1
|
Kelliny S, Zhou X, Bobrovskaya L. Alzheimer's Disease and Frontotemporal Dementia: A Review of Pathophysiology and Therapeutic Approaches. J Neurosci Res 2025; 103:e70046. [PMID: 40387258 PMCID: PMC12087441 DOI: 10.1002/jnr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating form of dementia, with the number of affected individuals rising sharply. The main hallmarks of the disease include amyloid-beta plaque deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein, besides other pathological features that contribute to the disease's complexity. The causes of sporadic AD are multifactorial and mostly age-related and involve risk factors such as diabetes and cardiovascular or cerebrovascular disorders. Frontotemporal dementia (FTD) is another type of dementia characterized by a spectrum of behaviors, memory, and motor abnormalities and associated with abnormal depositions of protein aggregation, including tau protein. Currently approved medications are symptomatic, and no disease-modifying therapy is available to halt the disease progression. Therefore, the development of multi-targeted therapeutic approaches could hold promise for the treatment of AD and other neurodegenerative disorders, including tauopathies. In this article, we will discuss the pathophysiology of AD and FTD, the proposed hypotheses, and current therapeutic approaches, highlighting the development of novel drug candidates and the progress of clinical trials in this field of research.
Collapse
Affiliation(s)
- Sally Kelliny
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Faculty of PharmacyAssiut UniversityAssiutEgypt
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
3
|
Barbo M, Koritnik B, Leonardis L, Blagus T, Dolžan V, Ravnik-Glavač M. Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. Cell Mol Neurobiol 2024; 44:71. [PMID: 39463208 PMCID: PMC11513727 DOI: 10.1007/s10571-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- , Ljubljana, Slovenia.
| |
Collapse
|
4
|
Ge X, Hu M, Zhou M, Fang X, Chen X, Geng D, Wang L, Yang X, An H, Zhang M, Lin D, Zheng M, Cui X, Wang Q, Wu Y, Zheng K, Huang XF, Yu Y. Overexpression of forebrain PTP1B leads to synaptic and cognitive impairments in obesity. Brain Behav Immun 2024; 117:456-470. [PMID: 38336024 DOI: 10.1016/j.bbi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity has reached pandemic proportions and is a risk factor for neurodegenerative diseases, including Alzheimer's disease. Chronic inflammation is common in obese patients, but the mechanism between inflammation and cognitive impairment in obesity remains unclear. Accumulative evidence shows that protein-tyrosine phosphatase 1B (PTP1B), a neuroinflammatory and negative synaptic regulator, is involved in the pathogenesis of neurodegenerative processes. We investigated the causal role of PTP1B in obesity-induced cognitive impairment and the beneficial effect of PTP1B inhibitors in counteracting impairments of cognition, neural morphology, and signaling. We showed that obese individuals had negative relationship between serum PTP1B levels and cognitive function. Furthermore, the PTP1B level in the forebrain increased in patients with neurodegenerative diseases and obese cognitive impairment mice with the expansion of white matter, neuroinflammation and brain atrophy. PTP1B globally or forebrain-specific knockout mice on an obesogenic high-fat diet showed enhanced cognition and improved synaptic ultrastructure and proteins in the forebrain. Specifically, deleting PTP1B in leptin receptor-expressing cells improved leptin synaptic signaling and increased BDNF expression in the forebrain of obese mice. Importantly, we found that various PTP1B allosteric inhibitors (e.g., MSI-1436, well-tolerated in Phase 1 and 1b clinical trials for obesity and type II diabetes) prevented these alterations, including improving cognition, neurite outgrowth, leptin synaptic signaling and BDNF in both obese cognitive impairment mice and a neural cell model of PTP1B overexpression. These findings suggest that increased forebrain PTP1B is associated with cognitive decline in obesity, whereas inhibition of PTP1B could be a promising strategy for preventing neurodegeneration induced by obesity.
Collapse
Affiliation(s)
- Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221006, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huimei An
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Meng Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing 10096, China
| | - Danhong Lin
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute (IHMRI) and School of Medical, Indigenous, and Health, University of Wollongong, NSW 2522, Australia.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
5
|
Speidell A, Agbey C, Mocchetti I. Accelerated neurodegeneration of basal forebrain cholinergic neurons in HIV-1 gp120 transgenic mice: Critical role of the p75 neurotrophin receptor. Brain Behav Immun 2024; 117:347-355. [PMID: 38266662 PMCID: PMC10935610 DOI: 10.1016/j.bbi.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Christy Agbey
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
6
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
7
|
Lockard G, Gordon J, Schimmel S, El Sayed B, Monsour M, Garbuzova‐Davis S, Borlongan CV. Attenuation of amyotrophic lateral sclerosis via stem cell and extracellular vesicle therapy: An updated review. NEUROPROTECTION 2023; 1:130-138. [PMID: 38188233 PMCID: PMC10766415 DOI: 10.1002/nep3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly fatal neurological disease characterized by upper and lower motor neuron degeneration. Though typically idiopathic, familial forms of ALS are commonly comprised of a superoxide dismutase 1 (SOD1) mutation. Basic science frequently utilizes SOD1 models in vitro and in vivo to replicate ALS conditions. Therapies are sparse; those that exist on the market extend life minimally, thus driving the demand for research to identify novel therapeutics. Transplantation of stem cells is a promising approach for many diseases and has shown efficacy in SOD1 models and clinical trials. The underlying mechanism for stem cell therapy presents an exciting venue for research investigations. Most notably, the paracrine actions of stem cell-derived extracellular vesicles (EVs) have been suggested as a potent mitigating factor. This literature review focuses on the most recent preclinical research investigating cell-free methods for treating ALS. Various avenues are being explored, differing on the EV contents (protein, microRNA, etc.) and on the cell target (astrocyte, endothelial cell, motor neuron-like cells, etc.), and both molecular and behavioral outcomes are being examined. Unfortunately, EVs may also play a role in propagating ALS pathology. Nonetheless, the overarching goal remains clear; to identify efficient cell-free techniques to attenuate the deadly consequences of ALS.
Collapse
Affiliation(s)
- Gavin Lockard
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Jonah Gordon
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Samantha Schimmel
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bassel El Sayed
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Molly Monsour
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Svitlana Garbuzova‐Davis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
8
|
Elia A, Parodi-Rullan R, Vazquez-Torres R, Carey A, Javadov S, Fossati S. Amyloid β induces cardiac dysfunction and neuro-signaling impairment in the heart of an Alzheimer's disease model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548558. [PMID: 37502936 PMCID: PMC10369880 DOI: 10.1101/2023.07.11.548558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Aims Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by cerebral amyloid β (Aβ) deposition and tau pathology. The AD-mediated degeneration of the brain neuro-signaling pathways, together with a potential peripheral amyloid accumulation, may also result in the derangement of the peripheral nervous system, culminating in detrimental effects on other organs, including the heart. However, whether and how AD pathology modulates cardiac function, neurotrophins, innervation, and amyloidosis is still unknown. Here, we report for the first time that cardiac remodeling, amyloid deposition, and neuro-signaling dysregulation occur in the heart of Tg2576 mice, a widely used model of AD and cerebral amyloidosis. Methods ad Results Echocardiographic analysis showed significant deterioration of left ventricle function, evidenced by a decline of both ejection fraction and fraction shortening percentage in 12-month-old Tg2576 mice compared to age-matched WT littermates. Tg2576 mice hearts exhibited an accumulation of amyloid aggregates, including Aβ, an increase in interstitial fibrosis and severe cardiac nervous system dysfunction. The transgenic mice also showed a significant decrease in cardiac nerve fiber density, including both adrenergic and regenerating nerve endings. This myocardial denervation was accompanied by a robust reduction in NGF and BDNF protein expression as well as GAP-43 expression (regenerating fibers) in both the brain and heart of Tg2576 mice. Accordingly, cardiomyocytes and neuronal cells challenged with Aβ oligomers showed significant downregulation of BDNF and GAP-43, indicating a causal effect of Aβ on the loss of cardiac neurotrophic function. Conclusions Overall, this study uncovers possible harmful effects of AD on the heart, revealing cardiac degeneration induced by Aβ through fibrosis and neuro-signaling pathway deregulation for the first time in Tg2576 mice. Our data suggest that AD pathology can cause deleterious effects on the heart, and the peripheral neurotrophic pathway may represent a potential therapeutic target to limit these effects.
Collapse
Affiliation(s)
- Andrea Elia
- Alzheimer’s Center at Temple (ACT), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140
| | - Rebecca Parodi-Rullan
- Alzheimer’s Center at Temple (ACT), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140
| | - Rafael Vazquez-Torres
- Alzheimer’s Center at Temple (ACT), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140
| | - Ashley Carey
- Alzheimer’s Center at Temple (ACT), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140
| |
Collapse
|
9
|
Banasiak‐Cieślar H, Wiener D, Kuszczyk M, Dobrzyńska K, Polanowski A. Proline-rich polypeptides (Colostrinin ®/COLOCO ®) modulate BDNF concentration in blood affecting cognitive function in adults: A double-blind randomized placebo-controlled study. Food Sci Nutr 2023; 11:1477-1485. [PMID: 36911821 PMCID: PMC10002942 DOI: 10.1002/fsn3.3187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Proline-rich polypeptides (PRPs complex also known as COLOCO®, Colostrinin®) consist of low-molecular weight peptides ranging up to 10 kDa, isolated from the bovine colostrum obtained up to 48 h postpartum. PRPs have been shown to affect processes involved in inflammation, brain aging, and neurodegeneration. The aim of this study was to investigate the effect of Colostrinin® (COLOCO®) on the cognitive abilities of healthy volunteers in three different age groups using the CANTAB tool in a double-blind randomized placebo-controlled study. BDNF serum level was used as a physicochemical marker of improvement of the cognitive skills. Three hundred and sixty-one healthy volunteers were divided into three study groups aged 18-24, 25-54, and 55-75; each group was then divided into two subgroups which took either placebo or tested lozenge with 120 μg of PRPs for the period of 4 months. The CANTAB battery test was used to measure the efficacy of PRP in the context of cognitive functioning. After the treatment with COLOCO®, we observed differences within MoCA score in the oldest patients, improvement in DMS and drop in PAL scores within the youngest group, drop in RTI and improvement in RVP scores within the middle-aged group. It was observed that serum BDNF level increased in all study groups which confirms cognitive improvement. In conclusion, we have shown that Colostrinin® exhibits cognitive enhancing effects, probably through the modulation of BDNF concentrations.
Collapse
Affiliation(s)
| | - Dawid Wiener
- Department of Design (School of Form)SWPS University of Social Sciences and HumanitiesWarsawPoland
| | | | | | - Antoni Polanowski
- Department of Animal Products Technology and Quality ManagementUniversity of Environmental and Life SciencesWroclawPoland
| |
Collapse
|
10
|
Chen S, Ren X, Xu J, Yuan Y, Shi J, Ling H, Yang Y, Tang W, Lu F, Kong X, Hu B. In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS NANO 2023; 17:2134-2147. [PMID: 36688948 DOI: 10.1021/acsnano.2c08110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A tactile sensor needs to perceive static pressures and dynamic forces in real-time with high accuracy for early diagnosis of diseases and development of intelligent medical prosthetics. However, biomechanical and external mechanical signals are always aliased (including variable physiological and pathological events and motion artifacts), bringing great challenges to precise identification of the signals of interest (SOI). Although the existing signal segmentation methods can extract SOI and remove artifacts by blind source separation and/or additional filters, they may restrict the recognizable patterns of the device, and even cause signal distortion. Herein, an in-memory tactile sensor (IMT) with a dynamically adjustable steep-slope region (SSR) and nanocavity-induced nonvolatility (retention time >1000 s) is proposed on the basis of a machano-gated transistor, which directly transduces the tactile stimuli to various dope states of the channel. The programmable SSR endows the sensor with a critical window of responsiveness, realizing the perception of signals on demand. Owing to the nonvolatility of the sensor, the mapping of mechanical cues with high spatiotemporal accuracy and associative learning between two physical inputs are realized, contributing to the accurate assessment of the tissue health status and ultralow-power (about 25.1 μW) identification of an occasionally occurring tremor.
Collapse
Affiliation(s)
- Shisheng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, People's Republic of China
| | - Jingfeng Xu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Jing Shi
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University and Cardiovascular Device and Technique Engineering Laboratory of Jiangsu Province, Nanjing210029, People's Republic of China
| | - Huaxu Ling
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Yizhuo Yang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Fangzhou Lu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University and Cardiovascular Device and Technique Engineering Laboratory of Jiangsu Province, Nanjing210029, People's Republic of China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing211166, People's Republic of China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing211166, People's Republic of China
| |
Collapse
|
11
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
12
|
Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin Neurophysiol 2022; 144:23-40. [PMID: 36215904 DOI: 10.1016/j.clinph.2022.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Alzheimer's disease dementia (AD) and its preclinical stage, mild cognitive impairment (MCI), are critical issues confronting the aging society. Non-invasive brain stimulation (NIBS) techniques have the potential to be effective tools for enhancing cognitive functioning. The main objective of our meta-analysis was to quantify and update the status of the efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) and Transcranial Direct Current Stimulation (tDCS) when applied in AD and MCI. METHODS The systematic literature search was conducted in PubMed and Web of Science according to PRISMA statement. RESULTS Pooled effect sizes (Hedges' g) from 32 studies were analyzed using random effect models. We found both, rTMS and tDCS to have significant immediate cognition-enhancing effect in AD with rTMS inducing also beneficial long-term effects. We found no evidence for synergistic effect of cognitive training with NIBS. CONCLUSIONS In AD a clinical recommendation can be made for NEURO-ADTM system and for high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) as probably effective protocols (B-level of evidence) and for anodal tDCS over the left DLPFC as a possibly effective. SIGNIFICANCE According to scientific literature, NIBS may be an effective method for improving cognition in AD and possibly in MCI.
Collapse
|
13
|
Microalgae extract induces antidepressant-like activity via neuroinflammation regulation and enhances the neurotransmitter system. Food Chem Toxicol 2022; 170:113508. [DOI: 10.1016/j.fct.2022.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
14
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
15
|
He X, Song J, Gao H, Li Z, Wang X, Zeng Q, Xiao Y, Feng J, Zhou D, Wang G. Serum brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in patients with first-episode depression at different ages. Int J Psychiatry Clin Pract 2022:1-9. [PMID: 35980319 DOI: 10.1080/13651501.2022.2107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES We investigated the differences in serum brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels and clinical symptoms with first-episode depression at different ages. METHODS Ninety patients (15-60 years old) diagnosed with first-episode depression were enrolled as the study group, and they were divided into early-onset, adult and late-onset groups. The age-matched control groups were healthy volunteers. Serum BDNF and GDNF concentrations were determined by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 9 was used for t tests, one-way ANOVAs, chi-square tests, and correlation analyses. p < 0.05 indicated significant differences. RESULTS Serum BDNF and GDNF levels were lower in the whole study group and the three subgroups than in the healthy groups. Illness severity, anxiety and education were higher in the early-onset than late-onset patients. Serum BDNF levels were lower in the adult than late-onset patients. Serum BDNF levels were negatively correlated with patient CGI-SI scores. After the LSD test for multiple comparisons, the results were also significant. CONCLUSIONS Low serum BDNF and GDNF levels may be involved in the pathophysiology of first-episode depression, and there were differences in serum BDNF levels at different ages, verifying that serum BDNF and GDNF could serve as potential biomarkers of depression. KEY POINTSDepression is often conceptualised as a systemic illness with different biological mechanisms, but satisfactory explanations have not been provided thus far.The aim of our study was to investigate differences in serum BDNF and GDNF levels and their relationships with clinical symptoms in patients with first-episode depression at different ages.The potential of the neurotrophic factor hypothesis to advance the diagnosis and treatment of depression will be a very exciting new strategy for future research.
Collapse
Affiliation(s)
- Xianping He
- Growth, Development, and Mental Health of Children and Adolescence Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing, China
| | - Jingyao Song
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - He Gao
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Zhenyang Li
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Xiaochun Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoling Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yucen Xiao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Feng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Gaomao Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
The Neuroprotective Effects of Spray-Dried Porcine Plasma Supplementation Involve the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14112211. [PMID: 35684013 PMCID: PMC9183112 DOI: 10.3390/nu14112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dietary supplementation with spray-dried porcine plasma (SDP) reduces the Alzheimer’s disease (AD) hallmarks in SAMP8 mice. Since gut microbiota can play a critical role in the AD progression, we have studied if the neuroprotective effects of SDP involve the microbiota−gut−brain axis. Experiments were performed on two-month-old SAMP8 mice fed a standard diet and on six-month-old SAMP8 mice fed a control diet or an 8% SDP supplemented diet for four months. Senescence impaired short- and long-term memory, reduced cortical brain-derived neurotrophic factor (BDNF) abundance, increased interleukin (Il)-1β, Il-6, and Toll-like receptor 2 (Tlr2) expression, and reduced transforming growth factor β (Tgf-β) expression and IL-10 concentration (all p < 0.05) and these effects were mitigated by SDP (all p < 0.05). Aging also increased pro-inflammatory cytokines in serum and colon (all p < 0.05). SDP attenuated both colonic and systemic inflammation in aged mice (all p < 0.05). SDP induced the proliferation of health-promoting bacteria, such as Lactobacillus and Pediococcus, while reducing the abundance of inflammation-associated bacteria, such as Johnsonella and Erysipelothrix (both q < 0.1). In conclusion, SDP has mucosal and systemic anti-inflammatory effects as well as neuroprotective properties in senescent mice; these effects are well correlated with SDP promotion of the abundance of probiotic species, which indicates that the gut−brain axis could be involved in the peripheral effects of SDP supplementation.
Collapse
|
17
|
Wang XL, Wei X, Yuan JJ, Mao YY, Wang ZY, Xing N, Gu HW, Lin CH, Wang WT, Zhang W, Xing F. Downregulation of Fat Mass and Obesity-Related Protein in the Anterior Cingulate Cortex Participates in Anxiety- and Depression-Like Behaviors Induced by Neuropathic Pain. Front Cell Neurosci 2022; 16:884296. [PMID: 35634463 PMCID: PMC9133794 DOI: 10.3389/fncel.2022.884296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant methylation modification on mRNA in mammals. Fat mass and obesity-related protein (FTO) is the main RNA m6A demethylase. FTO is involved in the occurrence and maintenance of neuropathic pain (NP). NP often induces mental disorders. We found that NP downregulated the expression of FTO in the anterior cingulate cortex (ACC), inhibited the expression of matrix metalloproteinase-9 (MMP-9) in the ACC, maladjusted the brain-derived neurotrophic factor precursor (proBDNF) and mature brain-derived neurotrophic factor (mBDNF) levels in the ACC, and induced anxiety- and depression-like behaviors in mice. Blocking the downregulation of FTO in the ACC induced by peripheral nerve injury could reverse the anxiety- and depression-like behaviors of mice. Contrarily, downregulation of simulated FTO induced anxiety- and depression-like behaviors in mice. After peripheral nerve injury, the binding of FTO to MMP-9 mRNA decreased and the enrichment of m6A on MMP-9 mRNA increased. In conclusion, downregulation of FTO in ACC by regulating MMP-9 mRNA methylation level contributes to the occurrence of anxiety- and depression-like behaviors in NP mice.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Jing-Jing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Yuan-Yuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Zhong-Yu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
| | - Cai-Hong Lin
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Ting Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
- Wei Zhang,
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, China
- *Correspondence: Fei Xing,
| |
Collapse
|
18
|
Sato A, Tagai N, Ogino Y, Uozumi H, Kawakami S, Yamamoto T, Tanuma S, Maruki‐Uchida H, Mori S, Morita M. Passion fruit seed extract protects beta-amyloid-induced neuronal cell death in a differentiated human neuroblastoma SH-SY5Y cell model. Food Sci Nutr 2022; 10:1461-1468. [PMID: 35592293 PMCID: PMC9094456 DOI: 10.1002/fsn3.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with accompanying perceptive disorder. We previously reported that decreasing levels of brain-derived neurotrophic factor (BDNF) promoted beta-amyloid (Aβ)-induced neuronal cell death in neuron-like differentiated SH-SY5Y (ndSH-SY5Y) human neuroblastoma cells in an AD mimic cell model. We investigated the neuroprotective effects of passion fruit seed extract (PFSE) and one of the main stilbene compounds, piceatannol, in an AD cell model using ndSH-SY5Y cells. Both PFSE and piceatannol were found to protect Aβ-induced neurite fragmentation in the cell model (protection efficacy; 34% in PFSE and 36% in piceatannol). In addition, both PFSE and piceatannol suppress Aβ-induced neuronal cell death in the cell model (inhibitory effect; 27% in PFSE and 32% in piceatannol). Our study is the first to report that piceatannol-rich PFSE can repress Aβ-induced neuronal cell death by protecting against neurite fragmentation in the AD human cell model. These findings suggest that piceatannol-rich PFSE can be considered a potentially neuroprotective functional food for both prevention and treatment of AD.
Collapse
Affiliation(s)
- Akira Sato
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Nozomi Tagai
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Yoko Ogino
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Present address:
Department of Gene RegulationFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Haruka Uozumi
- Department of Biochemistry and Molecular BiologyFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
| | - Shinpei Kawakami
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Takayuki Yamamoto
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Sei‐ichi Tanuma
- Department of BiochemistryFaculty of Pharmaceutical SciencesTokyo University of ScienceNoda, ChibaJapan
- Department of Genomic Medicinal ScienceResearch Institute for Science and TechnologyOrganization for Research AdvancementTokyo University of ScienceNoda, ChibaJapan
| | - Hiroko Maruki‐Uchida
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Sadao Mori
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| | - Minoru Morita
- Research and Development InstituteHealth Science Research Center, Morinaga & Co., Ltd.YokohamaJapan
| |
Collapse
|
19
|
A Flavonoid on the Brain: Quercetin as a Potential Therapeutic Agent in Central Nervous System Disorders. Life (Basel) 2022; 12:life12040591. [PMID: 35455082 PMCID: PMC9027262 DOI: 10.3390/life12040591] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Quercetin is one of the most common, naturally occurring flavonoids, structurally classified to the flavonol subfamily. This compound, found in many edible and medicinal plants either as a free or glycosidated form, has been scientifically exploited for many years, and one could hardly expect it could be a hero of some additional story. Commonly recognized as an anti-inflammatory agent, quercetin not only limits capillary vessel permeability by inhibiting hyaluronidase but also blocks cyclooxygenases and lipoxygenases. As a typical flavonoid, it is also known for its antioxidant effect, which was confirmed by many in vitro and in vivo studies. Throughout the years, numerous other activities were reported for quercetin, including antidiabetic, anti-proliferative, or anti-viral. Of note, recent data have revealed its potential role as a therapeutic agent for several central nervous system disorders. This review provides an overview of available experimental data on quercetin and its complexes with respect to central nervous system diseases, with a main focus on some aspects that were not discussed previously, such as anti-anxiolytic effects, anti-Huntington’s disease activity, or therapeutic potential in brain cancer. Moreover, quercetin’s protective role in some of these diseases is discussed, especially as an anti-neuroinflammatory agent. Bearing in mind the poor bioavailability of this compound, possible options that would enhance its delivery to the site of action are also presented.
Collapse
|
20
|
Dietary consumption of desert olive tree pearls reduces brain Aβ content and improves learning and memory ability in aged mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Rogdakis T, Charou D, Latorrata A, Papadimitriou E, Tsengenes A, Athanasiou C, Papadopoulou M, Chalikiopoulou C, Katsila T, Ramos I, Prousis KC, Wade RC, Sidiropoulou K, Calogeropoulou T, Gravanis A, Charalampopoulos I. Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines 2022; 10:614. [PMID: 35327415 PMCID: PMC8945229 DOI: 10.3390/biomedicines10030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.
Collapse
Affiliation(s)
- Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alessia Latorrata
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Eleni Papadimitriou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Constantina Chalikiopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Theodora Katsila
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160 Bizkaia, Spain;
| | - Kyriakos C. Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Kyriaki Sidiropoulou
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 71113 Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| |
Collapse
|
22
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
23
|
Duan Y, Lv J, Zhang Z, Chen Z, Wu H, Chen J, Chen Z, Yang J, Wang D, Liu Y, Chen F, Tian Y, Cao X. Exogenous Aβ 1-42 monomers improve synaptic and cognitive function in Alzheimer's disease model mice. Neuropharmacology 2022; 209:109002. [PMID: 35196539 DOI: 10.1016/j.neuropharm.2022.109002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023]
Abstract
Growing evidence has suggested the poor correlation between brain amyloid plaque and Alzheimer's disease (AD). Presenilin1 (PS1) and presenilin2 (PS2) conditional double knockout (cDKO) mice exhibited the reduced 42-amino acid amyloid-β peptide (Aβ1-42) level and AD-like symptoms, indicating a different pathological mechanism from the amyloid cascade hypothesis for AD. Here we found that exogenous synthetic Aβ1-42 monomers could improve the impaired memory not only in cDKO mice without Aβ1-42 deposition but also in the APP/PS1/Tau triple transgenic 3 × Tg-AD mice with Aβ1-42 deposition, which were mediated by α7-nAChR. Our findings demonstrate for the first time that reduced soluble Aβ1-42 level is the main cause of cognitive dysfunction in cDKO mice, and support the opinions that low soluble Aβ1-42 level due to Aβ1-42 deposition may also cause cognitive deficits in 3 × Tg-AD mice. Therefore, "loss-of-function" of Aβ1-42 should be avoided when designing therapies aimed at reducing Aβ1-42 burden in AD.
Collapse
Affiliation(s)
- Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Junyan Lv
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhonghui Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhenzhen Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Hao Wu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jinnan Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Zhidong Chen
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Jiarun Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Dasheng Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Rd., Shanghai, 200444, PR China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| |
Collapse
|
24
|
Sritawan N, Suwannakot K, Naewla S, Chaisawang P, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed Pharmacother 2021; 144:112280. [PMID: 34628167 DOI: 10.1016/j.biopha.2021.112280] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
Metformin is currently used as a first-line drug to treat patients with type 2 diabetes. Previous studies have demonstrated that metformin has antioxidant properties and reduces neuroinflammation and hippocampal neuronal cell loss, which eventually improves memory. Methotrexate (MTX) is an antimetabolite chemotherapeutic agent reported to activate cognitive impairment found in many patients. Moreover, MTX negatively affects the spatial working memory, related to neurogenesis reduction in animal models. Therefore, the present study aimed to investigate the antioxidant effect of metformin on the reduction of memory and neurogenesis caused by MTX. Male Sprague-Dawley rats were divided into four groups: control, MTX, metformin, and MTX+metformin. MTX (75 mg/kg, i.v.) was administered on days 7 and 14. Rats were administered metformin (200 mg/kg, i.p.) for 14 days. Memory was determined using novel object location (NOL) and novel object recognition (NOR) tests. Furthermore, cell cycle arrest was quantified by p21 immunostaining. Levels of neuronal protein expression, scavenging enzymes activity, and malondialdehyde (MDA) level changes in the hippocampus and prefrontal cortex were investigated. Rats receiving only MTX showed memory impairment. Decreases in scavenging enzyme activity and BDNF, DCX, and Nrf2 protein expressions levels were detected in the MTX-treated rats. In addition, MTX significantly increased p21-positive cell numbers and MDA levels. However, these adverse MTX effects were counteracted by co-administration with metformin. These results demonstrate that metformin can improve memory impairments, increase BDNF, DCX and Nrf2 protein expressions and antioxidant capacities, and decrease MDA levels in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kornrawee Suwannakot
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Faculty of Nursing, Ratchathani University, Ubon Ratchathani 34000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
25
|
Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull 2021; 166:172-184. [PMID: 33202257 DOI: 10.1016/j.brainresbull.2020.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in pathophysiological mechanisms in neuropsychiatric diseases, including depression, anxiety, and schizophrenia (SZ), as well as neurodegenerative diseases like Parkinson's disease (PD) and Alzheimer's disease (AD). An imbalance or insufficient pro-brain-derived neurotrophic factor (proBDNF) transformation into mature BDNF (mBDNF) is potentially critical to the disease pathogenesis by impairing neuronal plasticity as suggested by results from many studies. Thus, promoting proBDNF transformation into mBDNF is therefore hypothesized as beneficial for the treatment of neuropsychiatric and neurodegenerative diseases. ProBDNF is proteolytically cleaved into the mBDNF by intracellular furin/proprotein convertases and extracellular proteases (plasmin/matrix metallopeptidases). This article reviews the mechanisms of the conversion of proBDNF to mBDNF and the research status of intracellular/extracellular proteolytic proteases for neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Traditional Chinese Pharmacy, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuhuan Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
26
|
Tagai N, Tanaka A, Sato A, Uchiumi F, Tanuma SI. Low Levels of Brain-Derived Neurotrophic Factor Trigger Self-aggregated Amyloid β-Induced Neuronal Cell Death in an Alzheimer's Cell Model. Biol Pharm Bull 2020; 43:1073-1080. [PMID: 32612070 DOI: 10.1248/bpb.b20-00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is pathologically characterized by accumulation of amyloid β (Aβ) and hyperphosphorylated tau, and thereby induction of neuronal cell death. The Aβ-induced neuronal cell death has been shown to occur by several modes, such as apoptosis, necrosis, and necroptosis. Interestingly, in AD patients, the brain and serum levels of brain-derived neurotrophic factor (BDNF) have been reported to be significantly decreased. However, the relationship between Aβ and BDNF in the onset of AD remains to be fully understood. Here, we used neuron-like differentiated human neuroblastoma SH-SY5Y (ndSH-SY5Y) cells to study the neurotoxicity of self-aggregated Aβ1-42 peptide under different concentrations of BDNF in the culture medium. Importantly, decreasing levels of BDNF caused a considerable suppression in the extension of neurite length. Furthermore, only under low levels of BDNF, the aggregated Aβ was revealed to induce neurite fragmentation and neuronal cell death in ndSH-SY5Y cells. Notably, the aggregated Aβ and low levels of BDNF-induced neuronal cell death was characterized at least as caspase-6 dependent cell death and necroptosis. These results indicate that our ndSH-SY5Y cell system, cultured under decreasing levels of BDNF and aggregated Aβ, has the potential to be applied in the analysis of the molecular mechanisms of the progressive neurodegenerative processes of AD and the discovery of neuroprotective drug candidates.
Collapse
Affiliation(s)
- Nozomi Tagai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ayako Tanaka
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science
| |
Collapse
|
27
|
Kim HR, Lee YJ, Kim TW, Lim RN, Hwang DY, Moffat JJ, Kim S, Seo JW, Ka M. Asparagus cochinchinensis extract ameliorates menopausal depression in ovariectomized rats under chronic unpredictable mild stress. BMC Complement Med Ther 2020; 20:325. [PMID: 33109198 PMCID: PMC7590795 DOI: 10.1186/s12906-020-03121-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is a serious and common psychiatric disorder generally affecting more women than men. A woman's risk of developing depression increases steadily with age, and higher incidence is associated with the onset of menopause. Here we evaluated the antidepressant properties of Asparagus cochinchinensis (AC) extract and investigated its underlying mechanisms in a rat menopausal depression model. METHODS To model this menopausal depression, we induced a menopause-like state in rats via ovariectomy and exposed them to chronic unpredictable mild stress (CUMS) for 6 weeks, which promotes the development of depression-like symptoms. During the final 4 weeks of CUMS, rats were treated with either AC extract (1000 or 2000 mg/kg, PO), which has been reported to provide antidepressant effects, or with the tricyclic antidepressant imipramine (10 mg/kg, IP). RESULTS We report that CUMS promotes depression-like behavior and significantly increases serum corticosterone and inflammatory cytokine levels in the serum of ovariectomized (OVX) rats. We also found that CUMS decreases the expression of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin receptor kinase B (TrkB), in OVX rats, and treatment with AC extract rescues both BDNF and TrkB expression levels. CONCLUSION These results suggest that AC extract exerts antidepressant effects, possibly via modulation of the BDNF-TrkB pathway, in a rat model of menopausal depression.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.,Laboratory Animal Center, Korea Brain Research Institute, Daegu, 61062, Republic of Korea
| | - Young-Ju Lee
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Tae-Wan Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Soonil Kim
- Olmanfood Co., Ltd, Seoul, 03709, Republic of Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
28
|
Wu B, Wang Y, Shi C, Chen Y, Yu L, Li J, Li W, Wei Y, He R. Ribosylation-Derived Advanced Glycation End Products Induce Tau Hyperphosphorylation Through Brain-Derived Neurotrophic Factor Reduction. J Alzheimers Dis 2020; 71:291-305. [PMID: 31381511 DOI: 10.3233/jad-190158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in the disease process of diabetes mellitus. They have also been found in senile plaques and neurofibrillary tangles in the brains of Alzheimer's disease patients. Furthermore, abnormally high levels of D-ribose and D-glucose were found in the urine of patients with type 2 diabetes mellitus, suggesting that diabetic patients suffer from dysmetabolism of not only D-glucose but also D-ribose. In the present study, intravenous tail injections of ribosylated rat serum albumin (RRSA) were found to impair memory in rats, but they did not markedly impair learning, as measured by the Morris water maze test. Injections of RRSA were found to trigger tau hyperphosphorylation in the rat hippocampus via GSK-3β activation. Tau hyperphosphorylation and GSK-3β activation were also observed in N2a cells in the presence of ribosylation-derived AGEs. Furthermore, the administration of ribosylation-derived AGEs induced the suppression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB). Both GSK-3β inhibition and BDNF treatment decreased the levels of phosphorylated tau in N2a cells. In particular, the administration of BDNF could rescue memory failure in ribosylated AGE-injected rats. Ribosylation-derived AGEs downregulated the BDNF-TrkB pathway in rat brains and N2a cells, leading to GSK-3β activation-mediated tau hyperphosphorylation, which was involved in the observed rat memory loss. Targeting ribosylation may be a promising therapeutic strategy to prevent Alzheimer's disease and diabetic encephalopathies.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Chen
- Southwest Medical University, Luzhou, Sichuan, China
| | - Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Li
- Peking University Hospital, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
de Girolamo P, Leggieri A, Palladino A, Lucini C, Attanasio C, D’Angelo L. Cholinergic System and NGF Receptors: Insights from the Brain of the Short-Lived Fish Nothobranchius furzeri. Brain Sci 2020; 10:brainsci10060394. [PMID: 32575701 PMCID: PMC7348706 DOI: 10.3390/brainsci10060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) receptors are evolutionary conserved molecules, and in mammals are considered necessary for ensuring the survival of cholinergic neurons. The age-dependent regulation of NTRK1/NTRKA and p75/NGFR in mammalian brain results in a reduced response of the cholinergic neurons to neurotrophic factors and is thought to play a role in the pathogenesis of neurodegenerative diseases. Here, we study the age-dependent expression of NGF receptors (NTRK1/NTRKA and p75/NGFR) in the brain of the short-lived teleost fish Nothobranchius furzeri. We observed that NTRK1/NTRKA is more expressed than p75/NGFR in young and old animals, although both receptors do not show a significant age-dependent change. We then study the neuroanatomical organization of the cholinergic system, observing that cholinergic fibers project over the entire neuroaxis while cholinergic neurons appear restricted to few nuclei situated in the equivalent of mammalian subpallium, preoptic area and rostral reticular formation. Finally, our experiments do not confirm that NTRK1/NTRKA and p75/NGFR are expressed in cholinergic neuronal populations in the adult brain of N. furzeri. To our knowledge, this is the first study where NGF receptors have been analyzed in relation to the cholinergic system in a fish species along with their age-dependent modulation. We observed differences between mammals and fish, which make the African turquoise killifish an attractive model to further investigate the fish specific NGF receptors regulation.
Collapse
Affiliation(s)
- Paolo de Girolamo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
- Correspondence: ; Tel.: +39-081-2536099
| | - Adele Leggieri
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Antonio Palladino
- CESMA—Centro Servizi metereologici e Tecnologici Avanzati, University of Naples Federico II, I-80126 Naples, Italy;
| | - Carla Lucini
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Chiara Attanasio
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| | - Livia D’Angelo
- Department Veterinary Medicine and Animal Production, University of Naples Federico II, Naples I-80137, Italy; (A.L.); (C.L.); (C.A.); (L.D.)
| |
Collapse
|
30
|
A valepotriate-enriched fraction from Valeriana glechomifolia decreases DNA methylation and up-regulate TrkB receptors in the hippocampus of mice. Behav Pharmacol 2020; 31:333-342. [DOI: 10.1097/fbp.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Effects of aquatic exercise on insulin-like growth factor-1, brain-derived neurotrophic factor, vascular endothelial growth factor, and cognitive function in elderly women. Exp Gerontol 2020; 132:110842. [DOI: 10.1016/j.exger.2020.110842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023]
|
32
|
The potential role of the HCN1 ion channel and BDNF-mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Transl Psychiatry 2020; 10:101. [PMID: 32198387 PMCID: PMC7083842 DOI: 10.1038/s41398-020-0782-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The function of the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and the expression of brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis of post-traumatic stress disorder (PTSD). This study aims to explore the role of the HCN1 channel, BDNF, and mTOR in the actions of PTSD and to examine whether synaptic transmission or plasticity is involved in the regulation of this disease. In the present study, rats were exposed to the single prolonged stress and electric foot shock (SPS&S) procedure, which can induce PTSD-like behaviors in rats. ZD7288 was administered by intracerebroventricular (i.c.v.) injection to one experimental group to inhibit the function of the HCN1 ion channel while 8-Br-cAMP was administered to another group to activate the function of the HCN1 ion channel. A series of behavioral tests and biochemical assessments of certain proteins (HCN1, BDNF, and pmTOR) and synaptic ultrastructure in the prefrontal cortex (PFC) and hippocampus (Hip) were then conducted. The SPS&S procedure induced apparent PTSD-like symptoms in rats. The administration of ZD7288 reduced the immobility time and escape latency time in the forced swim test (FST) and water maze test (WMT) with a decreased level of HCN1, upregulated BDNF-mTOR signaling pathways in the PFC and Hip, and synaptic ultrastructure changes in the PFC. In contrast, the administration of 8-Br-cAMP, which led to a higher level of HCN1 in PFC and Hip, resulted in a decreased number of entries to the open arms without significant change in total arm entries in the elevated plus maze test (EPMT) as well as a shorter center square distance and total distance in the open field test (OFT). Extended escape latency time was also observed in the WMT although there was no alteration of BDNF-mTOR signaling pathways and synaptic ultrastructure in the PFC and Hip. Overall, the inhibition of HCN1, which can alleviate PTSD-like behavior of rats by relieving depression and improving learning ability, may be related to the upregulated BDNF-mTOR signaling pathways and synaptic transmission.
Collapse
|
33
|
Crawford Z, San-Miguel A. An inexpensive programmable optogenetic platform for controlled neuronal activation regimens in C. elegans. APL Bioeng 2020; 4:016101. [PMID: 31934682 PMCID: PMC6941946 DOI: 10.1063/1.5120002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
In Caenorhabditis elegans, optogenetic stimulation has been widely used to assess neuronal function, control animal movement, or assay circuit responses to controlled stimuli. Most studies are performed on single animals and require high-end components such as lasers and shutters. We present an accessible platform that enables controlled optogenetic stimulation of C. elegans in two modes: single animal stimulation with locomotion tracking and entire population stimulation for neuronal exercise regimens. The system consists of accessible electronic components: a high-power light-emitting diode, Arduino board, and relay are integrated with MATLAB to enable programmable optogenetic stimulation regimens. This system provides flexibility in optogenetic stimulation in freely moving animals while providing quantitative information of optogenetic-driven locomotion responses. We show the applicability of this platform in single animals by stimulation of cholinergic motor neurons in C. elegans and quantitative assessment of contractile responses. In addition, we tested synaptic plasticity by coupling the entire-population stimulation mode with measurements of synaptic strength using an aldicarb assay, where clear changes in synaptic strength were observed after regimens of neuronal exercise. This platform is composed of inexpensive components, while providing the illumination strength of high-end systems, which require expensive lasers, shutters, or automated stages. This platform requires no moving parts but provides flexibility in stimulation regimens.
Collapse
Affiliation(s)
- Zachary Crawford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
34
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
35
|
Zhou T, Wang H, Shen J, Li W, Cao M, Hong Y, Cao M. The p35/CDK5 signaling is regulated by p75NTR in neuronal apoptosis after intracerebral hemorrhage. J Cell Physiol 2019; 234:15856-15871. [PMID: 30770557 DOI: 10.1002/jcp.28244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Hongmei Wang
- Department of Neurology, Nantong Rich Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yao Hong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
36
|
Pharmacogenetics of Antidepressants: from Genetic Findings to Predictive Strategies. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The constantly growing contribution of depressive disorders to the global disease statistics calls for a growth of treatment effectiveness and optimization. Antidepressants are the most frequently prescribed medicines for depressive disorders. However, development of a standardized pharmacotherapeutic approach is burdened by the genomic heterogeneity, lack of reliable predictive biomarkers and variability of the medicines metabolism aggravated by multiple side effects of antidepressants. According to modern assessments up to 20 % of the genes expressed in our brain are involved in the pathogenesis of depression. Large-scale genetic and genomic research has found a number of potentially prognostic genes. It has also been proven that the effectiveness and tolerability of antidepressants directly depend on the variable activity of the enzymes that metabolize medicines. Almost all modern antidepressants are metabolized by the cytochrome P450 family enzymes. The most promising direction of research today is the GWAS (Genome-Wide Association Study) method that is aimed to link genomic variations with phenotypical manifestations. In this type of research genomes of depressive patients with different phenotypes are compared to the genomes of the control group containing same age, sex and other parameters healthy people. Notably, regardless of the large cohorts of patients analyzed, none of the GWA studies conducted so far can reliably reproduce the results of other analogous studies. The explicit heterogeneity of the genes associated with the depression pathogenesis and their pleiotropic effects are strongly influenced by environmental factors. This may explain the difficulty of obtaining clear and reproducible results. However, despite any negative circumstances, the active multidirectional research conducted today, raises the hope of clinicians and their patients to get a whole number of schedules how to achieve remission faster and with guaranteed results
Collapse
|
37
|
Peripheral BDNF/TrkB protein expression is decreased in Parkinson's disease but not in Essential tremor. J Clin Neurosci 2019; 63:176-181. [PMID: 30723034 DOI: 10.1016/j.jocn.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023]
Abstract
BDNF-to-TrkB signaling pathways plays an important role in the long-term maintenance of the nigrostriatal system and that its deficiency may contribute to the onset and progression of Parkinson's disease (PD). To our knowledge this is the first study to investigate the expression of the brain-derived neurotrophic factor (BDNF) and phosphorylation status of TrkB in peripheral blood lymphocytes of 28 PD and 28 Essential tremor (ET) patients and 28 healthy controls using western blot analysis. Compared with controls, no significant difference of BDNF and total and phosphorylated TrkB levels were observed in ET, whereas BDNF and phosphorylated TrkB levels were significantly decreased in the PD groups (p < 0.001). Interestingly, BDNF and phosphorylated TrkB levels were positively correlated with disease duration, UPDRS score, Hoehn-Yahr staging, as well as L-DOPA medication in PD patients. These results suggest that the decreased peripheral alteration of BDNF/TrkB levels found in patients with PD is directly related to the dopaminergic neurons neurodegeneration and that decreased expression of BDNF/TrkB may lead to the development of innovative biomarkers of PD, whereas the increased level of BDNF and phosphorylated TrkB at advanced stages may due to L-DOPA medication.
Collapse
|
38
|
Rivas-García TE, Marcelo-Pons M, Martínez-Arnau F, Serra-Catalá N, Santamaría-Carrillo Y, Cauli O. Blood zinc levels and cognitive and functional evaluation in non-demented older patients. Exp Gerontol 2018; 108:28-34. [DOI: 10.1016/j.exger.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 12/01/2022]
|
39
|
Mahabir S, Chatterjee D, Misquitta K, Chatterjee D, Gerlai R. Lasting changes induced by mild alcohol exposure during embryonic development in BDNF, NCAM and synaptophysin-positive neurons quantified in adult zebrafish. Eur J Neurosci 2018; 47:1457-1473. [PMID: 29846983 DOI: 10.1111/ejn.13975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Fetal alcohol spectrum disorder is one of the leading causes of mental health issues worldwide. Analysis of zebrafish exposed to alcohol during embryonic development confirmed that even low concentrations of alcohol for a short period of time may have lasting behavioral consequences at the adult or old age. The mechanism of this alteration has not been studied. Here, we immersed zebrafish embryos into 1% alcohol solution (vol/vol%) at 24 hr post-fertilization (hpf) for 2 hr and analyzed potential changes using immunohistochemistry. We measured the number of BDNF (brain-derived neurotrophic factor) and NCAM (neuronal cell adhesion molecule)-positive neurons and the intensity of synaptophysin staining in eight brain regions: lateral zone of the dorsal telencephalic area, medial zone of the dorsal telencephalic area, dorsal nucleus of the ventral telencephalic area, ventral nucleus of the ventral telencephalic area, parvocellular preoptic nucleus, ventral habenular nucleus, corpus cerebella and inferior reticular formation. We found embryonic alcohol exposure to significantly reduce the number of BDNF- and NCAM-positive cells in all brain areas studied as compared to control. We also found alcohol to significantly reduce the intensity of synaptophysin staining in all brain areas except the cerebellum and preoptic area. These neuroanatomical changes correlated with previously demonstrated reduction of social behavior in embryonic alcohol-exposed zebrafish, raising the possibility of a causal link. Given the evolutionary conservation across fish and mammals, we emphasize the implication of our current study for human health: even small amount of alcohol consumption may be unsafe during pregnancy.
Collapse
Affiliation(s)
- Samantha Mahabir
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dipashree Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Keith Misquitta
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Diptendu Chatterjee
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
40
|
L-3-n-Butylphthalide Regulates Proliferation, Migration, and Differentiation of Neural Stem Cell In Vitro and Promotes Neurogenesis in APP/PS1 Mouse Model by Regulating BDNF/TrkB/CREB/Akt Pathway. Neurotox Res 2018; 34:477-488. [DOI: 10.1007/s12640-018-9905-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/02/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
|
41
|
Tanqueiro SR, Ramalho RM, Rodrigues TM, Lopes LV, Sebastião AM, Diógenes MJ. Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Front Pharmacol 2018; 9:237. [PMID: 29695962 PMCID: PMC5904251 DOI: 10.3389/fphar.2018.00237] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/02/2018] [Indexed: 01/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important functions in cell survival and differentiation, neuronal outgrowth and plasticity. In Alzheimer’s disease (AD), BDNF signaling is known to be impaired, partially because amyloid β (Aβ) induces truncation of BDNF main receptor, TrkB-full length (TrkB-FL). We have previously shown that such truncation is mediated by calpains, results in the formation of an intracellular domain (ICD) fragment and causes BDNF loss of function. Since calpains are Ca2+-dependent proteases, we hypothesized that excessive intracellular Ca2+ build-up could be due to dysfunctional N-methyl-d-aspartate receptors (NMDARs) activation. To experimentally address this hypothesis, we investigated whether TrkB-FL truncation by calpains and consequent BDNF loss of function could be prevented by NMDAR blockade. We herein demonstrate that a NMDAR antagonist, memantine, prevented excessive calpain activation and TrkB-FL truncation induced by Aβ25–35. When calpains were inhibited by calpastatin, BDNF was able to increase the dendritic spine density of neurons exposed to Aβ25135. Moreover, NMDAR inhibition by memantine also prevented Aβ-driven deleterious impact of BDNF loss of function on structural (spine density) and functional outcomes (synaptic potentiation). Collectively, these findings support NMDAR/Ca2+/calpains mechanistic involvement in Aβ-triggered BDNF signaling disruption.
Collapse
Affiliation(s)
- Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita M Ramalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Kim JH, Kim DY. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp Gerontol 2018; 104:60-65. [DOI: 10.1016/j.exger.2018.01.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
|
43
|
Saadipour K, Mañucat-Tan NB, Lim Y, Keating DJ, Smith KS, Zhong JH, Liao H, Bobrovskaya L, Wang YJ, Chao MV, Zhou XF. p75 neurotrophin receptor interacts with and promotes BACE1 localization in endosomes aggravating amyloidogenesis. J Neurochem 2018; 144:302-317. [PMID: 28869759 DOI: 10.1111/jnc.14206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/17/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive deposition of amyloid beta (Aβ) and dysregulation of neurotrophic signaling, causing synaptic dysfunction, loss of memory, and cell death. The expression of p75 neurotrophin receptor is elevated in the brain of AD patients, suggesting its involvement in this disease. However, the exact mechanism of its action is not yet clear. Here, we show that p75 interacts with beta-site amyloid precursor protein cleaving enzyme-1 (BACE1), and this interaction is enhanced in the presence of Aβ. Our results suggest that the colocalization of BACE1 and amyloid precursor protein (APP) is increased in the presence of both Aβ and p75 in cortical neurons. In addition, the localization of APP and BACE1 in early endosomes is increased in the presence of Aβ and p75. An increased phosphorylation of APP-Thr668 and BACE1-Ser498 by c-Jun N-terminal kinase (JNK) in the presence of Aβ and p75 could be responsible for this localization. In conclusion, our study proposes a potential involvement in amyloidogenesis for p75, which may represent a future therapeutic target for AD. Cover Image for this Issue: doi. 10.1111/jnc.14163.
Collapse
Affiliation(s)
- Khalil Saadipour
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, South Australia
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Noralyn B Mañucat-Tan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Yoon Lim
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Damien J Keating
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - Kevin S Smith
- Department of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - Jin-Hua Zhong
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Hong Liao
- New Drug Screening Centre, China Pharmaceutical University, Nanjing, China
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone School of Medicine, New York, NY, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia
| |
Collapse
|
44
|
Nittoli V, Sepe RM, Coppola U, D'Agostino Y, De Felice E, Palladino A, Vassalli QA, Locascio A, Ristoratore F, Spagnuolo A, D'Aniello S, Sordino P. A comprehensive analysis of neurotrophins and neurotrophin tyrosine kinase receptors expression during development of zebrafish. J Comp Neurol 2018; 526:1057-1072. [DOI: 10.1002/cne.24391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Rosa M. Sepe
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ugo Coppola
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ylenia D'Agostino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Elena De Felice
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Quirino A. Vassalli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| |
Collapse
|
45
|
MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J Cell Biochem 2018; 119:3783-3797. [DOI: 10.1002/jcb.26599] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022]
|
46
|
Huang Y, Yun W, Zhang M, Luo W, Zhou X. Serum concentration and clinical significance of brain-derived neurotrophic factor in patients with Parkinson's disease or essential tremor. J Int Med Res 2018; 46:1477-1485. [PMID: 29350074 PMCID: PMC6091839 DOI: 10.1177/0300060517748843] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives The serum concentration of brain-derived neurotrophic factor (BDNF) was compared among patients with Parkinson’s disease (PD), patients with essential tremor (ET), and healthy participants, and its association with clinical features of PD and ET was assessed. Methods Demographic and clinical data were collected from 60 patients with PD at different clinical stages, 60 patients with ET, and 60 controls. All participants’ serum BDNF concentrations were measured. Their motor abilities and activity were assessed by the Unified PD Rating Scale and the Hoehn and Yahr (H-Y) staging scale. Results Serum BDNF was significantly lower in patients with PD than in patients with ET and controls. BDNF decreased only in the early disease stages (H-Y stages I and II), but increased markedly in the advanced stages (H-Y stages III–V). There was no significant difference between patients with ET and controls. The BDNF concentration was negatively correlated with age at PD onset and positively associated with disease duration, severity of PD symptoms, and treatment with L-DOPA. Conclusions A low serum BDNF concentration may serve as a biomarker in the early stages of PD, whereas a high concentration with PD progression may be due to treatment with L-DOPA in the advanced stages.
Collapse
Affiliation(s)
- Yixian Huang
- 1 Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, China
| | - Wenwei Yun
- 3 Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, China
| | - Min Zhang
- 3 Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, China
| | - Weifeng Luo
- 1 Department of Neurology, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Suzhou, China.,2 Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xianju Zhou
- 3 Laboratory of Neurological Diseases, Department of Neurology, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, China
| |
Collapse
|
47
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
48
|
Eliwa H, Belzung C, Surget A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem Pharmacol 2017; 141:86-99. [DOI: 10.1016/j.bcp.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023]
|
49
|
Yu H, Li M, Shen X, Lv D, Sun X, Wang J, Gu X, Hu J, Wang C. The Requirement of L-Type Voltage-Dependent Calcium Channel (L-VDCC) in the Rapid-Acting Antidepressant-Like Effects of Scopolamine in Mice. Int J Neuropsychopharmacol 2017; 21:175-186. [PMID: 29020410 PMCID: PMC5793820 DOI: 10.1093/ijnp/pyx080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Previous studies have shown that a low dose of scopolamine produces rapid-acting antidepressant-like actions in rodents. Understanding the mechanisms underlying this effect and the dose-dependent variations of drug responses remains an important task. L-type voltage-dependent calcium channels were found to mediate rapid-acting antidepressant effects of certain medications (e.g., ketamine). Therefore, it is of great interest to determine the involvement of L-type voltage-dependent calcium channels in the action of scopolamine. METHODS Herein, we investigated the mechanisms underlying behavioral responses to various doses of scopolamine in mice to clarify the involvement of L-type voltage-dependent calcium channels in its modes of action. Open field test, novel object recognition test, and forced swimming test were performed on mice administered varied doses of scopolamine (0.025, 0.05, 0.1, 1, and 3 mg/kg, i.p.) alone or combined with L-type voltage-dependent calcium channel blocker verapamil (5 mg/kg, i.p.). Then, the changes in brain-derived neurotrophic factor and neuropeptide VGF (nonacronymic) levels in the hippocampus and prefrontal cortex of these mice were analyzed. RESULTS Low doses of scopolamine (0.025 and 0.05 mg/kg) produced significant antidepressant-like effects in the forced swimming test, while higher doses (1 and 3 mg/kg) resulted in significant memory deficits and depressive-like behaviors. Moreover, the behavioral changes in responses to various doses may be related to the upregulation (0.025 and 0.05 mg/kg) and downregulation (1 and 3 mg/kg) of brain-derived neurotrophic factor and VGF in the hippocampus and prefrontal cortex in mice. We further found that the rapid-acting antidepressant-like effects and the upregulation on brain-derived neurotrophic factor and VGF produced by a low dose of scopolamine (0.025 mg/kg) were completely blocked by verapamil. CONCLUSIONS These results indicate that L-type voltage-dependent calcium channels are likely involved in the behavioral changes in response to various doses of scopolamine through the regulation of brain-derived neurotrophic factor and VGF levels.
Collapse
Affiliation(s)
- Hanjie Yu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Mengmeng Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Xinbei Shen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Dan Lv
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Xin Sun
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Jinting Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Xinmei Gu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Jingning Hu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, Zhejiang, P.R. China,Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang, P.R. China,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China,Correspondence: Chuang Wang, MD, PhD, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China ( or )
| |
Collapse
|
50
|
Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106:94-100. [PMID: 28219641 PMCID: PMC5446923 DOI: 10.1016/j.neuint.2017.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease currently affect tens of millions of people worldwide. Unfortunately, as the world's population ages, the incidence of many of these diseases will continue to rise and is expected to more than double by 2050. Despite significant research and a growing understanding of disease pathogenesis, only a handful of therapies are currently available and all of them provide only transient benefits. Thus, there is an urgent need to develop novel disease-modifying therapies to prevent the development or slow the progression of these debilitating disorders. A growing number of pre-clinical studies have suggested that transplantation of neural stem cells (NSCs) could offer a promising new therapeutic approach for neurodegeneration. While much of the initial excitement about this strategy focused on the use of NSCs to replace degenerating neurons, more recent studies have implicated NSC-mediated changes in neurotrophins as a major mechanism of therapeutic efficacy. In this mini-review we will discuss recent work that examines the ability of NSCs to provide trophic support to disease-effected neuronal populations and synapses in models of neurodegeneration. We will then also discuss some of key challenges that remain before NSC-based therapies for neurodegenerative diseases can be translated toward potential clinical testing.
Collapse
Affiliation(s)
- Samuel E Marsh
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|