1
|
Morioka K, Tazoe T, Huie JR, Hayakawa K, Okazaki R, Guandique CF, Almeida CA, Haefeli J, Hamanoue M, Endoh T, Tanaka S, Bresnahan JC, Beattie MS, Ogata T, Ferguson AR. Disuse plasticity limits spinal cord injury recovery. iScience 2025; 28:112180. [PMID: 40224010 PMCID: PMC11987634 DOI: 10.1016/j.isci.2025.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/15/2025] Open
Abstract
Use-dependent plasticity after spinal cord injury (SCI) enhances neuromotor function, however, the optimal timing to initiate rehabilitation remains controversial. To test impacts of early disuse, we established a rodent model of transient hindlimb suspension in acute phase SCI. Early disuse in the first 2-week after SCI undermined recovery on open-field locomotion, kinematics, and swim tests even after 6-week of normal gravity reloading. Early disuse produced chronic spinal circuit hyper-excitability in H-reflex and interlimb reflex tests. Quantitative synaptoneurosome analysis of lumboventral spinal cords revealed shifts in AMPA receptor (AMPAR) subunit GluA1 localization and serine 881 phosphorylation, reflecting enduring synaptic memories of early disuse stored in the spinal cord. Automated confocal analysis of motoneurons revealed persistent shifts toward GluA2-lacking, calcium-permeable AMPARs in disuse subjects. Unsupervised machine learning associated multidimensional synaptic changes with persistent recovery deficits in SCI. The results argue for early aggressive rehabilitation to prevent disuse plasticity that limits SCI recovery.
Collapse
Affiliation(s)
- Kazuhito Morioka
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute (OTI), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toshiki Tazoe
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Neural Prosthesis Project, Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J. Russell Huie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic and Spine Surgery, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Rentaro Okazaki
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Orthopaedic Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Cristian F. Guandique
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Carlos A. Almeida
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jenny Haefeli
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Makoto Hamanoue
- Department of Physiology, Advanced Medical Research Center, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Endoh
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Faculty of Development and Education, Uekusa Gakuen University, Chiba, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jacqueline C. Bresnahan
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Michael S. Beattie
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Adam R. Ferguson
- Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, USA
- San Francisco Veterans Affairs Healthcare System (SFVAHCS), San Francisco, CA, USA
| |
Collapse
|
2
|
Li WY, Qu WR, Li Y, Wang SY, Liu DM, Deng LX, Wang Y. DBS in the restoration of motor functional recovery following spinal cord injury. Front Neurol 2024; 15:1442281. [PMID: 39697443 PMCID: PMC11652279 DOI: 10.3389/fneur.2024.1442281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
Collapse
Affiliation(s)
- Wen-yuan Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Wen-rui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yi Li
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Shu-ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| | - Dong-ming Liu
- Department of Neurology, Mudanjiang First People’s Hospital, Mudanjiang, China
| | - Ling-xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Wang
- Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China
- Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China
| |
Collapse
|
3
|
Kauer SD, Benson CA, Carrara JM, Tarafder AA, Ibrahim YH, Estacion MA, Waxman SG, Tan AM. PAK1 inhibition with Romidepsin attenuates H-reflex hyperexcitability after spinal cord injury. J Physiol 2024; 602:5061-5081. [PMID: 39231098 DOI: 10.1113/jp284976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Hyperreflexia associated with spasticity is a prevalent neurological condition characterized by excessive and exaggerated reflex responses to stimuli. Hyperreflexia can be caused by several diseases including multiple sclerosis, stroke and spinal cord injury (SCI). Although we have previously identified the contribution of the RAC1-PAK1 pathway underlying spinal hyperreflexia with SCI-induced spasticity, a feasible druggable target has not been validated. To assess the utility of targeting PAK1 to attenuate H-reflex hyperexcitability, we administered Romidepsin, a clinically available PAK1 inhibitor, in Thy1-YFP reporter mice. We performed longitudinal EMG studies with a study design that allowed us to assess pathological H-reflex changes and drug intervention effects over time, before and after contusive SCI. As expected, our results show a significant loss of rate-dependent depression - an indication of hyperreflexia and spasticity - 1 month following SCI as compared with baseline, uninjured controls (or before injury). Romidepsin treatment reduced signs of hyperreflexia in comparison with control cohorts and in pre- and post-drug intervention in SCI animals. Neuroanatomical study further confirmed drug response, as romidepsin treatment also reduced the presence of SCI-induced dendritic spine dysgenesis on α-motor neurons. Taken together, our findings extend previous work demonstrating the utility of targeting PAK1 activity in SCI-induced spasticity and support the novel use of romidepsin as an effective tool for managing spasticity. KEY POINTS: PAK1 plays a role in contributing to the development of spinal cord injury (SCI)-induced spasticity by contributing to dendritic spine dysgenesis. In this study, we explored the preclinical utility of inhibiting PAK1 to reduce spasticity and dendritic spine dysgenesis in an SCI mouse model. Romidepsin is a PAK1 inhibitor approved in the US in 2009 for the treatment of cutaneous T-cell lymphoma. Here we show that romidepsin treatment after SCI reduced SCI-induced H-reflex hyperexcitability and abnormal α-motor neuron spine morphology. This study provides compelling evidence that romidepsin may be a promising therapeutic approach for attenuating SCI-induced spasticity.
Collapse
Affiliation(s)
- Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jennifer M Carrara
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Afrin A Tarafder
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Youssef H Ibrahim
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Maile A Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
4
|
Garcia-Ramirez DL, McGrath JR, Ha NT, Wheel JH, Atoche SJ, Yao L, Stachowski NJ, Giszter SF, Dougherty KJ. Covert actions of epidural stimulation on spinal locomotor circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599598. [PMID: 38948733 PMCID: PMC11213016 DOI: 10.1101/2024.06.18.599598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.
Collapse
|
5
|
Benson CA, Olson KL, Patwa S, Kauer SD, King JF, Waxman SG, Tan AM. Conditional Astrocyte Rac1KO Attenuates Hyperreflexia after Spinal Cord Injury. J Neurosci 2024; 44:e1670222023. [PMID: 37963762 PMCID: PMC10851682 DOI: 10.1523/jneurosci.1670-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Spasticity is a hyperexcitability disorder that adversely impacts functional recovery and rehabilitative efforts after spinal cord injury (SCI). The loss of evoked rate-dependent depression (RDD) of the monosynaptic H-reflex is indicative of hyperreflexia, a physiological sign of spasticity. Given the intimate relationship between astrocytes and neurons, that is, the tripartite synapse, we hypothesized that astrocytes might have a significant role in post-injury hyperreflexia and plasticity of neighboring neuronal synaptic dendritic spines. Here, we investigated the effect of selective Rac1KO in astrocytes (i.e., adult male and female mice, transgenic cre-flox system) on SCI-induced spasticity. Three weeks after a mild contusion SCI, control Rac1wt animals displayed a loss of H-reflex RDD, that is, hyperreflexia. In contrast, transgenic animals with astrocytic Rac1KO demonstrated near-normal H-reflex RDD similar to pre-injury levels. Reduced hyperreflexia in astrocytic Rac1KO animals was accompanied by a loss of thin-shaped dendritic spine density on α-motor neurons in the ventral horn. In SCI-Rac1wt animals, as expected, we observed the development of dendritic spine dysgenesis on α-motor neurons associated with spasticity. As compared with WT animals, SCI animals with astrocytic Rac1KO expressed increased levels of the glial-specific glutamate transporter, glutamate transporter-1 in the ventral spinal cord, potentially enhancing glutamate clearance from the synaptic cleft and reducing hyperreflexia in astrocytic Rac1KO animals. Taken together, our findings show for the first time that Rac1 activity in astrocytes can contribute to hyperreflexia underlying spasticity following SCI. These results reveal an opportunity to target cell-specific molecular regulators of H-reflex excitability to manage spasticity after SCI.Significance Statement Spinal cord injury leads to stretch reflex hyperexcitability, which underlies the clinical symptom of spasticity. This study shows for the first time that astrocytic Rac1 contributes to the development of hyperreflexia after SCI. Specifically, astrocytic Rac1KO reduced SCI-related H-reflex hyperexcitability, decreased dendritic spine dysgenesis on α-motor neurons, and elevated the expression of the astrocytic glutamate transporter-1 (GLT-1). Overall, this study supports a distinct role for astrocytic Rac1 signaling within the spinal reflex circuit and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Kai-Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510,
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
6
|
Benson CA, King JF, Kauer SD, Waxman SG, Tan AM. Increased astrocytic GLT-1 expression in tripartite synapses is associated with SCI-induced hyperreflexia. J Neurophysiol 2023; 130:1358-1366. [PMID: 37877184 PMCID: PMC10972632 DOI: 10.1152/jn.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023] Open
Abstract
Spasticity is a chronic neurological complication associated with spinal cord injury (SCI), characterized by increased muscle tone and stiffness. A physiological sign of spasticity is hyperreflexia, evident by the loss of evoked rate-dependent depression (RDD) in the H-reflex. Although previous work has shown that SCI-induced astrogliosis contributes to hyperexcitability disorders, including neuropathic pain and spasticity, it is unclear how reactive astrocytes can modulate synaptic transmission within the injured spinal cord. To study astrocytes' role in post-SCI hyperreflexia, we examined glutamate transporter-1 (GLT-1) and postsynaptic density protein 95 (PSD-95) proteins in astrocytes and neurons, respectively, within the ventral horn (lamina IX) below the level of injury (spinal segment L4-5). The close juxtaposition of GLT-1 and PSD-95 markers is a molecular correlate of tripartite synapses and is thought to be a key element in the astrocyte-induced plasticity of neuronal synapses. Our study compared animals with and without SCI-induced hyperreflexia and spasticity and investigated potential synaptic abnormalities associated with astrocyte involvement. As expected, 4 wk after SCI, we observed a loss in evoked H-reflex RDD in hindlimb electromyogram recordings, i.e., hyperreflexia, in contrast to uninjured sham. Importantly, our main findings show a significant increase in the presence of GLT-1-PSD-95 tripartite synapses in the ventral spinal cord motor regions of animals exhibiting SCI-induced hyperreflexia. Taken together, our study suggests the involvement of astrocyte-neuron synaptic complexes in the plasticity-driven progression of chronic spasticity.NEW & NOTEWORTHY The role of astrocytes in H-reflex hyperexcitability following SCI remains understudied. Our findings establish a relationship between GLT-1 expression, its proximity to neuronal PSD-95 in the spinal cord ventral horn, and the loss of H-reflex RDD, i.e., hyperreflexia. Our findings provide a new perspective on synaptic alterations and the development of SCI-related spasticity.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, United States
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
7
|
Chen M, Chen Z, Xiao X, Zhou L, Fu R, Jiang X, Pang M, Xia J. Corticospinal circuit neuroplasticity may involve silent synapses: Implications for functional recovery facilitated by neuromodulation after spinal cord injury. IBRO Neurosci Rep 2022; 14:185-194. [PMID: 36824667 PMCID: PMC9941655 DOI: 10.1016/j.ibneur.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022] Open
Abstract
Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Collapse
Key Words
- AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
- BDNF, brain-derived neurotrophic factor
- BMIs, brain-machine interfaces
- CPG, central pattern generator
- CST, corticospinal tract
- Corticospinal motor circuitry
- DBS, deep brain stimulation
- ESS, epidural spinal stimulation
- MEPs, motor-evoked potentials
- NHPs, non-human primates
- NMDARs, N-methyl-d-aspartate receptors
- Neuromodulation
- Neuroplasticity
- PSNs, propriospinal neurons
- Rehabilitation
- SCI, spinal cord injury
- STDP, spike timing-dependent plasticity
- Silent synapses
- Spinal cord injury
- TBS, theta burst stimulation
- TMS, transcranial magnetic stimulation
- TrkB, tropomyosin-related kinase B
- cTBS, continuous TBS
- iTBS, intermittent TBS
- mTOR, mammalian target of rapamycin
- rTMS, repetitive TMS
- tDCS, transcranial direct current stimulation
- tcSCS, transcutaneous spinal cord stimulation
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Orthopedics and Traumatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Xian Jiang
- Institute of Neurological and Psychiatric Disorder, Shenzhen Bay laboratory, Shenzhen, Guangdong 518000, China
| | - Mao Pang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, Guangdong 510630, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, Guangdong 510970, China,Corresponding author.
| |
Collapse
|
8
|
Liao YH, Chen MX, Chen SC, Luo KX, Wang B, Ao LJ, Liu Y. Low-Intensity Focused Ultrasound Alleviates Spasticity and Increases Expression of the Neuronal K-Cl Cotransporter in the L4–L5 Sections of Rats Following Spinal Cord Injury. Front Cell Neurosci 2022; 16:882127. [PMID: 35634464 PMCID: PMC9133482 DOI: 10.3389/fncel.2022.882127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low-intensity focused ultrasound (LIFU) has been shown to provide effective activation of the spinal cord neurocircuits. The aim of this study was to investigate the effects of LIFU in order to alleviate spasticity following spinal cord injury (SCI) by activating the spinal neurocircuits and increasing the expression of the neuronal K-Cl cotransporter KCC2. Adult male Sprague Dawley (SD) rats (220–300 g) were randomly divided into a sham control group, a LIFU− group, and a LIFU+ group. The mechanical threshold hold (g) was used to evaluate the behavioral characteristics of spasm. Electromyography (EMG) was used to assess activation of the spinal cord neurocircuits and muscle spontaneous contraction. Spasticity was assessed by frequency-dependent depression (FDD). The expression of KCC2 of the lumbar spinal cord was determined via western blot (WB) and immunofluorescence (IF) staining. The spinal cord neurocircuits were activated by LIFU simulation, which significantly reduced the mechanical threshold (g), FDD, and EMG recordings (s) after 4 weeks of treatment. WB and IF staining both demonstrated that the expression of KCC2 was reduced in the LIFU− group (P < 0.05). After 4 weeks of LIFU stimulation, expression of KCC2 had significantly increased (P < 0.05) in the LIFU+ group compared with the LIFU− group. Thus, we hypothesized that LIFU treatment can alleviate spasticity effectively and upregulate the expression of KCC2 in the L4–L5 section of SCI rats.
Collapse
Affiliation(s)
- Ye-Hui Liao
- School of Rehabilitation, Kunming Medical University, Kunming, China
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Shao-Chun Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Kai-Xuan Luo
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Bing Wang
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China
- *Correspondence: Li-Juan Ao
| | - Yao Liu
- School of Rehabilitation, Kunming Medical University, Kunming, China
- Yao Liu
| |
Collapse
|
9
|
Jiang K, Sun Y, Chen X. Mechanism Underlying Acupuncture Therapy in Spinal Cord Injury: A Narrative Overview of Preclinical Studies. Front Pharmacol 2022; 13:875103. [PMID: 35462893 PMCID: PMC9021644 DOI: 10.3389/fphar.2022.875103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results from various pathogenic factors that destroy the normal structure and function of the spinal cord, subsequently causing sensory, motor, and autonomic nerve dysfunction. SCI is one of the most common causes of disability and death globally. It leads to severe physical and mental injury to patients and causes a substantial economic burden on families and the society. The pathological changes and underlying mechanisms within SCI involve oxidative stress, apoptosis, inflammation, etc. As a traditional therapy, acupuncture has a positive effect promoting the recovery of SCI. Acupuncture-induced neuroprotection includes several mechanisms such as reducing oxidative stress, inhibiting the inflammatory response and neuronal apoptosis, alleviating glial scar formation, promoting neural stem cell differentiation, and improving microcirculation within the injured area. Therefore, the recent studies exploring the mechanism of acupuncture therapy in SCI will help provide a theoretical basis for applying acupuncture and seeking a better treatment target and acupuncture approach for SCI patients.
Collapse
Affiliation(s)
- Kunpeng Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
- *Correspondence: Xinle Chen,
| |
Collapse
|
10
|
Zheng Y, Zhao D, Xue DD, Mao YR, Cao LY, Zhang Y, Zhu GY, Yang Q, Xu DS. Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electrophysiological improvements and cortical synaptic reconstruction. Neural Regen Res 2022; 17:2036-2042. [PMID: 35142694 PMCID: PMC8848603 DOI: 10.4103/1673-5374.335161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Following a spinal cord injury, there are usually a number of neural pathways that remain intact in the spinal cord. These residual nerve fibers are important, as they could be used to reconstruct the neural circuits that enable motor function. Our group previously designed a novel magnetic stimulation protocol, targeting the motor cortex and the spinal nerve roots, that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury. Here, we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury. Rats underwent surgery to clamp the spinal cord at T10; three days later, the rats were treated with repetitive magnetic stimulation (5 Hz, 25 pulses/train, 20 pulse trains) targeting the nerve roots at the L5–L6 vertebrae. The treatment was repeated five times a week over a period of three weeks. We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord. In addition, the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex. Overall, the results suggest that nerve root magnetic stimulation may be an effective, noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Ye-Ran Mao
- Department of Rehabilitation, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yun Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhang
- Department of Rehabilitation, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yue Zhu
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Yang
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; Rehabilitation Engineering Research Center for Integrated Traditional Chinese and Western Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Xu Y, Hu X, Li F, Zhang H, Lou J, Wang X, Wang H, Yin L, Ni W, Kong J, Wang X, Li Y, Zhou K, Xu H. GDF-11 Protects the Traumatically Injured Spinal Cord by Suppressing Pyroptosis and Necroptosis via TFE3-Mediated Autophagy Augmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8186877. [PMID: 34712387 PMCID: PMC8548157 DOI: 10.1155/2021/8186877] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) refers to a major worldwide cause of accidental death and disability. However, the complexity of the pathophysiological mechanism can result in less-effective clinical treatment. Growth differentiation factor 11 (GDF-11), an antiageing factor, was reported to affect the development of neurogenesis and exert a neuroprotective effect after cerebral ischaemic injury. The present work is aimed at investigating the influence of GDF-11 on functional recovery following SCI, in addition to the potential mechanisms involved. We employed a mouse model of spinal cord contusion injury and assessed functional outcomes via the Basso Mouse Scale and footprint analysis following SCI. Using western blot assays and immunofluorescence, we analysed the levels of pyroptosis, autophagy, necroptosis, and molecules related to the AMPK-TRPML1-calcineurin signalling pathway. The results showed that GDF-11 noticeably optimized function-related recovery, increased autophagy, inhibited pyroptosis, and alleviated necroptosis following SCI. Furthermore, the conducive influences exerted by GDF-11 were reversed with the application of 3-methyladenine (3MA), an autophagy suppressor, indicating that autophagy critically impacted the therapeutically related benefits of GDF-11 on recovery after SCI. In the mechanistic study described herein, GDF-11 stimulated autophagy improvement and subsequently inhibited pyroptosis and necroptosis, which were suggested to be mediated by TFE3; this effect resulted from the activity of TFE3 through the AMPK-TRPML1-calcineurin signalling cascade. Together, GDF-11 protects the injured spinal cord by suppressing pyroptosis and necroptosis via TFE3-mediated autophagy augmentation and is a potential agent for SCI therapy.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Lingyan Yin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
12
|
Huang Y, Lin J, Chen X, Lin J. Pannexin-1 Contributes to the Apoptosis of Spinal Neurocytes in Spinal Cord Injury. Front Physiol 2021; 12:656647. [PMID: 33986693 PMCID: PMC8112589 DOI: 10.3389/fphys.2021.656647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Currently, the role of Pannexin-1, a homomeric membrane hemichannel on the neuron cell membrane, in the development of spinal cord injury (SCI) is largely unknown. Herein, we assessed the contribution of Panx1 in the development of SCI. The SCI in vitro model was established using rat primary spinal neurocytes treated with hydrogen peroxide (H2O2). Effects of Panx1 overexpression or depletion in spinal neurocytes were analyzed by lentivirus-mediated transfection of Panx1 and interference sh-Panx1. Decreased cell viability was seen in SCI cells, which was further enhanced under Panx1 overexpression and mitigated by Panx1 deficiency. H2O2 induced an increase of intracellular Ca2+ signal and upregulated level of the proapoptotic protein Bax, and apoptosis pathway proteins including cleaved Caspase-3 and PARP1, which was enhanced by Panx1 overexpression or attenuated by Panx1 depletion. On the other hand, H2O2 treatment suppressed the level of antiapoptotic protein Bcl-2, which was further decreased by Panx1 overexpression or mitigated by Panx1 depletion. The results indicate that Panx1 was involved in the intracellular Ca2+ overload of SCI cells by accelerating extracellular Ca2+ influx, which promoted the apoptosis of spinal neurocytes through Ca2+ dependent pathways, thus aggravating the secondary injury of SCI.
Collapse
Affiliation(s)
- Yu Huang
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jin Lin
- Department of Basic Medical Science, Fujian Health College, Fuzhou, China
| | - Xuanwei Chen
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhua Lin
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep 2021; 11:7838. [PMID: 33837249 PMCID: PMC8035187 DOI: 10.1038/s41598-021-87476-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
A major complication with spinal cord injury (SCI) is the development of spasticity, a clinical symptom of hyperexcitability within the spinal H-reflex pathway. We have previously demonstrated a common structural motif of dendritic spine dysgenesis associated with hyperexcitability disorders after injury or disease insults to the CNS. Here, we used an adeno-associated viral (AAV)-mediated Cre-Lox system to knockout Rac1 protein expression in motor neurons after SCI. Three weeks after AAV9-Cre delivery into the soleus/gastrocnemius of Rac1-“floxed” adult mice to retrogradely infect spinal alpha-motor neurons, we observed significant restoration of RDD and reduced H-reflex excitability in SCI animals. Additionally, viral-mediated Rac1 knockdown reduced presence of dendritic spine dysgenesis on motor neurons. In control SCI animals without Rac1 knockout, we continued to observe abnormal dendritic spine morphology associated with hyperexcitability disorder, including an increase in mature, mushroom dendritic spines, and an increase in overall spine length and spine head size. Taken together, our results demonstrate that viral-mediated disruption of Rac1 expression in ventral horn motor neurons can mitigate dendritic spine morphological correlates of neuronal hyperexcitability, and reverse hyperreflexia associated with spasticity after SCI. Finally, our findings provide evidence of a putative mechanistic relationship between motor neuron dendritic spine dysgenesis and SCI-induced spasticity.
Collapse
|
14
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
15
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
16
|
|
17
|
Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, Walker MJ, Qu W, Chen C, Liu NK, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu XM. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. eLife 2018; 7:39016. [PMID: 30207538 PMCID: PMC6170189 DOI: 10.7554/elife.39016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022] Open
Abstract
Retrogradely-transported neurotrophin signaling plays an important role in regulating neural circuit specificity. Here we investigated whether targeted delivery of neurotrophin-3 (NT-3) to lumbar motoneurons (MNs) caudal to a thoracic (T10) contusive spinal cord injury (SCI) could modulate dendritic patterning and synapse formation of the lumbar MNs. In vitro, Adeno-associated virus serotype two overexpressing NT-3 (AAV-NT-3) induced NT-3 expression and neurite outgrowth in cultured spinal cord neurons. In vivo, targeted delivery of AAV-NT-3 into transiently demyelinated adult mouse sciatic nerves led to the retrograde transportation of NT-3 to the lumbar MNs, significantly attenuating SCI-induced lumbar MN dendritic atrophy. NT-3 enhanced sprouting and synaptic formation of descending serotonergic, dopaminergic, and propriospinal axons on lumbar MNs, parallel to improved behavioral recovery. Thus, retrogradely transported NT-3 stimulated remodeling of lumbar neural circuitry and synaptic connectivity remote to a thoracic SCI, supporting a role for retrograde transport of NT-3 as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Neural Tissue Engineering Research Institute, Mudanjiang College of Medicine, Mudanjiang, China
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi P Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Melissa Jane Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiana, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Lisa Be Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | | | - Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| |
Collapse
|
18
|
Sahu S, Li R, Kadeyala PK, Liu S, Schachner M. The human natural killer-1 (HNK-1) glycan mimetic ursolic acid promotes functional recovery after spinal cord injury in mouse. J Nutr Biochem 2018; 55:219-228. [PMID: 29567576 DOI: 10.1016/j.jnutbio.2018.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/17/2017] [Accepted: 01/19/2018] [Indexed: 02/05/2023]
Abstract
Human natural killer-1 (HNK-1) cell antigen is a glycan epitope involved in several neural events, such as neuritogenesis, myelination, synaptic plasticity and regeneration of the nervous system after injury. We have recently identified the small organic compound ursolic acid (UA) as a HNK-1 mimetic with the aim to test its therapeutic potential in the central nervous system. UA, a plant-derived pentacyclic triterpenoid, is well known for its multiple biological functions, including neuroprotective, antioxidant and anti-inflammatory activities. In the present study, we evaluated its functions in a mouse model of spinal cord injury (SCI) and explored the molecular mechanisms underlying its positive effects. Oral administration of UA to mice 1 h after SCI and thereafter once daily for 6 weeks enhanced the regaining of motor functions and axonal regrowth, and decreased astrogliosis. UA administration decreased levels of proinflammatory markers, including interleukin-6 and tumor necrosis factor-α, in the injured spinal cord at the acute phase of inflammation and activated the mitogen-activated protein kinase and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways in the injured spinal cord. Taken together, these results suggest that UA may be a candidate for treatment of nervous system injuries.
Collapse
Affiliation(s)
- Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Rong Li
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Praveen Kumar Kadeyala
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shisong Liu
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA.
| |
Collapse
|
19
|
Liabeuf S, Stuhl-Gourmand L, Gackière F, Mancuso R, Sanchez Brualla I, Marino P, Brocard F, Vinay L. Prochlorperazine Increases KCC2 Function and Reduces Spasticity after Spinal Cord Injury. J Neurotrauma 2017; 34:3397-3406. [PMID: 28747093 DOI: 10.1089/neu.2017.5152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In mature neurons, low intracellular chloride level required for inhibition is maintained by the potassium-chloride cotransporter, KCC2. Impairment of Cl- extrusion after KCC2 dysfunction has been involved in many central nervous system disorders, such as seizures, neuropathic pain, or spasticity, after a spinal cord injury (SCI). This makes KCC2 an appealing drug target for restoring Cl- homeostasis and inhibition in pathological conditions. In the present study, we screen the Prestwick Chemical Library® and identify conventional antipsychotics phenothiazine derivatives as enhancers of KCC2 activity. Among them, prochlorperazine hyperpolarizes the Cl- equilibrium potential in motoneurons of neonatal rats and restores the reciprocal inhibition post-SCI. The compound alleviates spasticity in chronic adult SCI rats with an efficacy equivalent to the antispastic agent, baclofen, and rescues the SCI-induced downregulation of KCC2 in motoneurons below the lesion. These pre-clinical data support prochlorperazine for a new therapeutic indication in the treatment of spasticity post-SCI and neurological disorders involving a KCC2 dysfunction.
Collapse
Affiliation(s)
- Sylvie Liabeuf
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Laetitia Stuhl-Gourmand
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Florian Gackière
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Renzo Mancuso
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Irene Sanchez Brualla
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Philippe Marino
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| | - Laurent Vinay
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS) , Marseille, France
| |
Collapse
|
20
|
Holinski BJ, Mazurek KA, Everaert DG, Toossi A, Lucas-Osma AM, Troyk P, Etienne-Cummings R, Stein RB, Mushahwar VK. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J Neural Eng 2016; 13:056016. [PMID: 27619069 DOI: 10.1088/1741-2560/13/5/056016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤50 μm diameter). APPROACH In each of five adult cats (4.2-5.5 kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9 m walkway and limb kinematics and forces were recorded. MAIN RESULTS Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609 to 835 m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5 ± 0.6 N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1 ± 2.0°, 29.1 ± 0.2°, and 60.3 ± 5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. SIGNIFICANCE By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 μA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury.
Collapse
Affiliation(s)
- B J Holinski
- Department of Biomedical Engineering, University of Alberta, Alberta, Canada. Project SMART (Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brocard C, Plantier V, Boulenguez P, Liabeuf S, Bouhadfane M, Viallat-Lieutaud A, Vinay L, Brocard F. Cleavage of Na+ channels by calpain increases persistent Na+ current and promotes spasticity after spinal cord injury. Nat Med 2016; 22:404-11. [DOI: 10.1038/nm.4061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
22
|
Pazzaglia M, Molinari M. The embodiment of assistive devices-from wheelchair to exoskeleton. Phys Life Rev 2015; 16:163-75. [PMID: 26708357 DOI: 10.1016/j.plrev.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 01/18/2023]
Abstract
Spinal cord injuries (SCIs) place a heavy burden on the healthcare system and have a high personal impact and marked socio-economic consequences. Clinically, no absolute cure for these conditions exists. However, in recent years, there has been an increased focus on new robotic technologies that can change the frame we think about the prognosis for recovery and for treating some functions of the body affected after SCIs. This review has two goals. The first is to assess the possibility of the embodiment of functional assistive tools after traumatic disruption of the neural pathways between the brain and the body. To this end, we will examine how altered sensorimotor information modulates the sense of the body in SCI. The second goal is to map the phenomenological experience of using external tools that typically extend the potential of the body physically impaired by SCI. More specifically, we will focus on the difference between the perception of one's physically augmented and non-augmented affected body based on observable and measurable behaviors. We discuss potential clinical benefits of enhanced embodiment of the external objects by way of multisensory interventions. This review argues that the future evolution of human robotic technologies will require adopting an embodied approach, taking advantage of brain plasticity to allow bionic limbs to be mapped within the neural circuits of physically impaired individuals.
Collapse
Affiliation(s)
- Mariella Pazzaglia
- Department of Psychology, University of Rome 'La Sapienza', Via dei Marsi 78, 00185 Rome, Italy; IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy.
| | - Marco Molinari
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
23
|
Najafzadeh N, Esmaeilzade B, Dastan Imcheh M. Hair follicle stem cells: In vitro and in vivo neural differentiation. World J Stem Cells 2015; 7:866-872. [PMID: 26131317 PMCID: PMC4478633 DOI: 10.4252/wjsc.v7.i5.866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/22/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Hair follicle stem cells (HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area. The importance of these cells arises from two important characteristics, distinguishing them from all other adult stem cells. First, they are accessible and proliferate for long periods. Second, they are multipotent, possessing the ability to differentiate into mesodermal and ectodermal cell types. In addition to a developmental capacity in vitro, HFSCs display an ability to form differentiated cells in vivo. During the last two decades, numerous studies have led to the development of an appropriate culture condition for producing various cell lineages from HFSCs. Therefore, these stem cells are considered as a novel source for cell therapy of a broad spectrum of neurodegenerative disorders. This review presents the current status of human, rat, and mouse HFSCs from both the cellular and molecular biology and cell therapy perspectives. The first section of this review highlights the importance of HFSCs and in vitro differentiation, while the final section emphasizes the significance of cell differentiation in vivo.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Banafshe Esmaeilzade
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Maryam Dastan Imcheh
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| |
Collapse
|
24
|
Gackière F, Vinay L. Contribution of the potassium-chloride cotransporter KCC2 to the strength of inhibition in the neonatal rodent spinal cord in vitro. J Neurosci 2015; 35:5307-16. [PMID: 25834055 PMCID: PMC6705413 DOI: 10.1523/jneurosci.1674-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/16/2015] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
In healthy mature motoneurons (MNs), KCC2 cotransporters maintain the intracellular chloride concentration at low levels, a prerequisite for postsynaptic inhibition mediated by GABA and glycine. KCC2 expression in lumbar MNs is reduced after spinal cord injury (SCI) resulting in a depolarizing shift of the chloride equilibrium potential. Despite modeling studies indicating that such a downregulation of KCC2 function would reduce the strength of postsynaptic inhibition, physiological evidence is still lacking. The present study aimed at investigating the functional impact of a modification of KCC2 function. We focused on a well characterized disynaptic inhibitory pathway responsible for reciprocal inhibition between antagonistic muscles. We performed in vitro extracellular recordings on spinal cords isolated from rodents at the end of the first postnatal week. Genetic reduction of KCC2 expression, pharmacological blockade of KCC2, as well as SCI-induced downregulation of KCC2 all resulted in a reduction of the strength of reciprocal inhibition. We then tried to restore endogenous inhibition after SCI by means of zinc ions that have been shown to boost KCC2 function in other models. Zinc chloride indeed hyperpolarized the chloride equilibrium potential in MNs and increased reciprocal inhibition after neonatal SCI. This study demonstrates that the level of KCC2 function sets the strength of postsynaptic inhibition and suggests that the downregulation of KCC2 after SCI likely contributes to the high occurrence of flexor-extensor cocontractions in SCI patients.
Collapse
Affiliation(s)
- Florian Gackière
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université, 13385 Marseille cx 5, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université, 13385 Marseille cx 5, France
| |
Collapse
|
25
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
26
|
Bandaru SP, Liu S, Waxman SG, Tan AM. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury. J Neurophysiol 2014; 113:1598-615. [PMID: 25505110 DOI: 10.1152/jn.00566.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.
Collapse
Affiliation(s)
- Samira P Bandaru
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
27
|
The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience 2014; 285:269-80. [PMID: 25446348 DOI: 10.1016/j.neuroscience.2014.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 11/23/2022]
Abstract
Neuroprotection of the spinal cord during the early phase of injury is an important goal to determine a favorable outcome by prevention of delayed pathological events, including excitotoxicity, which otherwise extend the primary damage and amplify the often irreversible loss of motor function. While intensive care and neurosurgical intervention are important treatments, effective neuroprotection requires further experimental studies focused to target vulnerable neurons, particularly motoneurons. The present investigation examined whether the volatile general anesthetic methoxyflurane might protect spinal locomotor networks from kainate-evoked excitotoxicity using an in vitro rat spinal cord preparation as a model. The protocols involved 1h excitotoxic stimulation on day 1 followed by electrophysiological and immunohistochemical testing on day 2. A single administration of methoxyflurane applied together with kainate (1h), or 30 or even 60 min later prevented any depression of spinal reflexes, loss of motoneuron excitability, and histological damage. Methoxyflurane per se temporarily decreased synaptic transmission and motoneuron excitability, effects readily reversible on washout. Spinal locomotor activity recorded as alternating electrical discharges from lumbar motor pools was fully preserved on the second day after application of methoxyflurane together with (or after) kainate. These data suggest that a volatile general anesthetic could provide strong electrophysiological and histological neuroprotection that enabled expression of locomotor network activity 1 day after the excitotoxic challenge. It is hypothesized that the benefits of early neurosurgery for acute spinal cord injury (SCI) might be enhanced if, in addition to injury decompression and stabilization, the protective role of general anesthesia is exploited.
Collapse
|
28
|
Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling. J Neurosci 2014; 34:12788-800. [PMID: 25232115 DOI: 10.1523/jneurosci.5359-13.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Combining cell transplantation with activity-based rehabilitation is a promising therapeutic approach for spinal cord repair. The present study was designed to investigate potential interactions between the transplantation (TP) of neural stem cells (NSCs) obtained at embryonic day 14 and treadmill training (TMT) in promoting locomotor recovery and structural repair in rat contusive injury model. Combination of TMT with NSC TP at 1 week after injury synergistically improved locomotor function. We report here that combining TMT increased the survival of grafted NSCs by >3-fold and >5-fold at 3 and 9 weeks after injury, respectively. The number of surviving NSCs was significantly correlated with the extent of locomotor recovery. NSCs grafted into the injured spinal cord were under cellular stresses induced by reactive nitrogen or oxygen species, which were markedly attenuated by TMT. TMT increased the concentration of insulin-like growth factor-1 (IGF-1) in the CSF. Intrathecal infusion of neutralizing IGF-1 antibodies, but not antibodies against either BDNF or Neurotrophin-3 (NT-3), abolished the enhanced survival of NSC grafts by TMT. The combination of TP and TMT also resulted in tissue sparing, increased myelination, and restoration of serotonergic fiber innervation to the lumbar spinal cord to a larger extent than that induced by either TP or TMT alone. Therefore, we have discovered unanticipated beneficial effects of TMT in modulating the survival of grafted NSCs via IGF-1. Our study identifies a novel neurobiological basis for complementing NSC-based spinal cord repair with activity-based neurorehabilitative approaches.
Collapse
|
29
|
Zhang Q, Shao Y, Zhao C, Cai J, Sun S. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection. Exp Ther Med 2014; 8:1731-1736. [PMID: 25371724 PMCID: PMC4218703 DOI: 10.3892/etm.2014.2029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/02/2014] [Indexed: 01/29/2023] Open
Abstract
Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yang Shao
- Department of Neurology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Changsong Zhao
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Juan Cai
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Sheng Sun
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
30
|
Zhang C, He X, Li H, Wang G. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury. Neural Regen Res 2014; 8:965-74. [PMID: 25206389 PMCID: PMC4145889 DOI: 10.3969/j.issn.1673-5374.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/20/2013] [Indexed: 01/09/2023] Open
Abstract
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Haopeng Li
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Guoyu Wang
- Department of Orthopedics, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
31
|
Gündüz A, Uzun N, Örnek Nİ, Ünalan H, Karamehmetoğlu ŞS, Kızıltan ME. Trigemino-cervical reflex in spinal cord injury. Neurosci Lett 2014; 580:169-72. [PMID: 25128217 DOI: 10.1016/j.neulet.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/24/2014] [Accepted: 08/04/2014] [Indexed: 11/27/2022]
Abstract
Abnormal enhancement of polysynaptic brainstem reflexes has been previously reported in patients with spinal cord injury (SCI). We aimed to investigate trigemino-cervical reflex (TCR) in SCI since it may reflect alterations in the connections of trigeminal proprioceptive system and cervical motoneurons. Consecutive 14 patients with SCI and 16 healthy subjects were included in this study. All patients were in the chronic phase. TCR was recorded over sternocleidomastoid (SCM) and splenius capitis (SC) muscles by stimulation of infraorbital nerve. We measured onset latency, amplitudes and durations of responses and compared between groups. We obtained stable responses over both muscles after one sided stimulation in healthy volunteers whereas probability of TCR was decreased in patients over both SCM (78.6% vs. 100%, p=0.050) and SC (71.4% vs. 100%, p=0.022). The absence of TCR was related to use of oral baclofen (≥50mg/day). However, when present, responses of SCI group had higher amplitudes and were more persistent. We demonstrated that TCR probability was similar to healthy subjects in SCI patients who used no or low dose oral baclofen. But it had higher amplitudes and longer durations. It was not obtained in only two patients who used oral baclofen more than 50mg/day.
Collapse
Affiliation(s)
- Ayşegül Gündüz
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey.
| | - Nurten Uzun
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurettin İrem Örnek
- Department of Physical Therapy and Rehabilitation, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Halil Ünalan
- Department of Physical Therapy and Rehabilitation, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Şafak Sahir Karamehmetoğlu
- Department of Physical Therapy and Rehabilitation, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Meral E Kızıltan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Sharples SA, Koblinger K, Humphreys JM, Whelan PJ. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits 2014; 8:55. [PMID: 24982614 PMCID: PMC4059167 DOI: 10.3389/fncir.2014.00055] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022] Open
Abstract
The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Jennifer M Humphreys
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
33
|
Dose F, Zanon P, Coslovich T, Taccola G. Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro. PLoS One 2014; 9:e92967. [PMID: 24658101 PMCID: PMC3962494 DOI: 10.1371/journal.pone.0092967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/27/2014] [Indexed: 01/08/2023] Open
Abstract
Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Patrizia Zanon
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
- * E-mail:
| |
Collapse
|
34
|
Fluoxetine treatment promotes functional recovery in a rat model of cervical spinal cord injury. Sci Rep 2014; 3:2217. [PMID: 23860568 PMCID: PMC3713566 DOI: 10.1038/srep02217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/26/2013] [Indexed: 11/08/2022] Open
Abstract
Spinal cord injury (SCI) is a severe condition leading to enduring motor deficits. When lesions are incomplete, promoting spinal cord plasticity might be a useful strategy to elicit functional recovery. Here we investigated whether long-term fluoxetine administration in the drinking water, a treatment recently demonstrated to optimize brain plasticity in several pathological conditions, promotes motor recovery in rats that received a C4 dorsal funiculus crush. We show that fluoxetine administration markedly improved motor functions compared to controls in several behavioral paradigms. The improved functional effects correlated positively with significant sprouting of intact corticospinal fibers and a modulation of the excitation/inhibition balance. Our results suggest a potential application of fluoxetine treatment as a non invasive therapeutic strategy for SCI-associated neuropathologies.
Collapse
|
35
|
Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann's reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis 2014; 5:e1007. [PMID: 24434515 PMCID: PMC4040693 DOI: 10.1038/cddis.2013.544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022]
Abstract
Abnormal reflexes associated with spasticity are considered a major determinant of motor impairments occurring after stroke; however, the mechanisms underlying post-stroke spasticity remain unclear. This may be because of the lack of suitable rodent models for studying spasticity after cortical injuries. Thus, the purpose of the present study was to establish an appropriate post-stroke spasticity mouse model. We induced photothrombotic injury in the rostral and caudal forelimb motor areas of mice and used the rate-dependent depression (RDD) of Hoffmann's reflex (H-reflex) as an indicator of spastic symptoms. To detect motoneuron excitability, we examined c-fos mRNA levels and c-Fos immunoreactivity in affected motoneurons using quantitative real-time reverse transcription PCR and immunohistochemical analysis, respectively. To confirm the validity of our model, we confirmed the effect of the anti-spasticity drug baclofen on H-reflex RDDs 1 week post stroke. We found that 3 days after stroke, the RDD was significantly weakened in the affected muscles of stroke mice compared with sham-operated mice, and this was observed for 8 weeks. The c-fos mRNA levels in affected motoneurons were significantly increased in stroke mice compared with sham-operated mice. Immunohistochemical analysis revealed a significant increase in the number of c-Fos-positive motoneurons in stroke mice compared with sham-operated mice at 1, 2, 4, and 8 weeks after stroke; however, the number of c-Fos-positive motoneurons on both sides of the brain gradually decreased over time. Baclofen treatment resulted in recovery of the weakened RDD at 1 week post stroke. Our findings suggest that this is a viable animal model of post-stroke spasticity.
Collapse
Affiliation(s)
- S Lee
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami Higashi-ku, Nagoya-shi, Aichi, Japan
| | - T Toda
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami Higashi-ku, Nagoya-shi, Aichi, Japan
| | - H Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-tyou Shouwa-ku, Nagoya-shi, Aichi, Japan
| | - T Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka, Japan
| |
Collapse
|
36
|
Najafzadeh N, Nobakht M, Pourheydar B, Golmohammadi MG. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury. Neural Regen Res 2013; 8:3365-3372. [PMID: 25206658 PMCID: PMC4146002 DOI: 10.3969/j.issn.1673-5374.2013.36.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/09/2013] [Indexed: 12/17/2022] Open
Abstract
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maliheh Nobakht
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ; Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran ; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Pourheydar
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran ; Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
37
|
Shin JW, Moon JY, Seong JW, Song SH, Cheong YJ, Kang C, Sohn NW. Effects of Tetramethylpyrazine on Microglia Activation in Spinal Cord Compression Injury of Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1361-76. [PMID: 24228606 DOI: 10.1142/s0192415x13500912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Secondary mechanisms, including inflammation and microglia activation, serve as targets for the development and application of pharmacological strategies in the management of spinal cord injury (SCI). Tetramethylpyrazine (TMP), an active ingredient of Ligusticum wallichii (chuanxiong), has shown anti-inflammatory and neuroprotective effects against SCI. However, it remains uncertain whether the inflammation-suppressive effects of TMP play a modulatory role over microglia activation in SCI. The present study investigated the effects of TMP on microglia activation and pro-inflammatory cytokines in spinal cord compression injury in mice. For a real-time PCR measurement of pro-inflammatory cytokines, SCI was induced in mice by the clip compression method (30 g force, 1 min) and TMP (15 or 30 mg/kg, i.p.) was administered once, 30 minutes before the SCI induction. For immunohistochemistry, TMP (30 mg/kg, i.p.) treatment was given three times during the first 48 hours after the SCI. 30 mg/kg of TMP treatment reduced the up-regulation of TNF-α, IL-1β and COX-2 mRNA in the spinal tissue at four hours after the SCI induction. TMP also significantly attenuated microglia activation and neutrophil infiltration at 48 hours after the SCI induction. In addition, iNOS expression in the spinal tissue was attenuated with TMP treatment. These results suggest that TMP plays a modulatory role in microglia activation and may protect the spinal cord from or potentially delay secondary spinal cord injury.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ja-Young Moon
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ju-Won Seong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Sang-Hoon Song
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Young-Jin Cheong
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Chulhun Kang
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Nak-Won Sohn
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
38
|
Zhang Y, Gao F, Wu D, Moshayedi P, Zhang X, Ellamushi H, Yeh J, Priestley JV, Bo X. Lentiviral mediated expression of a NGF-soluble Nogo receptor 1 fusion protein promotes axonal regeneration. Neurobiol Dis 2013; 58:270-80. [DOI: 10.1016/j.nbd.2013.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022] Open
|
39
|
A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration. PLoS One 2013; 8:e71701. [PMID: 23990976 PMCID: PMC3747194 DOI: 10.1371/journal.pone.0071701] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022] Open
Abstract
Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC) injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9–T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early adaptive plasticity mechanisms underlying functional recovery as well as the capacity for human stem cell-derived neurons to integrate functionally into spinal circuits.
Collapse
|
40
|
Pneumaticos SG, Triantafyllopoulos GK, Giannoudis PV. Advances made in the treatment of thoracolumbar fractures: current trends and future directions. Injury 2013; 44:703-12. [PMID: 23287553 DOI: 10.1016/j.injury.2012.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 02/02/2023]
Abstract
Thoracolumbar fractures are common injuries after blunt trauma and are accompanied with significant morbidity, including neurologic deficit. Parallel to the evolution of initial management during the past few years, efforts have been concentrated on determining clear indications for surgical treatment, as there is no agreement over superiority of conservative or operative treatment. Various classification systems have been used for identifying those injuries requiring surgical intervention. Moreover, novel trends in surgical techniques, including minimal invasive surgery, implants and rehabilitation protocols have provided new, promising aspects regarding the treatment and outcomes of thoracolumbar fractures. The present review focuses on these recent advances.
Collapse
Affiliation(s)
- Spyros G Pneumaticos
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Athens, Greece.
| | | | | |
Collapse
|
41
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
42
|
Park YM, Lee WT, Bokara KK, Seo SK, Park SH, Kim JH, Yenari MA, Park KA, Lee JE. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. PLoS One 2013; 8:e53911. [PMID: 23349763 PMCID: PMC3549976 DOI: 10.1371/journal.pone.0053911] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2) weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI.
Collapse
Affiliation(s)
- Yu Mi Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kiran Kumar Bokara
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Seo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Midori A. Yenari
- Department of Neurology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- BK 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
43
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
44
|
Bos R, Sadlaoud K, Boulenguez P, Buttigieg D, Liabeuf S, Brocard C, Haase G, Bras H, Vinay L. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci U S A 2013; 110:348-53. [PMID: 23248270 PMCID: PMC3538195 DOI: 10.1073/pnas.1213680110] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In healthy adults, activation of γ-aminobutyric acid (GABA)(A) and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl(-)](i)), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E(IPSP), in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT(2A) receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT(2A)R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2).
Collapse
Affiliation(s)
- Rémi Bos
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Karina Sadlaoud
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Pascale Boulenguez
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Dorothée Buttigieg
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Cécile Brocard
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Hélène Bras
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, F-13385 cx5 Marseille, France
| |
Collapse
|
45
|
Abstract
Regaining motor function is of high priority to patients with spinal cord injury (SCI). A variety of electronic devices that interface with the brain or spinal cord, which have applications in neural prosthetics and neurorehabilitation, are in development. Owing to our advancing understanding of activity-dependent synaptic plasticity, new technologies to monitor, decode and manipulate neural activity are being translated to patient populations, and have demonstrated clinical efficacy. Brain-machine interfaces that decode motor intentions from cortical signals are enabling patient-driven control of assistive devices such as computers and robotic prostheses, whereas electrical stimulation of the spinal cord and muscles can aid in retraining of motor circuits and improve residual capabilities in patients with SCI. Next-generation interfaces that combine recording and stimulating capabilities in so-called closed-loop devices will further extend the potential for neuroelectronic augmentation of injured motor circuits. Emerging evidence suggests that integration of closed-loop interfaces into intentional motor behaviours has therapeutic benefits that outlast the use of these devices as prostheses. In this Review, we summarize this evidence and propose that several known plasticity mechanisms, operating in a complementary manner, might underlie the therapeutic effects that are achieved by closing the loop between electronic devices and the nervous system.
Collapse
|
46
|
Oudega M, Chao OY, Avison DL, Bronson RT, Buchser WJ, Hurtado A, Grimpe B. Systemic administration of a deoxyribozyme to xylosyltransferase-1 mRNA promotes recovery after a spinal cord contusion injury. Exp Neurol 2012; 237:170-9. [PMID: 22721770 DOI: 10.1016/j.expneurol.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
After spinal cord injury, proteoglycans with growth-inhibitory glycosaminoglycan (GAG-) side chains in scar tissue limit spontaneous axonal sprouting/regeneration. Interventions that reduce scar-related inhibition facilitate an axonal growth response and possibly plasticity-based spinal cord repair. Xylosyltransferase-1 (XT-1) is the enzyme that initiates GAG-chain formation. We investigated whether intravenous administration of a deoxyribozyme (DNA enzyme) to XT-1 mRNA (DNAXT-1as) would elicit plasticity after a clinically relevant contusion of the spinal cord in adult rats. Our data showed that systemic DNAXT-1as administration resulted in a significant increase in sensorimotor function and serotonergic axon presence caudal to the injury. DNAXT1as treatment did not cause pathological or toxicological side effects. Importantly, intravenous delivery of DNAXT-1as did not exacerbate contusion-induced neuropathic pain. Collectively, our data demonstrate that DNAXT-1as is a safe neurotherapeutic, which holds promise to become an integral component of therapies that aim to improve the quality of life of persons with spinal cord injury.
Collapse
Affiliation(s)
- Martin Oudega
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Coulon P, Bras H, Vinay L. Characterization of last-order premotor interneurons by transneuronal tracing with rabies virus in the neonatal mouse spinal cord. J Comp Neurol 2012; 519:3470-87. [PMID: 21800300 DOI: 10.1002/cne.22717] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We characterized the interneurons involved in the control of ankle extensor (triceps surae [TS] muscles) motoneurons (MNs) in the lumbar enlargement of mouse neonates by retrograde transneuronal tracing using rabies virus (RV). Examination of the kinetics of retrograde transneuronal transfer at sequential intervals post inoculation enabled us to determine the time window during which only the first-order interneurons, i.e., interneurons likely monosynaptically connected to MNs (last-order interneurons [loINs]) were RV-infected. The infection of the network resulted exclusively from a retrograde transport of RV along the motor pathway. About 80% of the loINs were observed ipsilaterally to the injection. They were distributed all along the lumbar enlargement, but the majority was observed in L4 and L5 segments where TS MNs were localized. Most loINs were distributed in laminae V-VII, whereas the most superficial laminae were devoid of RV infection. Contralaterally, commissural loINs were found essentially in lamina VIII of all lumbar segments. Groups of loINs were characterized by their chemical phenotypes using dual immunolabeling. Glycinergic neurons connected to TS MNs represented 50% of loINs ipsilaterally and 10% contralaterally. As expected, the ipsilateral glycinergic loINs included Renshaw cells, the most ventral neurons expressing calbindin. We also demonstrated a direct connection between a group of cholinergic interneurons observed ipsilaterally in L3 and the rostral part of L4, and TS MNs. To conclude, transneuronal tracing with RV, combined with an immunohistochemical detection of neuronal determinants, allows a very specific mapping of motor networks involved in the control of single muscles.
Collapse
Affiliation(s)
- Patrice Coulon
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France.
| | | | | |
Collapse
|
48
|
Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord. Brain Res 2012; 1456:22-35. [DOI: 10.1016/j.brainres.2012.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 01/28/2023]
|
49
|
Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JER, Hoffman MS, Vinit S, Mitchell GS. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci 2012; 32:3591-600. [PMID: 22423083 PMCID: PMC3349282 DOI: 10.1523/jneurosci.2908-11.2012] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 12/06/2011] [Accepted: 01/14/2012] [Indexed: 12/14/2022] Open
Abstract
Spinal injury disrupts connections between the brain and spinal cord, causing life-long paralysis. Most spinal injuries are incomplete, leaving spared neural pathways to motor neurons that initiate and coordinate movement. One therapeutic strategy to induce functional motor recovery is to harness plasticity in these spared neural pathways. Chronic intermittent hypoxia (CIH) (72 episodes per night, 7 nights) increases synaptic strength in crossed spinal synaptic pathways to phrenic motoneurons below a C2 spinal hemisection. However, CIH also causes morbidity (e.g., high blood pressure, hippocampal apoptosis), rendering it unsuitable as a therapeutic approach to chronic spinal injury. Less severe protocols of repetitive acute intermittent hypoxia may elicit plasticity without associated morbidity. Here we demonstrate that daily acute intermittent hypoxia (dAIH; 10 episodes per day, 7 d) induces motor plasticity in respiratory and nonrespiratory motor behaviors without evidence for associated morbidity. dAIH induces plasticity in spared, spinal pathways to respiratory and nonrespiratory motor neurons, improving respiratory and nonrespiratory (forelimb) motor function in rats with chronic cervical injuries. Functional improvements were persistent and were mirrored by neurochemical changes in proteins that contribute to respiratory motor plasticity after intermittent hypoxia (BDNF and TrkB) within both respiratory and nonrespiratory motor nuclei. Collectively, these studies demonstrate that repetitive acute intermittent hypoxia may be an effective and non-invasive means of improving function in multiple motor systems after chronic spinal injury.
Collapse
Affiliation(s)
- Mary R. Lovett-Barr
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Irawan Satriotomo
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Gillian D. Muir
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5B4
| | - Julia E. R. Wilkerson
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Michael S. Hoffman
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Stéphane Vinit
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, 53706, and
| |
Collapse
|
50
|
Kakinohana O, Hefferan MP, Miyanohara A, Nejime T, Marsala S, Juhas S, Juhasova J, Motlik J, Kucharova K, Strnadel J, Platoshyn O, Lazar P, Galik J, Vinay L, Marsala M. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity. PLoS One 2012; 7:e30561. [PMID: 22291989 PMCID: PMC3264568 DOI: 10.1371/journal.pone.0030561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023] Open
Abstract
Background Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABAB receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. Methods/Principal Findings Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. Conclusions/Significance These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments.
Collapse
Affiliation(s)
- Osamu Kakinohana
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Michael P. Hefferan
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Atsushi Miyanohara
- Gene Therapy Program and Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Tetsuya Nejime
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Karolina Kucharova
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jan Strnadel
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Peter Lazar
- Department of Breeding and Diseases of Game and Fish, University of Veterinary Medicine and Pharmacy, Komenskeho, Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University, Košice, Slovakia
| | - Laurent Vinay
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (UMR6196), Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
- * E-mail:
| |
Collapse
|