1
|
Tian M, Ye S. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Sci Rep 2016; 6:34751. [PMID: 27713495 PMCID: PMC5054432 DOI: 10.1038/srep34751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding sites have been observed. The inhibitor ifenprodil, and related phenylethanoamine compounds specifically targeting GluN1/GluN2B NMDARs have neuroprotective activity. However, whether they use differential structural pathways than the endogenous inhibitor Zn2+ for regulation is unknown. We applied genetically encoded unnatural amino acids (Uaas) and monitored the functional changes in living cells with photo-cross-linkers specifically incorporated at the ifenprodil binding interface between GluN1 and GluN2B subunits. We report constraining the NTD domain movement, by a light induced crosslinking bond that introduces minimal perturbation to the ligand binding, specifically impedes the transduction of ifenprodil but not Zn2+ inhibition. Subtle distance changes reveal interfacial flexibility and NTD rearrangements in the presence of modulators. Our results present a much richer dynamic picture of allostery than conventional approaches targeting the same interface, and highlight key residues that determine functional and subtype specificity of NMDARs. The light-sensitive mutant neuronal receptors provide complementary tools to the photo-switchable ligands for opto-neuropharmacology.
Collapse
Affiliation(s)
- Meilin Tian
- Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1024, Paris, France.,Centre National de la Recherche Scientifique, UMR 8197, Paris, France
| | - Shixin Ye
- Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1024, Paris, France.,Centre National de la Recherche Scientifique, UMR 8197, Paris, France
| |
Collapse
|
2
|
Morán-Ramallal R, Liz R, Gotor V. Enantiopure trans-3-Arylaziridine-2-carboxamides: Preparation by Bacterial Hydrolysis and Ring-Openings toward Enantiopure, Unnatural d-α-Amino Acids. J Org Chem 2010; 75:6614-24. [DOI: 10.1021/jo101377j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Morán-Ramallal
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Ramón Liz
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Vicente Gotor
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
3
|
Borue X, Cooper S, Hirsh J, Condron B, Venton BJ. Quantitative evaluation of serotonin release and clearance in Drosophila. J Neurosci Methods 2009; 179:300-8. [PMID: 19428541 PMCID: PMC2691387 DOI: 10.1016/j.jneumeth.2009.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Serotonin signaling plays a key role in the regulation of development, mood and behavior. Drosophila is well suited for the study of the basic mechanisms of serotonergic signaling, but the small size of its nervous system has previously precluded the direct measurements of neurotransmitters. This study demonstrates the first real-time measurements of changes in extracellular monoamine concentrations in a single larval Drosophila ventral nerve cord. Channelrhodopsin-2-mediated, neuronal type-specific stimulation is used to elicit endogenous serotonin release, which is detected using fast-scan cyclic voltammetry at an implanted microelectrode. Release is decreased when serotonin synthesis or packaging are pharmacologically inhibited, confirming that the detected substance is serotonin. Similar to tetanus-evoked serotonin release in mammals, evoked serotonin concentrations are 280-640nM in the fly, depending on the stimulation length. Extracellular serotonin signaling is prolonged after administering cocaine or fluoxetine, showing that transport regulates the clearance of serotonin from the extracellular space. When ChR2 is targeted to dopaminergic neurons, dopamine release is measured demonstrating that this method is broadly applicable to other neurotransmitter systems. This study shows that the dynamics of serotonin release and reuptake in Drosophila are analogous to those in mammals, making this simple organism more useful for the study of the basic physiological mechanisms of serotonergic signaling.
Collapse
Affiliation(s)
- Xenia Borue
- Medical Scientist Training Program, University of Virginia Charlottesville, VA 22904, USA
- Neuroscience Graduate Program, University of Virginia Charlottesville, VA 22904, USA
| | - Stephanie Cooper
- Department of Chemistry, University of Virginia Charlottesville, VA 22904, USA
| | - Jay Hirsh
- Neuroscience Graduate Program, University of Virginia Charlottesville, VA 22904, USA
- Department of Biology, University of Virginia Charlottesville, VA 22904, USA
| | - Barry Condron
- Neuroscience Graduate Program, University of Virginia Charlottesville, VA 22904, USA
- Department of Biology, University of Virginia Charlottesville, VA 22904, USA
| | - B. Jill Venton
- Neuroscience Graduate Program, University of Virginia Charlottesville, VA 22904, USA
- Department of Chemistry, University of Virginia Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Mohanty SK, Reinscheid RK, Liu X, Okamura N, Krasieva TB, Berns MW. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys J 2008; 95:3916-26. [PMID: 18621808 PMCID: PMC2553121 DOI: 10.1529/biophysj.108.130187] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/28/2008] [Indexed: 11/18/2022] Open
Abstract
We used two-photon excitation with a near-infrared (NIR) laser microbeam to investigate activation of channelrhodopsin 2 (ChR2) in excitable cells for the first time to our knowledge. By measuring the fluorescence intensity of the calcium (Ca) indicator dye, Ca orange, at different wavelengths as a function of power of the two-photon excitation microbeam, we determined the activation potential of the NIR microbeam as a function of wavelength. The two-photon activation spectrum is found to match measurements carried out with single-photon activation. However, two-photon activation is found to increase in a nonlinear manner with the power density of the two-photon laser microbeam. This approach allowed us to activate different regions of ChR2-sensitized excitable cells with high spatial resolution. Further, in-depth activation of ChR2 in a spheroid cellular model as well as in mouse brain slices was demonstrated by the use of the two-photon NIR microbeam, which was not possible using single-photon activation. This all-optical method of identification, activation, and detection of ChR2-induced cellular activation in genetically targeted cells with high spatial and temporal resolution will provide a new method of performing minimally invasive in-depth activation of specific target areas of tissues or organisms that have been rendered photosensitive by genetic targeting of ChR2 or similar photo-excitable molecules.
Collapse
|
5
|
Abstract
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
Collapse
Affiliation(s)
- Boris Martinac
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
6
|
Schanuel SM, Bell KA, Henderson SC, McQuiston AR. Heterologous expression of the invertebrate FMRFamide-gated sodium channel as a mechanism to selectively activate mammalian neurons. Neuroscience 2008; 155:374-86. [PMID: 18598740 PMCID: PMC2600494 DOI: 10.1016/j.neuroscience.2008.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 01/01/2023]
Abstract
Considerable effort has been directed toward the development of methods to selectively activate specific subtypes of neurons. Focus has been placed on the heterologous expression of proteins that are capable of exciting neurons in which they are expressed. Here we describe the heterologous expression of the invertebrate FMRFamide (H-phenylalanine-methionine-arginine-phenylalanine-NH2) -gated sodium channel from Helix aspersa (HaFaNaC) in hippocampal slice cultures. HaFaNaC was co-expressed with a fluorescent protein (green fluorescent protein (GFP), red fluorescent protein from Discosoma sp (dsRed) or mutated form of red fluorescent protein from Discosoma sp (tdTomato)) in CA3 pyramidal neurons of rat hippocampal slice cultures using single cell electroporation. Pressure application of the agonist FMRFamide to HaFaNaC-expressing neuronal somata produced large prolonged depolarizations and bursts of action potentials (APs). FMRFamide responses were inhibited by amiloride (100 microM). In contrast, pressure application of FMRFamide to the axons of neurons expressing HaFaNaC produced no response. Fusion of GFP to the N-terminus of HaFaNaC showed that GFP-HaFaNaC was absent from axons. Bath application of FMRFamide produced persistent AP firing in HaFaNaC-expressing neurons. This FMRFamide-induced increase in the frequency of APs was dose-dependent. The concentrations of FMRFamide required to activate HaFaNaC-expressing neurons were below that required to activate the homologous acid sensing ion channel normally found in mammalian neurons. Furthermore, the mammalian neuropeptides neuropeptide FF and RFamide-related peptide-1, which have amidated RF C-termini, did not affect HaFaNaC-expressing neurons. Antagonists of NPFF receptors (BIBP3226) also had no effect on HaFaNaC. Therefore, we suggest that heterologous-expression of HaFaNaC in mammalian neurons could be a useful method to selectively and persistently excite specific subtypes of neurons in intact nervous tissue.
Collapse
Affiliation(s)
- S M Schanuel
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
7
|
Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 2007; 27:14231-8. [PMID: 18160630 PMCID: PMC6673457 DOI: 10.1523/jneurosci.3578-07.2007] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Feng Zhang
- Department of Bioengineering
- Department of Chemistry, and
| | | | | | - M. Bret Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Karl Deisseroth
- Department of Bioengineering
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|