaoqing Xu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Xuelei Han
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhihua Jiang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhi-Liang Hu
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Riccio S, Childs K, Jackson B, Graham SP, Seago J. The Identification of Host Proteins That Interact with Non-Structural Proteins-1α and -1β of Porcine Reproductive and Respiratory Syndrome Virus-1. Viruses 2023; 15:2445. [PMID: 38140685 PMCID: PMC10747794 DOI: 10.3390/v15122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSV-1 and -2) are the causative agents of one of the most important infectious diseases affecting the global pig industry. Previous studies, largely focused on PRRSV-2, have shown that non-structural protein-1α (NSP1α) and NSP1β modulate host cell responses; however, the underlying molecular mechanisms remain to be fully elucidated. Therefore, we aimed to identify novel PRRSV-1 NSP1-host protein interactions to improve our knowledge of NSP1-mediated immunomodulation. NSP1α and NSP1β from a representative western European PRRSV-1 subtype 1 field strain (215-06) were used to screen a cDNA library generated from porcine alveolar macrophages (PAMs), the primary target cell of PRRSV, using the yeast-2-hybrid system. This identified 60 putative binding partners for NSP1α and 115 putative binding partners for NSP1β. Of those taken forward for further investigation, 3 interactions with NSP1α and 27 with NSP1β were confirmed. These proteins are involved in the immune response, ubiquitination, nuclear transport, or protein expression. Increasing the stringency of the system revealed NSP1α interacts more strongly with PIAS1 than PIAS2, whereas NSP1β interacts more weakly with TAB3 and CPSF4. Our study has increased our knowledge of the PRRSV-1 NSP1α and NSP1β interactomes, further investigation of which could provide detailed insight into PRRSV immunomodulation and aid vaccine development.
Collapse
Affiliation(s)
- Sofia Riccio
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Kay Childs
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Simon P. Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| | - Julian Seago
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (S.R.); (K.C.); (B.J.); (S.P.G.)
| |
Collapse
|
19
|
Duan T, Feng Y, Du Y, Xing C, Chu J, Ou J, Liu X, Zhu M, Qian C, Yin B, Wang HY, Cui J, Wang R. USP3 plays a critical role in the induction of innate immune tolerance. EMBO Rep 2023; 24:e57828. [PMID: 37971847 PMCID: PMC10702844 DOI: 10.15252/embr.202357828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Microbial products, such as lipopolysaccharide (LPS), can elicit efficient innate immune responses against invading pathogens. However, priming with LPS can induce a form of innate immune memory, termed innate immune "tolerance", which blunts subsequent NF-κB signaling. Although epigenetic and transcriptional reprogramming has been shown to play a role in innate immune memory, the involvement of post-translational regulation remains unclear. Here, we report that ubiquitin-specific protease 3 (USP3) participates in establishing "tolerance" innate immune memory through non-transcriptional feedback. Upon NF-κB signaling activation, USP3 is stabilized and exits the nucleus. The cytoplasmic USP3 specifically removes the K63-linked polyubiquitin chains on MyD88, thus negatively regulating TLR/IL1β-induced inflammatory signaling activation. Importantly, cytoplasmic translocation is a prerequisite step for USP3 to deubiquitinate MyD88. Additionally, LPS priming could induce cytoplasmic retention and faster and stronger cytoplasmic translocation of USP3, enabling it to quickly shut down NF-κB signaling upon the second LPS challenge. This work identifies a previously unrecognized post-translational feedback loop in the MyD88-USP3 axis, which is critical for inducing normal "tolerance" innate immune memory.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Yanchun Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yang Du
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Changsheng Xing
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Junjun Chu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Jiayu Ou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xin Liu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Motao Zhu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Chen Qian
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Bingnan Yin
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Helen Y Wang
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Rong‐Fu Wang
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
20
|
Xie Z, Wu Y, Shen Y, Guo J, Yuan P, Ma Q, Wang S, Jie Z, Zhou H, Fan S, Chen S. USP7 Inhibits Osteoclastogenesis via Dual Effects of Attenuating TRAF6/TAK1 Axis and Stimulating STING Signaling. Aging Dis 2023; 14:2267-2283. [PMID: 37199589 PMCID: PMC10676781 DOI: 10.14336/ad.2023.0325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Ubiquitination is a reversible post-translational modification implicated in cell differentiation, homeostasis, and organ development. Several deubiquitinases (DUBs) decrease protein ubiquitination through the hydrolysis of ubiquitin linkages. However, the role of DUBs in bone resorption and formation is still unclear. In this study, we identified DUB ubiquitin-specific protease 7 (USP7) as a negative regulator of osteoclast formation. USP7 combines with tumor necrosis factor receptor-associated factor 6 (TRAF6) and inhibits its ubiquitination by impairing the Lys63-linked polyubiquitin chain. Such impairment leads to the suppression of receptor activator of NF-κB ligand (RANKL)-mediated nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation without affecting TRAF6 stability. USP7 also protects the stimulator of interferon genes (STING) against degradation, inducing interferon-β (IFN-β) expression in osteoclast formation, thereby inhibiting osteoclastogenesis cooperatively with the classical TRAF6 pathway. Furthermore, USP7 inhibition accelerates osteoclast differentiation and bone resorption both in vitro and in vivo. Contrarily, USP7 overexpression impairs osteoclast differentiation and bone resorption in vitro and in vivo. Additionally, in ovariectomy (OVX) mice, USP7 levels are lower than those in sham-operated mice, suggesting that USP7 plays a role in osteoporosis. Altogether, our data reveal the dual effect of USP7-mediated TRAF6 signal transduction and USP7-mediated protein degradation of STING in osteoclast formation.
Collapse
Affiliation(s)
- Ziang Xie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yizheng Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Yang Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Jiandong Guo
- Department of Orthopedic Surgery, Ninth people’s Hospital of Hangzhou, Hangzhou, China.
| | - Putao Yuan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Qingliang Ma
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shiyu Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Hongyi Zhou
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Shuai Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 631] [Impact Index Per Article: 315.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
22
|
Liang P, Zhang J, Wang B. Emerging Roles of Ubiquitination in Biomolecular Condensates. Cells 2023; 12:2329. [PMID: 37759550 PMCID: PMC10527650 DOI: 10.3390/cells12182329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
23
|
Kammala AK, Mosebarger A, Radnaa E, Rowlinson E, Vora N, Fortunato SJ, Sharma S, Safarzadeh M, Menon R. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol 2023; 14:1196453. [PMID: 37600782 PMCID: PMC10437065 DOI: 10.3389/fimmu.2023.1196453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Fetal inflammatory response mediated by the influx of immune cells and activation of pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is the major determinant of infection-associated preterm birth (PTB, live births < 37 weeks of gestation). Objective To reduce the incidence of PTB by minimizing inflammation, extracellular vesicles (EVs) were electroporetically engineered to contain anti-inflammatory cytokine interleukin (IL)-10 (eIL-10), and their efficacy was tested in an ascending model of infection (vaginal administration of E. coli) induced PTB in mouse models. Study design EVs (size: 30-170 nm) derived from HEK293T cells were electroporated with recombinant IL-10 at 500 volts and 125 Ω, and 6 pulses to generate eIL-10. eIL-10 structural characters (electron microscopy, nanoparticle tracking analysis, ExoView [size and cargo content] and functional properties (co-treatment of macrophage cells with LPS and eIL-10) were assessed. To test efficacy, CD1 mice were vaginally inoculated with E. coli (1010CFU) and subsequently treated with either PBS, eIL-10 (500ng) or Gentamicin (10mg/kg) or a combination of eIL-10+gentamicin. Fetal inflammatory response in maternal and fetal tissues after the infection or treatment were conducted by suspension Cytometer Time of Flight (CyTOF) using a transgenic mouse model that express red fluorescent TdTomato (mT+) in fetal cells. Results Engineered EVs were structurally and functionally stable and showed reduced proinflammatory cytokine production from LPS challenged macrophage cells in vitro. Maternal administration of eIL-10 (10 µg/kg body weight) crossed feto-maternal barriers to delay E. coli-induced PTB to deliver live pups at term. Delay in PTB was associated with reduced feto-maternal uterine inflammation (immune cell infiltration and histologic chorioamnionitis, NF-κB activation, and proinflammatory cytokine production). Conclusions eIL-10 administration was safe, stable, specific, delayed PTB by over 72 hrs and delivered live pups. The delivery of drugs using EVs overcomes the limitations of in-utero fetal interventions. Protecting IL-10 in EVs eliminates the need for the amniotic administration of recombinant IL-10 for its efficacy.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Angela Mosebarger
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Enkhtuya Radnaa
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Emma Rowlinson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Stephen J. Fortunato
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, United States
| | - Melody Safarzadeh
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
24
|
Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. Regulation of cGAS and STING signaling during inflammation and infection. J Biol Chem 2023; 299:104866. [PMID: 37247757 PMCID: PMC10316007 DOI: 10.1016/j.jbc.2023.104866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Stimulator of interferon genes (STING) is a sensor of cyclic dinucleotides including cyclic GMP-AMP, which is produced by cyclic GMP-AMP synthase (cGAS) in response to cytosolic DNA. The cGAS-STING signaling pathway regulates both innate and adaptive immune responses, as well as fundamental cellular functions such as autophagy, senescence, and apoptosis. Mutations leading to constitutive activation of STING cause devastating human diseases. Thus, the cGAS-STING pathway is of great interest because of its role in diverse cellular processes and because of the potential therapeutic implications of targeting cGAS and STING. Here, we review molecular and cellular mechanisms of STING signaling, and we propose a framework for understanding the immunological and other cellular functions of STING in the context of disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - W Alexander Stinson
- Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derek J Platt
- Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Subhajit Poddar
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Departments of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
25
|
Martinez-Osorio V, Abdelwahab Y, Ros U. The Many Faces of MLKL, the Executor of Necroptosis. Int J Mol Sci 2023; 24:10108. [PMID: 37373257 DOI: 10.3390/ijms241210108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis is a recently discovered form of regulated cell death characterized by the disruption of plasma membrane integrity and the release of intracellular content. Mixed lineage kinase domain-like (MLKL) protein is the main player of this cell death pathway as it mediates the final step of plasma membrane permeabilization. Despite the significant progress in our knowledge of the necroptotic pathway and MLKL biology, the precise mechanism of how MLKL functions remain unclear. To understand in what way MLKL executes necroptosis, it is crucial to decipher how the molecular machinery of regulated cell death is activated in response to different stimuli or stressors. It is also indispensable to unveiling the structural elements of MLKL and the cellular players that are required for its regulation. In this review, we discuss the key steps that lead to MLKL activation, possible models that explain how it becomes the death executor in necroptosis, and its emerging alternative functions. We also summarize the current knowledge about the role of MLKL in human disease and provide an overview of existing strategies aimed at developing new inhibitors that target MLKL for necroptosis intervention.
Collapse
Affiliation(s)
- Veronica Martinez-Osorio
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yasmin Abdelwahab
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
26
|
Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances. Pharmaceuticals (Basel) 2023; 16:783. [PMID: 37375731 DOI: 10.3390/ph16060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and development by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing therapeutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative influences on cancers. In this review, we summarize and discuss recent research on the regulation of NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Sun
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fangying Xu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, and Department of Hepatobiliary and Pancreatic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| |
Collapse
|
27
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Tomuleasa C, Pikarsky E, Ciechanover A. The NF-ĸB p50 subunit generated by KPC1-mediated ubiquitination and limited proteasomal processing, suppresses tumor growth. Cancer Cell Int 2023; 23:67. [PMID: 37055826 PMCID: PMC10100387 DOI: 10.1186/s12935-023-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Nuclear factor-ĸB (NF-ĸB) is an important transcriptional regulator of key cellular processes, including cell cycle, immune response, and malignant transformation. We found that the ubiquitin ligase Kip1 ubiquitination-promoting complex subunit 1 (KPC1; also known as Ring finger protein 123 - RNF123) stimulates ubiquitination and limited proteasomal processing of the p105 NF-ĸB precursor to generate p50, the active subunit of the heterodimeric transcription factor. KPC1 binds to the ankyrin repeats' (AR) domain of NF-ĸB p105 via a short binding site of 7 amino acids-968-WILVRLW-974. Though mature NF-ĸB is overexpressed and constitutively active in different tumors, we found that overexpression of the p50 subunit, exerts a strong tumor suppressive effect. Furthermore, excess of KPC1 that stimulates generation of p50 from the p105 precursor, also results in a similar effect. Analysis of transcripts of glioblastoma and breast tumors revealed that excess of p50 stimulates expression of many NF-ĸB-regulated tumor suppressive genes. Using human xenograft tumor models in different immune compromised mice, we demonstrated that the immune system plays a significant role in the tumor suppressive activity of p50:p50 homodimer stimulating the expression of the pro-inflammatory cytokines CCL3, CCL4, and CCL5 in both cultured cells and in the xenografts. Expression of these cytokines leads to recruitment of macrophages and NK cells, which restrict tumor growth. Finally, p50 inhibits the expression of the programmed cell death-ligand 1 (PDL1), establishing an additional level of a strong tumor suppressive response mediated by the immune system.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, 9112000, Jerusalem, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| |
Collapse
|
28
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
29
|
Chang C, Yang Y, Zhou L, Baiyin B, Liu Z, Guo L, Ma F, Wang J, Chai Y, Shi C, Zhang W. Candidate Genes and Gene Networks Change with Age in Japanese Black Cattle by Blood Transcriptome Analysis. Genes (Basel) 2023; 14:504. [PMID: 36833431 PMCID: PMC9956108 DOI: 10.3390/genes14020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs. adult, adult vs. old, and calf vs. old comparison groups, respectively. The weighted co-expression network consisted of 1731 genes. Finally, blue, brown, and yellow age-specific modules were obtained, in which genes were enriched in signaling pathways related to growth and development and immune metabolic dysfunction, respectively. Protein-protein interaction (PPI) analysis showed gene interactions in each specific module, and 20 of the highest connectivity genes were chosen as potential hub genes. Finally, we identified 495, 244, and 1007 genes by exon-wide selection signature (EWSS) analysis of different comparison groups. Combining the results of hub genes, we found that VWF, PARVB, PRKCA, and TGFB1I1 could be used as candidate genes for growth and development stages of beef cattle. CORO2B and SDK1 could be used as candidate marker genes associated with aging. In conclusion, by comparing the blood transcriptome of calves, adult cattle, and old cattle, the candidate genes related to immunity and metabolism affected by age were identified, and the gene co-expression network of different age stages was constructed. It provides a data basis for exploring the growth, development, and aging of beef cattle.
Collapse
Affiliation(s)
- Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanda Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Batu Baiyin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fengying Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Chai
- College of Agronomy Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| |
Collapse
|
30
|
SUMO/deSUMOylation of the BRI1 brassinosteroid receptor modulates plant growth responses to temperature. Proc Natl Acad Sci U S A 2023; 120:e2217255120. [PMID: 36652487 PMCID: PMC9942830 DOI: 10.1073/pnas.2217255120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroid molecules perceived at the cell surface that act as plant hormones. The BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) offers a model to understand receptor-mediated signaling in plants and the role of post-translational modifications. Here we identify SUMOylation as a new modification targeting BRI1 to regulate its activity. BRI1 is SUMOylated in planta on two lysine residues, and the levels of BRI1 SUMO conjugates are controlled by the Desi3a SUMO protease. Loss of Desi3a leads to hypersensitivity to BRs, indicating that Desi3a acts as a negative regulator of BR signaling. Besides, we demonstrate that BRI1 is deSUMOylated at elevated temperature by Desi3a, leading to increased BRI1 interaction with the negative regulator of BR signaling BIK1 and to enhanced BRI1 endocytosis. Loss of Desi3a or BIK1 results in increased response to temperature elevation, indicating that BRI1 deSUMOylation acts as a safety mechanism necessary to keep temperature responses in check. Altogether, our work establishes BRI1 deSUMOylation as a molecular crosstalk mechanism between temperature and BR signaling, allowing plants to translate environmental inputs into growth response.
Collapse
|
31
|
The characteristics of FBXO7 and its role in human diseases. Gene X 2023; 851:146972. [DOI: 10.1016/j.gene.2022.146972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
32
|
Han H, Lin T, Wang Z, Song J, Fang Z, Zhang J, You X, Du Y, Ye J, Zhou G. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol Res 2023; 187:106593. [PMID: 36496136 DOI: 10.1016/j.phrs.2022.106593] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Increased angiogenesis in the liver plays a critical role in the progression of hepatocellular carcinoma (HCC). However, the molecular mechanism underlying increased angiogenesis in HCC is not well understood. Current study was designed to identify the potential angiogenic effect of RNA-binding motif 4 (RBM4)through a small-scale overexpression screening, followed by comparison of the expression level of RBM4 in cancer and adjacent tissues in multiple malignancies to explore the relationship between RBM4 and CD31 protein expression level and related clinical indicators, and understand the role of RBM4 in the hepatocellular carcinoma. To understand the specific mechanism of RBM4 in detail, transcriptome sequencing, mass spectrometry and multiple molecular cytological studies were performed. These cellular level results were verified by experiments in animal models of nude mice. The increased expression of RBM4 in cancer tissues, suggested its use as a prognostic biomarker. The RBM4 expression was found to be strongly correlated with tumor microvessel density. Mechanistically, RBM4 mediated its effects via interaction with HNRNP-M through the latter's WDR15 domain, which then stabilized RelA/p65 mRNA. Consequently, RBM4 induced the activation of the NF-kB signaling pathway, upregulating the expression of proangiogenic factor VEGF-A. The results confirmed the mechanism by which RBM4 promotes angiogenesis in hepatocellular carcinoma suggesting RBM4 as a crucial promoter of angiogenesis in HCC, helping understand regulation of NF-kB signaling in HCC.
Collapse
Affiliation(s)
- Hexu Han
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of pediatric surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jingjing Song
- Department of Pediatrics, the Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang, China
| | - Ziyi Fang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Xiaomin You
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China
| | - Yanping Du
- Department of Gastroenterology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Jun Ye
- Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu 226001, China.
| |
Collapse
|
33
|
Chen H, Chen X, Zhang Z, Bao W, Gao Z, Li D, Xie X, Zhou P, Yang C, Zhou Z, Pan J, Kuang X, Tang R, Feng Z, Zhou L, Zhu D, Yang J, Wang L, Huang H, Tang D, Liu J, Jiang L. Extracellular vesicles-transferred SBSN drives glioma aggressiveness by activating NF-κB via ANXA1-dependent ubiquitination of NEMO. Oncogene 2022; 41:5253-5265. [DOI: 10.1038/s41388-022-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022]
|
34
|
Gonzalez-Santamarta M, Bouvier C, Rodriguez MS, Xolalpa W. Ubiquitin-chains dynamics and its role regulating crucial cellular processes. Semin Cell Dev Biol 2022; 132:155-170. [PMID: 34895814 DOI: 10.1016/j.semcdb.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
The proteome adapts to multiple situations occurring along the life of the cell. To face these continuous changes, the cell uses posttranslational modifications (PTMs) to control the localization, association with multiple partners, stability, and activity of protein targets. One of the most dynamic protein involved in PTMs is Ubiquitin (Ub). Together with other members of the same family, known as Ubiquitin-like (UbL) proteins, Ub rebuilds the architecture of a protein in a few minutes to change its properties in a very efficient way. This capacity of Ub and UbL is in part due to their potential to form complex architectures when attached to target proteins or when forming Ub chains. The highly dynamic formation and remodeling of Ub chains is regulated by the action of conjugating and deconjugating enzymes that determine, in due time, the correct chain architecture for a particular cellular function. Chain remodeling occurs in response to physiologic stimuli but also in pathologic situations. Here, we illustrate well-documented cases of chain remodeling during DNA repair, activation of the NF-κB pathway and autophagy, as examples of this dynamic regulation. The crucial role of enzymes and cofactors regulating chain remodeling is discussed.
Collapse
Affiliation(s)
- Maria Gonzalez-Santamarta
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Corentin Bouvier
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
35
|
Saito Y, Otaki Y, Watanabe T, Tachibana S, Sato J, Kobayashi Y, Aono T, Goto J, Wanezaki M, Kutsuzawa D, Kato S, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Watanabe M. Cardiac-specific ITCH overexpression ameliorates septic cardiomyopathy via inhibition of the NF-κB signaling pathway. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 2:100018. [PMID: 39802494 PMCID: PMC11708253 DOI: 10.1016/j.jmccpl.2022.100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 01/16/2025]
Abstract
Background Septic cardiomyopathy is a common complication of septic shock and organ dysfunction. ITCH is a HECT (homologous to the E6-AP carboxyl-terminus)-type ubiquitin E3 ligase that plays a critical role in inflammatory suppression. Herein, we focused on the interaction between ITCH and key regulators of nuclear factor-κB (NF-κB), such as tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β activated kinase 1 (TAK1), and examined the impact of ITCH on the development of septic cardiomyopathy. Methods and results In H9C2 cardiomyocytes, ITCH protein expression decreased in response to lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα). The protein interactions of ITCH with TRAF6 and TAK1 were confirmed by immunoprecipitation in vitro and in vivo. Based on overexpression and knockdown studies of ITCH in H9C2 cardiomyocytes, ITCH regulates the phosphorylation of NF-κB and subsequent interleukin 6 (IL-6) expression in response to LPS and TNFα stimulation. LPS was intraperitoneally injected into transgenic mice with cardiac-specific overexpression of ITCH (ITCH-Tg) and wild-type (WT) mice. Compared with WT mice, phosphorylation of NF-κB and subsequent IL-6 expression were inhibited in ITCH-Tg mice. Cardiac systolic dysfunction after LPS administration was ameliorated in ITCH-Tg mice, and the survival rate was higher in ITCH-Tg mice than in WT mice. Conclusion ITCH interacts with TRAF6 and TAK1 in cardiomyocytes and improves cardiac function and survival rates in septic cardiomyopathy by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shingo Tachibana
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Junya Sato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Kobayashi
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomonori Aono
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Jun Goto
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masahiro Wanezaki
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Daisuke Kutsuzawa
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
36
|
Hong SJ, Jung S, Jang JS, Mo S, Kwon JO, Kim MK, Kim HH. PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway. Mol Cells 2022; 45:749-760. [PMID: 36047447 PMCID: PMC9589368 DOI: 10.14348/molcells.2022.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.
Collapse
Affiliation(s)
- Seo Jin Hong
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
37
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
38
|
USP48 and A20 synergistically promote cell survival in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:461. [PMID: 35913642 PMCID: PMC9343311 DOI: 10.1007/s00018-022-04489-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.
Collapse
|
39
|
Huang J, Lin J, Li C, Tang B, Wu J, Xiao H. Palovarotene inhibits the NF-κB signaling pathway to prevent heterotopic ossification. Clin Exp Pharmacol Physiol 2022; 49:881-892. [PMID: 35638441 DOI: 10.1111/1440-1681.13676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Heterotopic ossification (HO) is a common disease characterized by pain, dysfunction, and calcification. The mechanisms underlying HO have not been completely elucidated. Palovarotene, a retinoic acid receptor gamma agonist, significantly inhibits the formation of HO in vivo. However, its specific mechanism of action remains unclear. Therefore, we aimed to evaluate the signaling pathways related to the formation of HO as well as the mechanism of Palovarotene action. We constructed in vitro and in vivo models of HO. Osteogenic differentiation of bone mesenchymal stem cells (BMSCs) was observed by alizarin red and alkaline phosphatase staining assays in vitro. X-ray and hematoxylin-eosin staining were performed in vivo. Western blots and reverse transcription-polymerase chain reaction were performed to determine the levels of osteogenic- and inflammation-related genes. Immunofluorescence and immunocytochemistry were used to assess the levels of p65, the core molecule of the nuclear factor kappa-B (NF-κB) signaling pathway. We demonstrated that, in vitro, under inflammatory stimulation, pathological calcium deposition increased in BMSCs. The levels of osteogenesis- and inflammation-related genes were also upregulated, along with an enhanced expression of p65. Immunofluorescence assays revealed that p65 entered the nucleus, thereby stimulating the downstream effectors of the NF-κB pathway. The above trends were reversed after Palovarotene treatment. In conclusion, the NF-κB signaling pathway played an important role in HO and Palovarotene could alleviate HO by blocking the NF-κB cascade. Our results may provide a theoretical basis for Palovarotene in the treatment of HO. Further studies on the side effects of Palovarotene are warranted in the future.
Collapse
Affiliation(s)
- Junchao Huang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Jialiang Lin
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Congbin Li
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Bo Tang
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| | - Jiang Wu
- Department of Orthopedics, Tinglin Hospital of JinshanDistrict, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fenxian District Central Hospital, Shanghai, China
| |
Collapse
|
40
|
Ko MS, Cohen SN, Polley S, Mahata SK, Biswas T, Huxford T, Ghosh G. Regulatory subunit NEMO promotes polyubiquitin-dependent induction of NF-κB through a targetable second interaction with upstream activator IKK2. J Biol Chem 2022; 298:101864. [PMID: 35339487 PMCID: PMC9035715 DOI: 10.1016/j.jbc.2022.101864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/16/2023] Open
Abstract
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the "NEMO-binding domain" at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain-Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture-based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.
Collapse
Affiliation(s)
- Myung Soo Ko
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA; Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Samantha N Cohen
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Smarajit Polley
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California, USA; Medicine, VA San Diego Health Care System, San Diego, California, USA
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, San Diego, California, USA
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
41
|
Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells 2022; 11:cells11091414. [PMID: 35563720 PMCID: PMC9101168 DOI: 10.3390/cells11091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The second messenger, cAMP has potent immunosuppressive and anti-inflammatory actions. These have been attributed, in part, to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappa B (NF-κB). However, the mechanisms underlying the modulation of NF-κB activity by cAMP remain unclear. Here we demonstrate an important role for cAMP-mediated increase in nuclear actin monomer levels in inhibiting NF-κB activity. Elevated cAMP or forced expression of a nuclear localised polymerisation defective actin mutant (NLS-ActinR62D) inhibited basal and TNFα induced mRNA levels of NF-κB-dependent genes and NF-κB-dependent reporter gene activity. Elevated cAMP or NLS-ActinR62D did not affect NF-κB nuclear translocation but did reduce total cellular and nuclear RelA/p65 levels. Preventing the cAMP-induced increase in nuclear actin monomer, either by expressing a nuclear localised active mutant of the actin polymerising protein mDIA, silencing components of the nuclear actin import complex IPO9 and CFL1 or overexpressing the nuclear export complex XPO6, rescued RelA/p65 levels and NF-κB reporter gene activity in forskolin-stimulated cells. Elevated cAMP or NLS-ActinR62D reduced the half-life of RelA/p65, which was reversed by the proteasome inhibitor MG132. Accordingly, forskolin stimulated association of RelA/p65 with ubiquitin affinity beads, indicating increased ubiquitination of RelA/p65 or associated proteins. Taken together, our data demonstrate a novel mechanism underlying the anti-inflammatory effects of cAMP and highlight the important role played by nuclear actin in the regulation of inflammation.
Collapse
|
42
|
Hu H, Wang Z, Yu D, Xia L, Chen W, Long M, Fan H, Xia H, Lu Y. Characterization of TRAF2 in Nile tilapia: Expression profiles and the role in decreasing NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 122:13-20. [PMID: 35051565 DOI: 10.1016/j.fsi.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Mammals TRAF2 played a dual role in several immune signaling transduction processes. In this study, TRAF2 was cloned from Nile tilapia, Oreochromis niloticus, which named OnTRAF2. The open reading frame was 1797 bp, encoding 598 amino acids. Amino acid alignment and phylogenetic analysis indicated that OnTRAF2 showed relatively low identify with other teleost TRAF2 proteins, with the exception of TRAF2s from Epinephelus coioides. In healthy tilapia, OnTRAF2 was expressed widely in all the examined tissues, which had highest expression level in the brain. After Streptococcus agalactiae infection, the expression level of OnTRAF2 was increased significantly at different times in several organs, implying that OnTRAF2 may be involved in host defense against S. agalactiae infection. The result of subcellular localization showed that OnTRAF2 presented in cytoplasm and nucleus of HEK293T cells. Additionally, overexpression of OnTRAF2 significantly decreased the transcriptional activity of the NF-κB reporter in HEK293T cells, yeast two-hybrid results revealed that OnTRAF2 had no interaction with E3 ubiquitin ligase OnNEDD4. These results indicated that OnTRAF2 played important function during bacterial infection, and negatively mediated the immune signaling transduction in Nile tilapia, while the mechanism need further study.
Collapse
Affiliation(s)
- Huiling Hu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Liqun Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China
| | - Wenjie Chen
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Meng Long
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Huimin Fan
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China
| | - Hongli Xia
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China.
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, 518120, China; Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen, 518120, China.
| |
Collapse
|
43
|
Wu HT, Lin YT, Chew SH, Wu KJ. Organ defects of the Usp7 mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation. Biomed J 2022; 46:122-133. [PMID: 35183794 PMCID: PMC10104958 DOI: 10.1016/j.bj.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. METHODS Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. RESULTS We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above. CONCLUSIONS K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shan Hwu Chew
- Cancer Research Malaysia, Outpatient Centre, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
44
|
Zhou Z, Xu J, Li Z, Lv Y, Wu S, Zhang H, Song Y, Ai Y. Viral deubiquitinases and innate antiviral immune response in livestock and poultry. J Vet Med Sci 2021; 84:102-113. [PMID: 34803084 PMCID: PMC8810313 DOI: 10.1292/jvms.21-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among many of the pathogens, virus is the main cause of diseases in livestock and poultry. A host infected with the virus triggers a series of innate and adaptive immunity. The realization of innate immune responses involves the participation of a series of protein molecules in host cells, including receptors, signal molecules and antiviral molecules. Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular or viral deubiquitinases (DUBs). DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. In this review, we briefly introduce the mechanisms of ubiquitination and deubiquitination, present antiviral innate immune response and its regulation by ubiquitin, and summarize the prevalence of DUBs encoded by viruses (Arteriviridae, Asfarviridae, Nairoviridae, Coronaviridae, Herpesviridae, and Picornaviridae) infecting domestic animals and poultry. It is found that these DUBs suppress the innate immune responses mainly by affecting the production of type I interferon (IFN), which causes immune evasion of the viruses and promotes their replication. These findings have important reference significance for understanding the virulence and immune evasion mechanisms of the relevant viruses, and thus for the development of more effective prevention and treatment measures.
Collapse
Affiliation(s)
- Zhengxuan Zhou
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Jiacui Xu
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Zhanjun Li
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| | - Yan Lv
- College of Animal Science, Jilin University
| | - Shanli Wu
- College of Basic Medical Sciences, Jilin University
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture
| | - Yu Song
- Key laboratory of Utilization and Conservation for Tropical Marine Bioresources (Hainan Tropical Ocean University), Ministry of Education of the People's Republic of China.,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources
| | - Yongxing Ai
- College of Animal Science, Jilin University.,Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University
| |
Collapse
|
45
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
46
|
Fottner M, Weyh M, Gaussmann S, Schwarz D, Sattler M, Lang K. A modular toolbox to generate complex polymeric ubiquitin architectures using orthogonal sortase enzymes. Nat Commun 2021; 12:6515. [PMID: 34764289 PMCID: PMC8585875 DOI: 10.1038/s41467-021-26812-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) represents one of the most important regulators in eukaryotic biology. Polymeric Ub/Ubl chains of distinct topologies control the activity, stability, interaction and localization of almost all cellular proteins and elicit a variety of biological outputs. Our ability to characterize the roles of distinct Ub/Ubl topologies and to identify enzymes and receptors that create, recognize and remove these modifications is however hampered by the difficulty to prepare them. Here we introduce a modular toolbox (Ubl-tools) that allows the stepwise assembly of Ub/Ubl chains in a flexible and user-defined manner facilitated by orthogonal sortase enzymes. We demonstrate the universality and applicability of Ubl-tools by generating distinctly linked Ub/Ubl hybrid chains, and investigate their role in DNA damage repair. Importantly, Ubl-tools guarantees straightforward access to target proteins, site-specifically modified with distinct homo- and heterotypic (including branched) Ub chains, providing a powerful approach for studying the functional impact of these complex modifications on cellular processes.
Collapse
Affiliation(s)
- Maximilian Fottner
- grid.6936.a0000000123222966Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Lichtenberg Str. 4, 85748 Garching, Germany ,grid.5801.c0000 0001 2156 2780Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maria Weyh
- grid.6936.a0000000123222966Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Lichtenberg Str. 4, 85748 Garching, Germany
| | - Stefan Gaussmann
- grid.6936.a0000000123222966Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching, Germany ,grid.4567.00000 0004 0483 2525Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dominic Schwarz
- grid.6936.a0000000123222966Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Lichtenberg Str. 4, 85748 Garching, Germany
| | - Michael Sattler
- grid.6936.a0000000123222966Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching, Germany ,grid.4567.00000 0004 0483 2525Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kathrin Lang
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
47
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
49
|
CHIP promotes the activation of NF-κB signaling through enhancing the K63-linked ubiquitination of TAK1. Cell Death Discov 2021; 7:246. [PMID: 34535633 PMCID: PMC8448743 DOI: 10.1038/s41420-021-00637-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/15/2023] Open
Abstract
Transcriptional factor nuclear factor κB (NF-κB) can be activated by various intracellular or extracellular stimuli and its dysregulation leads to pathological conditions, such as neurodegenerative disorders, infection, and cancer. The carboxyl terminus of HSC70-interacting protein (CHIP), a pathogenic gene of spinocerebellar autosomal recessive 16 (SCAR16), plays an important roles in protein degradation, trafficking, and multiple signaling transductions. It has been reported that CHIP participates in the regulation of NF-κB signaling, and the mutant of CHIP (p.T246M) leads to the occurrence of SCAR16. However, the detailed mechanism of CHIP and CHIP (p.T246M) in the regulation of NF-κB signaling in neurological disorders remains unclear. Here, we found that CHIP promoted the activation of NF-κB signaling, while the knockdown had the opposite effect. Furthermore, CHIP interacted with TAK1 and targeted it for K63-linked ubiquitination. Finally, CHIP enhanced the interaction between TAK1 and NEMO. However, CHIP (p.T246M) couldn't upregulate NF-κB signaling, potentiate the ubiquitination of TAK1, and enhance the interactions. Taken together, our study demonstrated for the first time that CHIP positively regulates NF-κB signaling by targeting TAK1 and enhancing its K63-linked ubiquitination.
Collapse
|
50
|
Chade AR, Engel JE, Hall ME, Eirin A, Bidwell GL. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis. Am J Physiol Renal Physiol 2021; 321:F411-F423. [PMID: 34396789 DOI: 10.1152/ajprenal.00158.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high cardiovascular mortality. CKD and heart failure (HF) coexist in up to 50% of patients, and both associate with inflammation. We aimed to define the cardiac phenotype of a novel swine model of CKD and test the hypothesis that inflammation of renal origin propels the development of precursors of HF in CKD. CKD was induced in 14 pigs, which were followed for 14 wk. Renal (multidetector computed tomography) and cardiac (echocardiography) hemodynamics were quantified before and 8 wk after single intrarenal administration of placebo or a biopolymer-fused peptide inhibitor of NF-κB that blocks NF-κB activity and decreases inflammatory activity (SynB1-ELP-p50i). Blood was collected to quantify cytokines (TNF-α, monocyte chemoattractant protein-1, and interleukins), markers of inflammation (C-reactive protein), and biomarkers of HF (atrial and brain natriuretic peptides). Pigs were then euthanized, and kidneys and hearts were studied ex vivo. Normal pigs were used as time-matched controls. Renal dysfunction in CKD was accompanied by cardiac hypertrophy and fibrosis, diastolic dysfunction, increased renal and cardiac expression of TNF-α, monocyte chemoattractant protein-1, and interleukins, canonical and noncanonical mediators of NF-κB signaling, circulating inflammatory factors, and biomarkers of HF. Notably, most of these changes were improved after intrarenal SynB1-SynB1-ELP-p50i, although cardiac inflammatory signaling remained unaltered. The translational traits of this model support its use as a platform to test novel technologies to protect the kidney and heart in CKD. A targeted inhibition of renal NF-κB signaling improves renal and cardiac function, suggesting an inflammatory renal-cardio axis underlying early HF pathophysiology in CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a progressive disorder with high cardiovascular morbidity and mortality. This work supports the role of inflammatory cytokines of renal origin in renal-cardio pathophysiology in CKD and that the heart may be a target. Furthermore, it supports the feasibility of a new strategy in a translational fashion, using targeted inhibition of renal NF-κB signaling to offset the development of cardiac injury in CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael E Hall
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|