1
|
Iglesias-Jiménez A, Artiaga G, Moreno-Gordaliza E, Milagros Gómez-Gómez M. Metallomic evaluation of selenium nanoparticles and selenomethionine for the attenuation of cisplatin-induced nephrotoxicity. Eur J Pharm Biopharm 2025; 212:114737. [PMID: 40345401 DOI: 10.1016/j.ejpb.2025.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Nephrotoxicity is one of the most limiting side effects in oncologic patients treated with cisplatin and is still clinically unresolved. In this work, chitosan-stabilised selenium nanoparticles (Ch-SeNPs) and selenomethionine (SeMet) have been evaluated as nephroprotectors of cisplatin using renal proximal tubule epithelial cells (RPTEC/TERT1) as a model. Moreover, the antineoplastic efficacy of cisplatin co-administered with these selenocompounds has been tested in cervical cancer cells (HeLa). Cell viability, cell localisation of Ch-SeNPs and changes in the morphology and cell ultrastructure, Pt and Se cellular internalisation and cisplatin binding to DNA, and speciation of Pt and Se in the cytosolic extracts were evaluated by MTT assays, transmission electron microscopy coupled to energy dispersive X-ray spectroscopy (TEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS), and both size exclusion chromatography (SEC) and anion exchange chromatography (AEC) coupled to either ICP-MS or UV-Vis. Differences in the pharmacological activity of the two selenospecies were observed. SeMet exerted a moderate protection on kidney cells while reducing their degree of cisplatin intracellular accumulation and DNA binding in both cell lines, but the antitumour effect of cisplatin was not significantly altered. Conversely, Ch-SeNPs did not impair the Pt-drug uptake or DNA binding in any cell type; and even increased its antitumour effect, which might enable using lower doses of cisplatin without loss of anticancer efficacy, which would result in decreased risk of renotoxicity. Furthermore, cells incubated either with SeMet or SeNPs showed higher levels of selenoproteins, which might enhance cellular defences against the reactive oxygen species (ROS) involved in cisplatin renotoxicity. Hence, both selenocompounds are envisioned as potential coadjuvants to reduce the risk of kidney impairment in future treatments with cisplatin.
Collapse
Affiliation(s)
- Alejandro Iglesias-Jiménez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Gema Artiaga
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | - M Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Menbari Oskouie I, Khatami F, Shiralizadeh Dezfuli A, Mashhadi R, Mirzaei A, Hashemi Dougaheh SN, Azodian Ghajar H, Heshmat R, Aghamir SMK. Reducing the effective dosage of flutamide on prostate cancer cell lines through combination with selenium nanoparticles: An in-vitro study. PLoS One 2025; 20:e0318483. [PMID: 40388455 PMCID: PMC12088047 DOI: 10.1371/journal.pone.0318483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/16/2025] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVE Objective of the study was to evaluate the therapeutic potential of selenium nanoparticles (SeNPs) in combination with flutamide for treating prostate cancer (PCa) cell lines. The goal was to reduce the dosage of flutamide to decrease its side effects, especially hepatotoxicity. MATERIALS AND METHODS PC3, LnCAP, and DU145 cell lines were treated with varying concentrations of SeNPs and Flutamide to determine IC50 values using the MTT assay. Subsequently, the IC50 concentration of flutamide was reduced by 50% and different concentrations of SeNPs were added to determine new IC50 concentrations of the combinations. Annexin-V/ PI staining was performed to assess the apoptosis rate. The DNA cell cycle was analyzed using the PI staining technique. Migration, proliferative capability, and nucleus morphology of the cells were evaluated through the scratch-wound assay, colony-forming assay, and Hoechst staining, respectively. The expression of SNAIL, KLK3, E-cadherin, VEGF-C, HIF-1α, Bcl2, and BAX were examined using real-time PCR. RESULTS All treated groups significantly increased early and late apoptosis rate of the PCa cell lines, and induced SubG1/G1 arrest in the cell cycle assay, compared to the control group. Significant inhibition of migration potential and colony formation was observed in all treated groups. Our results suggest that the combination group (50% decrease of Flutamide dosage) treatment upregulated apoptosis-related genes and KLK3, and downregulated genes involved in angiogenesis and proliferation similar to Flutamide alone (p > 0.05). CONCLUSION It is suggested that simultaneous administration of SeNPs and flutamide could potentially reduce the effective dosage of flutamide and decrease its adverse effects.
Collapse
Affiliation(s)
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Shiralizadeh Dezfuli
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Oskouie IM, Amirzargar H, Dezfuli AS, Mashhadi R, Mirzaei A, Shamshirgaran A, Nikoofar P, Aghamir SMK. Reducing the effective dosage of Mitomycin C on a high-grade bladder cancer cell line through combination with selenium nanoparticles: An in vitro study. Med Oncol 2025; 42:207. [PMID: 40348879 DOI: 10.1007/s12032-025-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
This study aimed to assess the effectiveness of combining selenium nanoparticles (SeNPs) with mitomycin C (MMC) in treating the T24 high-grade bladder cancer cell line to decrease MMC dosage and alleviate its side effects. The T24 (EJ138) cell line was exposed to various concentrations of SeNPs and MMC to identify the IC50 values via the MTT assay. The IC50 of MMC was then lowered by 25%, 50%, and 75%, and different SeNPs concentrations were added, to find the new IC50 values of these combinations. Apoptosis rates were measured using Annexin-V/PI staining, while the DNA cell cycle was analyzed using the PI staining method. The scratch-wound assay, colony-forming assay, and Hoechst staining were employed to examine the cell migration, proliferative capacity, and nuclear morphology, respectively. Real-time PCR assessed the expression levels of SNAIL, E-cadherin, and genes related to angiogenesis and proliferation (VEGF-C and HIF-1α), alongside the apoptosis markers (Bcl-2 and BAX). The co-administration of SeNPs and MMC (178.8 µM SeNPs + 14.9 µM MMC) significantly increased the rate of early apoptosis in the T24 cell line compared to MMC alone (29.8 µM, p < 0.0001). Additionally, SeNPs and MMC induced cell cycle arrest at the SubG1/G1 and G2/M phases, respectively. This effect was observed in the combination group at both phases. Similar to MMC alone, the combination group inhibited cell proliferation, colony formation, and migration in T24 cells (p > 0.05). Our findings indicate that the treatment with the combination increased the expression of apoptosis-related genes and decreased angiogenesis and proliferation-related gene expression similar to MMC alone (p > 0.05). The combined administration of MMC and SeNPs enhances the antitumor efficacy on the T24 cell line. It is proposed that the concurrent use of SeNPs and MMC could effectively reduce the required dosage of MMC, thus minimizing its negative side effects.
Collapse
Affiliation(s)
- Iman Menbari Oskouie
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Hossein Amirzargar
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | | | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Amirreza Shamshirgaran
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Parsa Nikoofar
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
- Section of Tissue Engineering and Stem Cells Therapy, Pediatric Urology and Regenerative Medicine Research Center, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company (AMINBIC), Tehran University Science and Technology Park, North Campus of Tehran University, Tehran, Iran
| | - Seyed Mohammad Kazem Aghamir
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Urology, Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada.
- Urology Research Center, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave., Tehran, Iran.
| |
Collapse
|
4
|
Abdul-Razek N, Khalil RG, Abdel-Latif M, Kamel MM, Alhazza IM, Awad EM, Ebaid H, Abuelsaad ASA. Investigating the Tumor-Suppressive, Antioxidant Effects and Molecular Binding Affinity of Quercetin-Loaded Selenium Nanoparticles in Breast Cancer Cells. BIONANOSCIENCE 2025; 15:135. [DOI: 10.1007/s12668-024-01767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/03/2025]
Abstract
AbstractIn 2023, breast cancer is expected to have nearly 2 million new cases, making it the second most common cancer overall and the most prevalent among women. Multidrug resistance limits the effectiveness of chemotherapy; however, quercetin, a natural flavonoid, helps combat this issue. The goal of the current investigation is to determine the impact of a novel composite of quercetin and selenium nanoparticles (SeNPs) on the breast cancer cell lines MDA-MB-231 and MCF-7 in order to enhance quercetin’s tumor-suppressive action and decrease selenium (Se) toxicity. Particle size, zeta potential, FTIR, SEM, UV–VIS spectroscopy, and EDX were used to characterize quercetin-selenium nanoparticles (Que-SeNPs), in addition to evaluation of the antioxidant, apoptotic, and anticancer properties. Moreover, autophagy (Atg-13) protein receptors and PD-1/PD-L1 checkpoint were targeted using molecular docking modeling and molecular dynamics (MD) simulations to assess the interaction stability between Que-SeNPs and three targets: PDL-1, PD-1, and Atg-13HORMA domain. Que-SeNPs, synthesized with quercetin, were stable, semi-spherical (80–117 nm), and had a zeta potential of − 37.8 mV. They enhanced cytotoxicity, antioxidant activity, and apoptosis compared to quercetin alone in MCF-7 and MDA-MB-231 cells. Docking simulations showed strong binding to the PD-1/PD-L1 checkpoint and Atg-13HORMA protein receptors. Moreover, the molecular dynamics simulation revealed that the behavior of the PD-L1 intriguing insights into its structural dynamics, therefore, suggesting a stable phase where the complex is adjusting to the simulation environment. The present data confirmed that the stable formula of Que-SeNPs is cytotoxic, antioxidant, and has a potential activity to increase apoptosis in breast cancer cells, with the potential to inhibit PD-1/PD-L1 and Atg-13 proteins.
Graphical Abstract
Role of Que-SeNPs on breast cancer cells in vitro against two breast cancer cell lines MDA-MB-231 and MCF-7.
Collapse
|
5
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Salah M, Elkabbany NAS, Partila AM. Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species. Sci Rep 2024; 14:20523. [PMID: 39227447 PMCID: PMC11372082 DOI: 10.1038/s41598-024-69730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
A recent scientific investigation has shown promising results of selenium nanoparticles (SeNPs) for the anticancer and antimicrobial activities. This study aims to evaluate the effects of PVP SeNPs on bacterial strains, including Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). Also, its antitumor activity against the MRC-5 carcinoma cell line. SeNPs were prepared via gamma irradiation using PVP as a capping agent, and their size and morphological structure were determined using HRTEM. The size of the SeNPs ranged from 36 to 66.59 nm. UV-vis spectra confirmed the formation of SeNPs, while FTIR measurement confirmed a change in the PVP structure after adding selenium nanoparticles. The highest effect was reported on HepG2 by an IC50 with a value of 8.87 µg/ml, followed by HeLa, PC3, MCF-7, and Caco2 cell lines, respectively. Furthermore, ZOI reached 36.33 ± 3.05 mm. The best value of the minimum inhibitory concentration (MIC) was 0.313 µg/ml. Scanning electron microscope (SEM) imaging against bacteria showed deformations and distortions in their structures. Transmission electron (TEM) revealed ultrastructure changes in treated bacteria because of the free radicals that made cytotoxicity which confirmed by Electron spin resonance (ESR).
Collapse
Affiliation(s)
- M Salah
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Nesreen A S Elkabbany
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Abir M Partila
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt.
| |
Collapse
|
7
|
Gamal RM, Hazem SH, Hamed MF, Abdelaziz RR. PI3K inhibitor "alpelisib" alleviates methotrexate induced liver injury in mice and potentiates its cytotoxic effect against MDA-MB-231 triple negative breast cancer cell line. Toxicol Appl Pharmacol 2024; 488:116979. [PMID: 38797265 DOI: 10.1016/j.taap.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Hepatotoxicity is the main off-target effect of methotrexate (MTX) limiting its effective clinical use. Besides, MDA-MB231 breast cancer cells show chemoresistance, partly via PI3K/AKT pathway. Therefore, we investigated the ameliorative potentials of the PI3K inhibitor, alpelisib (ALP) on MTX-induced hepatotoxicity (in vivo) and the restraining potentials of ALP on MDA-MB231 chemoresistance to MTX (in vitro). Twenty-eight male BALB/c mice were divided into 4 groups. In treatment groups, mice were administered ALP (2.5 and 5 mg/kg) for 5 days and MTX (20 mg/kg) from day 2 till day 5. The results showed that ALP restored hepatic architecture, reduced immune cell infiltration (F4/80, Ly6G and MPO) and repressed the rise in liver enzymes (AST and ALT) induced by MTX. Additionally, ALP rectified the MTX-induced disruption of cellular oxidant status by boosting antioxidant defense systems (HO-1 and GSH) and repressing lipid peroxidation (MDA and 4-HNE). Finally, ALP curbed MTX-induced hepatocyte apoptosis (NF-κB and BAX) and shifted the cytokine milieu away from inflammation (IL-17, IL-22, IL-6 and IL- 10). The results of the in vitro experiments revealed that ALP alone and in combination with MTX, synergistically, reduced cancer cell viability (MTT assay), migration (wound healing assay) and their capacity to establish colonies (colony formation assay) as compared to MTX alone. RT-PCR revealed the antiproliferative (Bcl-2) and proapoptotic (BAX) potentials of ALP and ALP/MTX combination especially after 24 h. In conclusion, targeting PI3K/AKT pathway is a promising strategy in triple negative breast cancer patients by ameliorating hepatotoxicity and restraining chemoresistance to chemotherapy.
Collapse
Affiliation(s)
- Rana M Gamal
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Chen J, Chen X, Tang A, Wang Z, Cheong KL, Liu X, Zhong S. Chondroitin sulfate-functionalized selenium nanoparticle-induced S-phase cell cycle arrest and apoptosis in HeLa Cells. J Food Sci 2024; 89:4469-4479. [PMID: 38837700 DOI: 10.1111/1750-3841.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
This study aimed to evaluate the anti-cervical cancer activity of chondroitin sulfate-functionalized selenium nanoparticles (SeCS) and to elucidate their action mechanism. Cytotoxic effect of SeCS on HeLa cells was assessed by MTT assay. Further molecular mechanism of SeCS was analyzed by flow cytometric assay and western blotting. The results showed that treatment with SeCS resulted in a dose- and time-dependent inhibition in the proliferation of HeLa cells. The data obtained from flow cytometry demonstrated that SeCS inhibited HeLa cell growth via the induction of S-phase arrest and cell apoptosis. Further mechanism analysis found that SeCS down-regulated expression levels of cyclin A and CDK2 and up-regulated p21 expression, which contributed to S arrest. Moreover, SeCS increased the level of Bax and decreased the expression of Bcl-2, resulting in the release of cytochrome C from mitochondria and activating caspase-3/8/9 for caspase-dependent apoptosis. Meanwhile, intracellular reactive oxygen species (ROS) levels were elevated after SeCS treatment, suggesting that ROS might be upstream of SeCS-induced S-phase arrest and cell apoptosis. These data show that SeCS has anti-tumor effects and possesses the potential to become a new therapeutic agent or adjuvant therapy for cancer patients. PRACTICAL APPLICATION: In our previous study, we used chondroitin sulfate to stabilize nano-selenium to obtain SeCS to improve the bioactivity and stability of nano-selenium. We found that it possessed an inhibitory effect on HeLa cells. However, the molecular mechanism remains unclear. This study elucidated the mechanism of SeCS damage to HeLa cells. SeCS has the potential to become a new therapeutic agent or adjuvant therapy for cancer patients.
Collapse
Affiliation(s)
- Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuehua Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Anqi Tang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Eydelkhani M, Kiabi S, Nowruzi B. In vitro assessment of the effect of magnetic fields on efficacy of biosynthesized selenium nanoparticles by Alborzia kermanshahica. BMC Biotechnol 2024; 24:27. [PMID: 38725019 PMCID: PMC11080146 DOI: 10.1186/s12896-024-00855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Melika Eydelkhani
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadi Kiabi
- Department of Biology, Tonekabon branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Khaledizade E, Tafvizi F, Jafari P. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. J Trace Elem Med Biol 2024; 82:127357. [PMID: 38103517 DOI: 10.1016/j.jtemb.2023.127357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND In the present study, Selenium Nanoparticles (SeNPs) were prepared using Bacillus coagulans, which is a type of Lactic Acid Bacteria (LAB), and then they were applied to treat breast cancer cells. METHODS The chemicophysical properties of the bioengineered SeNPs were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), zeta potential, dynamic light scattering, Fourier Transform Infrared Spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction analysis (XRD). The cytotoxic potential of SeNPs was evaluated by MTT assay against MCF-7 breast cancer cell line. The expression levels of apoptotic genes including BAX, BCL2, VEGF, ERBB2, CASP3, CASP9, CCNE1, CCND1, MMP2 and MMP9 were determined by real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the results of the cell cycle were evaluated by flow cytometry method. RESULTS The synthesized SeNPs had an average particle size of about 24-40 nm and a zeta potential of -16.1 mV, indicating the high stability of SeNPs. EDX results showed presence of SeNPs because amount of selenium in SeNPs was 86.6 % by weight. The cytotoxicity results showed a concentration-dependent effect against MCF-7 cells. The half-maximal inhibitory concentration (IC50) values of B. coagulans supernatant and SeNPs against breast cancer cells were 389.7 µg/mL and 17.56 µg/mL, respectively. In addition, SeNPs synthesized by the green process exhibited enhanced apoptotic potential in MCF-7 cancer cells compared with bacterial supernatants. Cancer cells treated with IC50 concentration of SeNPs induced 32 % apoptosis compared to untreated cells (3 % apoptosis). The gene expression levels of BAX, CASP3, and CASP9 were upregulated, while the expression levels of BCL2, CCNE1, CCND1, MMP2, MMP9, VEGF, and ERBB2 were downregulated after SeNPs treatment of cells. The potential of SeNPs to induce cell apoptosis was demonstrated by the increase in the expression level of BAX gene and the decrease in the expression level of BCL2 after treatment of cancer cells with SeNPs. CONCLUSION The obtained results indicated that SeNPs had strong potential to induce significant cell apoptosis and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Elaheh Khaledizade
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvaneh Jafari
- Microbiology Department, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
11
|
Haji Mehdi Nouri Z, Tafvizi F, Amini K, Khandandezfully N, Kheirkhah B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 2024; 202:1288-1304. [PMID: 37392361 DOI: 10.1007/s12011-023-03738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV-vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.
Collapse
Affiliation(s)
- Zahra Haji Mehdi Nouri
- Department of Cellular and Molecular Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Kumarss Amini
- Department of Microbiology, School of Basic Science, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Nooshin Khandandezfully
- Faculty Member, Department of Microbiology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Babak Kheirkhah
- Department of Microbiology, Faculty of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
12
|
Angulo-Elizari E, Raza A, Encío I, Sharma AK, Sanmartín C, Plano D. Seleno-Warfare against Cancer: Decoding Antitumor Activity of Novel Acylselenoureas and Se-Acylisoselenoureas. Pharmaceutics 2024; 16:272. [PMID: 38399326 PMCID: PMC10891803 DOI: 10.3390/pharmaceutics16020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, cancer remains a global health problem. Despite the existence of several treatments, including chemotherapy, immunotherapy, and radiation therapy, the survival rate for most cancer patients, particularly those with metastasis, remains unsatisfactory. Thus, there is a continuous need to develop novel, effective therapies. In this work, 22 novel molecules containing selenium are reported, including seven Se-acylisoselenoureas synthesized from aliphatic carbodiimides as well as acylselenoureas with the same carbo- and heterocycles and aliphatic amines. After an initial screening at two doses (50 and 10 µM) in MDA-MB-231 (breast), HTB-54 (lung), DU-145 (prostate), and HCT-116 (colon) tumor cell lines, the ten most active compounds were identified. Additionally, these ten hits were also submitted to the DTP program of the NCI to study their cytotoxicity in a panel of 60 cancer cell lines. Compound 4 was identified as the most potent antiproliferative compound. The results obtained showed that compound 4 presented IC50 values lower than 10 µM in the cancer cell lines, although it was not the most selective one. Furthermore, compound 4 was found to inhibit cell growth and cause cell death by inducing apoptosis partially via ROS production. Overall, our results suggest that compound 4 could be a potential chemotherapeutic drug for different types of cancer.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (A.R.); (A.K.S.)
| | - Carmen Sanmartín
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Ciencias Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain;
| |
Collapse
|
13
|
Xiao D, Li T, Huang X, Zhu K, Li Z, Dong Y, Wang L, Huang J. Advances in the Study of Selenium-Enriched Probiotics: From the Inorganic Se into Se Nanoparticles. Mol Nutr Food Res 2023; 67:e2300432. [PMID: 37786318 DOI: 10.1002/mnfr.202300432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Indexed: 10/04/2023]
Abstract
Selenium (Se) is a momentous metallic element that plays an irreplaceable role in biochemical activities. Se deficiency remains a nutritional challenge across the world. Organic Se supplementation is the most effective treatment means for Se deficiency. Organic Se transformed from Se-enriched probiotics show outstanding excellent properties in antibacteria, anti-oxidation, anti-inflammation, and immunoregulation. Studying the influencing factors for Se enrichment capacity and enrichment mechanisms of Se-enriched probiotics is conducive to the exploit of more potent Se-enriched probiotics. Se-enriched probiotics transform inorganic Se into Se nanoparticles (SeNPs), which have been widely used in animal husbandry and biomedical field. In this paper, the novel development of Se-enriched probiotics is reviewed, and the bioactivities of SeNPs are assessed, so as to display their potential application prospects. The excellent role of SeNPs in anti-oxidation is summarized, and the mechanism by which SeNPs improve Se deficiency and boost animal health is explained.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Zimeng Li
- Hebei Key Laboratory of Ocean Dynamics Resources and Environments, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China
| | - Lianshun Wang
- College of Fisheries and Life, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
14
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
15
|
Purohit MP, Kar AK, Kumari M, Ghosh D, Patnaik S. Heparin Biofunctionalized Selenium Nanoparticles as Potential Antiangiogenic-Chemotherapeutic Agents for Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19904-19920. [PMID: 37046174 DOI: 10.1021/acsami.3c00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combining antiangiogenic and chemotherapeutic agents has shown promising clinical benefits in cancer cures when the therapeutic intervention takes into account the tissue and molecular targets. Moreover, the risk of induced drug resistance is minimized when multiple pathways are involved in the treatment regimen, yielding a better therapeutic outcome. Nanodrug delivery systems have proven to be a prudent approach to treating complex disease pathologies. As such, combining antiangiogenic and chemotherapeutic drugs within multimodal nanocarriers synergistically augments the clinical efficiency of the drugs. This study reports the combinatorial efficacy of heparin (Hep), selenium NPs (SeNPs), and doxorubicin (Dox) to inhibit tumor growth and progression. Both Se@Hep-NPs and Se@Hep-Dox-NPs with excellent water dispersity having a size and charge in the range of 250 ± 5 and 253 ± 5 nm and -53 ± 0.4 and -48.4 ± 6.4 mV, respectively, showed strong anticancer potential assessed through in vitro assays like cell viability, specificity, colony formation, and wound scratch in MCF7 cells. Strong synergistic interactions among SeNPs, Hep, and Dox in Se@Hep-Dox-NPs render it to be an antiangiogenic and proapoptotic cancer cell death inducers. In vivo imaging highlights the dual-mode attributes of Se@Hep-NPs with desirable passive tumor targeting and biomedical imaging ability when tagged with Cy7.5, while Se@Hep-Dox-NPs significantly reduce the tumor burden and prolong the longevity of subcutaneous EAC-bearing mice. Histopathology studies reveal no signs of toxicity in major organs. Collectively, these results qualify Se@Hep-Dox-NPs as a plausible clinical therapeutic candidate.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manisha Kumari
- Nucleic Acid Research Lab, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Luck now, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
16
|
Farhan M, Rizvi A, Aatif M, Ahmad A. Current Understanding of Flavonoids in Cancer Therapy and Prevention. Metabolites 2023; 13:metabo13040481. [PMID: 37110140 PMCID: PMC10142845 DOI: 10.3390/metabo13040481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is a major cause of death worldwide, with multiple pathophysiological manifestations. In particular, genetic abnormalities, inflammation, bad eating habits, radiation exposure, work stress, and toxin consumption have been linked to cancer disease development and progression. Recently, natural bioactive chemicals known as polyphenols found in plants were shown to have anticancer capabilities, destroying altered or malignant cells without harming normal cells. Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. Recent research has focused primarily on isolating, synthesizing, and studying the effects of flavonoids on human health. Here we have attempted to summarize our current knowledge of flavonoids, focusing on their mode of action to better understand their effects on cancer.
Collapse
|
17
|
Long Q, Cui LK, He SB, Sun J, Chen QZ, Bao HD, Liang TY, Liang BY, Cui LY. Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Sci Rep 2023; 13:53. [PMID: 36593245 PMCID: PMC9807572 DOI: 10.1038/s41598-022-26396-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium is an essential micronutrient element. For the extremely biotoxic of selenite, Selenium nanoparticles (SeNPs) is gaining increasing interest. In this work, a selenium-enriched strain with highly selenite-resistant (up to 173 mmol/L) was isolated from the local specialty food of longevity area and identified as Paenibacillus motobuensis (P. motobuensis) LY5201. Most of the SeNPs were accumulated extracellular. SeNPs were around spherical with a diameter of approximately 100 nm. The X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that the purified SeNPs consisted of selenium and proteins. Our results suggested that P. motobuensis LY5201could be a suitable and robust biocatalyst for SeNPs synthesis. In addition, the cytotoxicity effect and the anti-invasive activity of SeNPs on the HepG2 showed an inhibitory effect on HepG2, indicating that SeNPs could be used as a potential anticancer drug.
Collapse
Affiliation(s)
- Qian Long
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Guangxi AIDS Clinical Treatment Center (Nanning), No. 1 Erli, Changgang Road, Nanning, 530023, Guangxi, People's Republic of China
| | - Lan-Kun Cui
- School of History and Archive, Yunnan University, Kunming, 650000, Yunnan, People's Republic of China
| | - Sheng-Bin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Quan-Zhi Chen
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Hao-Dong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Teng-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Bao-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Lan-Yu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
18
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
19
|
Impact of selenium nanoparticles in the regulation of inflammation. Arch Biochem Biophys 2022; 732:109466. [DOI: 10.1016/j.abb.2022.109466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
|
20
|
Bjørklund G, Shanaida M, Lysiuk R, Antonyak H, Klishch I, Shanaida V, Peana M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022; 27:6613. [PMID: 36235150 PMCID: PMC9570904 DOI: 10.3390/molecules27196613] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by an imbalance between damage inflicted by reactive oxygen species (ROS) and the antioxidative defenses of the organism. As a significant nutritional factor, the trace element selenium (Se) may remodel gradual and spontaneous physiological changes caused by oxidative stress, potentially leading to disease prevention and healthy aging. Se is involved in improving antioxidant defense, immune functions, and metabolic homeostasis. An inadequate Se status may reduce human life expectancy by accelerating the aging process or increasing vulnerability to various disorders, including immunity dysfunction, and cancer risk. This review highlights the available studies on the effective role of Se in aging mechanisms and shows the potential clinical implications related to its consumption. The main sources of organic Se and the advantages of its nanoformulations were also discussed.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Ivan Klishch
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
21
|
Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review. Antioxidants (Basel) 2022; 11:antiox11101916. [PMID: 36290639 PMCID: PMC9598137 DOI: 10.3390/antiox11101916] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
Collapse
|
22
|
Li H, Wang Y, Chen Y, Wang S, Zhao Y, Sun J. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Shuxin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
23
|
Dana P, Pimpha N, Chaipuang A, Thumrongsiri N, Tanyapanyachon P, Taweechaipaisankul A, Chonniyom W, Watcharadulyarat N, Sathornsumetee S, Saengkrit N. Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy. NANOMATERIALS 2022; 12:nano12152606. [PMID: 35957037 PMCID: PMC9370598 DOI: 10.3390/nano12152606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
Selenium nanoparticles (SeNPs) were synthesized to overcome the limitations of selenium, such as its narrow safe range and low water solubility. SeNPs reduce the toxicity and improve the bioavailability of selenium. Chitosan-coated SeNPs (Cs-SeNPs) were developed to further stabilize SeNPs and to test their effects against glioma cells. The effects of Cs-SeNPs on cell growth were evaluated in monolayer and 3D-tumor spheroid culture. Cell migration and cell invasion were determined using a trans-well assay. The effect of Cs-SeNPs on chemotherapeutic drug 5-fluorouracil (5-FU) sensitivity of glioma cells was determined in tumor spheroids. An in vitro blood–brain barrier (BBB) model was established to test the permeability of Cs-SeNPs. SeNPs and Cs-SeNPs can reduce the cell viability of glioma cells in a dose-dependent manner. Compared with SeNPs, Cs-SeNPs more strongly inhibited 3D-tumor spheroid growth. Cs-SeNPs exhibited stronger effects in inhibiting cell migration and cell invasion than SeNPs. Improved 5-FU sensitivity was observed in Cs-SeNP-treated cells. Cellular uptake in glioma cells indicated a higher uptake rate of coumarin-6-labeled Cs-SeNPs than SeNPs. The capability of coumarin-6 associated Cs-SeNPs to pass through the BBB was confirmed. Taken together, Cs-SeNPs provide exceptional performance and are a potential alternative therapeutic strategy for future glioma treatment.
Collapse
Affiliation(s)
- Paweena Dana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Nuttaporn Pimpha
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Angkana Chaipuang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Prattana Tanyapanyachon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Anukul Taweechaipaisankul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Walailuk Chonniyom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Natsorn Watcharadulyarat
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
| | - Sith Sathornsumetee
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand;
- Department of Medicine (Neurology), Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (P.D.); (N.P.); (A.C.); (N.T.); (P.T.); (A.T.); (W.C.); (N.W.)
- Correspondence: ; Tel.: +66-2117-6558
| |
Collapse
|
24
|
Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE. Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47539-47548. [PMID: 35182347 DOI: 10.1007/s11356-022-19166-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The utilization of novel compounds as cancer treatments offers enormous potential in this field. The advantages of nanomedicine-based therapy include efficient cellular uptake and selective cell targeting. In this study, we employ selenium nanoparticles' green-synthesized by apigenin (SeNPs-apigenin) to treat breast cancer. We used various assays to show that SeNPs-apigenin can reduce MCF-7 cell viability and trigger apoptosis in vitro. Flow cytometry and PCR methods were used to detect apoptosis, while cell migration and invasion methods were used to quantify the possible effect of SeNPs-apigenin therapy on cell migration and invasion. According to cytotoxicity testing, the SeNPs-apigenin treatment can successfully limit MCF-7 cell proliferation and viability in a concentration-dependent manner. Flow cytometric and PCR analyses revealed that SeNPs-apigenin treatment induced apoptosis in MCF-7 cells, demonstrating that SeNPs-apigenin treatment could directly target Bcl-2, Bax, and caspase-3 and result in the discharge of cytochrome C from mitochondria into the cytosol, accompanied by the initiation of cell death, leading to permanent DNA damage and killing of MCF-7 cells. Furthermore, treatment with SeNPs-apigenin increased reactive oxygen species production and oxidative stress in MCF-7 cells. Our findings indicate that SeNPs-apigenin has cytotoxic potential in the treatment of breast cancer.
Collapse
Affiliation(s)
- Aljohra M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asma S Al-Gebaly
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Al-Qahtani
- Department of Forensic Sciences, College of Forensic Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
25
|
Pinheiro WO, Costa do Santos MS, Farias GR, Fascineli ML, Ramos KLV, Duarte ECB, Damasceno EAM, da Silva JR, Joanitti GA, de Azevedo RB, Sousa MH, Lacava ZGM, Mosiniewicz-Szablewska E, Suchocki P, Morais PC, de Andrade LR. Combination of selol nanocapsules and magnetic hyperthermia hinders breast tumor growth in aged mice after a short-time treatment. NANOTECHNOLOGY 2022; 33:205101. [PMID: 35100566 DOI: 10.1088/1361-6528/ac504c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Short time treatment with reduced dosages of selol-loaded PLGA nanocapsules (NcSel) combined with magnetic hyperthermia (MHT) is evaluated in aged Erhlich tumor-bearing mice. Clinical, hematological, biochemical, genotoxic and histopathological parameters are assessed during 7 d treatment with NcSel and MHT, separately or combined. The time evolution of the tumor volume is successfully modeled using the logistic mathematical model. The combined therapy comprising NcSel and MHT is able to hinder primary tumor growth and a case of complete tumor remission is recorded. Moreover, no metastasis was diagnosed and the adverse effects are negligible. NcSel plus MHT may represent an effective and safe alternative to cancer control in aged patients. Future clinical trials are encouraged.
Collapse
Affiliation(s)
- Willie Oliveira Pinheiro
- University of Brasilia, Post-Graduation Program in Sciences and Technologies in Health, Faculty of Ceilandia, 72220-275, Brasilia, DF, Brazil
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | | | - Gabriel Ribeiro Farias
- University of Brasilia, Laboratory of Immunology and Inflammation, Department of Cell Biology, 70910-900 Brasilia, DF, Brazil
| | - Maria Luiza Fascineli
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
- Department of Morphology (DMORF), Health Science Center, Federal University of Paraíba, 58051-900, João Pessoa, Brazil
| | - Khellida Loiane Vieira Ramos
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | | | - Jaqueline Rodrigues da Silva
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Graziella Anselmo Joanitti
- University of Brasilia, Laboratory of Bioactive Compounds and Nanobiotechnology (LBCNano), Faculty of Ceilandia, 72220-275 Brasilia-DF, Brazil
| | - Ricardo Bentes de Azevedo
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | - Marcelo Henrique Sousa
- University of Brasilia, Faculty of Ceilandia, Green Nanotechnology Group, 72220-900 Brasilia, DF, Brazil
| | - Zulmira Guerrero Marques Lacava
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| | | | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, Warsaw, Poland
| | - Paulo Cesar Morais
- University of Brasília, Institute of Physics, Brasília DF 70910-900, Brazil
- Catholic University of Brasília, Genomic Sciences and Biotechnology, Brasília DF 70790-160, Brazil
| | - Laise Rodrigues de Andrade
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
26
|
Khan S, Mansoor S, Rafi Z, Kumari B, Shoaib A, Saeed M, Alshehri S, Ghoneim MM, Rahamathulla M, Hani U, Shakeel F. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq 2022; 348:118008. [DOI: 10.1016/j.molliq.2021.118008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Abbas HS, Nagy MM, Hammam WE, Abd El Fatah AA, Abd-Elafatah MS, Aref AAAENM, Abdulhamid HA, Ghotekar S, Abou Baker DH. A Comprehensive Review on the Synthesis, Surface Decoration of Nanoselenium and Their Medical Applications. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:197-220. [DOI: 10.1007/978-981-16-9190-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
28
|
Biosynthesis of selenium nanoparticles of Monascus purpureus and their inhibition to Alicyclobacillus acidoterrestris. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Adimulam T, Arumugam T, Foolchand A, Ghazi T, Chuturgoon AA. The Effect of Organoselenium Compounds on Histone Deacetylase Inhibition and Their Potential for Cancer Therapy. Int J Mol Sci 2021; 22:ijms222312952. [PMID: 34884764 PMCID: PMC8657714 DOI: 10.3390/ijms222312952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes alter gene expression, contributing to cancer. Epigenetic changes in cancer arise from alterations in DNA and histone modifications that lead to tumour suppressor gene silencing and the activation of oncogenes. The acetylation status of histones and non-histone proteins are determined by the histone deacetylases and histone acetyltransferases that control gene transcription. Organoselenium compounds have become promising contenders in cancer therapeutics. Apart from their anti-oxidative effects, several natural and synthetic organoselenium compounds and metabolites act as histone deacetylase inhibitors, which influence the acetylation status of histones and non-histone proteins, altering gene transcription. This review aims to summarise the effect of natural and synthetic organoselenium compounds on histone and non-histone protein acetylation/deacetylation in cancer therapy.
Collapse
|
30
|
Elemental Selenium Enriched Nanofiber Production. Molecules 2021; 26:molecules26216457. [PMID: 34770865 PMCID: PMC8586966 DOI: 10.3390/molecules26216457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to produce electrospun nanofibers from a polyvinyl butyral polymer (PVB) solution enriched with red and grey selenium nanoparticles. Scanning electron microscopic analysis was used to observe the samples, evaluate the fiber diameters, and reveal eventual artifacts in the nanofibrous structure. Average fiber diameter is determined by manually measuring the diameters of randomly selected fibers on scanning electron microscopic (SEM) images. The obtained nanofibers are amorphous with a diameter of approximately 500 nm, a specific surface area of approx. 8 m2 g−1, and 5093 km cm−3 length. If the red and grey selenium nanoparticles were produced in powder form and suspended to the ethanolic solution of PVB then they were located inside and outside the fiber. When selenium nanoparticles were synthesized in the PVB solution, then they were located only inside the fiber. These nanofiber sheets enriched with selenium nanoparticles could be a good candidate for high-efficiency filter materials and medical applications.
Collapse
|
31
|
Martínez-Esquivias F, Gutiérrez-Angulo M, Pérez-Larios A, Sánchez-Burgos J, Becerra-Ruiz J, Guzmán-Flores JM. Anticancer Activity of Selenium Nanoparticles In Vitro Studies. Anticancer Agents Med Chem 2021; 22:1658-1673. [PMID: 34515010 DOI: 10.2174/1871520621666210910084216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/27/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Health systems worldwide consider cancer a disease that causes the highest number of deaths per year. The low efficacy of current cancer therapies has led other areas of science to search for new alternatives, including nanomaterial sciences. Selenium nanoparticles have anticancer activity, as revealed by in vitro tests performed on prostate, breast, cervical, lung, colorectal, and liver cancer cell lines. Studies attribute anticancer activity to the anti-metastatic effect due to the inhibition of migration and invasion processes. The antiproliferative effect is the low expression of molecules such as cyclin D1, cyclin E, and CDK2. In addition to the activation of cell apoptosis by caspase-dependent mechanisms, there is a low expression of anti-apoptotic proteins such as Bcl-2 and a high expression of the apoptotic proteins like Bax and Bad. Other studies attribute anticancer activity to the activation of cell necroptosis, where molecules such as TNF and IRF1 participate. The pharmacological potential of selenium nanoparticles depends primarily on the administered dose, particle size, and chemical composition. Furthermore, several studies have shown that the administration of these nanoparticles is safe due to their low toxicity in non-cancerous cells. In this review, the most relevant antecedents on the anticancer potential of selenium nanoparticles in prostate, breast, cervical, lung, liver, and colorectal cancer cell lines are discussed.
Collapse
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Alejandro Pérez-Larios
- Laboratorio de Materiales, Agua y Energía, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | | | - Julieta Becerra-Ruiz
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco. Mexico
| |
Collapse
|
32
|
Turovsky EA, Varlamova EG. Mechanism of Ca 2+-Dependent Pro-Apoptotic Action of Selenium Nanoparticles, Mediated by Activation of Cx43 Hemichannels. BIOLOGY 2021; 10:biology10080743. [PMID: 34439975 PMCID: PMC8389560 DOI: 10.3390/biology10080743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022]
Abstract
To date, there are practically no data on the mechanisms of the selenium nanoparticles action on calcium homeostasis, intracellular signaling in cancer cells, and on the relationship of signaling pathways activated by an increase in Ca2+ in the cytosol with the induction of apoptosis, which is of great importance. The study of these mechanisms is important for understanding the cytotoxic effect of selenium nanoparticles and the role of this microelement in the regulation of carcinogenesis. The work is devoted to the study of the role of selenium nanoparticles obtained by laser ablation in the activation of the calcium signaling system and the induction of apoptosis in human glioblastoma cells (A-172 cell line). In this work, it was shown for the first time that the generation of Ca2+ signals in A-172 cells occurs in response to the application of various concentrations of selenium nanoparticles. The intracellular mechanism responsible for the generation of these Ca2+ signals has also been established. It was found that nanoparticles promote the mobilization of Ca2+ ions from the endoplasmic reticulum through the IP3-receptor. This leads to the activation of vesicular release of ATP through connexin hemichannels (Cx43) and paracrine cell activation through purinergic receptors (mainly P2Y). In addition, it was shown that the activation of this signaling pathway is accompanied by an increase in the expression of pro-apoptotic genes and the induction of apoptosis. For the first time, the role of Cx43 in the regulation of apoptosis caused by selenium nanoparticles in glioblastoma cells has been shown. It was found that inhibition of Cx43 leads to a significant suppression of the induction of apoptosis in these cells after 24 h treatment of cells with selenium nanoparticles at a concentration of 5 µg/mL.
Collapse
|
33
|
Yang J, Yang H. Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Crit Rev Food Sci Nutr 2021; 63:411-425. [PMID: 34278845 DOI: 10.1080/10408398.2021.1948818] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endemic selenium (Se) deficiency is a major worldwide nutritional challenge. Organic Se can be synthesized through physical and chemical methods that are conducive to human absorption, but its high production cost and low output cannot meet the actual demand for Se supplementation. Some microbes are known to convert inorganic Se into organic forms of high nutritional value and Se-enriched probiotics are the main representatives. The aim of the present review is to describe the characteristics of Se-enriched yeast, lactic acid bacteria, bifidobacteria and discuss their Se enrichment mechanisms. Se products metabolized by Se-enriched probiotics have been classified, such as Se nanoparticles (SeNPs) and selenoprotein, and their bioactivities have been assessed. The factors affecting the Se enrichment capacity of probiotics and their application in animal feed, food additives, and functional food production have been summarized. Moreover, a brief summary and the development of Se-enriched probiotics, particularly their potential applications in the field of biomedicine have been provided. In conclusion, Se-enriched probiotics not just have a wide range of applications in the food industry but also have great potential for application in the field of biomedicine in the future.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hong Yang
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell Biol Int 2021; 45:1989-1998. [PMID: 34233087 DOI: 10.1002/cbin.11658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022]
Abstract
Owing to their unique characteristics, nanoparticles (NPs) could be incorporated into valuable therapeutic modalities for different diseases; however, there are many concerns about risk factors in human applications. NPs carry therapeutic chemicals that could improve the outcome of cancer therapies. Nowadays, NPs are being recognized as important and strategic agents in treatment of several disorders due to their unique properties in targeting malignant cells in tumor sites. Numerous investigations have shown that the majority of chemotherapeutic agents can be modified through entrapment in submicron colloidal systems. Still, there are problems and limitations in application of NPs in cancer therapy. The aim of the present study is to focus on potential NPs usage in cancer treatment with an emphasis on the cell cycle of malignant cells.
Collapse
Affiliation(s)
| | - Zahra Nourollahzadeh
- Department of Biological Science, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazanin Sadat Khademi
- Department of Genetics, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran
| | - Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Neda Estelami
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
35
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
36
|
Tang M, Wang Y, Tang D, Xiu P, Yang Z, Chen Y, Wang H. Influence of the PM 2.5 Water-Soluble Compound on the Biophysical Properties of A549 Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4042-4048. [PMID: 33754728 DOI: 10.1021/acs.langmuir.1c00522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the influence of fine atmospheric particles (PM2.5) on cellular biophysical properties is an integral part for comprehending the mechanisms underlying PM2.5-induced diseases because they are closely related to the behaviors and functions of cells. However, hitherto little work has been done in this area. In the present work, we aimed to interrogate the influence of the PM2.5 water-soluble compound (PM2.5-WSC) on the biophysical performance of a human lung carcinoma epithelial cell line (A549) by exploring the cellular morphological and mechanical changes using atomic force microscopy (AFM)-based imaging and nanomechanics. AFM imaging showed that PM2.5-WSC treated cells exhibited evidently reduced lamellipodia and an increased height when compared to the control group. AFM nanomechanical measurements indicated that the treated cells had higher elastic energy and lower adhesion work than the control group. Our western blot assay and transmission electron microscopy (TEM) results revealed that after PM2.5-WSC treatment, the contents of cytoskeletal components (β-actin and β-tubulin) increased, but the abundance of cell surface microvilli decreased. The biophysical changes of PM2.5-WSC-treated cells measured by AFM can be well correlated to the alterations of the cytoskeleton and surface microvilli identified by the western blot assay and TEM imaging. The above findings confirm that the adverse risks of PM2.5 on cells can be reliably assessed biophysically by characterizing the cellular morphology and nanomechanics. The demonstrated technique can be used to diminish the gap of our understanding between PM2.5 and its harmful effects on cellular functions.
Collapse
Affiliation(s)
- Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Yan Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Dongyun Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zhongbo Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huabin Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing 400714, China
| |
Collapse
|
37
|
Jablonska E, Li Q, Reszka E, Wieczorek E, Tarhonska K, Wang T. Therapeutic Potential of Selenium and Selenium Compounds in Cervical Cancer. Cancer Control 2021; 28:10732748211001808. [PMID: 33754876 PMCID: PMC8204638 DOI: 10.1177/10732748211001808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is a common female cancer. It is strongly associated with human papillomavirus (HPV) infection. However, HPV infection alone is not sufficient to induce cervical cancer because its development is dependent on the coexistence of several factors that enable the virus to overcome the host immune system. These include individual genetic background, environmental factors, or diet, including dietary selenium intake. Selenium is an essential trace element with antiviral properties and has been shown to exert antitumor effects. Surprisingly, the role of selenium in cervical cancer has not been studied as intensively as in other cancers. Here, we have summarized the existing experimental data on selenium and cervical cancer. It may be helpful in evaluating the role of this nutrient in treatment of the mentioned malignancy as well as in planning further studies in this area.
Collapse
Affiliation(s)
- Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Qi Li
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Tong Wang
- Harbin Medical University, Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B, Qu Y. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. ENVIRONMENTAL RESEARCH 2021; 194:110630. [PMID: 33345899 DOI: 10.1016/j.envres.2020.110630] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 05/21/2023]
Abstract
Selenium nanoparticles (SeNPs) have attracted great interest as a potential antimicrobial agent. However, there is limited research on the antibacterial activity and possible mechanisms of biosynthesized SeNPs. In this study, spherical bio-SeNPs with an average size of 120 nm were synthesized by strain Providencia sp. DCX. The SeNPs were further applied to investigate the antibacterial properties of model bacteria, including Gram-positive (Staphylococcus aureus, Bacillus cereus and Bacillus subtilis) and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Vibrio parahemolyticus). The biosynthesized SeNPs demonstrated strong inhibition activity against the growth of these pathogens. When treated with 500 mg/L SeNPs, most of the tested bacteria were destructed within 12 h, among which the mortality rates of Gram-negative bacteria were much better. The leakage tests illustrated that there existed more proteins and polysaccharides outside the cells after reacted with bio-SeNPs. It was indicated that the leakages of proteins and polysaccharides were caused by permeability changes of membranes and the disruption of cell walls. And the change of reactive oxygen species (ROS) intensity indicated that oxidative damage may play the significant role in the antibacterial processes. The results showed that several bacteria could be effectively inhibited and destructed, suggesting the potential of using the biosynthesized SeNPs as antibacterial agents for bacterial infectious diseases.
Collapse
Affiliation(s)
- Henglin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ping Wang
- Dalian Product Quality Inspection and Testing Institute Co., Ltd., Dalian, 116024, China
| | - Shuling Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
39
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
40
|
Poluboyarinov PA, Elistratov DG, Moiseeva IJ. Antitumor Activity of Selenium and Search Parameters for Its New Potentially Active Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Menon S, Shanmugam VK. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J Trace Elem Med Biol 2020; 62:126549. [PMID: 32731109 DOI: 10.1016/j.jtemb.2020.126549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Scientists are working on creating novel materials that can help in the treatment of diverse cancer-related diseases having trademark highlights like the target siting, specificity, improved therapeutic index of radiotherapy and chemotherapeutic treatments. The utilization of novel nanomaterials which are surface adorned with drugs or natural compounds can be used in diverse medical applications and helps in setting up a new platform for its improvement in the chemotherapeutic potentiality. One such nanomaterial is the trace element selenium in its nanoparticulate form that has been proved to be a potential chemotherapeutic agent recently. METHODS The English language papers were gathered from electronic databases like Sciencedirect, Pub Med, Google Scholar and Scopus, the papers are published from 2001 to 2019. RESULTS In the initial phase, approximately 200 papers were searched upon, out of which 118 articles were included after screening and critical reviewing. The information included was also tabulated for better knowledge and easy read. These articles contain information on the nanotechnology, inflammation, cancer and selenium as nanoparticles. CONCLUSION The overview of the paper explains the enhancement of potentiality of anticancer drugs or phytochemicals which restricts its utilization in chemotherapeutic applications by the encapsulation or adsorption of them on selenium nanoparticles proven to accelerate the anticancerous properties with better results when compared with individual components. SeNPs (selenium nanoparticles) have demonstrated chemotherapeutic activity due to pro-oxidant property, where the anti-oxidant enzymes are stimulated to produce reactive active species, which induces oxidative stress, followed by activation of the apoptotic signalling pathway, cell cycle arrest, mitochondrial dysfunction and other pathways that ultimately lead to cell death. Selenium in nanoparticulate form can be used as a micronutrient to human health, thereby having low toxicity, can easily be degraded and also has good biocompatibility.
Collapse
Affiliation(s)
- Soumya Menon
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Venkat Kumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
42
|
Le BA, Okitsu K, Imamura K, Takenaka N, Maeda Y. Ultrasound Assisted Cascade Extraction of Oil, Vitamin E, and Saccharides from Roselle (Hibiscus Sabdariffa L.) Seeds. ANAL SCI 2020; 36:1091-1097. [PMID: 32336730 DOI: 10.2116/analsci.20p073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/14/2020] [Indexed: 08/09/2023]
Abstract
Roselle seeds, a waste biomass of the roselle calyx processing industry, were utilized to recover valuable compounds of oil, vitamin E, and water-soluble saccharides. Firstly, ultrasound-assisted extraction (UAE) and conventional stirring extraction were conducted for saccharide extraction, and the advantage of UAE was confirmed. Secondly, oil, vitamin E, and saccharides extracted from Vietnamese roselle seeds by UAE were analyzed for the first time. Oil of tri-, di-, and mono-glycerides, fatty acids of linoleic-, oleic-, palmitic-, and stearic-acids, vitamin E of γ- and α-tocopherol, and saccharides of sucrose, raffinose, stachyose, etc. were identified, and the amounts of these components were compared with those in other country's roselle seeds. Thirdly, cascade extraction of oil, vitamin E, and saccharides by UAE was investigated with solvents of hexane, hexane:ethyl acetate binary solvent, and water. The results indicated that the order of using solvents was very important for high and selective extraction: the best order to recover oil (almost 100%), vitamin E (95.7%), and saccharides (86.2%) was hexane, and then water.
Collapse
Affiliation(s)
- Bang Anh Le
- Graduate School of Engineering, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Kenji Okitsu
- Graduate School of Humanity and Sustainable System Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan.
| | - Kiyoshi Imamura
- Graduate School of Humanity and Sustainable System Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Norimichi Takenaka
- Graduate School of Humanity and Sustainable System Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| | - Yasuaki Maeda
- Graduate School of Humanity and Sustainable System Sciences, Osaka Prefecture University, Sakai, 599-8531, Japan
| |
Collapse
|
43
|
Selenium attenuates docetaxel-induced apoptosis and mitochondrial oxidative stress in kidney cells. Anticancer Drugs 2020; 30:339-346. [PMID: 30875346 DOI: 10.1097/cad.0000000000000723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic agent, and it is used for the treatment of several cancers including prostate and glioblastoma, but it results in many adverse effects in normal tissues, including kidney. The cytoprotective properties of selenium (Se) against adverse effects of DTX were reported in several normal cells, except kidney cell lines. The purpose of this study was to investigate the effects of Se on DTX-induced nephrotoxicity in normal kidney cell lines. The human embryonic kidney 293 (HEK293) cells were divided into four groups as control, Se (200 nmol/l for 10 h), DTX (10 nmol/l for 48 h), and DTX+Se. Laser confocal microscope fluorescence intensity of apoptosis (annexin V and propidium iodide), mitochondrial membrane depolarization, reactive oxygen species production, and lipid peroxidation levels were increased in the cells by the DTX treatments, although cell number, cell viability, reduced glutathione and glutathione peroxidase values were decreased by the treatments. The fluorescence intensities and values were recovered in the DTX+Se group of the cells by Se treatment. In conclusion, DTX-induced adverse effects were recovered through inhibition of apoptosis and mitochondrial oxidative stress through upregulation of reduced glutathione and glutathione peroxidase in the normal kidney (HEK293) cells. Combination therapy of DTX and Se could be used as an effective strategy for protection of kidney cells against adverse effects of DTX.
Collapse
|
44
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Galić E, Ilić K, Hartl S, Tetyczka C, Kasemets K, Kurvet I, Milić M, Barbir R, Pem B, Erceg I, Dutour Sikirić M, Pavičić I, Roblegg E, Kahru A, Vinković Vrček I. Impact of surface functionalization on the toxicity and antimicrobial effects of selenium nanoparticles considering different routes of entry. Food Chem Toxicol 2020; 144:111621. [PMID: 32738372 DOI: 10.1016/j.fct.2020.111621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
Abstract
Selenium nanoparticles (SeNPs) were first designed as nutritional supplements, but they are attractive also for use in diagnostic and therapeutic systems owing to their biocompatibility and protective effects. This study aimed to examine if different SeNPs stabilization strategies affect their (i) antimicrobial activity against bacteria Escherichia coli and Staphylococcus aureus and yeast Saccharomyces cerevisiae and (ii) toxicity to human cells of different biological barriers i.e., skin, oral and intestinal mucosa. For surface stabilization, polyvinylpyrrolidone (PVP), poly-L-lysine (PLL) and polyacrylic acid (PAA) were used rendering neutral, positively and negatively charged SeNPs, respectively. The SeNPs (primary size ~80 nm) showed toxic effects in human cells in vitro and in bacteria S. aureus, but not in E. coli and yeast S. cerevisiae. Toxicity of SeNPs (24 h IC50) ranged from 1.4 to >100 mg Se/L, depending on surface functionalization (PLL > PAA > PVP) and was not caused by ionic Se. At subtoxic concentrations, all SeNPs were taken up by all human cell types, induced oxidative stress response and demonstrated genotoxicity. As the safety profile of SeNPs was dependent not only on target cells (mammalian cells, bacteria, yeast), but also on surface functionalization, these aspects should be considered during development of novel SeNPs-based biomedical products.
Collapse
Affiliation(s)
- Emerik Galić
- University J.J. Strossmayer in Osijek, Faculty of Agrobiotechnical Sciences Osijek, Croatia
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Carolin Tetyczka
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ina Erceg
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Eva Roblegg
- University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, Graz, Austria
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia.
| | | |
Collapse
|
46
|
Chen D, Li B, Jiang L, Li Y, Yang Y, Luo Z, Wang J. Pristine Cu-MOF Induces Mitotic Catastrophe and Alterations of Gene Expression and Cytoskeleton in Ovarian Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:4081-4094. [PMID: 35025483 DOI: 10.1021/acsabm.0c00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metals-organic frameworks (MOFs) have been widely explored in biomedicine, mostly in drug delivery, biosensing, and bioimaging due to their large surface area, tunable porosity, readily chemical functionalization, and good biocompatibility. However, the underlining cellular mechanisms controlling the process for MOF cytotoxicity remains almost completely unknown. Here, we demonstrate that pristine Cu-MOF without any loaded drug selectively inhibited ovarian cancer mainly through promoting tubulin polymerization and destroying the cell actin cytoskeleton (F-actin) to trigger the mitotic catastrophe, accompanying by conventional programmed cell death. To our knowledge, this is the first report claiming that mitotic catastrophe may be an explaining mechanism of MOF cytotoxicity. Cu-MOF with an intrinsic protease-like activity also hydrolyzed cellular cytoskeleton proteins (F-actin). The RNA sequencing data indicated the differential expressional mRNA of cell proliferation and actin cytoskeleton (ACTA2, ACTN3, FSCN2, and SCIN) and mitotic spindles (PLK1 and TPX2) related genes. We found that Cu-MOF as a promising candidate in the disruption of cellular cytoskeleton and the change of the gene expression could be actin altering and antimitotic agents against cancer cells, allowing for fundamental biological and biophysical studies of MOFs.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, P.R. China
| | - Liang Jiang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yizhou Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yepeng Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Zhifang Luo
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jiaqiang Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P.R. China.,School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
47
|
Xing C, Yin P, Peng Z, Zhang H. Engineering Mono-Chalcogen Nanomaterials for Omnipotent Anticancer Applications: Progress and Challenges. Adv Healthc Mater 2020; 9:e2000273. [PMID: 32537940 DOI: 10.1002/adhm.202000273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Belonging to the chalcogen group, the elements selenium (Se) and tellurium (Te) are located in Group VI-A of the periodic table. Zero-valent nanodimensioned Se (nano-Se) and Te (nano-Te) have displayed important biomedical applications in recent years. The past two decades have witnessed an explosion in novel cancer treatment strategies using nano-Se and nano-Te as aggressive weapons against tumors. Indeed, they are both inorganic nanomedicines that suppress tumor cell proliferation, diffusion, and metastasis. Abundant synthesis strategies for rational and precise surface decoration of nano-Se and nano-Te make them significant players in resisting cancers by means of powerful multi-modal treatment methods. This review focuses on the design and engineering of nano-Se- and nano-Te-based nanodelivery systems and their precise uses in cancer treatment. The corresponding anticancer molecular mechanisms of nano-Se and nano-Te are discussed in detail. Given their different photo-induced behaviors, the presence or absence of near infrared illumination is used as a defining characteristic when describing the anticancer applications of nano-Se and nano-Te. Finally, the challenges and future prospects of nano-Se and nano-Te are summarized and highlighted.
Collapse
Affiliation(s)
- Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Peng Yin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
48
|
|
49
|
Kazemi M, Akbari A, Zarrinfar H, Soleimanpour S, Sabouri Z, Khatami M, Darroudi M. Evaluation of Antifungal and Photocatalytic Activities of Gelatin-Stabilized Selenium Oxide Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Sonkusre P. Specificity of Biogenic Selenium Nanoparticles for Prostate Cancer Therapy With Reduced Risk of Toxicity: An in vitro and in vivo Study. Front Oncol 2020; 9:1541. [PMID: 32010628 PMCID: PMC6978793 DOI: 10.3389/fonc.2019.01541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/19/2019] [Indexed: 01/20/2023] Open
Abstract
Selenium deficiency is associated with many physiological disorders including the high risk of cancer. The rehabilitation of selenium with different selenium supplements, however, fails due to their low therapeutic index. Therefore, it is advantageous to have a less toxic form of selenium for supplementation with potentially high anticancer activity. Here we show Bacillus licheniformis derived biogenic selenium nanoparticles at a minimal concentration of 2 μg Se/ml induce necroptosis in LNCaP-FGC cells, without affecting the RBC integrity. Real-time gene expression analysis indicated the overexpression of tumor necrotic factor (TNF) and interferon regulatory factor (IRF1) and decreased expression of androgen receptor (AR) and prostate-specific antigen (PSA). Furthermore, histopathological analysis showed the subsequent oral administrations of 10 times higher concentration of these endotoxin free selenium nanoparticles in C3H/HeJ mice (50 mg Se/kg of body weight), induce significantly lower toxicity compared to the L-selenomethionine (5 mg Se/kg). Our study suggested that the biogenic SeNP could emerge as the safest form of selenium supplementation with potent anticancer activity.
Collapse
|