1
|
Sultana M, Mohapatra SR, Rtimi S, Ahmaruzzaman M. Development of a novel and robust CuO-Co 3O 4@Biochar nanocomposite using Terminalia chebula leaf extract for reduction of nitro compounds and photodegradation of single and binary mixture of organic contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1598-1625. [PMID: 39739170 DOI: 10.1007/s11356-024-35678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
In this work, Terminalia chebula leaf extract was used to synthesize CuO-Co3O4 nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid). To ascertain the structure, composition, and morphology of the CuO-Co3O4@BC photocatalyst, various analytical techniques were employed, including Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Photoluminescence (PL) spectra, Energy Dispersive X-ray analysis (EDX), Brunauer-Emmett-Teller (BET) analysis, and High-Resolution Transmission Electron Microscopy (HRTEM). The optical properties of the nanocatalyst sample were accurately assessed by the use of UV-Diffuse Reflectance Spectroscopy (UV-DRS). The as-synthesized nanocatalyst's photocatalytic capacity was assessed by observing dye degradation in the presence of visible light. It suggests a significant reduction in the rate of recombination of electrons and holes and therefore better charge separation from the catalyst optical properties. It was discovered that the efficient photocatalytic activity of the nanocatalyst had been brought about as a result of the synergistic interactions that had occurred between the different moieties. The growing organic water pollutants Trypan Blue were found to deteriorate to 96.80 ± 1.25% in 21 min and Eosin Y to 98.12 ± 1.42% in 30 min by the photocatalyst under visible light irradiation. For the photodegradation, pseudo-first-order kinetics were employed, with specific reaction rate constant of 0.1068 min-1 and 0.1429 min-1 for EY and TB, respectively. Studies have also been conducted to determine the effects of additional variables on deteriorating performance, such as water matrices, beginning concentration, catalyst dose, and contact length. With high catalytic characteristics, the developed CuO-Co3O4@BC catalyst completes the reduction reactions of 4-NP, 3-NP, and Picric acid in 3, 2.5, and 5 min, respectively. An affordable CuO-Co3O4@BC is a potential catalyst for turning harmful nitro chemicals into useful products. It also serves as a nano photocatalyst that is stable, can be used again, and is cost-effective.
Collapse
Affiliation(s)
- Musfica Sultana
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Saumya R Mohapatra
- Department of Physics, National Institute of Technology, Silchar, 788010, Assam, India
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland
| | - Mohammed Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
2
|
Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Selvaraj R, Al-Muhtaseb A. Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1707. [PMID: 39513787 PMCID: PMC11547847 DOI: 10.3390/nano14211707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue.
Collapse
Affiliation(s)
- Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Rengaraj Selvaraj
- Department of Chemistry, Sultan Qaboos University, Muscat 123, Oman;
| | - Ala’a Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat 123, Oman;
- Sustainable Energy Research Centre, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
3
|
Sharma A, Goel H, Sharma S, Rathore HS, Jamir I, Kumar A, Thimmappa SC, Kesari KK, Kashyap BK. Cutting edge technology for wastewater treatment using smart nanomaterials: recent trends and futuristic advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58263-58293. [PMID: 39298031 DOI: 10.1007/s11356-024-34977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Water is a vital component of our existence. Many human activities, such as improper waste disposal from households, industries, hospitals, and synthetic processes, are major contributors to the contamination of water streams. It is the responsibility of every individual to safeguard water resources and reduce pollution. Among the various available wastewater treatment (WWT) methods, smart nanomaterials stand out for their effectiveness in pollutant removal through absorption and adsorption. This paper examines the application of valuable smart nanomaterials in treating wastewater. Various nanomaterials, including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), nanoadsorbents, nanometals, nanofilters, nanocatalysts, carbon nanotubes (CNTs), nanosilver, nanotitanium dioxide, magnetic nanoparticles, nanozero-valent metallic nanoparticles, nanocomposites, nanofibers, and quantum dots, are identified as promising candidates for WWT. These smart nanomaterials efficiently eliminate toxic substances, microplastics, nanoplastics, and polythene particulates from wastewater. Additionally, the paper discusses comparative studies on the purification efficiency of nanoscience technology versus conventional methods.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, School of Basic and Applied Sciences, Career Point University, Kota, 325003, Rajasthan, India
| | - Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, 110042, Delhi, India
| | - Saurabh Sharma
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, 140307, Chandigarh, India
| | - Hanumant Singh Rathore
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Imlitoshi Jamir
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, 797004, Nagaland, India
| | - Abhishek Kumar
- Department of Molecular Biology and Genetic Engineering, BAC Sabour, Bihar Agricultural University Sabour, Bhagalpur, 813210, Bihar, India
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150, Espoo, Finland
- University Center for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, Uttar Pradesh, India.
| |
Collapse
|
4
|
Srihanam P, Prapasri A, Janthar M, Leangtanom P, Thongsomboon W. Efficient dye removal using manganese oxide-modified nanocellulosic films from sugarcane bagasse. Int J Biol Macromol 2024; 280:135910. [PMID: 39322158 DOI: 10.1016/j.ijbiomac.2024.135910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Removing toxic dyes from industrial wastewater is crucial for environmental protection. This research introduced novel composite films of manganese oxide (MnO2)-modified nanocellulose (MCel) and unmodified nanocellulose (Cel) derived from sugarcane bagasse for dye removal. Nanocellulose was extracted from sugarcane bagasse and subsequently transformed into MCel through in-situ MnO2 synthesis. The MCel/Cel composites, with various MCel to Cel ratios, were fabricated into films and evaluated for their efficiency in removing methylene blue (MB). The films were characterized using Fourier transform infrared spectroscopy for functional group analysis, X-ray diffraction for crystallinity, X-ray photoelectron spectroscopy for chemical state analysis, field emission scanning electron microscopy-energy dispersive spectroscopy for morphology and elemental composition, and Thermogravimetric Analysis for thermal behaviors. Adsorption results showed that all MCel/Cel composite films achieved over 97 % removal of MB (initial concentration 100 mg L-1) within 24 h, with convenient adsorbent retrieval after adsorption. The adsorption process followed a pseudo-second order kinetic model and Langmuir adsorption isotherm. The optimal 95:5 MCel/Cel film exhibited a rate constant of 6.16 × 10-4 g mg-1 min-1 and the calculated adsorption capacity of 181.85 mg g-1. These results demonstrate significant potential for wastewater treatment and sustainable waste valorization by converting sugarcane bagasse cellulose into environmentally friendly adsorbents for contaminant removal.
Collapse
Affiliation(s)
- Prasong Srihanam
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Amamita Prapasri
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Marisa Janthar
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| | - Pimpan Leangtanom
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wiriya Thongsomboon
- Department of Chemistry, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand; Biodegradable Polymers Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand.
| |
Collapse
|
5
|
Eroğlan AN, Baran T. Palladium nanoparticles anchored on NiO particles-modified micro-size chitosan spheres: A promising, active, and retrievable catalyst system for treatment of environmental pollutants. Int J Biol Macromol 2024; 276:133835. [PMID: 39002901 DOI: 10.1016/j.ijbiomac.2024.133835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/24/2023] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Efficient treatment of toxic organic pollutants in water/wastewater by using innovative, cost efficient, and simple technologies has recently become an important issue worldwide. Remediation of these pollutants with chemical reduction in the presence of a nano-sized catalyst and a reducing agent is one of the most useful methodologies. In the present study, we have designed a promising heterogeneous catalyst system (Pd@CS-NiO) by easy and efficient stabilization of palladium nanoparticles on the surface of microspheres composed of chitosan (CS)-NiO particles (CS-NiO) for the reduction of organic pollutants. The nano-structure of the developed Pd@CS-NiO was successfully validated using FE-SEM, XRD, EDS, TEM, and FTIR/ATR and its particles size was determined as 10 nm. The catalytic power of Pd@CS-NiO was then assessed in the reduction of 4-nitro-o-phenylenediamine (4-NPDA), 4-nitrophenol (4-NP), 4-nitroaniline (4-NA), 2-nitroaniline (2-NA), and some organic dyes, namely methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) in aqueous medium at room temperature. The reductions were thoroughly studied spectro-photometrically. The tests displayed that the synthesized Pd@CS-NiO was a highly active and useful catalyst that reduced these pollutants in 0-145 s. Moreover, the rate constants for 2-NA, 4-NP, 4-NA, 4-NPDA, MO, and RhB were found to be 0.017 s-1, 0.011 s-1, 0.006 s-1, 0.013 s-1, 0.023 s-1, and 0.03 s-1, respectively. Moreover, the recycling test indicated that Pd@CS-NiO may be recovered easily thanks to its micro size nature and could be used up to seven steps, confirming its practical application potential.
Collapse
Affiliation(s)
- Afife Nur Eroğlan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
6
|
Ravichandran R, Jayachandran S, Annamalai A, Annamalai K, Jeevarathinam A, Elumalai S. Solid Handmade Ternary Coinage Metal Mentors for Organic Bond-Making and Bond-Breaking Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17270-17283. [PMID: 38961769 DOI: 10.1021/acs.langmuir.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A comparative approach is employed for the novel synthesis of a magnetically recoverable ternary nanocomposite consisting of g-C3N4-supported Fe3O4 decorated with coinage metals (Au, Ag, and Cu). This synthesis is achieved through a straightforward and convenient one-step grinding protocol. In situ, the nanoparticles were grown on the g-C3N4-assist Fe3O4 matrix (GCFM), and the agglomeration of these nanoparticles on the matrix creates a pathway for the formation of the nanocomposite (NC). The as-formed CNC was confirmed with the help of characterization analyses, namely XRD, FT-IR, HR-TEM, FE-SEM, XPS, VSM, UV-vis, and NMR studies. Together with NPs and GCFM, with the quantum consequence, the activity of the NC shows better electron transfer via transfer of electrons, which grabs tremendous attention toward it, resulting in enhanced plausible photocatalytic degradation toward pharmaceutical compounds, dyes, and anthropogenic pollutants. The activity of the C-NC hikes at 88% for ciprofloxacin (CX) and 90% for paracetamol (PM); furthermore, the activity of the C-NC hikes at 88% and 87% for xylene Cyanol FF (XCF) and malachite green (MLG), respectively. Interestingly, an added advantage is the formation of a C-C bond (homocoupling reaction) in phenylboronic acid (PA) via a greener solvent under ambient conditions. The yield percentage of the conversion product shows satisfactory results, and its reproducibility was good for the prepared ternary NC. The conversion treatment of anthropogenic pollutants, namely 4-nitrophenol, grasps a high percentage (98%). In addition, the NC shows good activity toward both types of bacteria. The reproducibility of the composite also shows virtuous activity against pharmaceutical as well as toxic contaminants. The as-prepared CNC was specifically engineered to perform both bond formation and bond cleavage of organic molecules under ambient conditions for multiple cycles.
Collapse
Affiliation(s)
- Ramya Ravichandran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreelakshmi Jayachandran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Arun Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kumaresan Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anandhavalli Jeevarathinam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sundaravadivel Elumalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
7
|
Alex AM, Subburaman S, Chauhan S, Ahuja V, Abdi G, Tarighat MA. Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Sci Rep 2024; 14:11707. [PMID: 38777818 PMCID: PMC11111742 DOI: 10.1038/s41598-024-61946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.
Collapse
Affiliation(s)
- Asha Monica Alex
- Department of Biotechnology, St Joseph's College, (Autonomous) affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
| | | | - Shikha Chauhan
- University Institute of Biotechnology, Chandigarh University Mohali (Punjab), Gharuan, India
| | - Vishal Ahuja
- University Institute of Biotechnology and University Centre for Research and Development Chandigarh University Mohali (Punjab), Gharuan, India.
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Maryam Abbasi Tarighat
- Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
8
|
Patel M, Kikani T, Saren U, Thakore S. Bactericidal, anti-biofilm, anti-oxidant potency and catalytic property of silver nanoparticles embedded into functionalised chitosan gel. Int J Biol Macromol 2024; 262:129968. [PMID: 38320641 DOI: 10.1016/j.ijbiomac.2024.129968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Chitosan is a versatile biocompatible polysaccharide which has attracted great attention for gel synthesis. Its reducing character is specifically exploited for nanoparticle synthesis via green approach. A silver nanocomposite synthesized using this gel, with a novel gelling agent 2,4,6-trihydroxy benzaldehyde, was found to be a promising candidate for several applications including anti-bacterial, anti-biofilm and anti-oxidant activity as well as catalysis. The nanocomposite was well characterized using various spectroscopic and microscopic techniques such as IR, TGA, XRD, XPS, SEM and TEM. The nanocomposite exhibited high bactericidal activity against both S. aureus and E. coli. Further, it was evaluated for anti-biofilm forming property and its potency as antioxidant agent. The nanocomposite served as a catalyst for degradation of Methyl Orange and Rhodamine B at high concentrations (in the range of mM) with a catalytic efficiency of 98.58 % and 99.56 % within 3 min and 5 min respectively.
Collapse
Affiliation(s)
- Miraj Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Twara Kikani
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ukil Saren
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.
| |
Collapse
|
9
|
Djamila B, Eddine LS, Abderrhmane B, Nassiba A, Barhoum A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:6567-6580. [DOI: 10.1007/s13399-022-02743-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis of antioxidant nanoparticles using plant extracts is a simple, rapid, environmentally friendly, and cost-effective approach. In this study, in vitro antioxidant copper mixed oxide nanoparticles (CuO/Cu2O) were prepared from the alcoholic extract of Phoenix Dactylifera L. and different aqueous concentrations of CuSO4·5H2O. The composition, crystallinity, morphology, and particle size of CuO/Cu2O NPs were tuned by increasing the CuSO4·5H2O concentration from 4 to 10 mM. Ultraviolet–visible (UV–Vis) and Fourier-transform infrared (FTIR) spectroscopy confirmed the reduction of CuSO4·5H2O and the formation of the CuO/Cu2O NPs. X-ray diffraction (XRD) confirmed the crystalline nature of the CuO/Cu2O NPs with a crystallite size varying from 18 to 35 nm. Scanning electron micrographs (SEM) showed that the CuO/Cu2O NPs have a spherical morphology with particle sizes ranging from 25 to 100 nm. The best antioxidant CuO/Cu2O NPs have a phase ratio of about 1:1 CuO/Cu2O with a half-maximal inhibitory concentration (IC50) of 0.39 mg/ml, an iron-containing reducing antioxidant power (FRAP) of 432 mg EFeSO4/100 mg NPs, and a total antioxidant capacity (TAC) of 65 mg EAA/gNPs. The results suggest that the synthesized CuO/Cu2O NPs are excellent antioxidants for therapeutic applications.
Graphical abstract
Collapse
|
10
|
Mousa H, Abd El-Hay SS, El Sheikh R, Gouda AA, El-Ghaffar SA, El-Aal MA. Development of environmentally friendly catalyst Ag-ZnO@cellulose acetate derived from discarded cigarette butts for reduction of organic dyes and its antibacterial applications. Int J Biol Macromol 2024; 258:128890. [PMID: 38134996 DOI: 10.1016/j.ijbiomac.2023.128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min-1, 1.51 min-1, 0.2292 min-1, and 0.733 min-1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
Collapse
Affiliation(s)
- Heba Mousa
- Department of Special Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ragaa El Sheikh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Gouda
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
11
|
Paul H, Bera MK, Macke N, Rowan SJ, Tirrell MV. Quantitative Determination of Metal Ion Adsorption on Cellulose Nanocrystals Surfaces. ACS NANO 2024; 18:1921-1930. [PMID: 38195086 PMCID: PMC10811751 DOI: 10.1021/acsnano.3c06140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Nanocellulose is a bio-based material that holds significant potential in the field of water purification. Of particular interest is their potential use as a key sorbent material for the removal of metal ions from solution. However, the structure of metal ions adsorbed onto cellulose surfaces is not well understood. The focus of this work is to determine quantitatively the three-dimensional distribution of metal ions of different valencies surrounding negatively charged carboxylate functionalized cellulose nanocrystals (CNCs) using anomalous small-angle X-ray scattering (ASAXS). These distributions can affect the water and ionic permeability in these materials. The data show that increasing the carboxylate density on the surface of the CNCs from 740 to 1100 mmol/kg changed the nature of the structure of the adsorbed ions from a monolayer into a multilayer structure. The monolayer was modeled as a Stern layer around the CNC nanoparticles, whereas the multilayer structure was modeled as a diffuse layer on top of the Stern layer around the nanoparticles. Within the Stern layer, the maximum ion density increases from 1680 to 4350 mmol of Rb+/(kg of CNC) with the increase in the carboxylate density on the surface of the nanoparticles. Additionally, the data show that CNCs can leverage multiple mechanisms, such as electrostatic attraction and the chaotropic effect, to adsorb ions of different valencies. By understanding the spatial organization of the adsorbed metal ions, the design of cellulose-based sorbents can be further optimized to improve the uptake capacity and selectivity in separation applications.
Collapse
Affiliation(s)
- Harrison
R. Paul
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Mrinal K. Bera
- NSF’s
ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas Macke
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical
Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60434, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Materials
Science Division and Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60434, United States
| |
Collapse
|
12
|
Lenka S, Dubey D, Swain SK, Rath G, Mishra A, Bishoyi AK, Purohit GK. Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens. Curr Pharm Biotechnol 2024; 25:2312-2325. [PMID: 38347796 DOI: 10.2174/0113892010290653240109053852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 09/26/2024]
Abstract
BACKGROUND Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. OBJECTIVES This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens. METHODS The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters. RESULTS Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23 mm and 21 mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies. CONCLUSION The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.
Collapse
Affiliation(s)
- Smarita Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Debasmita Dubey
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, 751019, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Clinical Hematology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
13
|
Ezzat N, Hefnawy MA, Medany SS, El-Sherif RM, Fadlallah SA. Green synthesis of Ag nanoparticle supported on graphene oxide for efficient nitrite sensing in a water sample. Sci Rep 2023; 13:19441. [PMID: 37945582 PMCID: PMC10636149 DOI: 10.1038/s41598-023-46409-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Water is essential for conserving biodiversity, ecology, and human health, but because of population growth and declining clean water supplies, wastewater must be treated to meet demand. Nitrite is one of the contaminants in wastewater that is well-known. It is crucial to identify nitrite since it can be fatal to humans in excessive doses. Utilizing a straightforward and effective electrochemical sensor, nitrite in actual water samples may be determined electrochemically. The sensor is created by coating the surface of a GC electrode with a thin layer of graphene oxide (GO), followed by a coating of silver nanoparticles. The modified electrode reached a linear detection range of 1-400 µM. thus, the activity of the electrode was investigated at different pH values ranging from 4 to 10 to cover acidic to highly basic environments. However, the electrode recorded limit of detection (LOD) is equal to 0.084, 0.090, and 0.055 µM for pH 4, 7, and 10, respectively. Additionally, the electrode activity was utilized in tap water and wastewater that the LOD reported as 0.16 and 0.157 µM for tape water and wastewater, respectively.
Collapse
Affiliation(s)
- Nourhan Ezzat
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Rabab M El-Sherif
- Bio-Nanotechnology Department, Faculty of Nanotechnology, Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
14
|
Allafchian A, Karimzadeh F, Valikhani A, Seraj A. Enhanced antibacterial properties and magnetic removal of Fe 3O 4/fenugreek seed gum/silver nanocomposites for water treatment. Int J Biol Macromol 2023; 251:126418. [PMID: 37598825 DOI: 10.1016/j.ijbiomac.2023.126418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study reports the synthesis, characterization, and antibacterial activity of a novel Fe3O4 nanocomposite coated with fenugreek seed gums and silver nanoparticles (AgNPs). To enhance the antibacterial properties of AgNPs and overcome the limitations of conventional methods for the production of three-component nanocomposites, a layer of natural polymer was used. Fenugreek seed gums (FSG) were used to coat Fe3O4 NPs to prevent their decomposition and to facilitate the release of silver nanoparticles in aqueous media. The Fe3O4/FSG/Ag nanocomposites were characterized and then the antibacterial activity of the nanocomposites was evaluated against two gram-negative and two gram-positive bacteria and compared with Fe3O4, Fe3O4/FSG, FSG, and AgNO3. The results showed that the Fe3O4/FSG/Ag nanocomposites had higher antibacterial activity than the other samples and could be easily removed from treated water by a powerful magnet without causing pollution in the environment. Overall, these findings suggest that the Fe3O4/FSG/Ag nanocomposites have potential applications in water treatment for their improved antibacterial properties and ease of removal.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fathallah Karimzadeh
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Islamic Republic of Iran.
| | - Arian Valikhani
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Islamic Republic of Iran.
| | - Ali Seraj
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Islamic Republic of Iran.
| |
Collapse
|
15
|
Lan Pham T, Dat Doan V, Le Dang Q, Anh Nguyen T, Huong Nguyen TL, Thuy Tran TD, Lan Nguyen TP, Anh Vo TK, Huy Nguyen T, Lam Tran D. Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties. RSC Adv 2023; 13:20994-21007. [PMID: 37448638 PMCID: PMC10336774 DOI: 10.1039/d3ra02754f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
In the present study, the biosynthesis of stable silver nanoparticles (BioAgNPs) was accomplished successfully for the first time by using an aqueous extract derived from the buds of Syzygium nervosum (SN) as both a reducing and a stabilizing agent. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) investigations revealed that the biosynthesized BioAgNPs were predominantly spherical with an average size of 10-30 nm. It was found that the outstanding stability of the BioAgNPs colloidal solution was assigned to the additive effect of the surrounding protective organic layer and the highly negatively charged surface of the nanoparticles. Consequently, good antibacterial activity was demonstrated by the colloidal BioAgNPs solution against four distinct bacterial strains, including Gram-positive S. aureus and B. subtilis as well as Gram-negative E. coli and S. typhi. Interestingly, the biosynthesized BioAgNPs displayed greater antibacterial activity even when tested at low doses against Gram-negative S. typhi. In addition, the biogenic AgNPs demonstrated a significant level of catalytic activity in the process of converting 2-NP, 3-NP, and 4-NP into aminophenols within 15 min, with reaction rate constants of 9.0 × 10-4, 10 × 10-4, and 9.0 × 10-4 s-1, respectively. BioAgNPs formulations were assessed against anthracnose disease in tea plants and were found to be as effective as the positive control at a dose of 20-fold dilution, but less effective at a dose of 30-fold dilution. Both doses of BioAgNPs formulations significantly suppressed Colletotrichum camelliae (anthracnose disease) without affecting the growth of the tea plants.
Collapse
Affiliation(s)
- Thi Lan Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Van Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Quang Le Dang
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuan Anh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Lan Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Thi Dieu Thuy Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City 70000 Vietnam
| | - Thi Phuong Lan Nguyen
- University of Economics and Technology for Industries (UNETI) 456, Minh Khai, Vinh Tuy, Hai Ba Trung District Ha Noi Vietnam
| | - Thi Kieu Anh Vo
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Trung Huy Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Dai Lam Tran
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
16
|
Bassi A, Kanungo K, Koo BH, Hasan I. Cellulose nanocrystals doped silver nanoparticles immobilized agar gum for efficient photocatalytic degradation of malachite green. Int J Biol Macromol 2023:125221. [PMID: 37295693 DOI: 10.1016/j.ijbiomac.2023.125221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
The present study involves the synthesis of green functional material based on the silver nanoparticle (Ag NPs) doped cellulose nanocrystals (CNC) immobilized agar gum (AA) biopolymer using chemical coprecipitation method. The stabilization of Ag NPs in cellulose matrix and functionalization of the synthesized material through agar gum was analyzed using various spectroscopic techniques such as Fourier Transform Infrared (FTIR), Scanning electron microscope (SEM), Energy X-Ray diffraction (EDX), Photoelectron X-ray (XPS), Transmission electron microscope (TEM), Selected area energy diffraction (SAED) and ultraviolet visible (UV-Vis) spectroscopy. The XRD results suggested that the synthesized AA-CNC@Ag BNC material is composed of 47 % crystalline and 53 % amorphous nature having distorted hexagonal structure due to capping of Ag NPs by amorphous biopolymer matrix. The Debye-Scherer crystallite sized was calculated as 18 nm which is found in close agreement with TEM analysis (19 nm). The SAED yellow fringes simulates the miller indices values with XRD patterns and supported the surface functionalization of Ag NPs by biopolymer blend of AA-CNC. The XPS data supported the presence of Ag0 as indexed by Ag3d orbital corresponding to Ag3d3/2 at 372.6 eV and Ag3d5/2 at 366.6 eV. The surface morphological results revealed a flaky surface of the resultant material having well distributed Ag NPs in the matrix. The EDX and atomic concentration results given by XPS supported the presence if C, O and Ag in the bionanocomposite material. The UV-Vis results suggested that the material is both UV and visible light active having multiple SPR effects with anisotropy. The material was explored as a photocatalyst for remediation of wastewater contaminated by malachite green (MG) using advance oxidation process (AOP). Photocatalytic experiments were performed in order to optimize various reaction parameters such as irradiation time, pH, catalyst dose and MG concentration. The obtained results showed that almost 98.85 % of MG was degraded by using 20 mg of catalyst at pH 9 for 60 min of irradiation. The trapping experiments revealed that •O2- radicals played primary role in MG degradation. This study will provide new possible strategies for the remediation of wastewater contaminated by MG.
Collapse
Affiliation(s)
- Akshara Bassi
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Kushal Kanungo
- Environmental Research Lab, Department of Chemistry, Chandigarh University, Mohali, Punjab 140413, India
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University, Changwon 51140, Gyeongnam, South Korea.
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
17
|
Anjum F, Shaban M, Ismail M, Gul S, Bakhsh EM, Khan MA, Sharafat U, Khan SB, Khan MI. Novel Synthesis of CuO/GO Nanocomposites and Their Photocatalytic Potential in the Degradation of Hazardous Industrial Effluents. ACS OMEGA 2023; 8:17667-17681. [PMID: 37251181 PMCID: PMC10210201 DOI: 10.1021/acsomega.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Photocatalytic degradation of dyes has been the subject of extensive study due to its low cost, eco-friendly operation, and absence of secondary pollutants. Copper oxide/graphene oxide (CuO/GO) nanocomposites are emerging as a new class of fascinating materials due to their low cost, nontoxicity, and distinctive properties such as a narrow band gap and good sunlight absorbency. In this study, copper oxide (CuO), graphene oxide (GO), and CuO/GO were synthesized successfully. X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) spectroscopy confirm the oxidation and production of GO from the graphene of lead pencil. According to the morphological analysis of nanocomposites, CuO nanoparticles of sizes ≤20 nm on the GO sheets were evenly adorned and distributed. Nanocomposites of different CuO:GO ratios (1:1 up to 5:1) were applied for the photocatalytic degradation of methyl red (MR). CuO:GO(1:1) nanocomposites achieved 84% MR dye removal, while CuO:GO(5:1) nanocomposites achieved the highest value (95.48%). The thermodynamic parameters of the reaction for CuO:GO(5:1) were evaluated using the Van't Hoff equation and the activation energy was found to be 44.186 kJ/mol. The reusability test of the nanocomposites showed high stability even after seven cycles. CuO/GO catalysts can be used in the photodegradation of organic pollutants in wastewater at room temperature due to their excellent properties, simple synthesis process, and low cost.
Collapse
Affiliation(s)
- Farhana Anjum
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mohamed Shaban
- Physics
Department, Faculty of Science, Islamic
University of Madinah, P. O. Box: 170, Al Madinah Al Monawara 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni Suef 62514, Egypt
| | - Muhammad Ismail
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Saima Gul
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Esraa M. Bakhsh
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - Murad Ali Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Uzma Sharafat
- School
of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook, Newfoundland A2H 5G4, Canada
| | - Sher Bahadar Khan
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box: 80203, Jeddah 21589, Saudi Arabia
| | - M. I. Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
18
|
Zareh F, Gholinejad M, Sheibani H, Sansano JM. Palladium nanoparticles supported on ionic liquid and glucosamine-modified magnetic iron oxide as a catalyst in reduction reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69362-69378. [PMID: 37133660 DOI: 10.1007/s11356-023-27231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
A magnetic nanocomposite comprising imidazolium ionic liquid and glucosamine is successfully synthesized and used for stabilization of Pd nanoparticles. This new material, Fe3O4@SiO2@IL/GA-Pd, is fully characterized and applied as a catalyst in the reduction of nitroaromatic compounds to desired amines at room temperature. Also, the reductive degradation of organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) is studied and compared with another previous publications. The survey of the stabilization of the palladium catalytic entities is described demonstrating the separation ability and recycling of them. In addition, TEM, XRD, and VSM analyses of the recycled catalyst confirmed its stability.
Collapse
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76169, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gavazang, P. O. Box 45195-1159, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hassan Sheibani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76169, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, 03690, Alicante, Spain
| |
Collapse
|
19
|
Palani G, Trilaksana H, Sujatha RM, Kannan K, Rajendran S, Korniejenko K, Nykiel M, Uthayakumar M. Silver Nanoparticles for Waste Water Management. Molecules 2023; 28:molecules28083520. [PMID: 37110755 PMCID: PMC10145794 DOI: 10.3390/molecules28083520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors. This review article summarises the applications of nanosilver-based particles in the dye removal/degradation process, effective water management strategies, and the field of agriculture.
Collapse
Affiliation(s)
- Geetha Palani
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - R Merlyn Sujatha
- Department of Biomedical Engineering, JNN Institute of Engineering, Kannigaipair 601102, India
| | - Karthik Kannan
- Chemical Sciences Department and the Radical Research Centre, Ariel University, Ariel 40700, Israel
| | - Sundarakannan Rajendran
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Kinga Korniejenko
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marek Nykiel
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marimuthu Uthayakumar
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
20
|
Çalışkan M, Güzel HD, Baran T. Pd nanoparticles decorated on Schiff base-modified chitosan/CeO 2 as a heterogeneous and retriable nanocatalyst for Heck reactions and remediation of environmental pollutants. Int J Biol Macromol 2023; 240:124453. [PMID: 37068540 DOI: 10.1016/j.ijbiomac.2023.124453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In this paper, we have developed a novel, highly active, eco-friendly, and versatile heterogeneous catalyst system in which Pd nanoparticles are decorated on Schiff base-modified chitosan‑cerium oxide particles (Pd@CS-CeO2). In order to confirm the successful fabrication of Pd@CS-CeO2, FTIR, XRD, SEM, TEM, BET, TG/DTG, and EDS analyses were performed, and its performance was evaluated as a heterogeneous nanocatalyst in Heck coupling reaction and reduction of nitro compounds. The catalytic tests showed that the desired Heck products were readily produced by Pd@CS-CeO2 without being contaminated with the aryl iodides, bromides, and chlorides. Moreover, different nitro compounds were efficiently reduced to corresponding amino compounds by Pd@CS-CeO2 within 95-160 s. Thanks to the heterogeneous nature of Pd@CS-CeO2 catalyst, it was easily recovered via simple filtration and reused up to 5 successive runs by giving 88 % yield. Due to its good catalytic and reusability performance together with stability/durability, Pd@CS-CeO2 is promising candidate as a catalyst for various catalytic or organic reactions.
Collapse
Affiliation(s)
- Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Huri Dilruba Güzel
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
21
|
Lal Meena P, Kumar Saini J, Kumar Surela A. Granite Waste Mediated Synthesis of Polyaniline Nanofibers for the Catalytic Reduction of Hazardous Organic Water Toxins. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Baruah R, Goswami M, Das AM, Nath D, Talukdar K. Multifunctional ZnO Bionanocomposites in the Treatment of Polluted Water and Controlling of Multi-drug Resistant Bacteria. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
23
|
Jin J, Wu S, Wang J, Xu Y, Xuan S, Fang Q. AgPd nanocages sandwiched between a MXene nanosheet and PDA layer for photothermally improved catalytic activity and antibacterial properties. Dalton Trans 2023; 52:2335-2344. [PMID: 36723116 DOI: 10.1039/d2dt03596k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this work, a MXene@AgPd/polydopamine (PDA) nanosheet with excellent photothermal conversion efficiency was successfully synthesized by a simple redox-oxidative polymerization method. Interestingly, AgPd bimetallic nanocrystals sandwiched between a MXene nanosheet and PDA layer have cage-like nanostructure, which is favorable for high catalytic efficiency and antibacterial performance. Importantly, the MXene@AgPd/PDA nanosheet exhibits good catalytic activity for the reduction of 4-nitrophenol (1.2 min-1 mg-1) and the catalytic dynamics can be improved by about 1.2 times under NIR (near-infrared light, 808 nm, and 2.5 W cm-2) irradiation. As the PDA shell is well protected, the MXene@AgPd/PDA nanosheet retained more than 90% catalytic activity after 6 cycles. In addition, due to the presence of the Ag component, the MXene@AgPd/PDA nanosheet exhibited good antibacterial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Under near-infrared light irradiation, its antibacterial activity was further enhanced due to the NIR photothermal effect.
Collapse
Affiliation(s)
- Jie Jin
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
| | - Shanshan Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
| | - Jing Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, PR China
| | - Qunling Fang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| |
Collapse
|
24
|
Synthesis of Polymer-Metal Oxide (PANI/ZnO/MnO2) Ternary Nanocomposite for Effective Removal of Water Pollutants. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
25
|
El Mously DA, Mahmoud AM, Abdel-Raoof AM, Elgazzar E. Synthesis of Prussian Blue Analogue and Its Catalytic Activity toward Reduction of Environmentally Toxic Nitroaromatic Pollutants. ACS OMEGA 2022; 7:43139-43146. [PMID: 36467928 PMCID: PMC9713870 DOI: 10.1021/acsomega.2c05694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 06/01/2023]
Abstract
Nitroanilines are environmentally toxic pollutants which are released into aquatic systems due to uncontrolled industrialization. Therefore, it is crucial to convert these hazardous nitroanilines into a harmless or beneficial counterpart. In this context, we present the chemical reduction of 4-nitroaniline (4-NA) by NaBH4 utilizing Prussian blue analogue (PBA) as nanocatalyst. PBAs can serve as inexpensive, eco-friendly, and easily fabricated nanocatalysts. PBA cobalt tetracyanonickelate hexacyanochromate (CoTCNi/HCCr) was stoichiometrically prepared by a facile chemical coprecipitation. Chemical, phase, composition, and molecular interactions were investigated by XRD, EDX, XPS, and Raman spectroscopy. Additionally, SEM and TEM micrographs were utilized to visualize the microstructure of the nanomaterial. The findings revealed the synthesized PBA of the cubic phase and their particles in nanosheets. The band gap was estimated from the optical absorption within the UV-vis region to be 3.70 and 4.05 eV. The catalytic performance of PBA for the reduction of 4-NA was monitored by UV-vis spectroscopy. The total reduction time of 4-NA by PBA was achieved within 270 s, and the computed rate constant (k) was 0.0103 s-1. The synthesized PBA nanoparticles have the potential to be used as efficient nanocatalysts for the reduction of different hazardous nitroaromatics.
Collapse
Affiliation(s)
- Dina A. El Mously
- Analytical
Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, 11562Cairo, Egypt
| | - Amr M. Mahmoud
- Analytical
Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, 11562Cairo, Egypt
| | - Ahmed M. Abdel-Raoof
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, 11751Nasr City, CairoEgypt
| | - Elsayed Elgazzar
- Department
of Physics, Faculty of Science, Suez Canal
University, 41522Ismailia, Egypt
| |
Collapse
|
26
|
Azad M, Ali Khan G, Ismail F, Ahmed W. Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Alula MT, Madingwane ML, Yan H, Lemmens P, Zhe L, Etzkorn M. Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81938-81953. [PMID: 35739451 DOI: 10.1007/s11356-022-21619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana.
| | - Mildred Lesang Madingwane
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Hongdan Yan
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Liu Zhe
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| |
Collapse
|
28
|
Detection of 4-nitrophenol in wastewater using microstructures of various morphologies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Salunkhe NS, Koli SH, Mohite BV, Patil V, Patil SV. Xanthomonadin mediated synthesis of biocidal and photo-protective silver nanoparticles (XP-AgNPs). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Khan SA, Jain M, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT, Shetti NP, Aminabhavi TM. Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115675. [PMID: 35834856 DOI: 10.1016/j.jenvman.2022.115675] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increasing demand of pure and accessible water and improper disposal of waste into the existing water resources are the major challenges for sustainable development. Nanoscale technology is an effective approach that is increasingly being applied to water remediation. Compared to conventional water treatment processes, silver nanotechnology has been demonstrated to have advantages due to its anti-microbial and oligodynamic (biocidal) properties. This review is focused on environmentally friendly green syntheses of silver nanoparticles (AgNPs) and their applications for the disinfection and microbial control of wastewater. A bibliometric keyword analysis is conducted to unveil important keywords and topics in the utilisation of AgNPs for water treatment applications. The effectiveness of AgNPs, as both free nanoparticles (NPs) or as supported NPs (nanocomposites), to deal with noxious pollutants like complex dyes, heavy metals as well as emerging pollutants of concern is also discussed. This knowledge dataset will be helpful for researchers to identify and utilise the distinctive features of AgNPs and will hopefully stimulate the development of novel solutions to improve wastewater treatment. This review will also help researchers to prepare effective water management strategies using nano silver-based systems manufactured using green chemistry.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| |
Collapse
|
31
|
Huang Y, Li J, Zeng S, Li J, Peng Z. Preparation of Silver Nanoparticles Supported on Cellulose‐Immobilized Tannin Resin and Its Catalytic Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202202298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingchun Huang
- School of Chemistry and Chemical Engineering Jishou University, Jishou 416000 Hunan, P.R. China
| | - Jialing Li
- School of Chemistry and Chemical Engineering Jishou University, Jishou 416000 Hunan, P.R. China
| | - Shuling Zeng
- School of Chemistry and Chemical Engineering Jishou University, Jishou 416000 Hunan, P.R. China
| | - Jiaming Li
- School of Chemistry and Chemical Engineering Jishou University, Jishou 416000 Hunan, P.R. China
| | - Zhiyuan Peng
- School of Chemistry and Chemical Engineering Jishou University, Jishou 416000 Hunan, P.R. China
| |
Collapse
|
32
|
Pal N, Agarwal M, Gupta R. Green synthesis of guar gum/Ag nanoparticles and their role in peel-off gel for enhanced antibacterial efficiency and optimization using RSM. Int J Biol Macromol 2022; 221:665-678. [PMID: 36089092 DOI: 10.1016/j.ijbiomac.2022.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Polysaccharide-based guar gum (GG) biopolymer is used via a hydrothermal process to synthesize silver nanoparticles. The GG biopolymer act as a reducing and stabilizing agent. Moreover, GG was used for preparing peel-off masks to provide the desired consistency of formulation and synthesis of nanoparticles as an antibacterial agent. This work presents the novel GG/Ag nanoparticles peel-off gel and evaluates the antibacterial efficiency. The synthesized Ag-nanoparticles analyzed by UV-spectroscopy reflect a prominent peak at 413 nm. The size and distribution of nanoparticles were examined by TEM images obtained from the 6 to 18 nm range. We demonstrate the efficiency of peel-off facial gel as an antibacterial and preservative-free cosmetic product at different temperature ranges. The RSM study was used for parameter optimization of peel-off gel for extrudability, spreadability, and drying time by employing a CCD. The results show that the optimized GG, PVA, and ethanol concentration were 3.47, 8.30, and 5.80 w/w%, respectively, with 0.02 w/w% Ag nanoparticles. The peel-off gel antibacterial activity against Escherichia coli (11 ± 0.1 mm), Staphylococcus aureus (10 ± 0.3 mm), and Propionibacterium acnes (11 ± 0.3 mm). The peel-off gel was prepared from natural ingredients; due to this, it is non-toxic for human skin.
Collapse
Affiliation(s)
- Neha Pal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| |
Collapse
|
33
|
Rama Krishnan R, Rama Chandran S, Johnson E, Raveendrakurup R, Kakkadath Hariharan P. Bulk Level Synthesis of Solid Silver Nanocatalyst: Green Mediated Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Raji Rama Krishnan
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College, University of Kerala Alappuzha, Kerala India 688003
- Research Centre University of Kerala, Thiruvananthapuram Kerala India 695034
| | - Shine Rama Chandran
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College, University of Kerala Alappuzha, Kerala India 688003
- Research Centre University of Kerala, Thiruvananthapuram Kerala India 695034
| | - Elizabath Johnson
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College, University of Kerala Alappuzha, Kerala India 688003
- Research Centre University of Kerala, Thiruvananthapuram Kerala India 695034
| | - Rohith Raveendrakurup
- Research Centre University of Kerala, Thiruvananthapuram Kerala India 695034
- Materials for Energy Storage and Optoelectronics Device Group, Department of Physics Sanatana Dharma College, Alappuzha Kerala India- 688003
| | - Prema Kakkadath Hariharan
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College, University of Kerala Alappuzha, Kerala India 688003
- Research Centre University of Kerala, Thiruvananthapuram Kerala India 695034
| |
Collapse
|
34
|
Erdem HB, Çetinkaya S. Facile insitu preparation of silver nanoparticles supported on petroleum asphaltene-derived porous carbon for efficient reduction of nitrophenols. Heliyon 2022; 8:e10659. [PMID: 36158083 PMCID: PMC9493068 DOI: 10.1016/j.heliyon.2022.e10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, a facile in situ approach to synthesize catalytically active Ag nanoparticles supported on eco-friendly asphaltene-derived porous carbon (APC) was reported. Asphaltene-derived porous carbon was used as support for the first time for Ag@APC to prevent nanoparticles from aggregation, and then was evaluated as catalyst for the reduction of 4-nitrophenol (PNP), 2,4-dinitrophenol (DNP), and 2,4,6-trinitrophenol (TNP). The synthesized Ag nanoparticles were characterized by XRD, UV, BET, FESEM, TEM, and ICP analyses, revealing the formation of uniformly distributed, fcc structured crystalline Ag nanoparticles with BET surface area varied between 1500 and 1723 cm−1 with a porous carbon surface. Ag@APC nanocatalyst showed high catalytic efficiency in the reduction of nitrophenols in the presence of NaBH4 under mild conditions. The reduction of PNP, DNP, and TNP have pseudo-first-order rate constants of 0.3340, 0.2570, and 0.2408 min−1, respectively. The catalyst could be recyclable and reused for at least five successive runs without losing its original activity. Asphaltene-derived porous carbon (APC) was used as a support for Ag nanocatalyst (Ag@APC) for the first time. Facile in-situ preparation of Ag@APC catalyst. High catalytic efficiency (approximately 100%) in the nitrophenol reductions. High stability and reusability of Ag@APC catalyst.
Collapse
Affiliation(s)
- Hikmet Beyza Erdem
- Kırıkkale University, Department of Chemistry, Yahşihan 71450, Kırıkkale, Turkey
| | - Sevil Çetinkaya
- Kırıkkale University, Department of Chemistry, Yahşihan 71450, Kırıkkale, Turkey
| |
Collapse
|
35
|
Kumar B, Smita K, Awasthi SK, Debut A, Cumbal L. Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H 2O 2 sensing ability. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, Jharkhand, India
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Satish Kumar Awasthi
- Department of Chemistry, Chemical Biology Laboratory, University of Delhi, Delhi, India
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| |
Collapse
|
36
|
Huang Y, Li J, Zhou L, Cheng C, Hu Z, Peng Z. In-situ synthesis of silver nanoparticles on cellulose and its catalytic performance. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yingchun Huang
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Jialing Li
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Chen Cheng
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Ziqiang Hu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Zhiyuan Peng
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| |
Collapse
|
37
|
Zareh F, Gholinejad M, Mostafavi A, Sheibani H. Pd Nanoparticles Decorated on Ionic Liquid Modified Magnetite Nanoparticles as a Recyclable and Active Nanocatalyst for Reduction of Nitro Compounds and Degradation of Organic Dyes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fatemeh Zareh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195–1159, Gavazang Zanjan 45137–66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Ali Mostafavi
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman 76169 Iran
| |
Collapse
|
38
|
Optimization of PNP Degradation by UV-Activated Granular Activated Carbon Supported Nano-Zero-Valent-Iron-Cobalt Activated Persulfate by Response Surface Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138169. [PMID: 35805828 PMCID: PMC9266466 DOI: 10.3390/ijerph19138169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Nitrophenols are toxic substances that present humans and animals with the risk of deformities, mutations, or cancer when ingested or inhaled. Traditional water treatment technologies have high costs and low p-nitrophenol (PNP) removal efficiency. Therefore, an ultraviolet (UV)-activated granular activated carbon supported nano-zero-valent-iron-cobalt (Co-nZVI/GAC) activated persulfate (PS) system was constructed to efficiently degrade PNP with Co-nZVI/GAC dosage, PS concentration, UV power, and pH as dependent variables and PNP removal rate as response values. A mathematical model between the factors and response values was developed using a central composite design (CCD) model. The model-fitting results showed that the PNP degradation rate was 96.7%, close to the predicted value of 98.05 when validation tests were performed under Co-nZVI/GAC injection conditions of 0.827 g/L, PS concentration of 3.811 mmol/L, UV power of 39.496 W, and pH of 2.838. This study demonstrates the feasibility of the response surface methodology for optimizing the UV-activated Co-nZVI/GAC-activated PS degradation of PNP.
Collapse
|
39
|
Rafique A, Ikram M, Haider A, Ul-Hamid A, Naz S, Nabgan W, Haider J, Shahzadi I. Dye degradation, antibacterial activity and molecular docking analysis of cellulose/polyvinylpyrrolidone-doped cadmium sulphide quantum dots. Int J Biol Macromol 2022; 214:264-277. [PMID: 35714871 DOI: 10.1016/j.ijbiomac.2022.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
In present study, control sized cadmium sulphide (CdS) quantum dots (QDs) and cellulose nanocrystals grafted polyvinylpyrrolidone (CNC-g-PVP) doped CdS QDs were synthesized via co-precipitation. The suggested pathway is fruitful in throwing out organic pollutants like methylene blue (MB) from industrial water and bactericidal applications. A series of characterization techniques were used to determine the structural, optical and morphological qualities of prepared samples. The X-ray diffraction (XRD) pattern verified hexagonal structure with no significant change occurring in the spectrum upon doping (2, 4, and 6 %). The UV-vis spectrophotometer describes blueshift in absorption pattern, resulting in an increase in band gap energy (Eg) upon doping. Catalytic activity (CA) against MB in basic and neutral medium demonstrated remarkable results compared with the acidic medium. Furthermore, bactericidal potential of doped sample (6 %) exhibited the significantly higher inhibition zones of 5.25 mm and 4.05 mm against Staphylococcus aureus (S. aureus) or Gram-positive (G+ve) and Escherichia coli (E. coli) or Gram-negative (G-ve), respectively. In silico predictions for these doped QDs were performed against selected enzyme targets (i.e. DNA gyrase and FabI) to unveil the mystery governing these bactericidal activities.
Collapse
Affiliation(s)
- Aqsa Rafique
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000, Multan, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| |
Collapse
|
40
|
Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12122013. [PMID: 35745352 PMCID: PMC9227472 DOI: 10.3390/nano12122013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Collapse
Affiliation(s)
- Yasmina Khane
- Université de Ghardaia, BP455, Ghardaia 47000, Algeria
- Laboratory of Applied Chemistry (LAC), DGRSDT, Ctr. Univ. Bouchaib Belhadj, Ain Temouchent 46000, Algeria
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Khedidja Benouis
- Laboratory of Process Engineering, Materials and Environment, Department of Energy and Process Engineering, Faculty of Technology, University of Sidi Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Fares Fenniche
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Sofiane Khane
- Department of Energy and Process Engineering, Faculty of Technology, University of Djillali Liabes, Sidi Bel Abbes 22000, Algeria;
| | - Wahiba Chaibi
- Scientific and Technical Research Center in Chemistry and Physics Analysis, Bousmail RP 42415, Algeria;
| | - Abdallah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Hadj Daoud Bouras
- Département de Physique, Ecole Normale Supérieure de Laghouat, RP Rue des Martyrs, Laghouat BP 4033, Algeria;
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey;
| |
Collapse
|
41
|
Behera M, Tiwari N, Banerjee S, Sheik AR, Kumar M, Pal M, Pal P, Chatterjee RP, Chakrabortty S, Tripathy SK. Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Riaz M, Sharafat U, Zahid N, Ismail M, Park J, Ahmad B, Rashid N, Fahim M, Imran M, Tabassum A. Synthesis of Biogenic Silver Nanocatalyst and their Antibacterial and Organic Pollutants Reduction Ability. ACS OMEGA 2022; 7:14723-14734. [PMID: 35557704 PMCID: PMC9088900 DOI: 10.1021/acsomega.1c07365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/01/2022] [Indexed: 05/24/2023]
Abstract
Plant-mediated nanoparticles are gaining popularity due to biologically active secondary metabolites that aid in green synthesis. This study describes a simple, environmentally friendly, dependable, and cost-effective production of silver nanoparticles utilizing Cucumis sativus and Aloe vera aqueous leaf extracts. The aqueous leaf extracts of Cucumis sativus and Aloe vera, which worked as a reducing and capping agent, were used to biosynthesize silver nanoparticles (AgNPs). The formation of surface plasmon resonance peaks at 403 and 405 nm corresponds to the formation of colloidal Ag nanoparticles. Similarly, the Bragg reflection peaks in X-ray diffraction patterns observed at 2θ values of 38.01°, 43.98°, 64.24°, and 77.12° representing the planes of [111], [200], [220], and [311] correspond to the face-centered cubic crystal structure of silver nanoparticles. Fourier transform infrared spectroscopy confirms that bioactive chemicals are responsible for the capping of biogenic silver nanoparticles. The size, structure, and morphology of AgNPs with diameters ranging from 8 to 15 nm were examined using transmission electron microscopy. Water contamination by azo dyes and nitrophenols is becoming a more significant threat every day. The catalytic breakdown of organic azo dye methyl orange (MO) and the conversion of para-nitrophenol (PNP) into para-aminophenol using sodium borohydride was evaluated using the prepared biogenic nanoparticles. Our nanoparticles showed excellent reduction ability against PNP and MO with rate constants of 1.51 × 10-3 and 6.03 × 10-4s-1, respectively. The antibacterial activity of the nanomaterials was also tested against four bacteria: Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter, and Streptococcus pneumoniae. These biogenic AgNPs displayed effective catalytic and antibacterial characteristics by reducing MO and PNP and decreasing bacterial growth.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
- School
of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Uzma Sharafat
- Institute
of Chemical Sciences, University of Swat, Swat 19200, Khyber Pakhtunkhwa, Pakistan
| | - Nafeesa Zahid
- Department
of Botany, Mirpur University of Science
and Technology, Mirpur 10250, Azad Kashmir, Pakistan
| | - Muhammad Ismail
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Jeongwon Park
- School
of Electrical Engineering and Computer Science, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
- Department
of Electrical and Biomedical Engineering, University of Nevada, Reno 89557, Nevada, United States
| | - Bashir Ahmad
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Neelum Rashid
- Department
of Botany, Mirpur University of Science
and Technology, Mirpur 10250, Azad Kashmir, Pakistan
| | - Muhammad Fahim
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Muhammad Imran
- Department
of Biological Sciences, International Islamic
University Islamabad, Islamabad 44000, Pakistan
| | - Aisha Tabassum
- Department
of Biochemistry, University of Sialkot, Sialkot 51040, Pakistan
| |
Collapse
|
43
|
Intisar A, Ramzan A, Sawaira T, Kareem AT, Hussain N, Din MI, Bilal M, Iqbal HMN. Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials - A review. CHEMOSPHERE 2022; 293:133538. [PMID: 34998849 DOI: 10.1016/j.chemosphere.2022.133538] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Increasing demand of food and agriculture is leading us towards the increasing use and introduction of pesticides to the environment. The upright increase of pesticides in water and associated adverse effects have become a great point of concern to develop proficient methods for their mitigation from water. Various different methods have been traditionally employed for this purpose. Recently, nanotechnology has turned out to be the field of prodigious interest for this purpose, and various specific methods were developed and employed to remove pesticides from water. In this study, nanotechnological methods such as adsorption and degradation have been thoroughly discussed along with their applications and limitations where different types of nanoparticles, nanocomposites, nanotubes, and nanomembranes have played a vital role. However, in this study the most commonly adopted method of adsorption is considered to be the better technique due to its low cost, efficiency, and ease of operation. The adsorption kinetic models were described to explain the efficiency of the nano-adrsorbants in order to evaluate the mass transfer processes. However, various degradation methodologies including photocatalysis and catalytic reduction have also been elaborated. Numerous robust metal, metal oxide and functionalized magnetic nanomaterials have been emphasized, categorized, and compared for the removal of pesticides from water. Additionally, current challenges faced by researchers and future directions have also been provided.
Collapse
Affiliation(s)
- Azeem Intisar
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Arooj Ramzan
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Tehzeeb Sawaira
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Ama Tul Kareem
- School of Chemistry, University of the Punjab, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab Lahore, Pakistan
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
44
|
Ji C, Zheng J, Jin Y, Yin X, Han S, Zhang M. In Site Generation of Well‐Dispersed Ag
3
PO
4
NPs on Protein‐Inorganic Hybrid Nanoflowers with Enhanced Catalytic Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxiao Ji
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Jing Zheng
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Yuqin Jin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Xue‐bo Yin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Suping Han
- Department of Pharmacy Shandong Medical College No.5460 Erhuannanlu Road Jinan 250002 China
| | - Min Zhang
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
45
|
Dang VS, Tran HH, Dieu PTT, Tran MT, Dang CH, Mai DT, Doan VD, Nguyen TLH, Chi TTK, Nguyen TD. Effective catalysis and antibacterial activity of silver and gold nanoparticles biosynthesized by Phlogacanthus turgidus. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Ashrafi G, Nasrollahzadeh M, Jaleh B, Sajjadi M, Ghafuri H. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Adv Colloid Interface Sci 2022; 301:102599. [PMID: 35066374 DOI: 10.1016/j.cis.2022.102599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Due to the environmental pollution issues and the supply of drinking/clean water, removal of both inorganic and organic (particularly dyes, nitroarenes, and heavy metals) to non-dangerous products and useful compounds are very important transformations. The deployment of sustainable and eco-friendly nanomaterials with exceptional structural and unique features such as high efficiency and stability/recyclability, high surface/volume ratio, low-cost production routes has become a priority; nonetheless, numerous significant challenges/restrictions still remained unresolved. The immobilization of green synthesized metal nanoparticles (NPs) on the natural materials and biowaste generated templates have been analyzed widely as a greener approach due to their environmentally friendly preparation methods, earth-abundance, cost-effectiveness with low energy consumption, biocompatibility, as well as adjustability in various cases of biomolecules as bioreducing agents. Natural and biowaste materials are widely considered as important sources to fabricate greener and biosynthesized types of metal, metal oxide, and metal sulfide nanomaterials using plant extracts. Integrating green synthesized nanoparticles with various biotemplates offers new practical composites for mitigating environmental challenges. In this review, degradation of dyes, reduction of toxic nitrophenols, absorption of heavy metals, and other hazardous/toxic environmental pollutants from contaminated water bodies using biowaste- and nature-derived nanomaterials are highlighted.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran.
| | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
47
|
Bhatia P, Nath M. Ag nanoparticles anchored on NiO octahedrons (Ag/NiO composite): An efficient catalyst for reduction of nitro substituted phenols and colouring dyes. CHEMOSPHERE 2022; 290:133188. [PMID: 34906527 DOI: 10.1016/j.chemosphere.2021.133188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The development of an efficient sustainable catalyst for effective removal of hazardous chemicals, viz. nitrophenols and organic dyes, from wastewater is a challenging task. Herein, facile synthesis of Ag/NiO composites by anchoring Ag nanoparticles (NPs) on NiO octahedrons with different amounts of Ag NPs (AN-5% (5% Ag), AN-10% (10% Ag) and AN-15% (15% Ag)) has been demonstrated. SEM (scanning electron microscopic) and TEM (transmission electron spectroscopic) images ensured the proper anchoring of spherical Ag NPs (particle size = 16.54 ± 1.88 nm) on octahedron particles of NiO, which was also ensured by XPS (X-ray photoelectron spectroscopy) analysis. Moreover, the resulting composites have an average surface area (49-52 m2g‒1) and pore size (2.39-2.26 nm). All three synthesized Ag/NiO composites (100 μL) catalyzed the complete reduction of para-np (4-nitrophenol: 0.1587 mM) within 2-3 min in the presence of 0.04 M NaBH4. Among them, AN-5% has been chosen because of the lowest anchored Ag (5%) to obtain the optimized catalyst's amount (50 μL) and concentration of para-np (0.1587 mM). AN-5% also exhibited excellent catalytic activity towards different nitro substituted phenols, viz. ortho-np (2-nitrophenol), meta-np (3-nitrophenol), para-np (4-nitrophenol) and tri-np (2,4,6-trinitrophenol). AN-5% displayed ∼100% catalytic efficiency for reducing meta-np in 2 min with the apparent first order rate constant (kapp) and normalized rate constant (Knor) as 1.99 s-1 and 398.14 s-1 g-1, respectively. Additionally, AN-5% (29.41 μg mL-1) reduced >95% of the colouring dyes (10 ppm) such as CONG-R (congo red: 95% in 6 min), METH-O (methyl orange: 97.5% in 7 min), METH-B (methylene blue: 98.3% in 10 min) and RHOD-B (rhodamine B: 99.2% in 5 min). AN-5% not only demonstrated catalytic reduction towards individual pollutants, but also showed excellent activity for reduction of the mixtures of nitrophenols/dyes and for treatment of simulated industrial effluent samples (EFF1, EFF2) and a real industrial sample (textile dye-bath effluent). AN-5% can also be reused up to several cycles with almost same efficiency and followed the Langmuir-Hinshelwood apparent first order kinetics model.
Collapse
Affiliation(s)
- Pooja Bhatia
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
48
|
Bhat SA, Sher F, Hameed M, Bashir O, Kumar R, Vo DVN, Ahmad P, Lima EC. Sustainable nanotechnology based wastewater treatment strategies: achievements, challenges and future perspectives. CHEMOSPHERE 2022; 288:132606. [PMID: 34678350 DOI: 10.1016/j.chemosphere.2021.132606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Mariam Hameed
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Omar Bashir
- Department of Food Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir,Shalimar Srinagar,India
| | - Rohitashw Kumar
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Baruah R, Yadav A, Moni Das A. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens. NEW J CHEM 2022. [DOI: 10.1039/d1nj06198d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imperata cylindrica cellulose supported Ag bionanocomposites purified industrial water and controlled the contagious diseases with high potential activity.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Archana Yadav
- Biotechnology Group, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Moni Das
- Natural product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
50
|
Green synthesis of silver nanoparticles using Diplazium esculentum extract: catalytic reduction of methylene blue and antibacterial activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01835-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|