1
|
Song R, Wan Z, Yuan X, Wang N, Gao Y, Zhang L, Ren H, Jin Y, Liu X, Sang J, Yuan Z, Zhao Y. Macrophage membrane functionalized composite microspheres promote bone regeneration in periodontitis via manipulating inflammation reversing-osteogenesis coupling. Mater Today Bio 2025; 32:101789. [PMID: 40331151 PMCID: PMC12054120 DOI: 10.1016/j.mtbio.2025.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Periodontitis is characterized by inflammation and alveolar bone loss, primarily caused by immune cells activated by oral bacteria, leading to an imbalance between osteogenesis and bone resorption. Traditional treatments have limited efficacy, which has led to the exploration of regulating the immune microenvironment and utilizing tissue engineering methods as new research directions. Our study demonstrates that macrophage membranes, activated by LPS and IFN-γ, can effectively neutralize inflammatory factors. By coating the poly-L-lysine (PLL) modified poly (lactic-co-glycolic acid) (PLGA)/β-TCP microspheres with such macrophage membrane vesicles, the MM@PPT microspheres regulate intercellular responses by inhibiting macrophage M1 polarization and osteoclast differentiation, promoting M2 polarization, and enhancing osteogenic differentiation of bone marrow stromal cells (BMSCs) even in an inflammatory environment. By injecting the MM@PPT into sites of periodontitis induced bone resorption, it is found that they can effectively promote bone regeneration by modulating the immune-regeneration microenvironment. This work not only highlights the potential of MM@PPT microspheres in promoting alveolar bone regeneration but also provides insights into how these microspheres modulate cell behavior and interactions. The findings of this study offer novel therapeutic strategies for promoting alveolar bone repair in periodontitis.
Collapse
Affiliation(s)
- Rui Song
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Xiaojing Yuan
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Nan Wang
- Department of Stomatology, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yike Gao
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Linxue Zhang
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Huihui Ren
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Yu Jin
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Xiya Liu
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Jingyi Sang
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| | - Zuoying Yuan
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yuming Zhao
- Department of Pediatrics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, PR China
| |
Collapse
|
2
|
Guo T, Luo L, Wang L, Zhang F, Liu Y, Leng J. Smart Polymer Microspheres: Preparation, Microstructures, Stimuli-Responsive Properties, and Applications. ACS NANO 2025; 19:18003-18036. [PMID: 40331430 DOI: 10.1021/acsnano.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Smart polymer microspheres (SPMs) are a class of stimulus-responsive materials that undergo physical, chemical, or property changes in response to external stimuli, such as temperature, pH, light, and magnetic fields. In recent years, their diverse responsiveness and tunable structures have enabled broad applications in biomedicine, environmental protection, information encryption, and other fields. This study provides a detailed review of recent preparation methods of SPMs, focusing on physical methods such as emulsification-solvent evaporation, microfluidics, and electrostatic spraying as well as chemical approaches such as emulsion and precipitation polymerization. Meanwhile, different types of stimulus-responsive behaviors, such as temperature-, pH-, light-, and magnetic-responsiveness, are thoroughly examined. This study also explores the applications of SPMs in drug delivery, tissue engineering, and environmental monitoring, while discussing future technological challenges and development directions in this field.
Collapse
Affiliation(s)
- Tao Guo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150001, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
3
|
Gao Y, Yuan X, Gu R, Wang N, Ren H, Song R, Wan Z, Huang J, Yi K, Xiong C, Yuan Z, Zhao Y. Affinity Modifications of Porous Microscaffolds Impact Bone Regeneration by Modulating the Delivery Kinetics of Small Extracellular Vesicles. ACS NANO 2025; 19:17813-17823. [PMID: 40305788 DOI: 10.1021/acsnano.5c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Biomaterials functionalized with small extracellular vesicles (sEVs) hold great regenerative potential, and their therapeutic efficacy hinges on the delivery kinetics of the sEVs. Achieving rapid and stable loading, along with precisely controlled release of sEVs, necessitates affinity modifications of biomaterials. Here, we provide a quantitative description of the interaction between sEVs and various affinity molecules (i.e., polydopamine (PDA), tannic acid (TA), heparin, polyethylenimine (PEI), and calcium phosphate (CaP)) through molecular dynamics simulation. The interaction strengths followed the order of PDA < heparin < TA < CaP < PEI. To tailor the delivery kinetics of stem cells from human exfoliated deciduous teeth (SHED)-derived sEVs with concentration-dependent bioactivities, we employed two representative affinity molecules, namely PDA and CaP, to modify PLGA porous microscaffolds (PLGA MS), resulting in PDA-modified PLGA MS (PDA@MS) and biomineralized PDA-modified PLGA MS (B/PDA@MS). The B/PDA@MS exhibited the highest loading efficiency (>20 μg/mg microscaffolds) and optimized the release profile of sEVs over 21 days. Upon injection into a 5 mm defect in the rat cranial bone, sEV-loaded B/PDA@MS demonstrated the highest level of bone regeneration, with the new bone volume fraction (BV/TV) and bone mineral density (BMD) reaching 64.0% and 604.5 mg/cm3 within 8 weeks, respectively. This work not only presents a biomineralized microscaffold with sustained sEVs release and high osteogenic potential but also offers guidance on the further design and translation of sEV-functionalized biomaterials with broader applications.
Collapse
Affiliation(s)
- Yike Gao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ruoheng Gu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Nan Wang
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Huihui Ren
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Rui Song
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Kaikai Yi
- Department of Neuro-Oncology and Neurosurgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
- Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Zuoying Yuan
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuming Zhao
- Department of Pediatric Dentistry National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
4
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
5
|
Kovshova T, Malinovskaya J, Kotova J, Gorshkova M, Vanchugova L, Osipova N, Melnikov P, Vadekhina V, Nikitin A, Ermolenko Y, Gelperina S. Core-Shell PLGA Nanoparticles: In Vitro Evaluation of System Integrity. Biomolecules 2024; 14:1601. [PMID: 39766308 PMCID: PMC11674307 DOI: 10.3390/biom14121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of this study was to compare the properties of core-shell nanoparticles with a PLGA core and shells composed of different types of polymers, focusing on their structural integrity. The core PLGA nanoparticles were prepared either through a high-pressure homogenization-solvent evaporation technique or nanoprecipitation, using poloxamer 188 (P188), a copolymer of divinyl ether with maleic anhydride (DIVEMA), and human serum albumin (HSA) as the shell-forming polymers. The shells were formed through adsorption, interfacial embedding, or conjugation. For dual fluorescent labeling, the core- and shell-forming polymers were conjugated with Cyanine5, Cyanine3, and rhodamine B. The nanoparticles had negative zeta potentials and sizes ranging from 100 to 250 nm (measured using DLS) depending on the shell structure and preparation technique. The core-shell structure was confirmed using TEM and fluorescence spectroscopy, with the appearance of FRET phenomena due to the donor-acceptor properties of the labels. All of the shells enhanced the cellular uptake of the nanoparticles in Gl261 murine glioma cells. The integrity of the core-shell structures upon their incubation with the cells was evidenced by intracellular colocalization of the fluorescent labels according to the Manders' colocalization coefficients. This comprehensive approach may be useful for the selection of the optimal preparation method even at the early stages of the core-shell nanoparticle development.
Collapse
Affiliation(s)
- Tatyana Kovshova
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| | - Julia Malinovskaya
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| | - Julia Kotova
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| | - Marina Gorshkova
- Laboratory of Polyelectrolyte Chemistry and Biomedical Polymers, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prosp. 29, Moscow 119991, Russia; (M.G.); (L.V.)
| | - Lyudmila Vanchugova
- Laboratory of Polyelectrolyte Chemistry and Biomedical Polymers, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prosp. 29, Moscow 119991, Russia; (M.G.); (L.V.)
| | - Nadezhda Osipova
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| | - Pavel Melnikov
- Department of Fundamental and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow 119034, Russia; (P.M.); (V.V.)
| | - Veronika Vadekhina
- Department of Fundamental and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow 119034, Russia; (P.M.); (V.V.)
| | - Alexey Nikitin
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), Leninsky Prosp. 4, Moscow 119049, Russia;
| | - Yulia Ermolenko
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| | - Svetlana Gelperina
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Preparations, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow 125047, Russia; (J.M.); (J.K.); (N.O.); (Y.E.)
| |
Collapse
|
6
|
Hu Z, Zhang Y, Zhang J, Zheng R, Yang Y, Kong F, Li H, Yang X, Yang S, Kong X, Zhao R. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Regen Biomater 2024; 11:rbae125. [PMID: 39569077 PMCID: PMC11578599 DOI: 10.1093/rb/rbae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Biomineralization-based cell-material living composites ex vivo showed great potential for living materials construction and cell regulation. However, cells in scaffolds with unconnected pores usually induce confined nutrient transfer and cell-cell communications, affecting the transformation of osteoblasts into osteocytes and the mineralization process. Herein, the osteoblast-materials living hybrids were constructed with porous PLLA microspheres using a rational design, in which cell-based living materials presented an improved osteoblast differentiation and mineralization model using rationally designed cell-microsphere composites. The results indicated that the microfluidic-based technique provided an efficient and highly controllable approach for producing on-demand PLLA microspheres with tiny pores (<5 μm), medium pores (5-15 μm) and large pores (>15 μm), as well as further drug delivery. Furthermore, the simvastatin (SIM)-loaded porous PLLA microsphere with ε-polylysine (ε-PL) modification was used for osteoblast (MC3T3-E1) implantation, achieving the cell-material living microhybrids, and the results demonstrated the ε-PL surface modification and SIM could improve osteoblast behavior regulation, including cell adhesion, proliferation, as well as the antibacterial effects. Both in vitro and in vivo results significantly demonstrated further cell proliferation, differentiation and cascade mineralization regulation. Then, the quantitative polymerase chain reaction or histological staining of typical markers, including collagen type I, alkaline phosphatase, runt-related transcription factor 2 and bone morphogenetic protein 2, as well as the calcium mineral deposition staining in situ, reconfirmed the transformation of osteoblasts into osteocytes. These achievements revealed a promising boost in osteogenesis toward mineralization at the microtissue level by cell-microsphere integration, suggesting an alternative strategy for materials-based ex vivo tissue construction and cell regulation, further demonstrating excellent application prospects in the field of biomineralization-based tissue regeneration.
Collapse
Affiliation(s)
- Zhaofan Hu
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yunyang Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jingjing Zhang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ran Zheng
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yang Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fei Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haoran Li
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xinyan Yang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 311399, PR China
| | - Shuhui Yang
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou, Zhejiang 312451, PR China
| |
Collapse
|
7
|
Korzhikov-Vlakh V, Mikhailova A, Sinitsyna E, Korzhikova-Vlakh E, Tennikova T. Gradient Functionalization of Poly(lactic acid)-Based Materials with Polylysine for Spatially Controlled Cell Adhesion. Polymers (Basel) 2024; 16:2888. [PMID: 39458716 PMCID: PMC11511340 DOI: 10.3390/polym16202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide (polylysine, PLys) via a thiol-ene click reaction carried out under a light gradient. With this aim, PLA-based films were fabricated and modified with 2-aminoethyl methacrylate (AEMA) as a double bond source. The latter was introduced by reacting pre-formed and activated surface carboxyl groups with the amino group of AEMA. The success of the modification was confirmed by 1H NMR, Raman and X-ray photoelectron spectroscopy data. A further photoinduced thiol-ene click reaction in the presence of a photosensitive initiator as a radical source was further optimized using cysteine. For grafting of PLys via the thiol-ene click reaction, PLys with a terminal thiol group was synthesized by ring-opening polymerization using Cys(Acm) as an amine initiator. Deprotection of the polypeptide resulted in the formation of free thiol groups of Cys-PLys. Successful gradient grafting of Cys-PLys was evidenced by covalent staining with the fluorescent dye Cy3-NHS. In addition, PLys gradient-dependent adhesion and migration of HEK 293 cells on PLys-PLA-based surfaces was confirmed.
Collapse
Affiliation(s)
- Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- St. Petersburg State University Hospital, 199034 St. Petersburg, Russia
| | - Aleksandra Mikhailova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Ekaterina Sinitsyna
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| |
Collapse
|
8
|
Wan X, Chen C, Zhan J, Ye S, Li R, Shen M. Dendritic polylysine co-delivery of paclitaxel and siAXL enhances the sensitivity of triple-negative breast cancer chemotherapy. Front Bioeng Biotechnol 2024; 12:1415191. [PMID: 39148942 PMCID: PMC11324506 DOI: 10.3389/fbioe.2024.1415191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Background: Drug resistance is common in triple-negative breast cancer (TNBC) therapy. To identify a method to overcome chemotherapy resistance in TNBC cells, an siRNA targeting the AXL gene (siAXL), which can overcome drug resistance, was used in this study. A nanodelivery system was constructed to co-deliver siAXL and paclitaxel (PTX). Methods: A biodegradable and tumor microenvironment (TME)-sensitive mPEG-coated dendritic polylysine material (PDPLL) was synthesized. This material was used to construct single-molecule nanoparticles to co-deliver PTX and siAXL. The drug encapsulation and morphological properties of the nanoparticles (NPs) were characterized. The sensitivity of the NPs to the TME was evaluated in vitro with a dialysis method. The tumor-targeting effect of the PDPLL NPs was evaluated by fluorescence imaging and drug distribution evaluation in vivo. The ability to overcome drug resistance was evaluated using PTX-resistant 4T1 cells (4T1/PTX cells) in both in vitro and in vivo models. Results: PDPLL NPs had a particle size of 49.6 ± 5.9 nm and a zeta potential of 7.87 ± 0.68 mV. The PTX drug loading (DL)% was 2.59%. The siAXL DL was 2.5 mg PDPLL: 10 nmol siAXL. The release of PTX showed sustained release performance. The release of siAXL showed sensitivity for the TME. The NPs were stable in the plasma. The NPs promoted cell uptake by PTX-resistant 4T1 cells (4T1/PTX) and promoted tumor targeting and permeability in vivo. siAXL enhanced the toxicity and apoptosis efficiency of PTX in 4T1/PTX cells, as well as the cycle arrest efficiency caused by PTX. The NPs improved the above effects. In mouse 4T1/PTX orthotopic tumors, the NPs enhanced the sensitization of PTX to siAXL. Conclusion: The PDPLL NP co-delivery system possesses good encapsulating potential not only for PTX but also for siRNA. It can enhance the tumor-targeting effect and overcome the drug resistance of 4T1/PTX both in vitro and in vivo. This system is a potential delivery system for RNAs.
Collapse
Affiliation(s)
- Xiaofeng Wan
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Chuanrong Chen
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Shuke Ye
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Runsheng Li
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Ming Shen
- National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| |
Collapse
|
9
|
Kwiatos N, Atila D, Puchalski M, Kumaravel V, Steinbüchel A. Cyanophycin modifications for applications in tissue scaffolding. Appl Microbiol Biotechnol 2024; 108:264. [PMID: 38489042 PMCID: PMC10943155 DOI: 10.1007/s00253-024-13088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.
Collapse
Affiliation(s)
- Natalia Kwiatos
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Deniz Atila
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| | - Michał Puchalski
- Institute of Material Science of Textile and Polymer Composites, Lodz University of Technology, Żeromskiego 116, Łódź, Poland
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Alexander Steinbüchel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| |
Collapse
|
10
|
Xu Y, Chen Q, Xia L, Yuan S, Li Z. Fabrication of Oleophilic Polypeptide Nanoparticle from Complexing of Cross-Linked Epsilon-poly-l-lysine with Docusate Sodium for Preparation of Bactericidal Thermoplastic Polyurethanes. ACS Biomater Sci Eng 2024; 10:599-606. [PMID: 38153378 DOI: 10.1021/acsbiomaterials.3c01644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.
Collapse
Affiliation(s)
- Yuanjing Xu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Lin Xia
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
11
|
Shahzadi U, Zeeshan R, Tabassum S, Khadim H, Arshad M, Ansari AA, Safi SZ, ul Haq RI, Asif A. Physico‐chemical properties and in‐vitro biocompatibility of thermo‐sensitive hydrogel developed with enhanced antimicrobial activity for soft tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3870-3884. [DOI: 10.1002/pat.6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2024]
Abstract
AbstractSmart materials such as thermo‐sensitive in situ forming hydrogels can be effective agents in drug delivery and tissue regeneration with minimal invasion. Injection method would avoid complex surgical procedures facilitating rapid recovery process. In this research, we report the fabrication of an easy, reproducible thermo‐sensitive hydrogel constituting of chitosan (CHI), glycerol phosphate (GP) with variable quantity of ‐poly‐l‐lysine (PS). Fourier‐transform infrared spectra exhibited hydrogel formation where interactions between CHI and GP were seen. The gelation kinetics presented gelation time of 8 min at physiological temperature. The results indicated an increase in degradation rate with the passage of time. Contact angles measurements were employed to observe hydrophilic characteristics which were shown to be favorable. Mechanical strength was determined to be in the range of ~0.1–0.6 MPa for all the hydrogels. Due to intrinsic antibacterial features of CHI and PS, the hydrogels showed potent antibacterial activity against Escherichia coli, Staphylococcus aureus, and Methicillin‐resistant S. aureus (MR‐SA). Interestingly, PS's addition in the hydrogel resulted in potent antibacterial activity against clinically relevant MR‐SA. The hydrogels can hence be delivered to a specific target for localized treatments where the potential of inhibiting multidrug resistant strain is clinically relevant. Biocompatibility of the hydrogels was seen by an overall increase in cell viability of mouse fibroblast cells and scratch assay revealed favorable migration potential. Proangiogenic Vascular endothelial growth factor (VEGF)'s expression showed a gradual increase with increasing concentration of PS, whereas one composition demonstrated a slight increase in the expression of cytosolic prostaglandin E synthase (cPGES) as determined by RT‐PCR. Overall, an increase in PS content of the hydrogels resulted in simultaneously enhanced antibacterial efficiency and marked increase in fibroblast cell viability, hence, reiterating their potential as potent antibacterial agents that can be explored as wound healing agents. In conclusion, novel antibacterial thermo‐sensitive hydrogels were synthesized with a potential of regulating proangiogenic and tissue regeneration factors that highlight their role as wound healing agents.
Collapse
Affiliation(s)
- Uzma Shahzadi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Hina Khadim
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
- Department of Chemistry COMSATS University Islamabad Lahore Pakistan
| | - Muhammad Arshad
- Institute of Chemistry The Islamia University of Bahawalpur Pakistan
| | - Arsalan Ahmad Ansari
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | | | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| |
Collapse
|
12
|
Pan Q, Su W, Yao Y. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering. Biomed Mater 2023; 18:062004. [PMID: 37751762 DOI: 10.1088/1748-605x/acfd78] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Bone/cartilage repair and regeneration have been popular and difficult issues in medical research. Tissue engineering is rapidly evolving to provide new solutions to this problem, and the key point is to design the appropriate scaffold biomaterial. In recent years, microsphere-based scaffolds have been considered suitable scaffold materials for bone/cartilage injury repair because microporous structures can form more internal space for better cell proliferation and other cellular activities, and these composite scaffolds can provide physical/chemical signals for neotissue formation with higher efficiency. This paper reviews the research progress of microsphere-based scaffolds in bone/chondral tissue engineering, briefly introduces types of microspheres made from polymer, inorganic and composite materials, discusses the preparation methods of microspheres and the exploration of suitable microsphere pore size in bone and cartilage tissue engineering, and finally details the application of microsphere-based scaffolds in biomimetic scaffolds, cell proliferation and drug delivery systems.
Collapse
Affiliation(s)
- Qian Pan
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Weixian Su
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongchang Yao
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
13
|
Qin Y, Coleman RM. Ligand Composition and Coating Density Co-Modulate the Chondrocyte Function on Poly(glycerol-dodecanedioate). J Funct Biomater 2023; 14:468. [PMID: 37754882 PMCID: PMC10531919 DOI: 10.3390/jfb14090468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Inducing chondrocyte redifferentiation and promoting cartilaginous matrix accumulation are key challenges in the application of biomaterials in articular cartilage repair. Poly(glycerol-dodecanedioate) (PGD) is a viable candidate for scaffold design in cartilage tissue engineering (CTE). However, the surface properties of PGD are not ideal for cell attachment and growth due to its relative hydrophobicity compared with natural extracellular matrix (ECM). In this study, PGD was coated with various masses of collagen type I or hyaluronic acid, individually or in combination, to generate a cell-material interface with biological cues. The effects of ligand composition and density on the PGD surface properties and shape, metabolic activity, cell phenotype, and ECM production of human articular chondrocytes (hACs) were evaluated. Introducing ECM ligands on PGD significantly improved its hydrophilicity and promoted the chondrocyte's anabolic activity. The morphology and anabolic activity of hACs on PGD were co-modulated by ligand composition and density, suggesting a combinatorial effect of both coating parameters on chondrocyte function during monolayer culture. Hyaluronic acid and its combination with collagen maintained a round cell shape and redifferentiated phenotype. This study demonstrated the complex mechanism of ligand-guided interactions between cell and biomaterial substrate and the potential of PGD as a scaffold material in the field of CTE.
Collapse
Affiliation(s)
- Yue Qin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Jin Z, Huang X, Tan W, Luo X, Cen L, Zhou Y. Synergetic effect of 3D porous microsphere structure and activation of adenosine A2B receptor signal on promoting osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2023; 151:213457. [PMID: 37172432 DOI: 10.1016/j.bioadv.2023.213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.
Collapse
Affiliation(s)
- Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xing Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
15
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
16
|
Rao WH, Yu L, Ding JD. Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
17
|
Roumani S, Jeanneau C, Giraud T, Cotten A, Laucournet M, Sohier J, Pithioux M, About I. Osteogenic Potential of a Polyethylene Glycol Hydrogel Functionalized with Poly-Lysine Dendrigrafts (DGL) for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020862. [PMID: 36676600 PMCID: PMC9863473 DOI: 10.3390/ma16020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Resorbable hydrogels are widely used as scaffolds for tissue engineering. These hydrogels can be modified by grafting dendrimer-linked functionalized molecules (dendrigrafts). Our aim was to develop a tunable poly(L-lysine) dendrigrafts (DGL)/PEG-based hydrogel with an inverse porosity and to investigate its osteogenic potential. DGL/PEG hydrogels were emulsified in a surfactant-containing oil solution to form microspheres. The toxicity was evaluated on Human Vascular Endothelial Cells (HUVECs) and Bone Marrow Mesenchymal Stem Cells (hMSCs) with Live/Dead and MTT assays. The effects on HUVECs were investigated through C5 Complement expression by RT-PCR and C5a/TGF-β1 secretion by ELISA. Recruitment of hMSCs was investigated using Boyden chambers and their osteogenic differentiation was studied by measuring Alkaline Phosphatase activity (ALP) and BMP-2 secretion by ELISA. Adjusting the stirring speed during the emulsification allowed to obtain spherical microspheres with tunable diameters (10-1600 µm). The cell viability rate with the hydrogel was 95 and 100% with HUVECs and hMSCs, respectively. Incubating HUVECs with the biomaterial induced a 5-fold increase in TGF-β1 and a 3-fold increase in Complement C5a release. Furthermore, HUVEC supernatants obtained after incubation with the hydrogel induced a 2.5-fold increase in hMSC recruitment. The hydrogel induced a 3-fold increase both in hMSC ALP activity and BMP-2 secretion. Overall, the functionalized hydrogel enhanced the osteogenic potential by interacting with endothelial cells and hMSCs and represents a promising tool for bone tissue engineering.
Collapse
Affiliation(s)
- Sandra Roumani
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | | | - Thomas Giraud
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- APHM, Hôpital Timone, Pôle Odontologie, 13005 Marseille, France
| | - Aurélie Cotten
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | - Marc Laucournet
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Jérôme Sohier
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Martine Pithioux
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- Aix-Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | - Imad About
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| |
Collapse
|
18
|
Darge HF, Lin YH, Hsieh-Chih T, Lin SY, Yang MC. Thermo/redox-responsive dissolvable gelatin-based microsphere for efficient cell harvesting during 3D cell culturing. BIOMATERIALS ADVANCES 2022; 139:213008. [PMID: 35882154 DOI: 10.1016/j.bioadv.2022.213008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The use of microspheres for culturing adherent cells has been proven as an important method, allowing for obtaining adequate number of cells in limited space and volume of medium for the intended cell-based medical applications. However, the use of proteolytic enzymes for cell harvesting from the microsphere resulted in cell damage and loss of functionality. Therefore, in this study, we developed a novel redox/thermo-responsive dissolvable gelatin-based microsphere for successful cell proliferation and harvesting adequate high-quality cells using non-enzymatic cell detachment methods. Initially, a redox-induced dissolvable gelatin-based microsphere was successfully prepared using disulfide bonds as crosslinking agent, firmly stabilizing gelatin networks and forming a stable microsphere at physiological temperature. The optimized concentration of the crosslinking agent was 1.2 mM, which kept the microsphere stable for >120 h. The microsphere was then coated with PNIPAm-ALA copolymer via physical or chemical means, resulting in a positively charged thermosensitive surface. The positive charge derived from ALA in PNIPAm-ALA copolymer enhanced cell attachment, while the thermosensitive property of the copolymer enabled for temperature induced cell harvesting. When the temperature dropped below the LCST value of PNIPAm-ALA5 (33.4°C), the copolymer swelled and became more hydrophilic, allowing cells to be readily separated. The addition of reducing agents such as GSH, DTT and L-cysteine resulted in further cleavage of the disulfide bond in the microsphere and dissolution of the microsphere for complete cell detachment. Interestingly, cell attachment and proliferation were enhanced on microspheres coated with PNIPAm-ALA5 using diselenide as a crosslinking agent, and complete cell detachment was occurred within 15 min after adding 25 mM DTT followed by lowering the temperature (4°C). Therefore, the microsphere fabricated in this study was worthwhile for non-enzymatic cell detachment and has the potential to be used for cell expansion and harvesting adequate live cells of high quality and functionality for tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yu-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tsai Hsieh-Chih
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
19
|
Precise Fabrication of Porous Microspheres by Iso-Density Emulsion Combined with Microfluidics. Polymers (Basel) 2022; 14:polym14132687. [PMID: 35808731 PMCID: PMC9269203 DOI: 10.3390/polym14132687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Polymer porous microspheres with large specific surface areas and good fluidity have promising important applications in the biomedical field. However, controllable fabrication of porous microspheres with precise size, morphology, and pore structure is still a challenge, and phase separation caused by the instability of the emulsion is the main factor affecting the precise preparation of porous microspheres. Herein, a method combining the iso-density emulsion (IDE) template and microfluidics was proposed to realize the controllable preparation of polymer porous microspheres. The IDE exhibited excellent stability with minimal phase separation within 4 h, thus showing potential advantages in the large-scale preparation of porous microspheres. With the IDE template combined microfluidics technique and the use of a customized amphoteric copolymer, PEG-b-polycaprolactone, polycaprolactone (PCL) porous microspheres with porosity higher than 90% were successfully prepared. Afterwards, the main factors, including polymer concentration, water–oil ratio and homogenization time were investigated to regulate the pore structure of microspheres, and microspheres with different pore sizes (1–30 μm) were obtained. PCL porous microspheres exhibited comparable cell viability relative to the control group and good potential as cell microcarriers after surface modification with polydopamine. The modified PCL porous microspheres implanted subcutaneously in rats underwent rapid in vivo degradation and tissue ingrowth. Overall, this study demonstrated an efficient strategy for the precise preparation of porous microspheres and investigated the potential of the as-prepared PCL porous microspheres as cell microcarriers and micro-scaffolds.
Collapse
|
20
|
Dai J, Zhang Z, Bernaerts KV, Zhang Q, Zhang T. Amphiphilic Crosslinked Four-Armed Poly(lactic- co-glycolide) Electrospun Membranes for Enhancing Cell Adhesion. ACS Biomater Sci Eng 2022; 8:2428-2436. [PMID: 35588538 DOI: 10.1021/acsbiomaterials.2c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Common poly(lactide-co-glycolide) (i-PLGA) has emerged as a biodegradable and biocompatible material in tissue engineering. However, the poor hydrophilicity and elasticity of i-PLGA lead to its limited application in tissue engineering. To this end, an amphiphilic crosslinked four-armed poly(lactic-co-glycolide) was prepared. First, four-armed PLGA (4A-PLGA) was synthesized by polymerizing l-lactide (LA) and glycolide (GA) with pentaerythritol as the initiator. Then, the hydrophilic polymer poly(glutamate propylene ester) (PGPE) was prepared through the esterification of glutamic acid and 1,2-propanediol. The hydrophilic 4A-PLGA-PGPE was finally synthesized through the condensation reaction of 4A-PLGA and PGPE with the aid of triphosgene. 4A-PLGA-PGPE was then used to prepare amphiphilic membranes by electrospinning. It was demonstrated that the mechanical properties and biocompatibility of 4A-PLGA were improved after the introduction of PGPE. Furthermore, the introduction of glutamate improved the hydrophilicity of 4A-PLGA, thus effectively promoting cell entry and adhesion, which makes the electrospun 4A-PLGA-PGPE membranes promising for tissue engineering.
Collapse
Affiliation(s)
- Jidong Dai
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhigang Zhang
- Department of General Surgery, Affiliated Zhong-Da Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou 215011, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
21
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
22
|
Microfluidic-preparation of PLGA microcarriers with collagen patches for MSCs expansion and osteogenic differentiation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/nanostructure dependent cells proliferation and drug delivery control. Colloids Surf B Biointerfaces 2022; 212:112376. [PMID: 35114434 DOI: 10.1016/j.colsurfb.2022.112376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022]
Abstract
Regarding restenosis occurrence risk after metallic stent deployment in artery, stents with vascular smooth muscle cells antiproliferative agents sustained released from poly(lactic-co-glycolic acid) (PLGA) coating and endothelial cells proliferation favored surface textures were both attempted for endothelialization enhancement. In order to explore the interaction between the surface texture and performance of drug loaded PLGA coating, femtosecond laser surface treatment was used to change the surface characteristics of 316L stainless steel. Two different surface patterns in form of stripe (FSL100) and isolated island-like structure (FSL800) were firstly generated by femtosecond laser processing with 100 and 800 mW energy, then Rapamycin loaded PLGA coating was further deposited to polished and femtosecond laser processed 316L surfaces via a dip-coating method. The subsequent drug loading capacity and release profile studies confirmed the roles of surface texture. Morphological transition characteristics of the PLGA coating on the FLS100 sample indicate that the coating has integrity during degradation compared to the polished one. Finally, rapamycin eluting FLS100 stent was deployed to iliac arteries of New Zealand White rabbits with vascular plaques to demonstrate its endothelialization potential and resistance to restenosis.
Collapse
|
24
|
Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration. Bioact Mater 2022; 14:377-388. [PMID: 35386817 PMCID: PMC8964815 DOI: 10.1016/j.bioactmat.2022.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
|
25
|
Zhang M, Shi X, Sun H, Xu D, Gao Y, Wu X, Zhang J, Zhang J. Immobilization of Glycogen Synthase Kinase-3β Inhibitor on 316L Stainless Steel via Polydopamine to Accelerate Endothelialization. Front Bioeng Biotechnol 2021; 9:806151. [PMID: 34881239 PMCID: PMC8646698 DOI: 10.3389/fbioe.2021.806151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
The coverage of stents with healthy endothelium is crucial to the success of cardiovascular stent implantation. Immobilizing bioactive molecules on stents is an effective strategy to generate such stents. Glycogen synthase kinase-3β inhibitor (GSKi) is a bioactive molecule that can effectively accelerate vascular endothelialization. In this work, GSKi was covalently conjugated on 316L stainless steel through polydopamine to develop a stable bioactive surface. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact angle results revealed the successful introduction of GSKi onto 316L stainless steel. The GSKi coating did not obviously affect the hemocompatibility of plates. The adhesion and proliferation of human coronary artery endothelial cells (HCAECs) on stainless steel was significantly promoted by the addition of GSKi. In summary, this work provides a universal and stable strategy of immobilizing GSKi on the stent surface. This method has the potential for widespread application in the modification of vascular stents.
Collapse
Affiliation(s)
- Ming Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xudong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Gao
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xi Wu
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianqi Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jichang Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
26
|
Jo YK, Heo SJ, Peredo AP, Mauck RL, Dodge GR, Lee D. Stretch-responsive adhesive microcapsules for strain-regulated antibiotic release from fabric wound dressings. Biomater Sci 2021; 9:5136-5143. [PMID: 34223592 DOI: 10.1039/d1bm00628b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infection of a wound is a major complication that can significantly delay proper healing and even necessitate surgical debridement. Conventional non-woven fabric dressings, including gauzes, bandages and cotton wools, often fail in treating wound infections in a timely manner due to their passive release mechanism of antibiotics. Here, we propose adhesive mechanically-activated microcapsules (MAMCs) capable of strongly adhering to a fibrous matrix to achieve a self-regulated release of antibiotics upon uniaxial stretching of non-woven fabric dressings. To achieve this, a uniform population of polydopamine (PDA)-coated MAMCs (PDA-MAMCs) are prepared using a microfluidics technique and subsequent oxidative dopamine polymerization. The PDA-MAMC allows for robust mechano-activation within the fibrous network through high retention and effective transmission of mechanical force under stretching. By validating the potential of a PDA-MAMCs-laden gauze to release antibiotics in a tensile strain-dependent manner, we demonstrate that PDA-MAMCs can be successfully incorporated into a woven material and create a smart wound dressing for control of bacterial infections. This new mechano-activatable delivery approach will open up a new avenue for a stretch-triggered, on-demand release of therapeutic cargos in skin-mountable or wearable biomedical devices.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Polymeric Microspheres/Cells/Extracellular Matrix Constructs Produced by Auto-Assembly for Bone Modular Tissue Engineering. Int J Mol Sci 2021; 22:ijms22157897. [PMID: 34360672 PMCID: PMC8348249 DOI: 10.3390/ijms22157897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Modular tissue engineering (MTE) is a novel “bottom-up” approach to create engineered biological tissues from microscale repeating units. Our aim was to obtain microtissue constructs, based on polymer microspheres (MSs) populated with cells, which can be further assembled into larger tissue blocks and used in bone MTE. Poly(L-lactide-co-glycolide) MS of 165 ± 47 µm in diameter were produced by oil-in-water emulsification and treated with 0.1 M NaOH. To improve cell adhesion, MSs were coated with poly-L-lysine (PLL) or human recombinant collagen type I (COL). The presence of oxygenated functionalities and PLL/COL coating on MS was confirmed by X-ray photoelectron spectroscopy (XPS). To assess the influence of medium composition on adhesion, proliferation, and osteogenic differentiation, preosteoblast MC3T3-E1 cells were cultured on MS in minimal essential medium (MEM) and osteogenic differentiation medium (OSG). Moreover, to assess the potential osteoblast–osteoclast cross-talk phenomenon and the influence of signaling molecules released by osteoclasts on osteoblast cell culture, a medium obtained from osteoclast culture (OSC) was also used. To impel the cells to adhere and grow on the MS, anti-adhesive cell culture plates were utilized. The results show that MS coated with PLL and COL significantly favor the adhesion and growth of MC3T3-E1 cells on days 1 and 7, respectively, in all experimental conditions tested. On day 7, three-dimensional MS/cell/extracellular matrix constructs were created owing to auto-assembly. The cells grown in such constructs exhibited high activity of early osteogenic differentiation marker, namely, alkaline phosphatase. Superior cell growth on PLL- and COL-coated MS on day 14 was observed in the OSG medium. Interestingly, deposition of extracellular matrix and its mineralization was particularly enhanced on COL-coated MS in OSG medium on day 14. In our study, we developed a method of spontaneous formation of organoid-like MS-based cell/ECM constructs with a few millimeters in size. Such constructs may be regarded as building blocks in bone MTE.
Collapse
|
28
|
Wang KY, Jin XY, Ma YH, Cai WJ, Xiao WY, Li ZW, Qi X, Ding J. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnology 2021; 19:214. [PMID: 34275471 PMCID: PMC8287687 DOI: 10.1186/s12951-021-00950-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cartilage injury and pathological degeneration are reported in millions of patients globally. Cartilages such as articular hyaline cartilage are characterized by poor self-regeneration ability due to lack of vascular tissue. Current treatment methods adopt foreign cartilage analogue implants or microfracture surgery to accelerate tissue repair and regeneration. These methods are invasive and are associated with the formation of fibrocartilage, which warrants further exploration of new cartilage repair materials. The present study aims to develop an injectable modified gelatin hydrogel. METHOD The hydrogel effectively adsorbed proteoglycans secreted by chondrocytes adjacent to the cartilage tissue in situ, and rapidly formed suitable chondrocyte survival microenvironment modified by ε-poly-L-lysine (EPL). Besides, dynamic covalent bonds were introduced between glucose and phenylboronic acids (PBA). These bonds formed reversible covalent interactions between the cis-diol groups on polyols and the ionic boronate state of PBA. PBA-modified hydrogel induced significant stress relaxation, which improved chondrocyte viability and cartilage differentiation of stem cells. Further, we explored the ability of these hydrogels to promote chondrocyte viability and cartilage differentiation of stem cells through chemical and mechanical modifications. RESULTS In vivo and in vitro results demonstrated that the hydrogels exhibited efficient biocompatibility. EPL and PBA modified GelMA hydrogel (Gel-EPL/B) showed stronger activity on chondrocytes compared to the GelMA control group. The Gel-EPL/B group induced the secretion of more extracellular matrix and improved the chondrogenic differentiation potential of stem cells. Finally, thus hydrogel promoted the tissue repair of cartilage defects. CONCLUSION Modified hydrogel is effective in cartilage tissue repair.
Collapse
Affiliation(s)
- Kai-Yang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, NO. 600, Yishan Rd, Shanghai, 200233 People’s Republic of China
| | - Xiang-Yun Jin
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127 People’s Republic of China
| | - Yu-Hui Ma
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, NO. 600, Yishan Rd, Shanghai, 200233 People’s Republic of China
| | - Wei-Jie Cai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, NO. 600, Yishan Rd, Shanghai, 200233 People’s Republic of China
| | - Wei-Yuan Xiao
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127 People’s Republic of China
| | - Zhi-Wei Li
- Department of Orthopedic Trauma, Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127 People’s Republic of China
| | - Xin Qi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 Gongwei Road, Huinan Town, Pudong, Shanghai, China
| | - Jian Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, NO. 600, Yishan Rd, Shanghai, 200233 People’s Republic of China
| |
Collapse
|
29
|
Thanuja MY, Suma BS, Dinesh D, Ranganath SH, Srinivas SP. Microtubule Stabilization Protects Hypothermia-Induced Damage to the Cytoskeleton and Barrier Integrity of the Corneal Endothelial Cells. J Ocul Pharmacol Ther 2021; 37:399-411. [PMID: 34227869 DOI: 10.1089/jop.2021.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose: To determine the impact of hypothermia on the barrier function of donor corneal endothelium, thereby enhancing the success of corneal transplantation. Methods: Primary cultures of porcine endothelial cells were subjected to hypothermia (15 h; 4°C). The impact on microtubule assembly, peri-junctional actomyosin ring (PAMR), and ZO-1 was assessed by immunocytochemistry with and without pretreatment with a microtubule-stabilizing agent (Epothilone B; EpoB; 100 nM) and a p38 MAP kinase inhibitor (SB-203580; 20 μM). In addition, EpoB-loaded PLGA nanoparticles (ENPs) prepared by nanoprecipitation technique and coated with poly-L-lysine (PLL-ENPs) were administered one-time for sustained intracellular delivery of EpoB. Results: Exposure to hypothermia led to microtubule disassembly concomitant with the destruction of PAMR and the displacement of ZO-1 at the cellular periphery, suggesting a loss in barrier integrity. These adverse effects were attenuated by pretreatment with EpoB or SB-203580. PLL-ENPs possessed a zeta potential of ∼26 mV and a size of ∼110 nm. Drug loading and entrapment efficiency were 5% (w/w) and ∼87%, respectively, and PLL-ENPs showed a biphasic release in vitro: burst phase (1 day), followed by a sustained phase (∼4 weeks). Pretreatment with PLL-ENPs (0.4 mg/mL) for 24 h stabilized the microtubules and opposed the hypothermia-induced damage to PAMR and the redistribution of ZO-1. Conclusions: Hypothermia induces microtubule disassembly via activation of p38 MAP kinase and subsequently breaks down the barrier function of the endothelium. Sustained intracellular delivery of EpoB using nanoparticles has the potential to overcome endothelial barrier failure during prolonged cold storage of donor cornea.
Collapse
Affiliation(s)
- Marasarakottige Y Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Bangalore S Suma
- Bioimaging Facility, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Divyasree Dinesh
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
30
|
A Paradigm Shift in Tissue Engineering: From a Top–Down to a Bottom–Up Strategy. Processes (Basel) 2021. [DOI: 10.3390/pr9060935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering (TE) was initially designed to tackle clinical organ shortage problems. Although some engineered tissues have been successfully used for non-clinical applications, very few (e.g., reconstructed human skin) have been used for clinical purposes. As the current TE approach has not achieved much success regarding more broad and general clinical applications, organ shortage still remains a challenging issue. This very limited clinical application of TE can be attributed to the constraints in manufacturing fully functional tissues via the traditional top–down approach, where very limited cell types are seeded and cultured in scaffolds with equivalent sizes and morphologies as the target tissues. The newly proposed developmental engineering (DE) strategy towards the manufacture of fully functional tissues utilises a bottom–up approach to mimic developmental biology processes by implementing gradual tissue assembly alongside the growth of multiple cell types in modular scaffolds. This approach may overcome the constraints of the traditional top–down strategy as it can imitate in vivo-like tissue development processes. However, several essential issues must be considered, and more mechanistic insights of the fundamental, underpinning biological processes, such as cell–cell and cell–material interactions, are necessary. The aim of this review is to firstly introduce and compare the number of cell types, the size and morphology of the scaffolds, and the generic tissue reconstruction procedures utilised in the top–down and the bottom–up strategies; then, it will analyse their advantages, disadvantages, and challenges; and finally, it will briefly discuss the possible technologies that may overcome some of the inherent limitations of the bottom–up strategy.
Collapse
|
31
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Patil NA, Kandasubramanian B. Functionalized polylysine biomaterials for advanced medical applications: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110248] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Seon GM, Lee MH, Koo MA, Hong SH, Park YJ, Jeong HK, Kwon BJ, Kim D, Park JC. Asiaticoside and polylysine-releasing collagen complex for effectively reducing initial inflammatory response using inflamed induced in vitro model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111837. [PMID: 33579475 DOI: 10.1016/j.msec.2020.111837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022]
Abstract
Inflammation is a significant clinical problem that can arise from full-thickness wounds or burn injuries or microbial disease. Although topical wound healing substances could promote rapid wound healing by preventing or reducing the consequences of inflammation, there still remains a need for the development of novel substances that can effectively reduce infection and inflammation in initial wound healing phase. In this study, collagen was combined with asiaticoside (AS) and ε-poly-l-lysine (εPLL). This complex was then applied to in vitro models of infection and inflammation. Collagen-AS coatings inhibited the initial inflammatory response to LPS through a sustained release of AS, and a bilayer coating-εPLL showed a notable antimicrobial effect using microbial infection test. In this study, we determined whether asiaticoside and εPLL have anti-inflammatory and antibacterial effects through different mechanisms. Collectively, the collagen-AS/εPLL complex indicated great therapeutic potentials for accelerate wound healing and the complex may be considered as a artificial scaffold substitute product to full-thickness wound healing.
Collapse
Affiliation(s)
- Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Ha Kyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Byeong-Ju Kwon
- Department of Medical Device Industry, Yonsei University College of Medicine, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Republic of Korea; Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Republic of Korea.
| |
Collapse
|
34
|
Damberga D, Fedorenko V, Grundšteins K, Altundal Ş, Šutka A, Ramanavičius A, Coy E, Mrówczyński R, Iatsunskyi I, Viter R. Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2438. [PMID: 33291264 PMCID: PMC7762110 DOI: 10.3390/nano10122438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO-PDA composites as a shift of photoluminescence (PL) peaks and PL quenching. However, to date, the effect of the PDA layer on fundamental properties of ZnO-PDA nanostructures has not been studied. The presented paper reports on optical and surface properties of novel ZnO-PDA nanocomposites. PDA layers were chemically synthesized on ZnO nanostructures from different solution concentrations of 0.3, 0.4, 0.5 and 0.7 mg/mL. Structure, electronic and optical properties were studied by SEM, Raman, FTIR, diffuse reflectance and photoluminescence methods. The Z-potential of the samples was evaluated in neutral pH (pH = 7.2). The response of the samples towards poly-l-lysine adsorption, as a model molecule, was studied by PL spectroscopy to evaluate the correlation between optical and surface properties. The role of the PDA concentration on fundamental properties was discussed.
Collapse
Affiliation(s)
- Daina Damberga
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Viktoriia Fedorenko
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Kārlis Grundšteins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Şahin Altundal
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
| | - Andris Šutka
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Research Laboratory of Functional Materials Technologies, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Arunas Ramanavičius
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio ave.3, LT-10257 Vilnius, Lithuania
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland; (E.C.); (R.M.)
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas 3, LV-1004 Riga, Latvia; (D.D.); (V.F.); (K.G.); (Ş.A.); (A.Š.); (A.R.)
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| |
Collapse
|
35
|
Prabakaran R, Marie JM, Xavier AJM. Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid and Itaconic Acid: Synthesis, In Vitro Antibacterial, and Cytocompatibility Studies. ACS APPLIED BIO MATERIALS 2020; 3:5708-5721. [DOI: 10.1021/acsabm.0c00480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajalakshmi Prabakaran
- PG & Research Department of Chemistry, Loyola College, University of Madras, Chennai 600034, India
| | - J. Margaret Marie
- Department of Chemistry, Women’s Christian College, University of Madras, Chennai 600006, India
| | - A. John Maria Xavier
- PG & Research Department of Chemistry, Loyola College, University of Madras, Chennai 600034, India
| |
Collapse
|
36
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
37
|
Ma T, Yang Y, Quan X, Lu L, Xia B, Gao J, Qi F, Li S, Zhao L, Mei L, Zheng Y, Shen Y, Luo Z, Jin Y, Huang J. Oxygen carrier in core-shell fibers synthesized by coaxial electrospinning enhances Schwann cell survival and nerve regeneration. Am J Cancer Res 2020; 10:8957-8973. [PMID: 32802174 PMCID: PMC7415813 DOI: 10.7150/thno.45035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Local hypoxia is a challenge for fabrication of cellular grafts and treatment of peripheral nerve injury. In our previous studies, we demonstrated that perfluorotributylamine (PFTBA) could provide short term oxygen supply to Schwann cells (SCs) and counteract the detrimental effects of hypoxia on SCs during the early stages of nerve injury. However, the quick release of oxygen in PFTBA compromised its ability to counteract hypoxia over an extended time, limiting its performance in peripheral nerve injury. Methods: In this study, PFTBA-based oxygen carrier systems were prepared through coaxial electrospinning to prolong the time course of oxygen release. Core-shell structures were fabricated, optimized, and the oxygen kinetics of PFTBA-enriched core-shell fibers evaluated. The effect of core-shells on the survival and function of SCs was examined in both 2D and 3D systems as well as in vivo. The system was used to bridge large sciatic nerve defects in rats. Results: PFTBA core-shell fibers provided high levels of oxygen to SCs in vitro, enhancing their survival, and increasing NGF, BDNF, and VEGF expression in 2D and 3D culture systems under hypoxic condition. In vivo analysis showed that the majority of GFP-expressing SCs in the PFTBA conduit remained viable 14 days post-implantation. We found that axons in PFTBA oxygen carrier scaffold improved axonal regeneration, remyelination, and recovery. Conclusion: A synthetic oxygen carrier in core-shell fibers was fabricated by the coaxial electrospinning technique and was capable of enhancing SC survival and nerve regeneration by prolonged oxygen supply. These findings provide a new strategy for fabricating cellular scaffolds to achieve regeneration in peripheral nerve injury treatment and other aerobic tissue injuries.
Collapse
|
38
|
Polyplexes for gene and nucleic acid delivery: Progress and bottlenecks. Eur J Pharm Sci 2020; 150:105358. [PMID: 32360232 DOI: 10.1016/j.ejps.2020.105358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Gene and nucleic acid delivery constitute a huge biological challenge and several attempts have been made by research laboratories to address this issue. Cationic polymers and cationic lipids (positively charged carriers) can be utilized for the transport of these biomolecules. Polyplexes (PPs) are interpolyelectrolyte complexes which are spontaneously formed through the electrostatic condensation between nucleic acid and a cationic polymer. PPs are capable of high-density payload condensation leading to cell internalization and subsequent protection from enzymatic degradation. Most cationic polymers can cross extracellular barriers, but it is more challenging to overcome intracellular barriers (efficient disassembly and endosomal escape). In this review, the use of PPs for gene and nucleic acid delivery is discussed.
Collapse
|
39
|
Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regen Ther 2020; 14:196-204. [PMID: 32154334 PMCID: PMC7058408 DOI: 10.1016/j.reth.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The objective of this study is to design a cancer invasion model where the cancer invasion rate can be regulated in vitro. Methods Cancer-associated fibroblasts (CAF) aggregates incorporating gelatin hydrogel microspheres (GM) containing various concentrations of transforming growth factor-β1 (TGF-β1) (CAF-GM-TGF-β1) were prepared. Alpha-smooth muscle actin (α-SMA) for the CAF aggregates was measured to investigate the CAF activation level by changing the concentration of TGF-β1. An invasion assay was performed to evaluate the cancer invasion rate by co-cultured of cancer cells with various CAF-GM-TGF-β1. Results The expression level of α-SMA for CAF increased with an increased in the TGF-β1 concentration. When co-cultured with various types of CAF-GM-TGF-β1, the cancer invasion rate was well correlated with the α-SMA level. It is conceivable that the TGF-β1 concentration could modify the level of CAF activation, leading to the invasion rate of cancer cells. In addition, at the high concentrations of TGF-β1, the effect of a matrix metalloproteinase (MMP) inhibitor on the cancer invasion rate was observed. The higher invasion rate would be achieved through the higher MMP production. Conclusions The present model is promising to realize the cancer invasion whose rate can be modified by changing the TGF-β1 concentration. This invasion model would be a promising tool for anti-cancer drug screening. TGF-β1 was controlled release from gelatin hydrogel microspheres. CAF were activated by increased TGF-β1 concentration. There was a good correlation between invasion rate and TGF-β1 concentration. Higher invasion rate would be achieved through matrix metalloproteinase production.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- PBS, phosphate buffered-saline
- PLGA, poly (lactic-co-glycolic acid)
- PVA, poly (vinyl alcohol)
- TGF-β1, transforming growth factor-β1
- Three-dimensional cell culture
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
40
|
Kayıran Çelebier S, Bozdağ Pehlivan S, Demirbilek M, Akıncı M, Vural İ, Akdağ Y, Yürüker S, Ünlü N. Development of an Anti-Inflammatory Drug-Incorporated Biomimetic Scaffold for Corneal Tissue Engineering. J Ocul Pharmacol Ther 2020; 36:433-446. [PMID: 32023420 DOI: 10.1089/jop.2019.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose: The aim of this study was to design naproxen sodium (NS)-containing, biomimetic, porous poly(lactide-co-glycolide) (PLGA) scaffolds for regeneration of damaged corneal epithelium. Methods: NS-incorporated PLGA scaffolds were prepared using the emulsion freeze-drying method and then coated with collagen or poly-l-lysine. Porosity measurements of the scaffolds were performed by the gas adsorption/desorption method and the scaffolds demonstrated highly porous, open-cellular pore structures with pore sizes from 150 to 200 μm. Results: The drug loading efficiency of scaffolds was found to be higher than 84%, and about 90%-98% of NS was released at the end of 7 days with a fast drug release rate at the initial period of time and then in a slow and sustained manner. The corneal epithelial cells were isolated from New Zealand white rabbits. The obtained cells were seeded onto scaffolds and continued to increase during the time period of the study, indicating that the scaffolds might promote corneal epithelial cell proliferation without causing toxic effects for at least 10 days. Conclusions: The NS-loaded PLGA scaffolds exhibited a combination of controlled drug release and biomimetic properties that might be attractive for use in treatment of corneal damage both for controlled release and biomedical applications.
Collapse
Affiliation(s)
- Seren Kayıran Çelebier
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Murat Demirbilek
- Nanotechnology Nanomedicine Department, Hacettepe University, Ankara, Turkey
| | - Murat Akıncı
- Department of Medical Genetics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - İmran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yağmur Akdağ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sinan Yürüker
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nurşen Ünlü
- Department of Pharmaceutical Technology, Faculty of Pharmacy, and Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
41
|
Saberianpour S, Rezaie Nezhad Zamani A, Karimi A, Ahmadi M, Khatami N, Pouyafar A, Rahbarghazi R, Nouri M. Hollow Alginate-Poly-L-Lysine-Alginate Microspheres Promoted an Epithelial-Mesenchymal Transition in Human Colon Adenocarcinoma Cells. Adv Pharm Bull 2020; 10:141-145. [PMID: 32002374 PMCID: PMC6983985 DOI: 10.15171/apb.2020.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Today, there is an urgent need to develop a three-dimentional culture systems mimicking native in vivo condition in order to screen potency of drugs and possibly any genetic alterations in tumor cells. Due to the existence of limitations in animal models, the development of three dimensional systems is highly recommended. To this end, we encapsulated human colon adenocarcinoma cell line HT29 with alginate-poly-L-lysine (Alg-PLL) microspheres and the rate of epithelial-mesenchymal transition was monitored. Methods: Cells were randomly divided into three groups; control, alginate and Alg-PLL. To encapsulate cells, we mixed HT-29 cells (1 × 106 ) with 1 mL of 0.05% PLL and 1% Alg mixture and electrosprayed into CaCl2 solution by using a high-voltage power. Cells from all groups were maintained at 37˚C in a humidified atmosphere containing 5% CO2 for 7 days. Cell viability was assessed by MTT assay. To monitor the stemness feature, we measured the transcription of genes such as Snail, Zeb, and Vimentin by using real-time PCR analysis. Results: Addition of PLL to Alg in a hallowed state increased the cell survival rate compared to the control and Alg groups (P<0.05). Cells inside Alg-PLL tended to form microcellular aggregates while in Alg microspheres an even distribution of HT-29 cells was found. Real-time PCR analysis showed the up-regulation of Snail, Zeb, and Vimentin in Alg-PLL microspheres compared to the other groups, showing the acquisition of stemness feature (P<0.05). Conclusion: This study showed that hallow Alg-PLL microspheres increased the epithelialmesenchymal transition rate after 7 days in in vitro condition. Such approaches could be touted as appropriate in vitro models for drug screening.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khatami
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
| | - Ayda Pouyafar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Li S, Chen N, Li Y, Li X, Zhan Q, Ban J, Zhao J, Hou X, Yuan X. Metal-crosslinked ɛ-poly-L-lysine tissue adhesives with high adhesive performance: Inspiration from mussel adhesive environment. Int J Biol Macromol 2019; 153:1251-1261. [PMID: 31778704 DOI: 10.1016/j.ijbiomac.2019.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Strong glue of mussels has long been considered as an ideal model to design synthetic bio-adhesives but the adhesive strength of metal-crosslinked mussel-inspired glues is not often satisfactory. Herein, inspired by the adhesive environment of mussels, we obtained metal-crosslinked ε-poly-L-lysine adhesives with high adhesive performance by introducing the elements of suitable adhesive environment (SAE) into the adhesives. The elements of SAE were clarified as weak alkaline conditions (pH ∼ 7.4) and low Fe3+ contents. The adhesive strength (∼105 kPa) of the metal-crosslinked adhesives endowed with the elements of SAE (PL-Cat/Fe-SAE) was about 8 times higher than that of fibrin glues. The high adhesive strength was found to originate from distinctive interfacial adhesion and cohesion strength of PL-Cat/Fe-SAE. PL-Cat/Fe-SAE showed strong interfacial adhesion capacity and nearly comparable cohesion strength to those PL-Cat/Fe adhesives with higher Fe3+ contents. The nearly comparable cohesion strength of PL-Cat/Fe-SAE was then found to be due to more amount of stable tris-complex existed in PL-Cat/Fe-SAE. In addition, PL-Cat/Fe-SAE was able to efficiently close the full thickness skin incisions. The study highlighted the importance of introducing SAE elements into the design of tissue adhesives and provided a facile and efficient strategy for constructing tissue adhesives with high adhesive performance.
Collapse
Affiliation(s)
- Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiamin Ban
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
43
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|
44
|
Derakhti S, Safiabadi-Tali SH, Amoabediny G, Sheikhpour M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109782. [DOI: 10.1016/j.msec.2019.109782] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
|
45
|
Anilmis NM, Kara G, Kilicay E, Hazer B, Denkbas EB. Designing siRNA-conjugated plant oil-based nanoparticles for gene silencing and cancer therapy. J Microencapsul 2019; 36:635-648. [PMID: 31509450 DOI: 10.1080/02652048.2019.1665117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, the anticancer activities of two siRNA carriers were compared using a human lung adenocarcinoma epithelial cell line (A549). Firstly, poly(styrene)-graft-poly(linoleic acid) (PS-g-PLina) and poly(styrene)-graft-poly(linoleic acid)-graft-poly(ethylene glycol) (PS-g-PLina-g-PEG) graft copolymers were synthesized by free-radical polymerization. PS-PLina and PS-PLina-PEG nanoparticles (NPs) were prepared by solvent evaporation method and were then characterized. The size was found as 150 ± 10 nm for PS-PLina and 184 ± 6 nm for PS-PLina-PEG NPs. The NPs were functionalized with poly(l-lysine) (PLL) for c-myc siRNA conjugation. siRNA entrapment efficiencies were found in the range of 4-63% for PS-PLina-PLL and 6-42% for PS-PLina-PEG-PLL NPs. The short-term stability test was realised for 1 month. siRNA release profiles were also investigated. In vitro anticancer activity of siRNA-NPs was determined by MTT, flow cytometry, and fluorescence microscopy analyses. Obtained findings showed that both NPs systems were promising as siRNA delivery tool for lung cancer therapy.
Collapse
Affiliation(s)
- Nur Merve Anilmis
- Nanotechnology Engineering Division, Institute of Science and Technology, Bulent Ecevit University , Zonguldak , Turkey
| | - Goknur Kara
- Department of Chemistry, Biochemistry Division,Hacettepe University , Ankara , Turkey
| | - Ebru Kilicay
- Vocational School of Higher Education, Programme of Biomedical Device Technology, Bulent Ecevit University , Zonguldak , Turkey
| | - Baki Hazer
- Department of Aircraft Mechanic-Engine Maintenance, Cappadocia University , Urgup , Nevsehir , Turkey.,Department of Chemistry, Bulent Ecevit University, Universite Caddes , Zonguldak , Turkey.,Department of Nanotechnology Engineering, Bulent Ecevit University , Zonguldak , Turkey.,Department of Biomedical Engineering, Baskent, University , Ankara , Turkey
| | - Emir Baki Denkbas
- Department of Chemistry, Biochemistry Division,Hacettepe University , Ankara , Turkey.,Department of Biomedical Engineering, Baskent, University , Ankara , Turkey
| |
Collapse
|
46
|
Luo Y, Xu D, Gao X, Xiong J, Jiang B, Zhang Y, Wang Y, Tang Y, Chen C, Qiao H, Li H, Zou J. Nanoparticles conjugated with bacteria targeting tumors for precision imaging and therapy. Biochem Biophys Res Commun 2019; 514:1147-1153. [DOI: 10.1016/j.bbrc.2019.05.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022]
|
47
|
Sun P, Yang S, Sun X, Wang Y, Jia Y, Shang P, Tian H, Li G, Li R, Zhang X, Nie C. Preparation of PolyHIPE Scaffolds for 3D Cell Culture and the Application in Cytotoxicity Evaluation of Cigarette Smoke. Polymers (Basel) 2019; 11:polym11060959. [PMID: 31159508 PMCID: PMC6631592 DOI: 10.3390/polym11060959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022] Open
Abstract
Polystyrene-based polyHIPE (polymerized high internal phase emulsion) materials were prepared by the copolymerization of styrene and divinylbenzene in the continuous phase of a HIPE. The resultant polyHIPE materials were found to have an open-cellular morphology and high porosity, and the polyHIPE structure could be well adjusted by varying the water/oil (W/O) ratio and the amount of emulsifier in the HIPE. Cell culture results showed that the resultant polyHIPE materials, which exhibited larger voids and connected windows as well as high porosity, could promote cell proliferation on the 3D scaffold. A 3D cell cytotoxicity evaluation system was constructed with the polystyrene-based polyHIPE materials as scaffolds and the cigarette smoke cytotoxicity was evaluated. Results showed that the smoke cytotoxicity against A549 cells is much lower in the 3D cell platform compared to the traditional 2D system, showing the great potential of the polyHIPE scaffolds for 3D cell culture and the cytotoxic evaluation of cigarette smoke.
Collapse
Affiliation(s)
- Peijian Sun
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Song Yang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Xuehui Sun
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Yipeng Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Yunzhen Jia
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Haiying Tian
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Guozheng Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Ruyang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Xiaobing Zhang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| | - Cong Nie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, Zhengzhou 450001, China.
| |
Collapse
|
48
|
Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 2019; 134:673-694. [PMID: 31054302 DOI: 10.1016/j.ijbiomac.2019.04.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type of damages is one of the most important health problems with an increasing incidence worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor organs, as well as immunological problems. In this context, tissue engineering (TE) was introduced as a novel and versatile approach for restoring tissue/organ function using living cells, scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) support material, provide physical and chemical cues for seeding cells and has an essential role in cell missions. Among the wide verity of scaffolding materials, natural or synthetic biopolymers are the most commonly biomaterials mainly due to their unique physicochemical and biological features. In this context, naturally occurring biological macromolecules are particular of interest owing to their low immunogenicity, excellent biocompatibility and cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding applications. In this review, we highlighted the potentials of natural and synthetic polymers as scaffolding materials. The properties, advantages, and disadvantages of both polymer types as well as the current status, challenges, and recent progresses regarding the application of them as scaffolding biomaterials are also discussed.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019; 85:294-309. [PMID: 30553873 DOI: 10.1016/j.actbio.2018.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20 wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9 ± 5.6% and 325.7 ± 20.2 mg/cm3, respectively, which were much higher than the values 8.1 ± 2.5% (BV/TV) and 124 ± 35.8 mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Collapse
Affiliation(s)
- Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Fuyu Chen
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
50
|
Zheng S, Guan Y, Yu H, Huang G, Zheng C. Poly-l-lysine-coated PLGA/poly(amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. NEW J CHEM 2019. [DOI: 10.1039/c9nj01675a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ideal bone tissue engineering scaffolds should be biocompatible, biodegradable, and mechanically robust and have the ability to regulate cell function.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Yonghong Guan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Haichi Yu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Ge Huang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Changjun Zheng
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| |
Collapse
|