1
|
Ruiz-González N, Sánchez-deAlcázar D, Esporrín-Ubieto D, Di Carlo V, Sánchez S. Hyaluronic Acid-Based Nanomotors: Crossing Mucosal Barriers to Tackle Antimicrobial Resistance. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40298340 DOI: 10.1021/acsami.5c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Bacterial infections pose a significant global health challenge aggravated by the rise of antimicrobial resistance (AMR). Among the obstacles preventing effective treatment are biological barriers (BBs) within the body such as the mucus layer. These BBs trap antimicrobials, necessitating higher doses and ultimately accelerating AMR. Addressing this issue requires innovative therapeutic strategies capable of bypassing BBs to deliver drugs more effectively. Here, we present nanomotors (NMs) based on hyaluronic acid (HA)- and urease-nanogels (NGs) as a solution to navigate effectively in viscous media by catalyzing the decomposition of urea into ammonium and carbon dioxide. These HA-based nanomotors (HA-NMs) were loaded with chloramphenicol (CHL) antibiotic and demonstrated superior antimicrobial activity against Escherichia coli(E. coli) compared to mesoporous silica NMs (MSNP-NMs), a reference in the field of NMs. Moreover, using an in vitro transwell model we evaluated the ability of HA-NMs to penetrate mucin barriers, effectively reducing E. coli proliferation, whereas the free antibiotic did not reduce bacteria proliferation. The optical density reduction at 24 h was over ten times greater than with free CHL. These organic-based enzyme-powered NMs represent a significant advancement in drug delivery, offering a promising approach to combat AMR while addressing the challenges of crossing complex BBs.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- The Barcelona Institute of Science and Technology (BIST), Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat de Física, Universitat de Barcelona (UB). C. Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Daniel Sánchez-deAlcázar
- The Barcelona Institute of Science and Technology (BIST), Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- The Barcelona Institute of Science and Technology (BIST), Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Valerio Di Carlo
- The Barcelona Institute of Science and Technology (BIST), Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- The Barcelona Institute of Science and Technology (BIST), Institute for Bioengineering of Catalonia (IBEC), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
2
|
Rodella G, Préat V, Gallez B, Malfanti A. Design strategies for hyaluronic acid-based drug delivery systems in cancer immunotherapy. J Control Release 2025:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
3
|
Razzaq S, Fatima I, Moafian Z, Rahdar A, Fathi-Karkan S, Kharaba Z, Shirzad M, Khan A, Pandey S. Nanomedicine innovations in colon and rectal cancer: advances in targeted drug and gene delivery systems. Med Oncol 2025; 42:113. [PMID: 40097759 DOI: 10.1007/s12032-025-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has revolutionized cancer diagnostics and therapy, offering unprecedented possibilities to overcome the constraints of conventional treatments. This study provides a detailed overview of the current progress and difficulties in the creation of nanostructured materials, with a specific emphasis on their use in drug and gene delivery systems. The study examines tactics that attempt to improve the effectiveness and safety of chemotherapeutic drugs such as doxorubicin (Dox) by focusing on the potential of antibody-drug conjugates and functionalized nanoparticles. Moreover, it clarifies the challenges encountered in administering nanoparticles orally for gastrointestinal treatments, emphasizing the crucial physicochemical properties that affect their behavior in the gastrointestinal system. This study highlights the transformational potential of nanostructured materials in precision oncology by examining advanced breakthroughs such cell membrane-camouflaged nanoparticles and inorganic nanoparticles designed for gastrointestinal disorders. The text investigates the processes involved in the absorption of nanoparticles and their destruction in lysosomes, revealing the many methods in which enterocytes take up these particles. This study strongly supports the use of advanced nanoparticle-based methods to reduce the harmful effects on the whole body and improve the effectiveness of therapy, based on a thorough examination of current experiments on animals and humans. The main objective of this paper is to provide a fundamental comprehension that will stimulate more investigation and practical use in the field of cancer nanomedicine, advancing its boundaries.
Collapse
Affiliation(s)
- Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran.
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
4
|
Han M, Zhou X, Cheng H, Qiu M, Qiao M, Geng X. Chitosan and hyaluronic acid in colorectal cancer therapy: A review on EMT regulation, metastasis, and overcoming drug resistance. Int J Biol Macromol 2025; 289:138800. [PMID: 39694373 DOI: 10.1016/j.ijbiomac.2024.138800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Up to 90% of cancer-related fatalities could be attributed to metastasis. Therefore, understanding the mechanisms that facilitate tumor cell metastasis is beneficial for improving patient survival and results. EMT is considered the main process involved in the invasion and spread of CRC. Essential molecular components like Wnt, TGF-β, and PI3K/Akt play a role in controlling EMT in CRC, frequently triggered by various factors such as Snail, Twist, and ZEB1. These factors affect not only the spread of CRC but also determine the reaction to chemotherapy. The influence of non-coding RNAs, especially miRNAs and lncRNAs, on the regulation of EMT is clear in CRC. Exosomes, involved in cell-to-cell communication, can affect the TME and metastasis of CRC. Pharmacological substances and nanoparticles demonstrate promise as efficient modulators of EMT in CRC. Chitosan and HA are two major carbohydrate polymers with considerable potential in inhibiting CRC. Chitosan and HA can be employed to modify nanoparticles to enhance cargo transport for reducing CRC. Additionally, chitosan and HA-modified nanocarriers, which can be utilized as potential approaches in suppressing EMT and reversing drug resistance in CRC, can inhibit EMT and chemoresistance, crucial components in tumorigenesis.
Collapse
Affiliation(s)
- Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Hang Cheng
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Meng Qiao
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Xiao Geng
- Department of Party Committee Office, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| |
Collapse
|
5
|
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025; 14:61. [PMID: 39851489 PMCID: PMC11764402 DOI: 10.3390/cells14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
In recent years, hyaluronic acid (HA) has attracted increasing attention as a promising biomaterial for the development of drug delivery systems. Due to its unique properties, such as high biocompatibility, low toxicity, and modifiability, HA is becoming a basis for the creation of targeted drug delivery systems, especially in the field of oncology. Receptors for HA overexpressed in subpopulations of cancer cells, and one of them, CD44, is recognized as a molecular marker for cancer stem cells. This review examines the role of HA and its receptors in health and tumors and analyzes existing HA-based delivery systems and their use in various types of cancer. The development of new HA-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Maria Berishvili
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Yaroslav Lazarev
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Boybay E, Atilgan R, Pala Ş, Kuloğlu T, Artaş G. Investigation of Hyaluronan Synthase 2 and CD44 immune reactivity as a biomarker to predict Progesterone-Resistant Endometrial Hyperplasia without atypia: A retrospective case-control study. INDIAN J PATHOL MICR 2024; 67:747-752. [PMID: 38727422 DOI: 10.4103/ijpm.ijpm_631_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND/AIMS In our study, the effect of hyaluronan synthase 2 (HAS2) and CD44 immunoreactivity as a predictive biomarker in the prediction of progesterone-resistant endometrial hyperplasia (EH) cases without atypia was investigated. SETTINGS AND DESIGN In this retrospective study, HAS2 and CD44 immunoreactivity in the endometrial tissues of 60 patients diagnosed with EH and treated with progesterone and 20 patients diagnosed with proliferative endometrium (PE) were evaluated. MATERIALS AND METHODS Eighty patients were divided into four groups. Group 1 (G1) (n = 20) = PE group, G2 (n = 20) = EH group without atypia, G3 (n = 20) = group with continued EH with treatment, G4 (n = 20) = EH with treatment without atypia. STATISTICAL ANALYSIS Intergroup evaluation was done with One-way ANOVA and posthoc tukey test. P < 0.05 values were considered statistically significant. RESULTS The HAS2 immunoreactivity score of G2 and G3 was higher than G1 and G4. On the other hand, there was no difference between G1 and G4. When G2 and G3 were compared, HAS2 immunoreactivity scores were significantly increased in G3. When CD44 immunoreactivity was compared with G1, a significant increase was detected in G2, G3, and G4. However, CD44 immunoreactivity scores were similar in G2, G3, and G4. CONCLUSION HAS2 immunoreactivity may be an immunohistochemical biomarker in predicting EH cases without atypia resistant to progesterone therapy. Since CD44 immunoreactivity is increased in all EH groups without atypia, it is not effective in predicting treatment resistance.
Collapse
Affiliation(s)
- Emine Boybay
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Remzi Atilgan
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Şehmus Pala
- Department of Obstetrics and Gynecology, Firat University School of Medicine, Elazig, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embriology, Firat University School of Medicine, Elazig, Turkey
| | - Gökhan Artaş
- Department of Pathology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
7
|
Matějková N, Korecká L, Šálek P, Kočková O, Pavlova E, Kašparová J, Obořilová R, Farka Z, Frolich K, Adam M, Carrillo A, Šinkorová Z, Bílková Z. Hyaluronic Acid Nanoparticles with Parameters Required for In Vivo Applications: From Synthesis to Parametrization. Biomacromolecules 2024; 25:4934-4945. [PMID: 38943654 PMCID: PMC11323013 DOI: 10.1021/acs.biomac.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Hyaluronic acid is an excellent biocompatible material for in vivo applications. Its ability to bind CD44, a cell receptor involved in numerous biological processes, predetermines HA-based nanomaterials as unique carrier for therapeutic and theranostic applications. Although numerous methods for the synthesis of hyaluronic acid nanoparticles (HANPs) are available today, their low reproducibility and wide size distribution hinder the precise assessment of the effect on the organism. A robust and reproducible approach for producing HANPs that meet strict criteria for in vivo applications (e.g., to lung parenchyma) remains challenging. We designed and evaluated four protocols for the preparation of HANPs with those required parameters. The HA molecule was cross-linked by novel combinations of carbodiimide, and four different amine-containing compounds resulted in monodisperse HANPs with a low polydispersity index. By a complex postsynthetic characterization, we confirmed that the prepared HANPs meet the criteria for inhaled therapeutic delivery and other in vivo applications.
Collapse
Affiliation(s)
- Nikola Matějková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Lucie Korecká
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Petr Šálek
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Olga Kočková
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Ewa Pavlova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 6 162 00, Czech Republic
| | - Jitka Kašparová
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Radka Obořilová
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Zdeněk Farka
- Central
European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
| | - Karel Frolich
- Department
of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Martin Adam
- Department
of Analytical Chemistry, Faculty of Chemical
Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| | - Anna Carrillo
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Šinkorová
- Department
of Radiobiology, Faculty of Military Health
Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 01, Czech Republic
| | - Zuzana Bílková
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
| |
Collapse
|
8
|
Garbati P, Picco C, Magrassi R, Signorello P, Cacopardo L, Dalla Serra M, Faticato MG, De Luca M, Balestra F, Scavo MP, Viti F. Targeting the Gut: A Systematic Review of Specific Drug Nanocarriers. Pharmaceutics 2024; 16:431. [PMID: 38543324 PMCID: PMC10974668 DOI: 10.3390/pharmaceutics16030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 01/05/2025] Open
Abstract
The intestine is essential for the modulation of nutrient absorption and the removal of waste. Gut pathologies, such as cancer, inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and celiac disease, which extensively impact gut functions, are thus critical for human health. Targeted drug delivery is essential to tackle these diseases, improve therapy efficacy, and minimize side effects. Recent strategies have taken advantage of both active and passive nanocarriers, which are designed to protect the drug until it reaches the correct delivery site and to modulate drug release via the use of different physical-chemical strategies. In this systematic review, we present a literature overview of the different nanocarriers used for drug delivery in a set of chronic intestinal pathologies, highlighting the rationale behind the controlled release of intestinal therapies. The overall aim is to provide the reader with useful information on the current approaches for gut targeting in novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrizia Garbati
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Raffaella Magrassi
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Paolo Signorello
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Mauro Dalla Serra
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Maria Grazia Faticato
- Pediatric Surgery, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Maria De Luca
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| |
Collapse
|
9
|
Yang M, Jiang G, Li Y, Chen W, Zhang S, Wang R. Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study. Pharm Dev Technol 2024; 29:176-186. [PMID: 38376879 DOI: 10.1080/10837450.2024.2319738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE To enhance the retention times and therapeutic efficacy of paeoniflorin (PF), a liver-targeted drug delivery system has been developed using glycyrrhetinic acid (GA) as a ligand. SIGNIFICANCE The development and optimization of GA-modified PF liposomes (GPLs) have shown promising potential for targeted delivery to the liver, opening up new possibilities for liver disease treatment. METHODS This study aimed to identify the best prescriptions using single-factor experiments and response surface methodology. The formulation morphology was determined using transmission electron microscopy. Tissue distribution was observed through in vivo imaging, and pharmacokinetic studies were conducted. RESULTS The results indicated that GPLs, prepared using the thin film dispersion method and response surface optimization, exhibited well-dispersed and uniformly sized particles. The in vitro release rate of GPLs was slower compared to PF monomers, suggesting a sustained release effect. The liver-targeting ability of GA resulted in stronger fluorescence signals in the liver for targeted liposomes compared to non-targeted liposomes. Furthermore, pharmacokinetic studies demonstrated that GPLs significantly prolonged the residence time of PF in the bloodstream, thereby contributing to prolonged efficacy. CONCLUSION These findings suggest that GPLs are more effective than PF monomers in terms of controlling drug release and delivering drugs to specific targets, highlighting the potential of PF as a liver-protective drug.
Collapse
Affiliation(s)
- Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gang Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yumeng Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shantang Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
10
|
Rohtagi P, Garg U, Triveni, Jain N, Pandey M, Amin MCIM, Gorain B, Kumar P. Chitosan and hyaluronic acid-based nanocarriers for advanced cancer therapy and intervention. BIOMATERIALS ADVANCES 2024; 157:213733. [PMID: 38118207 DOI: 10.1016/j.bioadv.2023.213733] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Cancer has become a major public health issue leading to one of the foremost causes of morbidity and death in the world. Despite the current advances in diagnosis using modern technologies and treatment via surgery or chemo- and radio-therapies, severe side effects or after-effects limit the application of these treatment modalities. Novel drug delivery systems have shown the potential to deliver chemotherapeutics directly to cancer cells, thus minimizing unnecessary exposure to healthy cells. Concurrently, to circumvent difficulties associated with conventional deliveries of cancer therapeutics, natural polysaccharides have gained attention for the fabrication of such deliveries owing to biocompatibility, low toxicity, and biodegradability. It has been exhibited that natural polysaccharides can deliver high therapeutic concentrations of the entrapped drug to the target cells by sustained and targeted release. Considering the immense potential of natural polymers, the present work focuses on naturally generated biopolymer carriers based on chitosan and hyaluronic acid. This review delineated on the role of chitosan and its derivation from renewable resources as a biocompatible, biodegradable, nonimmunogenic material with notable antitumor activity as a drug delivery carrier in oncotherapy. Moreover, hyaluronic acid, itself by its structure or when linked with other molecules contributes to developing promising pharmaceutical delivery systems to setback the restrictions related to conventional cancer treatment.
Collapse
Affiliation(s)
- Parul Rohtagi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Triveni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India.
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh 123031, India.
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology & Vaccine, Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
11
|
Wang B, Xu XJ, Fu Y, Ren B, Yang XD, Yang HY. A tumor-targeted and enzyme-responsive gold nanorod-based nanoplatform with facilitated endo-lysosomal escape for synergetic photothermal therapy and protein therapy. Dalton Trans 2024; 53:2120-2130. [PMID: 38180436 DOI: 10.1039/d3dt03305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To tackle the obstacles related to tumor targeting and overcome the limitations of single treatment models, we have developed a nanoplatform that is both tumor-targeted and enzyme-responsive. This nanoplatform integrates photothermal gold nanorods (AuNRs) and protein drugs into a single system. This nanosystem, known as AuNRs@HA-mPEG-Deta-LA, was fabricated by modifying gold nanorods (AuNRs) with a polymeric ligand called hyaluronic acid-grafted-(mPEG/diethylenetriamine-conjugated-lipoic acid). The purpose of this fabrication was to load cytochrome c (CC) and utilize it for the synergetic protein-photothermal therapy of cancer. The resulting nanoplatform exhibited a high efficiency in loading proteins and demonstrated excellent stability in different biological environments. Additionally, CC-loaded AuNRs@HA-mPEG-Deta-LA not only enabled localized hyperthermia for photothermal therapy (PTT) with laser irradiation but also facilitated the release of CC under the action of hyaluronidase, an enzyme known to be overexpressed in tumor cells. The confocal imaging results demonstrated that the presence of a specific polymeric ligand on this nanoparticle enhances the internalization of CD44-positive cancer cells, accelerates endo/lysosomal escape, and facilitates the controlled release of CC within the cells. Furthermore, the results of the MTT assay also showed that AuNRs@HA-mPEG-Deta-LA as a protein nanocarrier demonstrated excellent biocompatibility. Importantly, this synergistic therapeutic strategy effectively induced apoptosis in A549 cancer cells by increasing the intracellular concentration of CC and utilizing the photothermal conversion of AuNRs, which was observed to be more effective compared to using only protein therapy or PTT. Therefore, this study showcased a nanoplatform based on AuNRs that has great potential for tumor-targeted protein delivery in combination with PTT in cancer treatment.
Collapse
Affiliation(s)
- Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Xin Jun Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| | - Bo Ren
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Xiao Dong Yang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, P. R. China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, China.
| |
Collapse
|
12
|
Yu J, Liu Y, Zhang Y, Ran R, Kong Z, Zhao D, Liu M, Zhao W, Cui Y, Hua Y, Gao L, Zhang Z, Yang Y. Smart nanogels for cancer treatment from the perspective of functional groups. Front Bioeng Biotechnol 2024; 11:1329311. [PMID: 38268937 PMCID: PMC10806105 DOI: 10.3389/fbioe.2023.1329311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction: Cancer remains a significant health challenge, with chemotherapy being a critical treatment modality. However, traditional chemotherapy faces limitations due to non-specificity and toxicity. Nanogels, as advanced drug carriers, offer potential for targeted and controlled drug release, improving therapeutic efficacy and reducing side effects. Methods: This review summarizes the latest developments in nanogel-based chemotherapy drug delivery systems, focusing on the role of functional groups in drug loading and the design of smart hydrogels with controlled release mechanisms. We discuss the preparation methods of various nanogels based on different functional groups and their application in cancer treatment. Results: Nanogels composed of natural and synthetic polymers, such as chitosan, alginate, and polyacrylic acid, have been developed for chemotherapy drug delivery. Functional groups like carboxyl, disulfide, and hydroxyl groups play crucial roles in drug encapsulation and release. Smart hydrogels have been engineered to respond to tumor microenvironmental cues, such as pH, redox potential, temperature, and external stimuli like light and ultrasound, enabling targeted drug release. Discussion: The use of functional groups in nanogel preparation allows for the creation of multifunctional nanogels with high drug loading capacity, controllable release, and good targeting. These nanogels have shown promising results in preclinical studies, with enhanced antitumor effects and reduced systemic toxicity compared to traditional chemotherapy. Conclusion: The development of smart nanogels with functional group-mediated drug delivery and controlled release strategies represents a promising direction in cancer therapy. These systems offer the potential for improved patient outcomes by enhancing drug targeting and minimizing adverse effects. Further research is needed to optimize nanogel design, evaluate their safety and efficacy in clinical trials, and explore their potential for personalized medicine.
Collapse
Affiliation(s)
- Jiachen Yu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yuting Liu
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
- Shenyang Traditional Chinese Medicine Hospital, China Medical University, Shenyang, China
| | - Yingchun Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rong Ran
- Department of Anesthesia, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zixiao Kong
- China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Minda Liu
- Department of Oral-maxillofacial Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Wu YC, Su MC, Wu CS, Chen PY, Chen IF, Lin FH, Kuo SM. Ameliorative Effects of Cumin Extract-Encapsulated Chitosan Nanoparticles on Skeletal Muscle Atrophy and Grip Strength in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2023; 13:6. [PMID: 38275626 PMCID: PMC10812640 DOI: 10.3390/antiox13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Skeletal muscle atrophy is a disorder characterized by reductions in muscle size and strength. Cumin extract (CE) possesses anti-inflammatory, antioxidant, and hypoglycemic properties. Its pharmaceutical applications are hindered by its low water solubility and by its cytotoxicity when administered at high doses. In this study, we have developed a simplified water distillation method using a rotary evaporator to isolate the active components in cumin seeds. The anti-inflammatory effects of CE and its potential to ameliorate skeletal muscle atrophy in rats with streptozotocin (STZ)-induced diabetes were evaluated. The half-maximal inhibitory concentration (IC50) of CE for cells was 80 μM. By encapsulating CE in chitosan nanoparticles (CECNs), an encapsulation efficacy of 87.1% was achieved with a slow release of 90% of CE after 24 h of culturing, resulting in CECNs with significantly reduced cytotoxicity (IC50, 1.2 mM). Both CE and CECNs significantly reduced the inflammatory response in interleukin (IL)-6 and IL-1β assays. STZ-induced diabetic rats exhibited sustained high blood glucose levels (>16.5 mmol/L), small and damaged pancreatic β islets, and skeletal muscle atrophy. CE and CECN treatments ameliorated skeletal muscle atrophy, recovered muscle fiber striated appearance, increased grip strength, and decreased IL-6 level. Furthermore, CE and CECNs led to a reduction of damage to the pancreas, restoring its morphological phenotype, increasing serum insulin levels, and lowering blood glucose levels in STZ-induced diabetic rats. Taken together, treatment with CECNs over a 6-week period yielded positive ameliorative effects in STZ-induced rats of muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chiuan Wu
- Republic of China Military Academy, Kaohsiung 830208, Taiwan;
- Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan
| | - Min-Chien Su
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - Chun-Shien Wu
- Center of General Education, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Pin-Yu Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - I-Fen Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Shyh-Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 84001, Taiwan; (M.-C.S.); (P.-Y.C.); (I.-F.C.)
| |
Collapse
|
14
|
Mendoza-Muñoz N, Leyva-Gómez G, Piñón-Segundo E, Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Prado Audelo ML, Urbán-Morlán Z. Trends in biopolymer science applied to cosmetics. Int J Cosmet Sci 2023; 45:699-724. [PMID: 37402111 DOI: 10.1111/ics.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.
Collapse
Affiliation(s)
- Néstor Mendoza-Muñoz
- Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad de Colima, Colima, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Piñón-Segundo
- Laboratorio de Sistemas Farmacéuticos de Liberación Modificada, L13, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - María L Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli, Mexico
| | | | - Zaida Urbán-Morlán
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
15
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
16
|
Babula A, Gałuszka-Bulaga A, Węglarczyk K, Siedlar M, Baj-Krzyworzeka M. CD44‑hyaluronan axis plays a role in the interactions between colon cancer‑derived extracellular vesicles and human monocytes. Oncol Lett 2023; 26:413. [PMID: 37600336 PMCID: PMC10436155 DOI: 10.3892/ol.2023.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
During tumor progression, monocytes circulating in the blood or infiltrating tissue may be exposed to tumor-derived extracellular vesicles (TEVs). The first stage of such interactions involves binding of TEVs to the surface of monocytes, followed by their internalization. The present study examines the role of CD44 molecules in the interactions between monocytes and EVs derived from colon cancer cell lines (HCT116 and SW1116). The efficiency of the attachment and engulfment of TEVs by monocytes is linked to the number of TEVs and time of exposure/interaction. The two investigated TEVs, TEVsHCT116 and TEVsSW1116, originating from HCT116 and SW1116 cells, respectively, differ in hyaluronan (HA) cargo, which reflects HA secretion by parental cancer cells. HA-rich TEVsHCT116 are internalized more effectively in comparison with HA-low TEVsSW1116. Blocking of CD44 molecules on monocytes by anti-CD44 monoclonal antibody significantly decreased the engulfment of TEVsHCT116 but not that of TEVsSW1116 after 30 min contact, suggesting the involvement of the HA-CD44 axis. The three subsets of monocytes, classical, intermediate and non-classical, characterized by gradual changes in the expression of CD14 and CD16 markers, also differ in the expression of CD44. The highest expression of CD44 molecules was observed in the intermediate monocyte subset. Blocking of CD44 molecules decreased the internalization of HA-rich TEVs in all three subsets, which is associated with CD44 expression level. It was hypothesized that HA carried by TEVs, potentially as a component of the 'corona' coating, may facilitate the interaction between subsets of monocytes and TEVs, which may influence the fate of TEVs (such as the rate of TEVs adhesion and engulfment) and change monocyte activity.
Collapse
Affiliation(s)
- Aneta Babula
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| |
Collapse
|
17
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
18
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
19
|
Uthappa UT, Suneetha M, Ajeya KV, Ji SM. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023; 15:1713. [PMID: 37376161 DOI: 10.3390/pharmaceutics15061713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in improving specificity and efficacy in cancer therapy. This review discusses the significance of nanotechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in cancer therapy applications. Additionally, the role of various types of selected noble and non-noble M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting. Additionally, the purpose of HA, its sources and production processes, as well as its chemical and biological properties are described. In-depth explanations are provided about the contemporary applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy. Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations, are discussed, followed by a conclusion and future prospects.
Collapse
Affiliation(s)
- Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
20
|
Jyoti K, Malik G, Chaudhary M, Madan J, Kamboj A. Hyaluronate decorated polyethylene glycol linked poly(lactide-co-glycolide) nanoparticles encapsulating MUC-1 peptide augmented mucosal immune response in Balb/c mice through inhalation route. Biochim Biophys Acta Gen Subj 2023; 1867:130317. [PMID: 36731729 DOI: 10.1016/j.bbagen.2023.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES NSCLC (Non-Small Cell Lung Cancer) clutches highest mortality rate in man and women globally. The present study was conducted to target MUC-1 peptide (M-1) into antigen presenting cells by cargo the peptide into hyaluronic acid decorated polyethylene glycol linked poly (D, l-lactide-co-glycolide) nanoparticles (M-1-PL-co-GA-PEG-sHA-NPs) for generating mucosal immunity through inhalation (i.h.) route. METHODOLOGY AND RESULTS The mean particle size and surface charge of M-1-PL-co-GA-PEG-sHA-NPs was measured to be 136.2 ± 18.38-nm and - 28.34 ± 6.77-mV, respectively, prepared by non-aggregated emulsion-diffusion evaporation method. The 28.42% percentage release of M-1 peptide from M-1-PL-co-GA-PEG-NPs was observed to be at 2 h and 95.29% at 8 h while the percentage release of M-1 peptide from M-1-PL-co-GA-PEG-sHA-NPs was observed to be 26.02% at 4 h and 97.95% at 24 h that proved the prolonged release of antigen. M-1-PL-co-GA-PEG-sHA-NPs demonstrated higher (P < 0.05) cellular uptake of 86.2% in RAW 264.7 cells in comparison to 27.6% of M-1-PL-co-GA-PEG-NPs. In addition, M-1-PL-co-GA-PEG-sHA-NPs induced remarkably (P < 0.05) elevated release of 80.6-pg/ml of TNF-α in comparison to 5-pg/ml by culture medium and 57.9-pg/ml of TNF-α by M-1-PL-co-GA-PEG-NPs. Similarly, M-1-PL-co-GA-PEG-sHA-NPs persuade remarkably (P < 0.05) elevated release of 225-pg/ml of IL-1β in comparison to 47-pg/ml by culture medium and 161.9-pg/ml of IL-1β by M-1-PL-co-GA-PEG-NPs. M-1-PL-co-GA-PEG-sHA-NPs might have been endocytosed through receptor mediated pathway owing to presence of sHA. Mice immunized through i.h. route with M-1-PL-co-GA-PEG-sHA-NPs induced strong (P < 0.05) IgA antibody titre as compared to M-1-PL-co-GA-PEG-NPs and M-1 peptide in dose-dosage regimen. CONCLUSION M-1-PL-co-GA-PEG-sHA-NPs nanovaccine warrants further analysis in xenograft model of NSCLC to showcase its antitumor capability.
Collapse
Affiliation(s)
- Kiran Jyoti
- IKG Punjab Technical University, Jalandhar, Punjab, India; Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India.
| | - Garima Malik
- MM College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India
| | | | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anjoo Kamboj
- Department of Pharmaceutics, Chandigarh College of Pharmacy, Mohali, Punjab, India
| |
Collapse
|
21
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
Affiliation(s)
- Peichun Peng
- International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Academy of Medical Sciences, Nanning, China
| | - Miaodong Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bin Wen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- Department of Basic Medical Science College, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
22
|
Kim HM, Park JH, Choi YJ, Oh JM, Park J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv 2023; 13:5529-5537. [PMID: 36798609 PMCID: PMC9926166 DOI: 10.1039/d2ra07276a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hyaluronic acid (HA) is a natural linear polysaccharide which has been widely used in cosmetics and pharmaceuticals including drug delivery systems because of its excellent biocompatibility. In this study, we investigated the one-pot synthesis of HA-coated gold nanoparticles (AuNP-HA) as a drug delivery carrier. The HAs with different molecular weights were produced by e-beam irradiation and employed as coating materials for AuNPs. Sulfasalazine (SSZ), a poorly water-soluble drug, was used to demonstrate the efficiency of drug delivery and the controlled release behaviour of the AuNP-HA. As the molecular weight of the HA decreased, the drug encapsulation efficiency of the SSZ increased up to 94%, while drug loading capacity of the SSZ was maintained at the level of about 70%. The prepared AuNP-HA-SSZ exhibited slow release of the SSZ over a short time and excellent sensitivity to different pHs and physiological conditions. The SSZ release rate was the lowest in simulated gastric conditions and the highest in simulated intestinal conditions. In this case, the AuNP-HA protects the SSZ from release under the acidic pH conditions in the stomach; on the other hand, the drug release was facilitated in the basic environment of the small intestine and colon. The SSZ was released under simulated intestinal conditions through anomalous drug transport and followed the Korsmeyer-Peppas model. Therefore, this study suggests that AuNP-HA is a promising orally-administered and intestine-targeted drug delivery system with controlled release characteristics.
Collapse
Affiliation(s)
- Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae Hong Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - You Jin Choi
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul 04620Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| |
Collapse
|
23
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
25
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
26
|
Coninx S, Kalot G, Godard A, Bodio E, Goze C, Sancey L, Auzély-Velty R. Tailored hyaluronic acid-based nanogels as theranostic boron delivery systems for boron neutron cancer therapy. Int J Pharm X 2022; 4:100134. [PMID: 36304136 PMCID: PMC9594117 DOI: 10.1016/j.ijpx.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Boron-rich nanocarriers possess great potential for advanced boron neutron capture therapy (BNCT) as an effective radiation treatment for invasive malignant tumors. If additionally, they can be imaged in a non-invasive and real-time manner allowing the assessment of local boron concentration, they could serve for dose calculation and image-guided BNCT to enhance tumor treatment efficacy. To meet this challenge, this study describes the design of a theranostic nanogel, enriched in 10B and fluorescent dye, to achieve selective imaging, and sufficient accumulation of boron at the tumor site. The boron-rich and fluorescent nanogels can be easily obtained via temperature triggered-assembly of hyaluronic acid (HA) modified with a thermoresponsive terpolymer. The latter was specifically designed to enable the efficient encapsulation of the fluorescent dye – an aza‑boron-dipyrromethene (aza-BODIPY) – linked to 10B-enriched sodium borocaptate (BSH), in addition to induce nanogel formation below room temperature, and to enable their core-crosslinking by hydrazone bond formation. The HA nanogel considerably concentrates aza-BODIPY-BSH into the hydrophobic nanodomains made of the terpolymer chains. Here, we present the detailed synthesis of the HA-terpolymer conjugate, nanogel formation, and characterization in terms of size, morphology, and stability upon storage, as well as the biological behavior of the boron nanocarrier using real-time fluorescence imaging in cells and in vivo. This work suggested the potential of the theranostic HA nanogel as a boron delivery system for the implementation of BNCT in brain cancer and sarcoma.
Collapse
Affiliation(s)
- Simon Coninx
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France
| | - Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France,Corresponding author.
| |
Collapse
|
27
|
Hyaluronan Oligosaccharides-Coated Paclitaxel-Casein Nanoparticles with Enhanced Stability and Antitumor Activity. Nutrients 2022; 14:nu14193888. [PMID: 36235540 PMCID: PMC9573597 DOI: 10.3390/nu14193888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to develop specific-molecular-weight hyaluronic acid oligosaccharides-coated paclitaxel-loaded casein nanoparticles (HA-PT-Cas NPs) via chemical conjugation to increase the stability and antitumor effects. Optimized HA-PT-Cas NPs (HA/casein of 3:1) were obtained with a mean size of 235.3 nm and entrapment efficiency of 93.1%. HA-PT-Cas exhibited satisfactory stability at 4 °C for 12 days and 37 °C for 3 h; paclitaxel was retained at rates of 81.4% and 64.7%, respectively, significantly higher than those of PT-Cas (only 27.8% at 4 °C after 16 h and 20.3% at 37 °C after 3 h). HA-PT-Cas exhibited high efficiency (61.3%) in inhibiting A375 tumor owing to the enhanced stability of HA oligosaccharides barrier, which was comparable with that of 10 μg/mL cis-platinum (64.9%). Mice experiments showed the 74.6% tumor inhibition of HA-PT-Cas by intravenously administration, significantly higher than that of PT-casein (39.8%). Therefore, this work provides an effective carrier for drug delivery via HA oligomers-coated modification.
Collapse
|
28
|
Li L, Jiang R, Shan B, Lu Y, Zheng C, Li M. Near-infrared II plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors. Nat Commun 2022; 13:5249. [PMID: 36068273 PMCID: PMC9448796 DOI: 10.1038/s41467-022-32975-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
In vivo surface-enhanced Raman scattering (SERS) imaging allows non-invasive visualization of tumors for intraoperative guidance and clinical diagnostics. However, the in vivo utility of SERS is greatly hampered by the strong optical scattering and autofluorescence background of biological tissues and the lack of highly active plasmonic nanostructures. Herein, we report a class of porous nanostructures comprising a cubic AuAg alloy nanoshell and numerous nanopores. Such porous nanostructures exhibit excellent near-infrared II plasmonic properties tunable in a broad spectral range by varying the pore features while maintaining a small dimension. We demonstrate their exceptional near-infrared II SERS performance varying with the porous properties. Additionally, near-infrared II SERS probes created with porous cubic AuAg nanoshells are demonstrated with remarkable capability for in vivo visualization of sub-millimeter microtumors in a living mouse model. Our near-infrared II SERS probes hold great potentials for precise demarcation of tumor margins and identification of microscopic tumors.
Collapse
Affiliation(s)
- Linhu Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Renting Jiang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Beibei Shan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yaxuan Lu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
29
|
Biopolymeric Prodrug Systems as Potential Antineoplastic Therapy. Pharmaceutics 2022; 14:pharmaceutics14091773. [PMID: 36145522 PMCID: PMC9505808 DOI: 10.3390/pharmaceutics14091773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, cancer represents a major public health issue, a substantial economic issue, and a burden for society. Limited by numerous disadvantages, conventional chemotherapy is being replaced by new strategies targeting tumor cells. In this context, therapies based on biopolymer prodrug systems represent a promising alternative for improving the pharmacokinetic and pharmacologic properties of drugs and reducing their toxicity. The polymer-directed enzyme prodrug therapy is based on tumor cell targeting and release of the drug using polymer–drug and polymer–enzyme conjugates. In addition, current trends are oriented towards natural sources. They are biocompatible, biodegradable, and represent a valuable and renewable source. Therefore, numerous antitumor molecules have been conjugated with natural polymers. The present manuscript highlights the latest research focused on polymer–drug conjugates containing natural polymers such as chitosan, hyaluronic acid, dextran, pullulan, silk fibroin, heparin, and polysaccharides from Auricularia auricula.
Collapse
|
30
|
Alipoor R, Ayan M, Hamblin MR, Ranjbar R, Rashki S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Front Bioeng Biotechnol 2022; 10:913912. [PMID: 35757807 PMCID: PMC9213665 DOI: 10.3389/fbioe.2022.913912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial contamination of medical devices is a great concern for public health and an increasing risk for hospital-acquired infections. The ongoing increase in antibiotic-resistant bacterial strains highlights the urgent need to find new effective alternatives to antibiotics. Hyaluronic acid (HA) is a valuable polymer in biomedical applications, partly due to its bactericidal effects on different platforms such as contact lenses, cleaning solutions, wound dressings, cosmetic formulations, etc. Because the pure form of HA is rapidly hydrolyzed, nanotechnology-based approaches have been investigated to improve its clinical utility. Moreover, a combination of HA with other bactericidal molecules could improve the antibacterial effects on drug-resistant bacterial strains, and improve the management of hard-to-heal wound infections. This review summarizes the structure, production, and properties of HA, and its various platforms as a carrier in drug delivery. Herein, we discuss recent works on numerous types of HA-based nanoparticles to overcome the limitations of traditional antibiotics in the treatment of bacterial infections. Advances in the fabrication of controlled release of antimicrobial agents from HA-based nanosystems can allow the complete eradication of pathogenic microorganisms.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somaye Rashki
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Development of a pH-Responsive Polymer Based on Hyaluronic Acid Conjugated with Imidazole and Dodecylamine for Nanomedicine Delivery. Macromol Res 2022. [DOI: 10.1007/s13233-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Mohammed M, Devnarain N, Elhassan E, Govender T. Exploring the applications of hyaluronic acid-based nanoparticles for diagnosis and treatment of bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1799. [PMID: 35485247 PMCID: PMC9539990 DOI: 10.1002/wnan.1799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA‐based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA. These nanoparticles are able to selectively deliver antibacterial drugs or diagnostic molecules into the site of infections. In addition, HA can bind with overexpressed cluster of differentiation 44 (CD44) receptors in macrophages and also can be degraded by a family of enzymes called hyaluronidase (HAase) to release drugs or molecules. By binding with these receptors or being degraded at the infection site by HAase, HA‐based nanoparticles allow enhanced and targeted antibacterial delivery. Herein, we present a comprehensive and up‐to‐date review that highlights various techniques of preparation of HA‐based nanoparticles that have been reported in the literature. Furthermore, we also discuss and critically analyze numerous types of HA‐based nanoparticles that have been employed in antibacterial delivery to date. This article offers a critical overview of the potential of HA‐based nanoparticles to overcome the challenges of conventional antibiotics in the treatment of bacterial infections. Moreover, this review identifies further avenues of research for developing multifunctional and biomimetic HA‐based nanoparticles for the treatment, prevention, and/or detection of pathogenic bacteria. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Mahir Mohammed
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
33
|
Liu Y, Peng B. A Novel Hyaluronic Acid-Black Rice Anthocyanins Nanocomposite: Preparation, Characterization, and Its Xanthine Oxidase (XO)-Inhibiting Properties. Front Nutr 2022; 9:879354. [PMID: 35495941 PMCID: PMC9048741 DOI: 10.3389/fnut.2022.879354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
To promote the normal metabolism of human uric acid, high-performance hyaluronic acid-black rice anthocyanins (HAA) nanocomposite particles were successfully prepared by a simple crosslinking method as a novel xanthine oxidase inhibitor. Its structure and properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), and X-ray diffraction (XRD). SEM and TEM electron microscopy showed an obvious double-layer spherical structure with a particle size of ~298 nm. FT-IR and XRD analysis confirmed that black rice anthocyanins (ATC) had been successfully loaded into the hyaluronic acid (HA) structure. Nanocomposite particles (embedded form) showed higher stability in different environments than free black rice ATC (unembedded form). In addition, the preliminary study showed that the inhibition rate of the nanocomposite particles on Xanthine oxidase (XO) was increased by 40.08%. These results indicate that HAA nanocomposite particles can effectively improve black rice ATC's stability and activity, creating an ideal new material for inhibiting XO activity that has a broad application prospect.
Collapse
|
34
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
35
|
Dave R, Randhawa G, Kim D, Simpson M, Hoare T. Microgels and Nanogels for the Delivery of Poorly Water-Soluble Drugs. Mol Pharm 2022; 19:1704-1721. [PMID: 35319212 DOI: 10.1021/acs.molpharmaceut.1c00967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While microgels and nanogels are most commonly used for the delivery of hydrophilic therapeutics, the water-swollen structure, size, deformability, colloidal stability, functionality, and physicochemical tunability of microgels can also offer benefits for addressing many of the barriers of conventional vehicles for the delivery of hydrophobic therapeutics. In this review, we describe approaches for designing microgels with the potential to load and subsequently deliver hydrophobic drugs by creating compartmentalized microgels (e.g., core-shell structures), introducing hydrophobic domains in microgels, leveraging host-guest interactions, and/or applying "smart" environmentally responsive materials with switchable hydrophobicity. In particular, the challenge of promoting hydrophobic drug loading without compromising the inherent advantages of microgels as delivery vehicles and ensuring practically relevant release kinetics from such structures is highlighted, with an eye toward the practical translation of such vehicles to the clinic.
Collapse
Affiliation(s)
- Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Gurpreet Randhawa
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Daeun Kim
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Madeline Simpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
36
|
|
37
|
Zhang T, Abdelaziz MM, Cai S, Yang X, Aires DJ, Forrest ML. Hyaluronic acid carrier-based photodynamic therapy for head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2022; 37:102706. [PMID: 34954388 PMCID: PMC8898305 DOI: 10.1016/j.pdpdt.2021.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional photosensitizers for photodynamic therapy (PDT) typically have wide tissue distribution and poor water solubility. A hyaluronic acid (HA) polymeric nanoparticle with specific lymphatic uptake and highly water solubility was developed to deliver pyropheophorbide-a (PPa) for locally advanced head and neck squamous cell carcinoma (HNSCC) treatment. METHODS AND RESULTS PPa was chemically conjugated to the HA polymeric nanoparticle via an adipic acid dihydrazide (ADH) linker. The conjugates were injected subcutaneously in a region near the tumor. Near-infrared (NIR) imaging was used to monitor distribution, and diode laser was used to activate PPa. The singlet oxygen generation efficiency of PPa was not affected by conjugation to HA nanoparticles at a PPa loading degree of 1.89 w.t.%. HA-ADH-PPa inhibited human HNSCC MDA-1986 cell growth only when photo-irradiation was applied. After HA-ADH-PPa treatment and radiation, NU/NU mice bearing human HNSCC MDA-1986 tumors showed reduced tumor growth and significantly enhanced survival time compared with an untreated group (p < 0.05). CONCLUSIONS These results demonstrate that HA-ADH-PPa could be useful for in vivo locoregional photodynamic therapy of HNSCC.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | - Shuang Cai
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - Xinmai Yang
- Department of Bioengineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Daniel J. Aires
- Division of Dermatology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,Author for correspondence Phone: 1-785-864-4388,
| |
Collapse
|
38
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
39
|
Design of Bio-Responsive Hyaluronic Acid-Doxorubicin Conjugates for the Local Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010124. [PMID: 35057020 PMCID: PMC8781529 DOI: 10.3390/pharmaceutics14010124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma is an unmet clinical need. Local treatment strategies offer advantages, such as the possibility to bypass the blood–brain barrier, achieving high drug concentrations at the glioblastoma site, and consequently reducing systemic toxicity. In this study, we evaluated the feasibility of using hyaluronic acid (HA) for the local treatment of glioblastoma. HA was conjugated to doxorubicin (DOX) with distinct bio-responsive linkers (direct amide conjugation HA-NH-DOX), direct hydrazone conjugation (HA-Hz-DOX), and adipic hydrazone (HA-AdpHz-DOX). All HA-DOX conjugates displayed a small size (less than 30 nm), suitable for brain diffusion. HA-Hz-DOX showed the best performance in killing GBM cells in both 2D and 3D in vitro models and displayed superior activity in a subcutaneous GL261 tumor model in vivo compared to free DOX and other HA-DOX conjugates. Altogether, these results demonstrate the feasibility of HA as a polymeric platform for the local treatment of glioblastoma and the importance of rationally designing conjugates.
Collapse
|
40
|
Silva-Carvalho R, Leão T, Bourbon AI, Gonçalves C, Pastrana L, Parpot P, Amorim I, Tomas AM, Portela da Gama M. Hyaluronic acid-Amphotericin B Nanocomplexes: a Promising Anti-Leishmanial Drug Delivery System. Biomater Sci 2022; 10:1952-1967. [DOI: 10.1039/d1bm01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an effective amphotericin B (AmB) formulation to replace actual treatments available for leishmaniasis, which present serious drawbacks, is a challenge. Here we report the development of hyaluronic...
Collapse
|
41
|
Liu J, Bao X, Kolesnik I, Jia B, Yu Z, Xing C, Huang J, Gu T, Shao X, Kletskov A, Kritchenkov AS, Potkin V, Li W. Enhancing the in vivo stability of polyanion gene carriers by using PEGylated hyaluronic acid as a shielding system. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2021-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To increase the in vivo stability of cationic gene carriers and avoid the adverse effects of their positive charge, we synthesized a new shielding material by conjugating low molecular weight polyethylene glycol (PEG) to a hyaluronic acid (HA) core. The HA-PEG conjugate assembled with the positively charged complex, forming a protective layer through electrostatic interactions. DNA/polyetherimide/HA-PEG (DNA/PEI/HA-PEG) nanoparticles had higher stability than both DNA/polyethyleneimine (DNA/PEI) and DNA/PEI/HA complexes. Furthermore, DNA/PEI/HA-PEG nanoparticles also showed a diminished nonspecific response toward serum proteins in vivo. The in vivo transfection efficiency was also enhanced by the low cytotoxicity and the improved stability; therefore, this material might be promising for use in gene delivery applications.
Collapse
Affiliation(s)
- Jiaxue Liu
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Xiaoli Bao
- 2Norman Bethune Health Science Center, Jilin University, Jilin, China
| | - Irina Kolesnik
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Boyan Jia
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zihan Yu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Caiyun Xing
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Jiawen Huang
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Tingting Gu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaotong Shao
- 5School of Medical Laboratory, Jilin Medical University, Jilin, China
| | - Alexey Kletskov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Andreii S. Kritchenkov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Vladimir Potkin
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Wenliang Li
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China; 4School of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
42
|
Le TN, Lin CJ, Shen YC, Lin KY, Lee CK, Huang CC, Rao NV. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:8325-8332. [PMID: 35005953 DOI: 10.1021/acsabm.1c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yen Chen Shen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Yu Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
43
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
44
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
45
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
46
|
Scioli MG, Terriaca S, Fiorelli E, Storti G, Fabbri G, Cervelli V, Orlandi A. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci 2021; 22:10572. [PMID: 34638913 PMCID: PMC8508599 DOI: 10.3390/ijms221910572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Giulia Fabbri
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Roma, Italy; (G.S.); (V.C.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133 Roma, Italy; (M.G.S.); (S.T.); (E.F.); (G.F.)
| |
Collapse
|
47
|
Han HH, Kang H, Kim SJ, Pal R, Kumar ATN, Choi HS, Hahn SK. Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. RSC Adv 2021; 11:23073-23081. [PMID: 34262698 PMCID: PMC8240508 DOI: 10.1039/d1ra03936a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Despite wide investigation on molecular imaging contrast agents, there are still strong unmet medical needs to enhance their signal-to background ratio, brightness, photostability, and biocompatibility with multimodal imaging capability. Here, we assessed the feasibility of fluorescent nanodiamonds (FNDs) as carbon based photostable and biocompatible materials for molecular imaging applications. Because FNDs have negatively charged nitrogen vacancy (NV) centers, they can emit bright red light. FNDs were conjugated to hyaluronate (HA) for target-specific molecular imaging. HA is a biocompatible, biodegradable, and linear polysaccharide with abundant HA receptors in the liver, enabling liver targeted molecular imaging. In vitro cell viability tests revealed the biocompatibility of HA-FND conjugates and the competitive cellular uptake test confirmed their target-specific intracellular delivery to HepG2 cells with HA receptors. In addition, in vivo fluorescence lifetime (FLT) assessment revealed the imaging capability of FNDs and HA-FND conjugates. After that, we could confirm the statistically significant liver-targeted delivery of HA-FND conjugates by in vivo imaging system (IVIS) analysis and ex vivo biodistribution tests in various organs. The renal clearance test and histological analysis corroborated the in vivo biocompatibility and safety of HA-FND conjugates. All these results demonstrated the feasibility of HA-FND conjugates for further molecular imaging applications.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Rahul Pal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|
48
|
Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf B Biointerfaces 2021; 205:111916. [PMID: 34146785 DOI: 10.1016/j.colsurfb.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Increasing valence by acting on nanomaterial morphology can enhance the ability of a ligand to specifically bind to targeted cells. Herein, we investigated cell internalization of soft hyaluronic acid (HA) nanoplatelets (NPs) that exhibit a typical hexagonal shape, flat surfaces and high aspect ratio (Γ≈12 to 20), as characterized by atomic force microscopy in hydrated conditions. Fluorescence imaging revealed that internalization of HA-NPs by a T24 tumor cell line and by macrophages was higher than native polysaccharide in a dose-dependent and time-dependent manners. The ability of HA-NPs to efficiently compete with native HA assessed using Bio-layer interferometry showed that NPs had a stronger interaction with recombinant CD44 receptor compared to native HA. The results were discussed regarding physical properties of the NPs and the implication of multivalent interactions in HA binding to CD44. Experiments conducted on supported bilayer membranes with different compositions showed that non-specific interactions of NPs with lipid membranes were negligible. Our findings provide insights into intracellular drug delivery using soft HA-NPs through receptor-mediated multivalent interactions.
Collapse
|
49
|
Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021; 204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Boron neutron capture therapy (BNCT) has received widespread attention as a new type of radiation therapy. The main problem encountered in BNCT is insufficient tumor cellular uptake of boron agents. In this study, cell-penetrating peptide TAT-conjugated o-carborane was synthesized. The conjugation can self-assemble to form positively charged carborane-TAT micelles, and then adsorb negatively charged hyaluronic acid (HA) to give core-shell structured carborane-TAT@HA micelles. Carborane-TAT@HA micelles exhibits a large amount of boron uptake at the tumor tissue through the enhanced permeability and retention (EPR) effect and the ability of HA to bind to CD44 receptors. Carborane-TAT@HA was wrapped by the HA shell during systemic circulation to avoid non-specific uptake of TAT with normal cells, while tumor microenvironment-responsive shedding of HA shell could expose Carborane-TAT to penetrate the cell membrane into tumor cells. Experiments have proved the enhanced selectivity of tumor cellular uptake of the boron drug, displayed excellent drug delivery potential, and can meet the basic requirements of BNCT.
Collapse
Affiliation(s)
- Hao Quan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Xiaoyan Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
50
|
Yamana K, Kawasaki R, Sanada Y, Tabata A, Bando K, Yoshikawa K, Azuma H, Sakurai Y, Masunaga SI, Suzuki M, Sugikawa K, Nagasaki T, Ikeda A. Tumor-targeting hyaluronic acid/fluorescent carborane complex for boron neutron capture therapy. Biochem Biophys Res Commun 2021; 559:210-216. [PMID: 33957482 DOI: 10.1016/j.bbrc.2021.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022]
Abstract
In cancer therapeutics, boron neutron capture therapy (BNCT) requires a platform for selective and efficient 10B delivery into tumor tissues for a successful treatment. However, the use of carborane, a promising candidate with high boron content and biostability, has significant limitations in the biomedical field due to its poor water-solubility and tumor-selectivity. To overcome these hurdles, we present in this study a fluorescent nano complex, combining fluorescent carborane and sodium hyaluronate for high boron concentration and tumor-selectivity. Tumor cells actively internalized the complex through binding hyaluronan to CD44, overexpressed on the tumor cell surface. Furthermore, the subcellular distribution of this complex could also be detected due to its fluorescent properties. Moreover, after thermal neutron irradiations, the complex produced excellent cytotoxicity, equal to or greater than that of the clinically-used BPA-fructose. Therefore, this novel complex could be potentially more suitable for BNCT than the boron agent.
Collapse
Affiliation(s)
- Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asahi-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Anri Tabata
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-1F38 Sugimoto-cho, Sumiyoshi-ku, Osaka City, 558-8585, Japan
| | - Kaori Bando
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-1F38 Sugimoto-cho, Sumiyoshi-ku, Osaka City, 558-8585, Japan
| | - Kouhei Yoshikawa
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-1F38 Sugimoto-cho, Sumiyoshi-ku, Osaka City, 558-8585, Japan
| | - Hideki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-1F38 Sugimoto-cho, Sumiyoshi-ku, Osaka City, 558-8585, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asahi-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Shin-Ichiro Masunaga
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asahi-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asahi-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Kouta Sugikawa
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Takeshi Nagasaki
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-1F38 Sugimoto-cho, Sumiyoshi-ku, Osaka City, 558-8585, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| |
Collapse
|