1
|
Laffleur F, Millotti G, Lagast J. An overview of oral bioavailability enhancement through self-emulsifying drug delivery systems. Expert Opin Drug Deliv 2025; 22:659-671. [PMID: 40078056 DOI: 10.1080/17425247.2025.2479759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The pharmaceutical technologists face a lot of challenges and limitations when designing novel drug delivery systems such as low oral bioavailability of many drugs, primarily due to poor solubility, slow dissolution rates, limited permeability through gastrointestinal mucosa, and rapid degradation within the body. AREAS COVERED The biopharmaceutical classification (BCS) classification represents a map in drug delivery research. Numerous active ingredients are characterized by low bioavailability due to poor water solubility, especially active ingredients of BCS class II and IV. Self-emulsifying drug delivery systems (SEDDS) could act as game changer in order to overcome the challenges and limitations of poor bioavailability. In this review, timelines representing the launch of self-emulsifying drug delivery systems, their introduction to the pharmaceutical platform and their benefits will be discussed in detail. EXPERT OPINION The development of multifunctional systems capable of combining controlled release, targeted delivery, and diagnostic capabilities is a promising avenue. As the technology matures, self-microemulsifying drug delivery systems and self-nanoemulsifying drug delivery systems are likely to become a standard approach for delivering BCS class II and IV drugs, transforming the pharmaceutical landscape.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Pula, Croatia
| | - Jennifer Lagast
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Tartari APS, Jacumazo J, Lorenzett AKP, de Freitas RA, Mainardes RM. Development and Characterization of Silibinin-Loaded Nanoemulsions: A Promising Mucoadhesive Platform for Enhanced Mucosal Drug Delivery. Pharmaceutics 2025; 17:192. [PMID: 40006559 PMCID: PMC11859180 DOI: 10.3390/pharmaceutics17020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Silibinin (SLB), a flavonoid derived from milk thistle, exhibits promising therapeutic properties but faces significant clinical limitations due to poor solubility and bioavailability. Objectives: This study focuses on the development and characterization of SLB-loaded nanoemulsions designed for mucosal delivery. Methods: Nanoemulsions were prepared using the spontaneous emulsification method, guided by pseudoternary phase diagrams to determine selected component ratios. Comprehensive characterization included particle size, polydispersity index (PDI), zeta potential, encapsulation efficiency, rheological properties, and surface tension. Mucoadhesive properties were evaluated using quartz crystal microbalance with dissipation (QCM-D) to quantify interactions with mucin layers. Results: The combination of Capryol 90, Tween 80, and Transcutol in selected proportions yielded nanoemulsions with excellent stability and solubilization capacity, enhancing the solubility of silibinin by 625 times compared to its intrinsic solubility in water. The ternary phase diagram indicated that achieving nanoemulsions with particle sizes between 100 and 300 nm required higher concentrations of surfactants (60%), relative to oil (20%) and water (20%), with formulations predominantly composed of Smix (surfactant and cosurfactant mixture in a 1:1 ratio). Rheological analysis revealed Newtonian behavior, characterized by constant viscosity across varying shear rates and a linear torque response, ensuring ease of application and mechanical stability. QCM-D analysis confirmed strong mucoadhesive interactions, with significant frequency and dissipation shifts, indicative of prolonged retention and enhanced mucosal drug delivery. Furthermore, contact angle measurements showed a marked reduction in surface tension upon interaction with mucin, with the SLB-loaded nanoemulsion demonstrating superior wettability and strong mucoadhesive potential. Conclusions: These findings underscore the suitability of SLB-loaded nanoemulsions as a robust platform for effective mucosal drug delivery, addressing solubility and bioavailability challenges while enabling prolonged retention and controlled therapeutic release.
Collapse
Affiliation(s)
- Ana Paula Santos Tartari
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil; (A.P.S.T.); (A.K.P.L.)
| | - Joslaine Jacumazo
- BioPol, Chemistry Department, Universidade Federal do Paraná (UFPR), R. Coronel F. H. dos Santos, 210, Curitiba 81531-980, PR, Brazil; (J.J.); (R.A.d.F.)
| | - Ariane Krause Padilha Lorenzett
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil; (A.P.S.T.); (A.K.P.L.)
| | - Rilton Alves de Freitas
- BioPol, Chemistry Department, Universidade Federal do Paraná (UFPR), R. Coronel F. H. dos Santos, 210, Curitiba 81531-980, PR, Brazil; (J.J.); (R.A.d.F.)
| | - Rubiana Mara Mainardes
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil; (A.P.S.T.); (A.K.P.L.)
- Pharmacy Department, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, Guarapuava 85040-167, PR, Brazil
| |
Collapse
|
3
|
Kota S, Nelapati AK, Govada VR. Plant resources for immunonutrients and immunomodulators to combat infectious respiratory viral diseases: a review. 3 Biotech 2024; 14:302. [PMID: 39554986 PMCID: PMC11568085 DOI: 10.1007/s13205-024-04143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Boosting the immune system has become a crucial aspect in the global battle against the COVID-19 pandemic and other similar infections to protect oneself against symptoms, especially in the prevention of viral infections of the lower respiratory tract. The importance of conducting more studies to create successful herbal formulations as infection prevention measures is emphasized in this review, which looks at the function of immune-boosting nutrients, medicinal plants, and herbal treatments. We reviewed and analyzed 207 studies published from 1946 to the present using reputable databases like Google Scholar, PubMed, and NCBI. The review examined 115 plant species in total and identified 12 key nutrients, including vitamins A, D, C, omega-3 fatty acids, iron, and zinc, while noting that four plant families, Rosaceae, Asteraceae, Amaryllidaceae, and Acanthaceae, show potential against respiratory infections like influenza, RSV, and SARS-CoV. To lower the risk of infection, it is recommended to consume nutritious meals that have immune-modulating qualities. Information on the bioactive components of medicinal herbs, spices, and plants that have been effective in treating respiratory viral infections and related conditions is compiled in this review, which highlights phytoactive substances with antibacterial and antiviral activity as effective modulators to lower the risk of infections. Furthermore, it is highlighted that ancient knowledge systems, like Ayurveda and Naturopathy, should be integrated to help develop new herbal formulations. To improve immunity and lessen vulnerability to serious respiratory infections, the results highlight the need for including immune-modulating foods and plant-based medicines into everyday routines.
Collapse
Affiliation(s)
- Sobha Kota
- Department of Chemical Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh 522 019 India
| | - Anand Kumar Nelapati
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213 India
| | - Vayunandana Rao Govada
- Department of Chemical Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh 522 019 India
| |
Collapse
|
4
|
Gunjal P, Vishwas S, Kumar R, Bashir B, Kumar B, Khurana N, Gulati M, Gupta G, Prasher P, Kumbhar P, Disouza J, Kuppusamy G, Mohammed Y, Dureja H, Dua K, Singh SK. Enhancing the oral bioavailability of fisetin: polysaccharide-based self nano-emulsifying spheroids for colon-targeted delivery. Drug Deliv Transl Res 2024; 14:1-17. [PMID: 38789909 DOI: 10.1007/s13346-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Fisetin (FS) is a flavonoid that possesses antioxidant and anti-inflammatory properties against ulcerative colitis. FS shows poor dissolution rate and permeability. An attempt has been made to develop colon-targeted solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of FS. Initially, liquid (L) SNEDDS were prepared by loading FS into isotropic mixture of L-SNEDDS was prepared using Labrafil M 1944 CS, Transcutol P, and Tween 80. These L-SNEDDS were further converted into solid (S) SNEDDS by mixing the isotropic mixture with 1:1:1 ratio of guar gum (GG), xanthan gum (XG) and pectin (PC) [GG:XG:PC (1:1:1)]. Aerosil-200 (A-200) was added to enhance their flow characteristics. Further, they were converted into spheroids by extrusion-spheronization technique. The solid-state characterization of S-SNEDDS was done by SEM, DSC, and PXRD, which revealed that the crystalline form of FS was converted into the amorphous form. In the dissolution study, S-SNEDDS spheroids [GG:XG:PC (1:1:1)] exhibited less than 20% drug release within the first 5 h, followed by rapid release of the drug between the 5th and 10th h, indicating its release at colonic site. The site-specific delivery of FS to colon via FS-S-SNEDDS spheroids was confirmed by conducting pharmacokinetic studies on rats. Wherein, results showed delay in absorption of FS loaded in spheroids up to 5 h and achievement of Cmax at 7h, whereas L-SNEDDS showed rapid absorption of FS. Furthermore, FS-L-SNEDDS and FS-S-SNEDDS spheroids [GG:XG:PC (1:1:1)] increased oral bioavailability of FS by 6.86-fold and 4.44-fold, respectively, as compared to unprocessed FS.
Collapse
Affiliation(s)
- Pradnya Gunjal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Yousuf Mohammed
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Jvus C, Kothuri N, Singh S, Verma S, Shafi H, Reddy DVS, Kedar A, Rana R, Mishra K, Sharma D, Chourasia MK. A Quality by Design Approach for Developing SNEDDS Loaded with Vemurafenib for Enhanced Oral Bioavailability. AAPS PharmSciTech 2024; 25:14. [PMID: 38191830 DOI: 10.1208/s12249-023-02725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Vemurafenib (VMF) is a practically insoluble (< 0.1 μg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Chakradhar Jvus
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hasham Shafi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - D V Siva Reddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Deepak Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
6
|
Wang M, Li H, Yang W. Preparation, in vitro and in vivo evaluation of a novel mitiglinide microemulsions. Saudi Pharm J 2024; 32:101919. [PMID: 38178852 PMCID: PMC10764261 DOI: 10.1016/j.jsps.2023.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
This study aimed to prepare an o/w mitiglinide microemulsion (MTGME) to improve the drug solubility and bioavailability. The formulation of o/w MTGME was optimized by the solubility study of drug, pseudo-ternary phase diagram and Box-Behnken design successively. MTGME was characterized by dynamic laser light scattering (DLS), zeta potential and transmission electron microscopy (TEM), moreover, the storage stability, pharmacodynamics and pharmacokinetics were investigated. The optimal prescription for MTGME consisted of Maisine 35-1 (oil), Cremophor EL (surfactant) and propylene glycol (PG, cosurfactant). MTGME with a spherical dimension of 58.1 ± 5.86 nm was stable when stored at 4 °C for 3 months. The blood glucose levers (BGL) of diabetic mice were uniformly and significantly decreased by intragastric (i.g.) administration of 1-4 mg/kg MTGME, in which BGL (i.g. 4 mg/kg MTGME) was reduced by 69% during 24 h. The pharmacokinetics study of MTGME (i.g., 20 mg/kg) in Wistar rats showed higher plasma drug concentration (Cmax, 2.9 folds), larger area under curve (AUC, 4.6 folds) and oral bioavailability than those of MTG suspensions. Generally, the MTGME (o/w) showed good effect on controlling hyperglycemia. Therefore, microemulsion can be used as an effective oral drug delivery system to improve the bioavailability of MTG.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Pharmacy, Baoding NO. 1 Central Hospital, Baoding Great Wall North Street No. 320, Hebei Province, Baoding 071000, China
| | - Hanghang Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province & College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Wenzhi Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province & College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Wang Z, Yang L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023; 15:3443. [PMID: 37571380 PMCID: PMC10421531 DOI: 10.3390/nu15153443] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85:104526. [DOI: 10.1016/j.jddst.2023.104526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
9
|
Zuccari G, Alfei S. Development of Phytochemical Delivery Systems by Nano-Suspension and Nano-Emulsion Techniques. Int J Mol Sci 2023; 24:9824. [PMID: 37372971 DOI: 10.3390/ijms24129824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| | - Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano 4, I-16148 Genova, Italy
| |
Collapse
|
10
|
Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Qi X, Wang J, Fei F, Gao X, Wu X, Shi D, Guo C. Myricetin-Loaded Nanomicelles Protect against Cisplatin-Induced Acute Kidney Injury by Inhibiting the DNA Damage-cGAS-STING Signaling Pathway. Mol Pharm 2023; 20:136-146. [PMID: 36326450 DOI: 10.1021/acs.molpharmaceut.2c00520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1β and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Fengshu Fei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| |
Collapse
|
12
|
Shukla E, Kara DD, Katikala T, Rathnanand M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Dev Ind Pharm 2023; 49:1-16. [PMID: 36803270 DOI: 10.1080/03639045.2023.2182124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE A significant problem faced by the health care industry today is that though there are numerous drugs available to tackle diseases like cancer, their intrinsic properties make it difficult to be delivered to patients in a feasible manner. One of the key players that have helped researchers overcome poor solubility and permeability of drugs is Nanotechnology, this article further iterates on the same. SIGNIFICANCE Nanotechnology is used as an umbrella term in pharmaceutics and describes under it multiple technologies. Upcoming nanotechnology is a Self Nanoemulsifying System which is considered to be a futuristic delivery system both due to its scientific simplicity and relative ease of patient delivery. METHODS Self-Nano Emulsifying Drug Delivery Systems (SNEDDS) are homogenous lipidic concoctions containing the drug solubilized in the oil phase and surfactants. The choice of components depends on the physicochemical properties of the drugs, the solubilization capability of oils and the physiological fate of the drug. The article contains further details of various methodologies that have been adopted by scientists to formulate and optimize such systems in order to make anticancer drugs orally deliverable. RESULTS The results that have been generated by scientists across the globe have been summarized in the article and all of the data supports the claim that SNEDDS significantly enhance the solubility and bioavailability of hydrophobic anticancer drugs. CONCLUSIONS This article mainly provides the application of SNEDDS in cancer therapy and concludes to provide a step for the oral administration of several BCS class II and IV anticancer drugs.
Collapse
Affiliation(s)
- Eesha Shukla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Tanvi Katikala
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
13
|
Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res 2023; 13:292-307. [PMID: 35831776 PMCID: PMC9726673 DOI: 10.1007/s13346-022-01193-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Thymoquinone (TQ) is an antioxidant, anti-inflammatory, and hepatoprotective compound obtained from the black seed oil of Nigella sativa. However, high hydrophobicity, instability at higher pH levels, photosensitivity, and low oral bioavailability hinder its delivery to the target tissues. A self-nanoemulsifying drug delivery system (SNEDDS) was fabricated using the microemulsification technique to address these issues. Its physicochemical properties, thermodynamic stability studies, drug release kinetics, in vivo pharmacokinetics, and hepatoprotective activity were evaluated. The droplet size was in the nano-range (< 90 nm). Zeta potential was measured to be -11.35 mV, signifying the high stability of the oil droplets. In vivo pharmacokinetic evaluation showed a fourfold increase in the bioavailability of TQ-SNEDDS over pure TQ. Furthermore, in a PCM-induced animal model, TQ-SNEDDS demonstrated significant (p < 0.05) hepatoprotective activity compared to pure TQ and silymarin. Reduction in liver biomarker enzymes and histopathological examinations of liver sections further supported the results. In this study, SNEDDS was demonstrated to be an improved oral delivery method for TQ, since it potentiates hepatotoxicity and enhances bioavailability.
Collapse
|
14
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Tonjan R, Singh D. Functional Excipients and Novel Drug Delivery Scenario in Self-nanoemulsifying Drug Delivery System: A Critical Note. Pharm Nanotechnol 2022; 10:PNT-EPUB-125930. [PMID: 36043758 DOI: 10.2174/2211738510666220829085745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Lipid-based formulations have emerged as prospective dosage forms for extracting the therapeutic effects of existing lipophilic compounds and novel chemical entities more efficiently. Compared to other excipients, lipids have the added benefit of enhancing the bioavailability of lipophilic and highly metabolizable drugs due to their unique physicochemical features and similarities to in vivo components. Furthermore, lipids can minimize the needed dose and even the toxicity of drugs with poor aqueous solubility when employed as the primary excipient. Hence, the aim of the present review is to highlight the functional behavior of lipid excipients used in SNEDD formulation along with the stability aspects of the formulation in vivo. Moreover, this review also covered the importance of SNEDDS in drug delivery, the therapeutic and manufacturing benefits of lipids as excipients, and the technological advances made so far to convert liquid to solid SNEDDS like melt granulation, adsorption on solid support, spray cooling, melt extrusion/ spheronization has also highlighted. The mechanistic understanding of SNEDD absorption in vivo is highly complex, which was discussed very critically in this review. An emphasis on their application and success on an industrial scale was presented, as supported by case studies and patent surveys.
Collapse
Affiliation(s)
- Russel Tonjan
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road (NH-95), Ghal Kalan, Moga, Punjab 142001, INDIA
| |
Collapse
|
16
|
Supramolecular aggregates of myricetin improve its bioavailability and its role in counteracting alcoholism. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Raza Q, Sadia H, Raza S, Bhinder M, Calina D, Sharifi-Rad J, Cho WC. Myricetin: targeting signaling networks in cancer and its implication in chemotherapy. Cancer Cell Int 2022; 22:239. [PMID: 35902860 PMCID: PMC9336020 DOI: 10.1186/s12935-022-02663-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
The gaps between the complex nature of cancer and therapeutics have been narrowed down due to extensive research in molecular oncology. Despite gathering massive insight into the mysteries of tumor heterogeneity and the molecular framework of tumor cells, therapy resistance and adverse side effects of current therapeutic remain the major challenge. This has shifted the attention towards therapeutics with less toxicity and high efficacy. Myricetin a natural flavonoid has been under the spotlight for its anti-cancer, anti-oxidant, and anti-inflammatory properties. The cutting-edge molecular techniques have shed light on the interplay between myricetin and dysregulated signaling cascades in cancer progression, invasion, and metastasis. However, there are limited data available regarding the nano-delivery platforms composed of myricetin in cancer. In this review, we have provided a comprehensive detail of myricetin-mediated regulation of different cellular pathways, its implications in cancer prevention, preclinical and clinical trials, and its current available nano-formulations for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000 Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87100 Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Munir Bhinder
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54600 Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
18
|
Sharma S, Kanugo A, Kaur T, Chaudhary D. Formulation and Characterization of Self-Microemulsifying Drug Delivery System (SMEDDS) of Sertraline Hydrochloride. RECENT PATENTS ON NANOTECHNOLOGY 2022; 18:NANOTEC-EPUB-124754. [PMID: 35747954 DOI: 10.2174/1872210516666220623152440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sertraline hydrochloride is the most widely used selective serotonin reuptake inhibitor (SSRI) for the treatment of several depressive disorders. Its applicability is limited due to extensive metabolism and poor oral bioavailability of 44 %. OBJECTIVE The current research focused on improving the solubility and oral bioavailability of Sertraline by using microemulsions developed by a self-micro emulsifying drug delivery system (SMEDDS) for significant antidepressant action. METHOD SMEDDS were developed by selecting appropriate proportions of oil, surfactant, and co-solvents and out of them isopropyl myristate, tween 80 and propylene glycol were identified as best. The emulsification zone was demonstrated by a ternary phase diagram, and compatibility was confirmed with Fourier-transformed infrared spectroscopy (FT-IR). The formulated SMEDDS were characterized for robustness to dilution, globule size (GS), polydispersity index (PDI), viscosity, in-vitro dissolution and diffusion study, and drug release kinetics study. RESULTS All the batches (A1-A9) passes the test and A3 was selected as an optimized batch that doesn't show phase separation, precipitation with globule size (101 nm), PDI (0.319), drug content (99.14±0.35 %), viscosity (10.71±0.02 mPa), self-emulsification time (46 sec), in-vitro drug release (98.25±0.22 %) within 8 h, release kinetics (Higuchi) and effective antidepressant in in-vitro diffusion studies. CONCLUSION An optimized batch A3 observed circular in shape estimated by Transmission electron microscopy (TEM) and passes all the thermodynamic stability testing with loss of 0.271 mg of the drug after 90 days and showed marked antidepressant action with higher stability.
Collapse
Affiliation(s)
- Sanjay Sharma
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Abhishek Kanugo
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India-425405
| | - Tejvir Kaur
- Department of Pharmacy, Government Medical College, Patiala, Punjab-147001
| | - Deepak Chaudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan
| |
Collapse
|
19
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
20
|
Xu Z, Liu G, Huang J, Wu J. Novel Glucose-Responsive Antioxidant Hybrid Hydrogel for Enhanced Diabetic Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7680-7689. [PMID: 35129966 DOI: 10.1021/acsami.1c23461] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antioxidant hydrogel has exhibited great potential for diabetic wound treatment. However, it is still a difficult challenge to realize reactive oxygen species (ROS) scavenging in an intelligent manner. Herein, we designed a novel glucose-responsive antioxidant hybrid hydrogel for enhanced diabetic wound repair. In this study, phenylboronic acid (PBA) with unique glucose-sensitivity was modified onto a hyaluronic acid (HA) chain by one-step synthesis, which was then incorporated into a polyethylene glycol diacrylates (PEG-DA) hydrogel matrix to obtain a novel hybrid hydrogel (PEG-DA/HA-PBA). Then, myricetin (MY) molecules with strong antioxidant activity were immobilized into the hybrid hydrogel by the formation of a dynamic borate bond between the polyphenol group of MY and the phenylboronic acid group of HA-PBA. The PEG-DA/HA-PBA/MY (PHM) hybrid hydrogel achieved glucose-triggered MY release, efficient ROS-scavenging (>80.0%), and also reshaped the hostile oxidative wound microenvironment (reduced MDA activity and increased SOD and GSH/GSSG levels). Furthermore, in vitro and in vivo results indicated that the PHM hydrogel platform effectively ameliorated the inflammatory response (decreased IL-6 and increased Il-10 expression), accelerated angiogenesis (increased VEGF and CD 31 expression), and increased tissue remodeling within 20 days, which was better than the nonresponsive PEG-DA/MY (PM) hydrogel platform in promoting diabetic wound healing. All results strongly suggested that this novel glucose-responsive antioxidant hybrid hydrogel platform has great potential in diabetic wound repair.
Collapse
Affiliation(s)
- Zejun Xu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Guiting Liu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Jun Huang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
21
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
22
|
Gervasi T, Calderaro A, Barreca D, Tellone E, Trombetta D, Ficarra S, Smeriglio A, Mandalari G, Gattuso G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int J Mol Sci 2022; 23:1710. [PMID: 35163632 PMCID: PMC8835978 DOI: 10.3390/ijms23031710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Flavonols are a subclass of natural flavonoids characterized by a remarkable number of biotechnological applications and health-promoting properties. They attract researchers' attention due to many epidemiological studies supporting their usage. They are phytochemicals commonly present in our diet, being ubiquitous in the plant kingdom and, in particular, relatively very abundant in fruits and vegetables. All these aspects make flavonols candidates of choice for the valorization of products, based on the presence of a remarkable number of different chemical structures, each one characterized by specific chemical features capable of influencing biological targets inside the living organisms in very different manners. In this review, we analyzed the biochemical and physiological characteristics of flavonols focalizing our attention on the most promising compounds to shed some light on their increasing utilization in biotechnological applications in processing industries, as well as their suitable employment to improve the overall wellness of the humankind.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| |
Collapse
|
23
|
Kareem F, Khatoon R, Minhas MA. WITHDRAWN: Biodegradable Self-assembled polymeric Micelles based on Poly (ethylene oxide)-block-Polylactide block copolymer for sustained delivery of dapsone. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Buya AB, Terrasi R, Mbinze JK, Muccioli GG, Beloqui A, Memvanga PB, Préat V. Quality-by-Design-Based Development of a Voxelotor Self-Nanoemulsifying Drug-Delivery System with Improved Biopharmaceutical Attributes. Pharmaceutics 2021; 13:pharmaceutics13091388. [PMID: 34575467 PMCID: PMC8468394 DOI: 10.3390/pharmaceutics13091388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Low aqueous solubility and poor oral bioavailability are limiting factors in the oral delivery of voxelotor, an antisickling agent. To overcome these limitations, a voxelotor self-nanoemulsifying drug delivery system was developed. Various oils, surfactants, and cosurfactants were screened for their solubilization potential for the drug. The area of nanoemulsification was identified using a ternary phase diagram. An experimental mixture design and a desirability function were applied to select SNEDDSs that contain a maximum amount of lipids and a minimum amount of surfactant, and that possess optimal emulsification properties (i.e., droplet sizes, polydispersity index (PDI), emulsification time, and transmittance percentage). The optimized SNEDDS formulation was evaluated for the self-emulsifying time (32 s), droplet size (35 nm), and zeta potential (−8 mV). In vitro dissolution studies indicated a 3.1-fold improvement in drug solubility from the optimized SNEDDS over pure drug powder. After 60 min of in vitro lipolysis, 88% of the voxelotor loaded in the SNEDDS remained in the aqueous phase. Cytotoxicity evaluation, using Caco-2 cells, indicated the safety of the formulation at 0.9 mg/mL. The transport of the voxelotor SNEDDS across Caco-2 monolayers was significantly enhanced compared to that of the free drug. Compared to the drug suspension, the developed SNEDDS enhanced the oral bioavailability (1.7-fold) of voxelotor in rats. The results suggest that further development of SNEDDSs for the oral delivery of voxelotor is needed.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo; (J.K.M.); (P.B.M.)
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.72.01, 1200 Brussels, Belgium; (R.T.); (G.G.M.)
| | - Jérémie K. Mbinze
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo; (J.K.M.); (P.B.M.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.72.01, 1200 Brussels, Belgium; (R.T.); (G.G.M.)
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo; (J.K.M.); (P.B.M.)
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Correspondence:
| |
Collapse
|
25
|
Yan T, Tao Y, Wang X, Lv C, Miao G, Wang S, Wang D, Wang Z. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Tan OJ, Loo HL, Thiagarajah G, Palanisamy UD, Sundralingam U. Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations - A Scoping Review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153651. [PMID: 34340903 DOI: 10.1016/j.phymed.2021.153651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although numerous medicinal herbal compounds demonstrate promising therapeutic potential, their clinical application is often limited by their poor oral bioavailability. To circumvent this barrier, various lipid-based herbal formulations have been developed and trialled with promising experimental results. PURPOSE This scoping review aims to describe the effect of lipid-based formulations on the oral bioavailability of herbal compounds. METHODS A systematic search was conducted across three electronic databases (Medline, Embase and Cochrane Library) between January 2010 and January 2021 to identify relevant studies. The articles were rigorously screened for eligibility. Data from eligible studies were then extracted and collated for synthesis and descriptive analysis using Covidence. RESULTS A total of 109 studies were included in the present review: 105 animal studies and four clinical trials. Among the formulations investigated, 50% were emulsions, 34% lipid particulate systems, 12% vesicular systems, and 4% were other types of lipid-based formulations. Within the emulsion system classification, self-emulsifying drug delivery systems were observed to produce the best improvements in oral bioavailability, followed by mixed micellar formulations. The introduction of composite lipid-based formulations and the use of uncommon surfactants such as sodium oleate in emulsion preparation was shown to consistently enhance the bioavailability of herbal compounds with poor oral absorption. Interestingly, the lipid-based formulations of magnesium lithospermate B and Pulsatilla chinensis produced an absolute bioavailability greater than 100% indicating the possibility of prolonged systemic circulation. With respect to chemical conjugation, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was the most frequently used and significantly improved the bioavailability of its phytoconstituents. CONCLUSION Our findings suggest that there is no distinct lipid-based formulation superior to the other. Bioavailability improvements were largely dependent on the nature of the phytoconstituents. This scoping review, however, provided a detailed summary of the most up-to-date evidence on phytoconstituents formulated into lipid preparations and their oral bioavailability. We conclude that a systematic review and meta-analysis between bioavailability improvements of individual phytoconstituents (such as kaempferol, morin and myricetin) in various lipid-based formulations will provide a more detailed association. Such a review will be highly beneficial for both researchers and herbal manufacturers.
Collapse
Affiliation(s)
- Oi Jin Tan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Hooi Leong Loo
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Gayathiri Thiagarajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia.
| |
Collapse
|
27
|
Enhanced Bioavailability of AC1497, a Novel Anticancer Drug Candidate, via a Self-Nanoemulsifying Drug Delivery System. Pharmaceutics 2021; 13:pharmaceutics13081142. [PMID: 34452103 PMCID: PMC8398171 DOI: 10.3390/pharmaceutics13081142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
AC1497 is an effective dual inhibitor of malate dehydrogenase 1 and 2 targeting cancer metabolism. However, its poor aqueous solubility results in low bioavailability, limiting its clinical development. This study was conducted to develop an effective self-nanoemulsifying drug delivery system (SNEDDS) of AC1497 to improve its oral absorption. Based on the solubility of AC1497 in various oils, surfactants, and cosurfactants, Capryol 90, Kolliphor RH40, and Transcutol HP were selected as the components of SNEDDS. After testing various weight ratios of Capryol 90 (20–30%), Kolliphor RH40 (35–70%), and Transcutol HP (10–35%), SNEDDS-F4 containing 20% Capryol 90, 45% Kolliphor RH40, and 35% Transcutol HP was identified as an optimal SNEDDS with a narrow size distribution (17.8 ± 0.36 nm) and high encapsulation efficiency (93.6 ± 2.28%). Drug release from SNEDDS-F4 was rapid, with approximately 80% of AC1497 release in 10 min while the dissolution of the drug powder was minimal (<2%). Furthermore, SNEDDS-F4 significantly improved the oral absorption of AC1497 in rats. The maximum plasma concentration and area under the plasma concentration–time curve of AC1497 were, respectively 6.82- and 3.14-fold higher for SNEDDS-F4 than for the drug powder. In conclusion, SNEDDS-F4 with Capryol 90, Kolliphor RH40, and Transcutol HP (20:45:35, w/w) effectively improves the solubility and oral absorption of AC1497.
Collapse
|
28
|
Radwan MF, El-Moselhy MA, Alarif WM, Orif M, Alruwaili NK, Alhakamy NA. Optimization of Thymoquinone-Loaded Self-Nanoemulsion for Management of Indomethacin-Induced Ulcer. Dose Response 2021; 19:15593258211013655. [PMID: 33994890 PMCID: PMC8113367 DOI: 10.1177/15593258211013655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
To improve the water solubility of thymoquinone (TQ), a major constituent of Nigella sativa seed oil, a TQ-loaded self-nanoemulsifying drug delivery system (SNEDDS) was prepared. The SNEDDS formulation was optimized using almond oil (AO) (Oil; X1), tween 80 (surfactant; X2) and polyethylene glycol 200 (PEG 200) (cosurfactant; X3) compounds as independent variables. The results showed that the globule size ranged from 65 to 320 nm. In addition, a strong agreement was reached between the system estimation and the experimental values of globule size. To evaluate the gastroprotective effect of optimized TQ-loaded SNEDDS against indomethacin (Indo.)-induced gastric ulcers in comparison with non-emulsified TQ, the ulcer index and histopathological changes were estimated. Optimized TQ-loaded SNEDDS showed improved gastroprotective activity against Indo.-induced ulcers relative to the non-emulsified TQ. In addition, the gastroprotective index was improved by 2-fold in TQ-loaded SNEDDS as compared to non-emulsified TQ. This is attributed to the strong antioxidant and the cytoprotective activities of the TQ. These results demonstrate enhancement of the efficacy of TQ through the optimized SNEDDS.
Collapse
Affiliation(s)
- Mohamed F Radwan
- Department of Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology, School of Pharmacy, Ibn Sina National College, Jeddah, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Jouf University, Sakaka, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Jaisamut P, Wanna S, Limsuwan S, Chusri S, Wiwattanawongsa K, Wiwattanapatapee R. Enhanced Oral Bioavailability and Improved Biological Activities of a Quercetin/Resveratrol Combination Using a Liquid Self-Microemulsifying Drug Delivery System. PLANTA MEDICA 2021; 87:336-346. [PMID: 33176379 DOI: 10.1055/a-1270-7606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Both quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.
Collapse
Affiliation(s)
- Patcharawalai Jaisamut
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Subhaphorn Wanna
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kamonthip Wiwattanawongsa
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ruedeekorn Wiwattanapatapee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
30
|
Ye J, Bao S, Zhao S, Zhu Y, Ren Q, Li R, Xu X, Zhang Q. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech 2021; 22:111. [PMID: 33748928 DOI: 10.1208/s12249-021-01983-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Dihydromyricetin (DMY) is highly effective in counteracting acute alcohol intoxication. However, its poor aqueous solubility and permeability lead to the low oral bioavailability and limit its clinic application. The aim of this work is to use Solutol®HS15 (HS 15) as surfactant to develop novel micelle to enhance the oral bioavailability of DMY by improving its solubility and permeability. The DMY-loaded Solutol®HS15 micelles (DMY-Ms) were prepared by the thin-film hydration method. The particle size of DMY-Ms was 13.97 ± 0.82 nm with an acceptable polydispersity index of 0.197 ± 0.015. Upon entrapped in micelles, the solubility of DMY in water was increased more than 25-fold. The DMY-Ms had better sustained release property than that of pure DMY. In single-pass intestinal perfusion models, the absorption rate constant (Ka) and permeability coefficient (Papp) of DMY-Ms were 5.5-fold and 3.0-fold than that of pure DMY, respectively. The relative bioavailability of the DMY-Ms (AUC0-∞) was 205% compared with that of pure DMY (AUC0-∞), indicating potential for clinical application. After administering DMY-Ms, there was much lower blood alcohol level and shorter duration of the loss of righting relax (LORR) in drunk animals compared with that treated by pure DMY. In addition, the oral administration of DMY-Ms greatly reduced oxidative stress, and significantly defended liver and gastric mucosa from alcoholic damages in mice with alcohol-induced tissue injury. Taken together, HS 15-based micelle system greatly improves the bioavailability of DMY and represents a promising strategy for the management of acute alcoholism. Graphical abstract.
Collapse
|
31
|
Krzyżek P, Migdał P, Paluch E, Karwańska M, Wieliczko A, Gościniak G. Myricetin as an Antivirulence Compound Interfering with a Morphological Transformation into Coccoid Forms and Potentiating Activity of Antibiotics against Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22052695. [PMID: 33800082 PMCID: PMC7962197 DOI: 10.3390/ijms22052695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori, a gastric pathogen associated with a broad range of stomach diseases, has a high tendency to become resistant to antibiotics. One of the most important factors related to therapeutic failures is its ability to change from a spiral to a coccoid form. Therefore, the main aim of our original article was to determine the influence of myricetin, a natural compound with an antivirulence action, on the morphological transformation of H. pylori and check the potential of myricetin to increase the activity of antibiotics against this pathogen. We observed that sub-minimal inhibitory concentrations (sub-MICs) of this compound have the ability to slow down the process of transformation into coccoid forms and reduce biofilm formation of this bacterium. Using checkerboard assays, we noticed that the exposure of H. pylori to sub-MICs of myricetin enabled a 4–16-fold reduction in MICs of all classically used antibiotics (amoxicillin, clarithromycin, tetracycline, metronidazole, and levofloxacin). Additionally, RT-qPCR studies of genes related to the H. pylori morphogenesis showed a decrease in their expression during exposure to myricetin. This inhibitory effect was more strongly seen for genes involved in the muropeptide monomers shortening (csd3, csd6, csd4, and amiA), suggesting their significant participation in the spiral-to-coccoid transition. To our knowledge, this is the first research showing the ability of any compound to synergistically interact with all five antibiotics against H. pylori and the first one showing the capacity of a natural substance to interfere with the morphological transition of H. pylori from spiral to coccoid forms.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
- Correspondence:
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| | - Magdalena Karwańska
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-366 Wroclaw, Poland; (M.K.); (A.W.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.P.); (G.G.)
| |
Collapse
|
32
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
33
|
Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
35
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
36
|
Kassem AA, Abd El-Alim SH, Salman AM, Mohammed MA, Hassan NS, El-Gengaihi SE. Improved hepatoprotective activity of Beta vulgaris L. leaf extract loaded self-nanoemulsifying drug delivery system (SNEDDS): in vitro and in vivo evaluation. Drug Dev Ind Pharm 2020; 46:1589-1603. [PMID: 32811211 DOI: 10.1080/03639045.2020.1811303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Beta vulgaris L. (beetroot) is a vegetable plant rich in phytochemical compounds such as phenolic acids, carotenoids and flavonoids. The objective of the current study is the development and optimization of self-nanoemulsifying drug delivery systems (SNEDDSs) to enhance the hepatoprotective activity of beet leaf (BL) extract. METHODS Total flavonoids content was estimated in the BL extract and its solubility was evaluated in various vehicles to select proper component combinations. Pseudo-ternary phase diagrams were constructed employing olive, linseed, castor and sesame oils (oil phase), Tween® 20 (Tw20) and Tween® 80 (Tw80) (surfactants (SAs)) as well as dimethyl sulfoxide (DMSO) and propylene glycol (PG) (co-surfactants (Co-SAs)). Optimization of formulations from the phase diagrams took place through testing their thermodynamic stability, dispersibility and robustness to dilution. RESULTS Four optimized BL-SNEDDS formulations, comprising linseed oil or olive oil, Tw80 and DMSO at two SA/Co-SA ratios (2:1 or 3:1) were chosen. They exhibited high cloud point and percentage transmittance values with spherical morphology of mean droplet sizes ranging from 14.67 to 16.06 nm and monodisperse distribution with negatively charged zeta potential < -9.51 mV. The in vitro release profiles of the optimized formulations in pH 1.2 and 6.8 were nearly similar, with a non-Fickian release mechanism. In vivo evaluation of BL-SNEDDSs hepatoprotective activity in a thioacetamide-induced hepatotoxicity rat model depicted promoted liver functions, inflammatory markers and histopathological findings, most prominently in the group treated by F7. CONCLUSION The results indicate that SNEDDS, as a nanocarrier system, has potential to improve the hepatoprotective activity of the BL extract.
Collapse
Affiliation(s)
- Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, Cairo, Egypt
| | | | - Asmaa Mohamed Salman
- Pharmaceutical and Medicinal Chemistry Department, National Research Centre, Cairo, Egypt
| | - Mona Arafa Mohammed
- Medicinal and Aromatic Plants Research Department, National Research Centre, Cairo, Egypt
| | | | | |
Collapse
|
37
|
Akhtar N, Mohammed SA, Khan RA, Yusuf M, Singh V, Mohammed HA, Al-Omar MS, Abdellatif AA, Naz M, Khadri H. Self-Generating nano-emulsification techniques for alternatively-routed, bioavailability enhanced delivery, especially for anti-cancers, anti-diabetics, and miscellaneous drugs of natural, and synthetic origins. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Interaction between Myricetin Aggregates and Lipase under Simplified Intestinal Conditions. Foods 2020; 9:foods9060777. [PMID: 32545373 PMCID: PMC7353558 DOI: 10.3390/foods9060777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/04/2022] Open
Abstract
Myricetin, a flavonoid found in the plant kingdom, has previously been identified as a food molecule with beneficial effects against obesity. This property has been related with its potential to inhibit lipase, the enzyme responsible for fat digestion. In this study, we investigate the interaction between myricetin and lipase under simplified intestinal conditions from a colloidal point of view. The results show that myricetin form aggregates in aqueous medium and under simplified intestinal condition, where it was found that lipase is in its monomeric form. Although lipase inhibition by myricetin at a molecular level has been reported previously, the results of this study suggest that myricetin aggregates inhibit lipase by a sequestering mechanism as well. The size of these aggregates was determined to be in the range of a few nm to >200 nm.
Collapse
|
39
|
Yousry C, Zikry PM, Basalious EB, El-Gazayerly ON. Self-nanoemulsifying System Optimization for Higher Terconazole Solubilization and Non-Irritant Ocular Administration. Adv Pharm Bull 2020; 10:389-398. [PMID: 32665897 PMCID: PMC7335989 DOI: 10.34172/apb.2020.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/20/2023] Open
Abstract
Purpose: Eye drops’ formulations of poorly water-soluble drugs, offer the advantage of crossing the lipophilic cornea, but their limited aqueous solubility may lead to low ocular bioavailability limiting their therapeutic uses. Terconazole (TZ) is an antifungal drug with low aqueous solubility, restricting its application in ocular fungal infection. Thus, the aim of the work in this study is to enhance TZ solubilization, permitting better ocular permeation and higher bioavailability. To achieve this goal, different self-nanoemulsifying systems (SNESs) were prepared using different oils, surfactants and co-surfactants. Methods: Ternary phase diagrams were constructed to identify self nano-emulsification regions for each oil system examined; either Labrafil® M2125CS or Capryol™ 90. TZ saturated solubility in the different formulated systems were measured and systems showing highest potential for TZ solubilization were selected. The optimized systems were chosen based on their globule size, polydispersity index, self-emulsification characteristics. Finally, TZ release as well as the irritation effect via Hen’s Egg test-chorioallantoic membrane (HET-CAM test) of the optimized system was observed in vitro. Results: The optimized system was formulated using 20% w/w Labrafil® M2125 CS, 50% w/w Tween® 80 and 30% w/w Transcutol® HP. Oil globules showed size range of 15.13 nm and self-emulsification time of 12.80 seconds. The system released 100% of the drug within half an hour compared to 2 hours in case of TZ-suspension. Finally, HET-CAM test showed non-irritating response and normal vascularization of the chorioallantoic membrane. Conclusion: The formulated SNES could be a promising approach to enhance ocular efficacy of TZ.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Pakinam Mohsen Zikry
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Egypt
| | - Emad Basalious Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Omaima Naem El-Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
40
|
Buya AB, Ucakar B, Beloqui A, Memvanga PB, Préat V. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDSs) for senicapoc. Int J Pharm 2020; 580:119180. [PMID: 32135227 DOI: 10.1016/j.ijpharm.2020.119180] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Senicapoc (SEN), a potent antisickling agent, shows poor water solubility and poor oral bioavailability. To improve the solubility and cell permeation of SEN, self-nanoemulsifying drug delivery systems (SNEDDSs) were developed. Capryol PGMC®, which showed the highest solubilization capacity, was selected as the oil. The self-emulsification ability of two surfactants, viz., Cremophor-EL® and Tween® 80, was compared. Based on a solubility study and ternary phase diagrams, three optimized nanoemulsions with droplet sizes less than 200 nm were prepared. An in vitro dissolution study demonstrated the superior performance of the SNEDDS over the free drug. During in vitro lipolysis, 80% of SEN loaded in the SNEDDS remained solubilized. An in vitro cytotoxicity study using the Caco-2 cell line indicated the safety of the formulations at 1 mg/mL. The transport of SEN-SNEDDSs across Caco-2 monolayers was enhanced 115-fold (p < 0.01) compared to that of the free drug. According to these results, SNEDDS formulations could be promising tools for the oral delivery of SEN.
Collapse
Affiliation(s)
- Aristote B Buya
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; University of Kinshasa, Faculty of Pharmaceutical Sciences, Pharmaceutics and Phytopharmaceutical Drug Development Research Group, BP 212 Kinshasa XI, Congo
| | - Bernard Ucakar
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Ana Beloqui
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Pharmaceutics and Phytopharmaceutical Drug Development Research Group, BP 212 Kinshasa XI, Congo.
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
41
|
Nafee N, Gaber DM, Elzoghby AO, Helmy MW, Abdallah OY. Promoted Antitumor Activity of Myricetin against Lung Carcinoma Via Nanoencapsulated Phospholipid Complex in Respirable Microparticles. Pharm Res 2020; 37:82. [PMID: 32291520 DOI: 10.1007/s11095-020-02794-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Myricetin (MYR) flavonoid is well-recognized for its antioxidant, anti-inflammatory and anti-tumor potential. Introducing nanomedicine was the ultimate resort to solve the imperfections of this nutraceutical, namely solubility, stability and delivery issues. The study, thus, aims at developing inhalable microparticles comprising MYR solid lipid nanoparticles (SLNs) for lung cancer therapy. METHODS A two-step preparation procedure starting with complexation of MYR with the phospholipid Lipoid-S100, followed by nanoencapsulation in Gelucire-based, surfactant-free SLNs was developed. SLNs were characterized in terms of physicochemical properties, MYR loading, release behavior as well as anti-tumor potential and cellular uptake. Respirable microparticles were then obtained by spray drying SLNs with carbohydrate carriers. Their size, flowability and pulmonary deposition pattern were assessed. RESULTS Optimized SLNs were 75.98 nm in diameter with a zeta-potential of -22.5 mV, and an encapsulation efficiency of 84.5%. Attempts to ameliorate drug loading implicate MYR-phospholipid complexation (MYR-PH-CPX) prior to its entrapment in SLNs, which ensured 5-fold increase in drug loading. Viability assays were modified to guarantee MYR chemical stability. Superior antitumor activity of MYR-phospholipid-complex and 3-fold reduction in IC50 were accomplished with MYR-SLNs. This could be related to enhanced cellular uptake revealed by confocal imaging and doubled fluorescence intensity. SLNs entrapping MYR-PH-CPX were spray-dried with carbohydrate carriers to produce respirable microparticles. The latter ensured MMAD of 2.39 μm and span index of 1.84, in addition to good flowability and > 80% release over 8 h. Deposition experiments revealed MMAD of 2.77 μm, FPF of 81.23 and EF of 93% indicating particle deposition in the targeted bronchial region. CONCLUSIONS The study highlights the ability of phospholipid-complex on the nanoencapsulation, cellular uptake and antitumor activity of MYR. Formulation of respirable microparticles gives promises of efficacious therapy of lung carcinoma.
Collapse
Affiliation(s)
- Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt. .,Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait.
| | - Dina M Gaber
- Department of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maged W Helmy
- Department of Pharmacology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Osama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
42
|
Singh D, Singh AP, Singh D, Kesavan AK, Arora S, Tiwary AK, Bedi N. Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: a novel paradigm. ACTA ACUST UNITED AC 2020; 28:191-208. [PMID: 32034683 DOI: 10.1007/s40199-020-00330-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
AIM Canagliflozin (CFZ), a novel SGLT II antagonist, exhibits erratic absorption after oral administration. The current study entails development and evaluation of spray dried lipid based formulation (solid SMEDDS) for enhancing oral bioavailability and anti-diabetic activity of CFZ. METHODS Solid SMEDDS developed through spray drying containing Neusilin US2 as an adsorbent. The formed solid SMEDDS were characterized for physicochemical and solid state attributes. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to confirm the spherical morphology. In vitro dissolution, ex vivo permeability and in vivo pharmacokinetic studies were conducted to determine the release rate, permeation rate and absorption profile of CFZ, respectively. Pharmacodynamic studies were done as per standard protocols. RESULTS The optimized solid SMEDDS exhibited acceptable practical yield and flow properties and is vouched with enhanced amorphization, nanoparticulate distribution and acceptable drug content. The spherical morphology of solid SMEDDS and reconstituted SMEDDS were confirmed in SEM and TEM, respectively. In vitro dissolution studies revealed multi-fold release behavior in CFZ in various dissolution media, whereas, remarkable permeability was observed in jejunum segment of rat intestine. Pharmacokinetic studies of CFZ in solid SMEDDS demonstrated 2.53 and 1.43 fold enhancement in Cmax and 2.73 and 1.98 fold in AUC 0-24h, as compared to pure API and marketed formulation, respectively. Pharmacological evaluation of solid SMEDDS revealed enhanced anti-diabetic activity of CFZ through predominant SGLT II inhibition in rats, as evident from evaluation of biochemical levels, urinary glucose excretion studies and SGLT II expression analysis. CONCLUSION The current work describes significant improvement biopharmaceutical properties of CFZ in solid SMEDD formulation. Graphical abstract Graphical Abstract: Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: a novel paradigm.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Drishtant Singh
- Department of Molecular Biology and Biochemistry, Molecular Microbiology Lab, Guru Nanak Dev University, Amritsar, 143005, India
| | - Anup Kumar Kesavan
- Department of Molecular Biology and Biochemistry, Molecular Microbiology Lab, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ashok K Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
43
|
Kuncahyo I, Choiri S, Fudholi A, Martien R, Rohman A. Assessment of Fractional Factorial Design for the Selection and Screening of Appropriate Components of a Self-nanoemulsifying Drug Delivery System Formulation. Adv Pharm Bull 2019; 9:609-618. [PMID: 31857965 PMCID: PMC6912180 DOI: 10.15171/apb.2019.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recently, a self-nanoemulsifying drug delivery system (SNEDDS) has shown great improvement in the enhancement of drug bioavailability. The selection of appropriate compositions in the SNEDDS formulation is the fundamental step towards developing a successful formulation. This study sought to evaluate the effectiveness of fractional factorial design (FFD) in the selection and screening of a SNEDDS composition. Furthermore, the most efficient FFD approach would be applied to the selection of SNEDDS components. Methods: The types of oil, surfactant, co-surfactant, and their concentrations were selected as factors. 26 full factorial design (FD) (64 runs), 26-1 FFD (32 runs), 26-2 FFD (16 runs), and 26-3 FFD (8 runs) were compared to the main effect contributions of each design. Ca-pitavastatin (Ca-PVT) was used as a drug model. Screening parameters, such as transmittance, emulsification time, and drug load, were selected as responses followed by particle size along with zeta potential for optimized formulation. Results: The results indicated that the patterns of 26 full FD and 26-1 for both main effects and interactions were similar. 26-3 FFD lacked adequate precision when used for screening owing to the limitation of design points. In addition, capryol, Tween 80, and transcutol P were selected to be developed in a SNEDDS formulation with a particle size of 69.7± 5.3 nm along with a zeta potential of 33.4± 2.1 mV. Conclusion: Herein, 26-2 FFD was chosen as the most efficient and adequate design for the selection and screening of SNEDDS composition. The optimized formulation fulfilled the requirement of a quality target profile of a nanoemulsion.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281.,Department of Pharmaceutical Science, Setia Budi University, Mojosongo, Surakarta, Indonesia 57127
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Indonesia 57126
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| |
Collapse
|
44
|
Alhakamy NA, Fahmy UA, Ahmed OAA, Almohammadi EA, Alotaibi SA, Aljohani RA, Alharbi WS, Alfaleh MA, Alfaifi MY. Development of an optimized febuxostat self-nanoemulsified loaded transdermal film: in-vitro, ex-vivo and in-vivo evaluation. Pharm Dev Technol 2019; 25:326-331. [PMID: 31794286 DOI: 10.1080/10837450.2019.1700520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Febuxostat (FBX) is used to treat gout and chronic hyperuricemia. However, its bioavailability is moderate (49%) as a result of low solubility and first-pass metabolism. Therefore, the aim of our study is to improve FBX bioavailability by enhancement its solubility using self-nanoemulsifying drug delivery system (SNEDDS) technique in the form of transdermal film to avoid hepatic metabolism. To accomplish this goal, Eight SNEDDS formulae were prepared according to a three-factor, two-level D-Optimal mixture design to evaluate the effect of different ratios of the Lemon oil (X1), the surfactant Tween-20 (X2), and the co-surfactant PEG-400 (X3) on the globule size in order to reach smallest globular size. Results revealed that SNEDDS globule size ranged from 177 to 454 nm. The optimized formula consisted of 20% oil, 40% surfactant and 40% co-surfactant. Diffusion study showed improved enhancement in skin permeation that was confirmed by imaging using fluorescence microscope. In vivo plasma data showed significant (p < 0.05) difference in FBX plasma levels and pharmacokinetic parameters when compared with raw FBX loaded film. In conclusion, FBX-SNEDDS loaded transdermal film could be a successful way to improve solubility and skin permeability that would lead to improvement in patient's compliance.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Enas A Almohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahad A Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad A Aljohani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
45
|
Sun F, Zheng Z, Lan J, Li X, Li M, Song K, Wu X. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Deliv 2019; 26:575-585. [PMID: 31172843 PMCID: PMC6567238 DOI: 10.1080/10717544.2019.1622608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myricetin (Myr) is a naturally occurring flavonoid exhibiting diverse biological and pharmacological properties, but its characteristics such as water insolubility, poor aqueous stability, and poor bioavailability limit its clinical application, including in ophthalmology. To increase its clinical application in ophthalmology, Myr was designed to be encapsulated in a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PVCL-PVA-PEG) polymeric micelles to increases its aqueous solubility, stability, and corneal permeability to promote its efficacy in eye disease treatments. Thus, the Myr micelle ophthalmic solution was prepared and characterized encapsulation efficiency (EE), micelle size, and zeta potential. The chemical stability of Myr and the short-term storage stability of the Myr micelle ophthalmic solution were evaluated, followed by in vitro cytotoxicity and in vivo ocular irritation; in vitro cellular uptake and in vivo corneal permeation; and in vitro antioxidant activity and in vivo anti-inflammatory efficacy were also further evaluated. Myr could be incorporated into micelles with high EE. PVCL-PVA-PEG micelles significantly enhanced Myr's aqueous solubility and chemical stability. The Myr micelle ophthalmic solution also showed high storage stability. In rabbits, the Myr micelle ophthalmic solution displayed good in vitro cellular tolerance. Remarkable improvements in in vitro cellular uptake and in vivo corneal permeation were also observed in the Myr micelle ophthalmic solution, and significant improvements in the in vitro antioxidant activity and in vivo anti-inflammatory efficacy were also obtained. Overall, these results supported that the Myr micelle ophthalmic solution could be a promising nanomedicine for ocular tissues.
Collapse
Affiliation(s)
- Fengyuan Sun
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Zhou Zheng
- b Key Laboratory of Marine Bioactive Substances , First Institute of Oceanography, State Oceanic Administration , Qingdao , China
| | - Jie Lan
- c Qingdao Eye Hospital, Shandong Eye Institute , Shandong Academy of Medical Sciences , Qingdao , China
| | - Xuefei Li
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Mengshuang Li
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China.,d Pharmacy Intravenous Admixture Services , Qingdao Women and Children's Hospital , Qingdao , China
| | - Kaichao Song
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China
| | - Xianggen Wu
- a Department of Pharmacy, College of Chemical Engineering , Qingdao University of Science and Technology , Qingdao , China.,e Key Laboratory of Pharmaceutical Research for Metabolic Diseases , Qingdao University of Science and Technology , Qingdao , China
| |
Collapse
|
46
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
47
|
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570:118642. [DOI: 10.1016/j.ijpharm.2019.118642] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/29/2023]
|
48
|
Sharma M, Garg R, Sardana S. Enhanced Release Kinetics and Stability of Resveratrol Loaded Self Nanoemulsifying Delivery Systems Developed using Experimental Design. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2468187308666180613104123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Resveratrol is a member of the stilbene family emerged as a
leading candidate for improving healthspan through potentially slowing the aging process
and preventing chronic diseases. A number of institutions and scientists specialized in
this field across the world are working to develop a promising Self Emulsifying formulation
to enhance bioavailability of hydrophobic resveratrol using oil.
Objective:
The objective of the current study is to develop self-nano emulsifying drug
delivery systems using long-chain triglycerides of resveratrol to enhance solubility, stability,
release kinetics and to overcome low bioavailability.
Methods:
Solubility studies performed in different lipids, surfactants and cosurfactants.
Phase diagrams constructed to select the areas of nanoemulsion. SNEDDS formulation
was optimized using 33 central composite design considering lipid (X1), surfactant (X2)
and co-surfactant (X3) as critical variables, optimized formulation was located using overlay
plot.
Results:
The nanometer size and high values of zeta potential depicted non-coalescent nature
of SNEDDS. The resulted SNEDDS formulation had improved in vitro release followed
by Hixson Crowell model with higher regression R2value 0. 929. Thermodynamic
stability studies ascertained stable formulation. Mean droplet size in selected nanocarrier
was found to be 83.29 nm. The nanocarriers subjected to 2-8°C (45% RH), 25-30°C (60%
RH) and 45-50°C (75% RH) in glass vials exhibited no significant changes in 3 months.
Conclusion:
The novel approach was developed by selecting optimum blends of lipids,
surfactants and cosurfactant using central composite design. This study not only offers a
good example of augmenting bioavailability of resveratrol but will also provide a promising
oral formulation for clinical application.
Collapse
Affiliation(s)
- Monika Sharma
- Pharmacy Institute, NIET, Knowledge Park II Greater Noida, Uttar Pradesh, India
| | - Rajeev Garg
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
| | - Satish Sardana
- Amity Institute of Pharmacy, Amity University Gurugram, Haryana, India
| |
Collapse
|
49
|
Kalamkar R, Wadher S. Formulation and Pharmacokinetic Evaluation of Phosal Based Zaltoprofen Solid Self-Nanoemulsifying Drug Delivery System. Pharm Nanotechnol 2019; 7:328-338. [PMID: 31376828 PMCID: PMC7040505 DOI: 10.2174/2211738507666190802141754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 07/24/2019] [Indexed: 11/28/2022]
Abstract
Abstract: Background: Phosal based excipients are liquid concentrates containing phospholipids. They are used to solubilize water-insoluble drug and also act as an emulsifier to get the smallest droplet size of the formed emulsion after administration. Objective: The aim is to prepare phosal based self nanoemulsifying drug delivery system (SNEDDS) for water insoluble drug zaltoprofen. Methods: The various parameters like solubility of drug in different vehicles, ternary phase diagram are considered to formulate the stable emulsion which is further characterized by Self emulsification time and globule size analysis to optimize liquid SNEDDS of Zaltoprofen. Optimized L-SNEDDS was converted into free-flowing powder Solid-SNEDDS (S-SNEDDS). S-SNEDDS was evaluated for Globule size analysis after reconstitution, in vitro dissolution study and in vivo pharmacokinetic study in rats. Results: Phosal 53 MCT with highest drug solubility was used as oil along with Tween 80 and PEG 400 as surfactant and cosurfactant respectively to prepare liquid SNEDDS. Neusilin us2 was used as an adsorbent to get free-flowing S-SNEDDS. S-SNEDDS showed improved dissolution profile of the drug as compared to pure drug. In vivo study demonstrated that there is a significant increase in Cmax and AUC of S-SNEDDS compared to zaltoprofen powder. Conclusion: Phosal based SNEDDS formation can be successfully used to improve the dissolution and oral bioavailability of poorly soluble drug zaltoprofen.
Collapse
Affiliation(s)
- Rajan Kalamkar
- School of Pharmacy, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded, Maharashtra, India
| | - Shailesh Wadher
- School of Pharmacy, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded, Maharashtra, India
| |
Collapse
|
50
|
Zhang H, Wang Z. Phase transition and release kinetics of polyphenols encapsulated lyotropic liquid crystals. Int J Pharm 2019; 565:283-293. [DOI: 10.1016/j.ijpharm.2019.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
|