1
|
Lingwood C. Is cholesterol both the lock and key to abnormal transmembrane signals in Autism Spectrum Disorder? Lipids Health Dis 2024; 23:114. [PMID: 38643132 PMCID: PMC11032007 DOI: 10.1186/s12944-024-02075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/08/2024] [Indexed: 04/22/2024] Open
Abstract
Disturbances in cholesterol homeostasis have been associated with ASD. Lipid rafts are central in many transmembrane signaling pathways (including mTOR) and changes in raft cholesterol content affect their order function. Cholesterol levels are controlled by several mechanisms, including endoplasmic reticulum associated degradation (ERAD) of the rate limiting HMGCoA reductase. A new approach to increase cholesterol via temporary ERAD blockade using a benign bacterial toxin-derived competitor for the ERAD translocon is suggested.A new lock and key model for cholesterol/lipid raft dependent signaling is proposed in which the rafts provide both the afferent and efferent 'tumblers' across the membrane to allow 'lock and key' receptor transmembrane signals.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Departments of Biochemistry and Laboratory Medicine & Pathobiology, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
2
|
Yang L, Zhang J, Liu S, Zhang Y, Wang L, Wang X, Wang S, Li K, Wei M, Zhang C. Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules. eLife 2024; 13:e81884. [PMID: 38450720 PMCID: PMC10948142 DOI: 10.7554/elife.81884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs), and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to provide a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In the olfactory bulb, the SYT1-tdTomato signals are highly enriched in the glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Yanning Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Xiaotong Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
3
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
4
|
Esnafoglu E, Adıgüzel Ö. Association of BDNF levels with IQ: comparison of S100B and BDNF levels in typically developing children and subjects with neurologically normal nonsyndromic intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:1073-1084. [PMID: 34750906 DOI: 10.1111/jir.12896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and S100B are reported to play an important role in neurodevelopment and may contribute to developmental pathogenesis in neuropsychiatric diseases. In this study, we aimed to examine the possible roles of BDNF and S100B in the pathogenesis of nonsyndromic intellectual disability (NS-ID) and their relationship with cognitive performance. METHODS Thirty-three patients with intellectual disability (ID) and 30 typically developing children were compared. BDNF and S100B serum levels were measured with ELISA. The Wechsler Intelligence Scale for Children-Revised Short form (WISC-R) and Leiter intelligence test were administered to determine the intelligence levels of subjects. Leiter intelligence test was applied to 10 participants (30.31%) in the ID group because they had speech and communication problems. All other participants underwent WISC-R. RESULTS Brain-derived neurotrophic factor levels were found to be significantly low in the patient group (mean ± SD, 67.43 ± 29.74 pg/mL) compared with the control group (94.67 ± 32.55 pg/mL) (P = 0.002). When S100B is assessed, there was no significant difference found between the patient group (335.05 ± 279.89 pg/mL) and control group (295.30 ± 146.55 pg/mL) (P = 0.901). There was a significant positive correlation between BDNF and performance IQ (r = 0.424 and P = 0.001) in all participants. In addition, positive correlations were found between BDNF levels and initiating speech time (r = -0.369 and P = 0.003). CONCLUSIONS Brain-derived neurotrophic factor deficiency is proposed to have a possible role in the pathology of NS-ID. High BDNF levels may be associated with better cognitive performance.
Collapse
Affiliation(s)
- E Esnafoglu
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Ö Adıgüzel
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
5
|
Lin X, Liang Y, Herrera-Molina R, Montag D. Neuroplastin in Neuropsychiatric Diseases. Genes (Basel) 2021; 12:1507. [PMID: 34680901 PMCID: PMC8535836 DOI: 10.3390/genes12101507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms underlying neuropsychiatric and neurodegenerative diseases are insufficiently elucidated. A detailed understanding of these mechanisms may help to further improve medical intervention. Recently, intellectual abilities, creativity, and amnesia have been associated with neuroplastin, a cell recognition glycoprotein of the immunoglobulin superfamily that participates in synapse formation and function and calcium signaling. Data from animal models suggest a role for neuroplastin in pathways affected in neuropsychiatric and neurodegenerative diseases. Neuroplastin loss or disruption of molecular pathways related to neuronal processes has been linked to various neurological diseases, including dementia, schizophrenia, and Alzheimer's disease. Here, we review the molecular features of the cell recognition molecule neuroplastin, and its binding partners, which are related to neurological processes and involved in learning and memory. The emerging functions of neuroplastin may have implications for the treatment of diseases, particularly those of the nervous system.
Collapse
Affiliation(s)
- Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| | - Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| | - Rodrigo Herrera-Molina
- Combinatorial NeuroImaging (CNI), Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany;
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences (CBBS), D-39106 Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| |
Collapse
|
6
|
Coronel Arrechea C, Giolito ML, García IA, Soria G, Valdez Taubas J. A novel yeast-based high-throughput method for the identification of protein palmitoylation inhibitors. Open Biol 2021; 11:200415. [PMID: 34343464 PMCID: PMC8331233 DOI: 10.1098/rsob.200415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.
Collapse
Affiliation(s)
- Consuelo Coronel Arrechea
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Luz Giolito
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Gastón Soria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.,Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
7
|
Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life (Basel) 2021; 11:life11070683. [PMID: 34357055 PMCID: PMC8304287 DOI: 10.3390/life11070683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Collapse
|
8
|
Côté V, Knoth IS, Agbogba K, Vannasing P, Côté L, Major P, Michaud JL, Barlaam F, Lippé S. Differential auditory brain response abnormalities in two intellectual disability conditions: SYNGAP1 mutations and Down syndrome. Clin Neurophysiol 2021; 132:1802-1812. [PMID: 34130248 DOI: 10.1016/j.clinph.2021.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/06/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Altered sensory processing is common in intellectual disability (ID). Here, we study electroencephalographic responses to auditory stimulation in human subjects presenting a rare condition (mutations in SYNGAP1) which causes ID, epilepsy and autism. METHODS Auditory evoked potentials, time-frequency and inter-trial coherence analyses were used to compare subjects with SYNGAP1 mutations with Down syndrome (DS) and neurotypical (NT) participants (N = 61 ranging from three to 19 years of age). RESULTS Altered synchronization in the brain responses to sound were found in both ID groups. The SYNGAP1 mutations group showed less phase-locking in early time windows and lower frequency bands compared to NT, and in later time windows compared to NT and DS. Time-frequency analysis showed more power in beta-gamma in the SYNGAP1 group compared to NT participants. CONCLUSIONS This study indicated reduced synchronization as well as more high frequencies power in SYNGAP1 mutations, while maintained synchronization was found in the DS group. These results might reflect dysfunctional sensory information processing caused by excitation/inhibition imbalance, or an imperfect compensatory mechanism in SYNGAP1 mutations individuals. SIGNIFICANCE Our study is the first to reveal brain response abnormalities in auditory sensory processing in SYNGAP1 mutations individuals, that are distinct from DS, another ID condition.
Collapse
Affiliation(s)
- Valérie Côté
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Inga S Knoth
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | | | - Lucie Côté
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Philippe Major
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Fanny Barlaam
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Vemula SK, Malci A, Junge L, Lehmann AC, Rama R, Hradsky J, Matute RA, Weber A, Prigge M, Naumann M, Kreutz MR, Seidenbecher CI, Gundelfinger ED, Herrera-Molina R. The Interaction of TRAF6 With Neuroplastin Promotes Spinogenesis During Early Neuronal Development. Front Cell Dev Biol 2020; 8:579513. [PMID: 33363141 PMCID: PMC7755605 DOI: 10.3389/fcell.2020.579513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Correct brain wiring depends on reliable synapse formation. Nevertheless, signaling codes promoting synaptogenesis are not fully understood. Here, we report a spinogenic mechanism that operates during neuronal development and is based on the interaction of tumor necrosis factor receptor-associated factor 6 (TRAF6) with the synaptic cell adhesion molecule neuroplastin. The interaction between these proteins was predicted in silico and verified by co-immunoprecipitation in extracts from rat brain and co-transfected HEK cells. Binding assays show physical interaction between neuroplastin’s C-terminus and the TRAF-C domain of TRAF6 with a Kd value of 88 μM. As the two proteins co-localize in primordial dendritic protrusions, we used young cultures of rat and mouse as well as neuroplastin-deficient mouse neurons and showed with mutagenesis, knock-down, and pharmacological blockade that TRAF6 is required by neuroplastin to promote early spinogenesis during in vitro days 6-9, but not later. Time-framed TRAF6 blockade during days 6–9 reduced mEPSC amplitude, number of postsynaptic sites, synapse density and neuronal activity as neurons mature. Our data unravel a new molecular liaison that may emerge during a specific window of the neuronal development to determine excitatory synapse density in the rodent brain.
Collapse
Affiliation(s)
- Sampath Kumar Vemula
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ayse Malci
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lennart Junge
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Christin Lehmann
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ramya Rama
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Johannes Hradsky
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ricardo A Matute
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - André Weber
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Matthias Prigge
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael R Kreutz
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constanze I Seidenbecher
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
10
|
Côté V, Lalancette È, Knoth IS, Côté L, Agbogba K, Vannasing P, Major P, Barlaam F, Michaud J, Lippé S. Distinct patterns of repetition suppression in Fragile X syndrome, down syndrome, tuberous sclerosis complex and mutations in SYNGAP1. Brain Res 2020; 1751:147205. [PMID: 33189692 DOI: 10.1016/j.brainres.2020.147205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022]
Abstract
Sensory processing is the gateway to information processing and more complex processes such as learning. Alterations in sensory processing is a common phenotype of many genetic syndromes associated with intellectual disability (ID). It is currently unknown whether sensory processing alterations converge or diverge on brain responses between syndromes. Here, we compare for the first time four genetic conditions with ID using the same basic sensory learning paradigm. One hundred and five participants, aged between 3 and 30 years old, composing four clinical ID groups and one control group, were recruited: Fragile X syndrome (FXS; n = 14), tuberous sclerosis complex (TSC; n = 9), Down syndrome (DS; n = 19), SYNGAP1 mutations (n = 8) and Neurotypical controls (NT; n = 55)). All groups included female and male participants. Brain responses were recorded using electroencephalography (EEG) during an audio-visual task that involved three repetitions of the pronunciation of the phoneme /a/. Event Related Potentials (ERP) were used to: 1) compare peak-to-peak amplitudes between groups, 2) evaluate the presence of repetition suppression within each group and 3) compare the relative repetition suppression between groups. Our results revealed larger overall amplitudes in FXS. A repetition suppression (RS) pattern was found in the NT group, FXS and DS, suggesting spared repetition suppression in a multimodal task in these two ID syndromes. Interestingly, FXS presented a stronger RS on one peak-to-peak value in comparison with the NT. The results of our study reveal the distinctiveness of ERP and RS brain responses in ID syndromes. Further studies should be conducted to understand the molecular mechanisms involved in these patterns of responses.
Collapse
Affiliation(s)
- Valérie Côté
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Ève Lalancette
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Inga S Knoth
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Lucie Côté
- Neurology Program, CHU Sainte-Justine, Montréal, 3175 Chemin de la Côte-Sainte-Catherine, QC H3T 1C5, Canada.
| | - Kristian Agbogba
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Phetsamone Vannasing
- Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Philippe Major
- Neurology Program, CHU Sainte-Justine, Montréal, 3175 Chemin de la Côte-Sainte-Catherine, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Fanny Barlaam
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Jacques Michaud
- Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Sarah Lippé
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
11
|
Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, Cornelisse LN, Farrell RJ, Goldschmidt HL, Howrigan DP, Hussain NK, Imig C, de Jong APH, Jung H, Kohansalnodehi M, Kramarz B, Lipstein N, Lovering RC, MacGillavry H, Mariano V, Mi H, Ninov M, Osumi-Sutherland D, Pielot R, Smalla KH, Tang H, Tashman K, Toonen RFG, Verpelli C, Reig-Viader R, Watanabe K, van Weering J, Achsel T, Ashrafi G, Asi N, Brown TC, De Camilli P, Feuermann M, Foulger RE, Gaudet P, Joglekar A, Kanellopoulos A, Malenka R, Nicoll RA, Pulido C, de Juan-Sanz J, Sheng M, Südhof TC, Tilgner HU, Bagni C, Bayés À, Biederer T, Brose N, Chua JJE, Dieterich DC, Gundelfinger ED, Hoogenraad C, Huganir RL, Jahn R, Kaeser PS, Kim E, Kreutz MR, McPherson PS, Neale BM, O'Connor V, Posthuma D, Ryan TA, Sala C, Feng G, Hyman SE, Thomas PD, Smit AB, Verhage M. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019; 103:217-234.e4. [PMID: 31171447 PMCID: PMC6764089 DOI: 10.1016/j.neuron.2019.05.002] [Citation(s) in RCA: 525] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).
Collapse
Affiliation(s)
- Frank Koopmans
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Maria Andres-Alonso
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," ZMNH, University MC, Hamburg, 20251, Germany
| | - Andrea Byrnes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tony Cijsouw
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute and Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90333, USA
| | - L Niels Cornelisse
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hana L Goldschmidt
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel P Howrigan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Natasha K Hussain
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Arthur P H de Jong
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, IBS, and Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Mahdokht Kohansalnodehi
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Barbara Kramarz
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ruth C Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Harold MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Momchil Ninov
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Rainer Pielot
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Haiming Tang
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Katherine Tashman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruud F G Toonen
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Chiara Verpelli
- CNR Neuroscience Institute Milan and Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Kyoko Watanabe
- Department Complex Trait Genetics, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Jan van Weering
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nimra Asi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tyler C Brown
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, HHMI, Kavli Institute for Neuroscience, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Feuermann
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Rebecca E Foulger
- Functional Gene Annotation, Institute of Cardiovascular Science, UCL, London WC1E 6JF, UK
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Anoushka Joglekar
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Alexandros Kanellopoulos
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Robert Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Camila Pulido
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, South San Francisco, CA 94080, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hagen U Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1006 Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, 08025 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine and Neurobiology/Ageing Program, Life Sciences Institute, National University of Singapore and Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore
| | - Daniela C Dieterich
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, CBBS and Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Casper Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, IBS, and Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," ZMNH, University MC, Hamburg, 20251, Germany
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ben M Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vincent O'Connor
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Danielle Posthuma
- Department Complex Trait Genetics, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlo Sala
- CNR Neuroscience Institute Milan and Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven E Hyman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, CNCR, VU University and UMC Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Jiang W, Gong J, Rong Y, Yang X. A new co-culture method for identifying synaptic adhesion molecules involved in synapse formation. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0084-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
13
|
Inoue N, Nishizumi H, Naritsuka H, Kiyonari H, Sakano H. Sema7A/PlxnCl signaling triggers activity-dependent olfactory synapse formation. Nat Commun 2018; 9:1842. [PMID: 29743476 PMCID: PMC5943276 DOI: 10.1038/s41467-018-04239-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 11/17/2022] Open
Abstract
In mammals, neural circuits are formed based on a genetic program and further refined by neuronal activity during the neonatal period. We report that in the mouse olfactory system, the glomerular map is not merely refined but newly connected to second-order neurons by odorant-receptor-derived neuronal activity. Here, we analyzed a pair of molecules, Sema7A, expressed in olfactory sensory neurons (OSNs) in an activity-dependent manner, and PlxnC1, localized to dendrites of mitral/tufted (M/T) cells in the first week after birth. In Sema7A or PlxnC1 knockout (KO) mice, initiation of synapse formation and dendrite selection of M/T cells were perturbed. Reconstitution and rescue experiments demonstrated that Sema7A-PlxnC1 interaction is essential to form the post-synaptic assembly. Pharmacological blocking experiments indicated that synaptic transmission triggers primary dendrite selection by synaptic competition. We conclude that Sema7A signaling is key to inducing activity-dependent post-synapse events and dendrite selection in M/T-cells during the neonatal period.
Collapse
Affiliation(s)
- Nobuko Inoue
- Department of Brain Function, University of Fukui School of Medicine, 23-3 Shimo-aizuki, Matsuoka, Fukui, 910-1193, Japan
| | - Hirofumi Nishizumi
- Department of Brain Function, University of Fukui School of Medicine, 23-3 Shimo-aizuki, Matsuoka, Fukui, 910-1193, Japan
| | - Hiromi Naritsuka
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Kiyonari
- RIKEN Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hitoshi Sakano
- Department of Brain Function, University of Fukui School of Medicine, 23-3 Shimo-aizuki, Matsuoka, Fukui, 910-1193, Japan.
| |
Collapse
|
14
|
GIT1 regulates synaptic structural plasticity underlying learning. PLoS One 2018; 13:e0194350. [PMID: 29554125 PMCID: PMC5858814 DOI: 10.1371/journal.pone.0194350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/01/2018] [Indexed: 11/19/2022] Open
Abstract
The signaling scaffold protein GIT1 is expressed widely throughout the brain, but its function in vivo remains elusive. Mice lacking GIT1 have been proposed as a model for attention deficit-hyperactivity disorder, due to alterations in basal locomotor activity as well as paradoxical locomotor suppression by the psychostimulant amphetamine. Since we had previously shown that GIT1-knockout mice have normal locomotor activity, here we examined GIT1-deficient mice for ADHD-like behavior in more detail, and find neither hyperactivity nor amphetamine-induced locomotor suppression. Instead, GIT1-deficient mice exhibit profound learning and memory defects and reduced synaptic structural plasticity, consistent with an intellectual disability phenotype. We conclude that loss of GIT1 alone is insufficient to drive a robust ADHD phenotype in distinct strains of mice. In contrast, multiple learning and memory defects have been observed here and in other studies using distinct GIT1-knockout lines, consistent with a predominant intellectual disability phenotype related to altered synaptic structural plasticity.
Collapse
|
15
|
Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a Synaptic Adhesion Molecule that Promotes Synapse Formation. J Neurosci 2017; 37:9828-9843. [PMID: 28871037 DOI: 10.1523/jneurosci.0729-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
The proper formation of synapses-specialized unitary structures formed between two neurons-is critical to mediating information flow in the brain. Synaptic cell adhesion molecules (CAMs) are thought to participate in the initiation of the synapse formation process. However, in vivo functional analysis demonstrates that most well known synaptic CAMs regulate synaptic maturation and plasticity rather than synapse formation, suggesting that either CAMs work synergistically in the process of forming synapses or more CAMs remain to be found. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters in co-cultures of human embryonic kidney 293 cells and hippocampal neurons cultured from newborn mice regardless of gender. PTPRO was enriched in the mouse brain and localized to postsynaptic sites at excitatory synapses. The overexpression of PTPRO in cultured hippocampal neurons increased the number of synapses and the frequency of miniature EPSCs (mEPSCs). The knock-down (KD) of PTPRO expression in cultured neurons by short hairpin RNA (shRNA) reduced the number of synapses and the frequencies of the mEPSCs. The effects of shRNA KD were rescued by expressing either full-length PTPRO or a truncated PTPRO lacking the cytoplasmic domain. Consistent with these results, the N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in the co-culture assay. Our data show that PTPRO is a synaptic CAM that serves as a potent initiator of the formation of excitatory synapses.SIGNIFICANCE STATEMENT The formation of synapses is critical for the brain to execute its function and synaptic cell adhesion molecules (CAMs) play essential roles in initiating the formation of synapses. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters. Using loss-of-function and gain-of-function approaches, we show that PTPRO promotes the formation of excitatory synapses. The N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in cultured hippocampal neurons and the co-culture assay. Together, our data show that PTPRO is a synaptic CAM that serves as a potent initiator of synapse formation.
Collapse
|
16
|
Ulc A, Gottschling C, Schäfer I, Wegrzyn D, van Leeuwen S, Luft V, Reinhard J, Faissner A. Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biol Chem 2017; 398:663-675. [DOI: 10.1515/hsz-2016-0275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.
Collapse
|
17
|
Meziane H, Khelfaoui M, Morello N, Hiba B, Calcagno E, Reibel-Foisset S, Selloum M, Chelly J, Humeau Y, Riet F, Zanni G, Herault Y, Bienvenu T, Giustetto M, Billuart P. Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability. Hum Mol Genet 2016; 25:2314-2323. [PMID: 27146843 DOI: 10.1093/hmg/ddw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 01/09/2023] Open
Abstract
Loss of function mutations in human Oligophrenin1 (OPHN1) gene are responsible for syndromic intellectual disability (ID) associated with cerebellar hypoplasia and cerebral ventricles enlargement. Functional studies in rodent models suggest that OPHN1 linked ID is a consequence of abnormal synaptic transmission and shares common pathophysiological mechanisms with other cognitive disorders. Variants of this gene have been also identified in autism spectrum disorder and schizophrenia. The advanced understanding of the mechanisms underlying OPHN1-related ID, allowed us to develop a therapeutic approach targeting the Ras homolog gene family, member A (RHOA) signalling pathway and repurpose Fasudil- a well-tolerated Rho Kinase (ROCK) and Protein Kinase A (PKA) inhibitor- as a treatment of ID. We have previously shown ex-vivo its beneficial effect on synaptic transmission and plasticity in a mouse model of the OPHN1 loss of function. Here, we report that chronic treatment in adult mouse with Fasudil, is able to counteract vertical and horizontal hyperactivities, restores recognition memory and limits the brain ventricular dilatation observed in Ophn1-/y However, deficits in working and spatial memories are partially or not rescued by the treatment. These results highlight the potential of Fasudil treatment in synaptopathies and also the need for multiple therapeutic approaches especially in adult where brain plasticity is reduced.
Collapse
Affiliation(s)
- Hamid Meziane
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Malik Khelfaoui
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France Institut interdisciplinaire de neuroscience, CNRS UMR5297, University of Bordeaux, Bordeaux, 33077, France
| | - Noemi Morello
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | - Bassem Hiba
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Université de Bordeaux, 33077, Bordeaux, France
| | - Eleonora Calcagno
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | | | - Mohammed Selloum
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Jamel Chelly
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| | - Yann Humeau
- Institut interdisciplinaire de neuroscience, CNRS UMR5297, University of Bordeaux, Bordeaux, 33077, France
| | - Fabrice Riet
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Ginevra Zanni
- Department of Neurosciences, Laboratory of Molecular Medicine, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Yann Herault
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| | - Maurizio Giustetto
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | - Pierre Billuart
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| |
Collapse
|
18
|
Impaired Focal Adhesion Kinase-Grb2 Interaction during Elevated Activity in Hippocampal Neurons. Int J Mol Sci 2015; 16:15659-69. [PMID: 26184168 PMCID: PMC4519918 DOI: 10.3390/ijms160715659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/25/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Excitatory/inhibitory imbalances are implicated in many neurological disorders. Previously, we showed that chronically elevated network activity induces vulnerability in neurons due to loss of signal transducer and activator of transcription 3 (STAT3) signaling in response to the impairment of the serine/threonine kinase, extracellular-signal-regulated kinases 1/2 (Erk1/2) activation. However, how phosphorylation of Erk1/2 decreases during elevated neuronal activity was unknown. Here I show the pErk1/2 decrease induced by 4-aminopyridine (4-AP), an A-type potassium channel inhibitor can be blocked by a broad-spectrum matrix-metalloproteinase (MMP) inhibitor, FN-439. Surface expression levels of integrin β1 dramatically decrease when neurons are challenged by chronically elevated activity, which is reversed by FN-439. Treatment with 4-AP induces degradation of focal adhesion kinase (FAK), the mediator of integrin signaling. As a result, interactions between FAK and growth factor receptor-bound protein 2 (Grb2), the adaptor protein that mediates Erk1/2 activation by integrin, are severely impaired. Together, these data suggest the loss of integrin signaling during elevated activity causes vulnerability in neurons.
Collapse
|
19
|
Shioda N, Fukunaga K. [Molecular mechanisms of synapse pathology in ATR-X syndrome]. Nihon Yakurigaku Zasshi 2015; 145:174-7. [PMID: 25864826 DOI: 10.1254/fpj.145.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bernardinelli Y, Nikonenko I, Muller D. Structural plasticity: mechanisms and contribution to developmental psychiatric disorders. Front Neuroanat 2014; 8:123. [PMID: 25404897 PMCID: PMC4217507 DOI: 10.3389/fnana.2014.00123] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/14/2014] [Indexed: 01/31/2023] Open
Abstract
Synaptic plasticity mechanisms are usually discussed in terms of changes in synaptic strength. The capacity of excitatory synapses to rapidly modify the membrane expression of glutamate receptors in an activity-dependent manner plays a critical role in learning and memory processes by re-distributing activity within neuronal networks. Recent work has however also shown that functional plasticity properties are associated with a rewiring of synaptic connections and a selective stabilization of activated synapses. These structural aspects of plasticity have the potential to continuously modify the organization of synaptic networks and thereby introduce specificity in the wiring diagram of cortical circuits. Recent work has started to unravel some of the molecular mechanisms that underlie these properties of structural plasticity, highlighting an important role of signaling pathways that are also major candidates for contributing to developmental psychiatric disorders. We review here some of these recent advances and discuss the hypothesis that alterations of structural plasticity could represent a common mechanism contributing to the cognitive and functional defects observed in diseases such as intellectual disability, autism spectrum disorders and schizophrenia.
Collapse
Affiliation(s)
- Yann Bernardinelli
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| | - Irina Nikonenko
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| | - Dominique Muller
- Department of Basic Neurosciences, University of Geneva Medical School Geneva, Switzerland
| |
Collapse
|
21
|
Nieland TJF, Logan DJ, Saulnier J, Lam D, Johnson C, Root DE, Carpenter AE, Sabatini BL. High content image analysis identifies novel regulators of synaptogenesis in a high-throughput RNAi screen of primary neurons. PLoS One 2014; 9:e91744. [PMID: 24633176 PMCID: PMC3954765 DOI: 10.1371/journal.pone.0091744] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/15/2014] [Indexed: 11/29/2022] Open
Abstract
The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.
Collapse
Affiliation(s)
- Thomas J. F. Nieland
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- * E-mail: (TJFN); . edu (BLS)
| | - David J. Logan
- Imaging Platform at the Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jessica Saulnier
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Lam
- RNAi Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Caroline Johnson
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David E. Root
- RNAi Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Anne E. Carpenter
- Imaging Platform at the Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (TJFN); . edu (BLS)
| |
Collapse
|
22
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
23
|
Vogel-Ciernia A, Wood MA. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders. Neuropharmacology 2013; 80:18-27. [PMID: 24140580 DOI: 10.1016/j.neuropharm.2013.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/29/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023]
Abstract
Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders.
Collapse
Affiliation(s)
- Annie Vogel-Ciernia
- University of California, Irvine, Department of Neurobiology & Behavior, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, Irvine, CA, USA
| | - Marcelo A Wood
- University of California, Irvine, Department of Neurobiology & Behavior, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, Irvine, CA, USA.
| |
Collapse
|
24
|
Hayashi T, Yoshida T, Ra M, Taguchi R, Mishina M. IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway. PLoS One 2013; 8:e66254. [PMID: 23785489 PMCID: PMC3681934 DOI: 10.1371/journal.pone.0066254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/02/2013] [Indexed: 11/20/2022] Open
Abstract
Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons.
Collapse
Affiliation(s)
- Takashi Hayashi
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Moonjin Ra
- Department of Metabolome, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
25
|
Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci 2013; 33:5040-52. [PMID: 23486974 DOI: 10.1523/jneurosci.2896-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Membrane-associated guanylate kinases (MAGUKs), including SAP102, PSD-95, PSD-93, and SAP97, are scaffolding proteins for ionotropic glutamate receptors at excitatory synapses. MAGUKs play critical roles in synaptic plasticity; however, details of signaling roles for each MAGUK remain largely unknown. Here we report that SAP102 regulates cortical synapse development through the EphB and PAK signaling pathways. Using lentivirus-delivered shRNAs, we found that SAP102 and PSD-95, but not PSD-93, are necessary for excitatory synapse formation and synaptic AMPA receptor (AMPAR) localization in developing mouse cortical neurons. SAP102 knockdown (KD) increased numbers of elongated dendritic filopodia, which is often observed in mouse models and human patients with mental retardation. Further analysis revealed that SAP102 coimmunoprecipitated the receptor tyrosine kinase EphB2 and RacGEF Kalirin-7 in neonatal cortex, and SAP102 KD reduced surface expression and dendritic localization of EphB. Moreover, SAP102 KD prevented reorganization of actin filaments, synapse formation, and synaptic AMPAR trafficking in response to EphB activation triggered by its ligand ephrinB. Last, p21-activated kinases (PAKs) were downregulated in SAP102 KD neurons. These results demonstrate that SAP102 has unique roles in cortical synapse development by mediating EphB and its downstream PAK signaling pathway. Both SAP102 and PAKs are associated with X-linked mental retardation in humans; thus, synapse formation mediated by EphB/SAP102/PAK signaling in the early postnatal brain may be crucial for cognitive development.
Collapse
|
26
|
Loss of signal transducer and activator of transcription 3 (STAT3) signaling during elevated activity causes vulnerability in hippocampal neurons. J Neurosci 2013; 32:15511-20. [PMID: 23115188 DOI: 10.1523/jneurosci.2940-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronically altered levels of network activity lead to changes in the morphology and functions of neurons. However, little is known of how changes in neuronal activity alter the intracellular signaling pathways mediating neuronal survival. Here, we use primary cultures of rat hippocampal neurons to show that elevated neuronal activity impairs phosphorylation of the serine/threonine kinase, Erk1/2, and the activation of signal transducer and activator of transcription 3 (STAT3) by phosphorylation of serine 727. Chronically stimulated neurons go through apoptosis when they fail to activate another serine/threonine kinase, Akt. Gain- and loss-of-function experiments show that STAT3 plays the key role directly downstream from Erk1/2 as the alternative survival pathway. Elevated neuronal activity resulted in increased expression of a tumor suppressor, p53, and its target gene, Bax. These changes are observed in Kv4.2 knock-out mouse hippocampal neurons, which are also sensitive to the blockade of TrkB signaling, confirming that the alteration occurs in vivo. Thus, this study provides new insight into a mechanism by which chronic elevation of activity may cause neurodegeneration.
Collapse
|
27
|
Smalla KH, Klemmer P, Wyneken U. Isolation of the Postsynaptic Density: A Specialization of the Subsynaptic Cytoskeleton. THE CYTOSKELETON 2013. [DOI: 10.1007/978-1-62703-266-7_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Lanore F, Labrousse VF, Szabo Z, Normand E, Blanchet C, Mulle C. Deficits in morphofunctional maturation of hippocampal mossy fiber synapses in a mouse model of intellectual disability. J Neurosci 2012; 32:17882-93. [PMID: 23223307 PMCID: PMC6621665 DOI: 10.1523/jneurosci.2049-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 01/04/2023] Open
Abstract
The grik2 gene, coding for the kainate receptor subunit GluK2 (formerly GluR6), is associated with autism spectrum disorders and intellectual disability. Here, we tested the hypothesis that GluK2 could play a role in the appropriate maturation of synaptic circuits involved in learning and memory. We show that both the functional and morphological maturation of hippocampal mossy fiber to CA3 pyramidal cell (mf-CA3) synapses is delayed in mice deficient for the GluK2 subunit (GluK2⁻/⁻). In GluK2⁻/⁻ mice this deficit is manifested by a transient reduction in the amplitude of AMPA-EPSCs at a critical time point of postnatal development, whereas the NMDA component is spared. By combining multiple probability peak fluctuation analysis and immunohistochemistry, we have provided evidence that the decreased amplitude reflects a decrease in the quantal size per mf-CA3 synapse and in the number of active synaptic sites. Furthermore, we analyzed the time course of structural maturation of CA3 synapses by confocal imaging of YFP-expressing cells followed by tridimensional (3D) anatomical reconstruction of thorny excrescences and presynaptic boutons. We show that major changes in synaptic structures occur subsequently to the sharp increase in synaptic transmission, and more importantly that the course of structural maturation of synaptic elements is impaired in GluK2⁻/⁻ mice. This study highlights how a mutation in a gene linked to intellectual disability in the human may lead to a transient reduction of synaptic strength during postnatal development, impacting on the proper formation of neural circuits linked to memory.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Disease Models, Animal
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Postsynaptic Potentials/genetics
- Excitatory Postsynaptic Potentials/physiology
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Intellectual Disability/pathology
- Intellectual Disability/physiopathology
- Mice
- Mice, Knockout
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/growth & development
- Mossy Fibers, Hippocampal/pathology
- Mossy Fibers, Hippocampal/physiopathology
- N-Methylaspartate/pharmacology
- Presynaptic Terminals/pathology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/physiology
- Synapses/pathology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Frederic Lanore
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Virginie F. Labrousse
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Zsolt Szabo
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Elisabeth Normand
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Blanchet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, and
- CNRS UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
29
|
Fogel BL, Wexler E, Wahnich A, Friedrich T, Vijayendran C, Gao F, Parikshak N, Konopka G, Geschwind DH. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum Mol Genet 2012; 21:4171-86. [PMID: 22730494 PMCID: PMC3441119 DOI: 10.1093/hmg/dds240] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/21/2012] [Accepted: 06/14/2012] [Indexed: 02/05/2023] Open
Abstract
RNA splicing plays a critical role in the programming of neuronal differentiation and, consequently, normal human neurodevelopment, and its disruption may underlie neurodevelopmental and neuropsychiatric disorders. The RNA-binding protein, fox-1 homolog (RBFOX1; also termed A2BP1 or FOX1), is a neuron-specific splicing factor predicted to regulate neuronal splicing networks clinically implicated in neurodevelopmental disease, including autism spectrum disorder (ASD), but only a few targets have been experimentally identified. We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins. Downstream alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Several of these differentially expressed genes are further implicated in ASD and related neurodevelopmental diseases. Weighted gene co-expression network analysis demonstrates a high degree of connectivity among these disease-related genes, highlighting RBFOX1 as a key factor coordinating the regulation of both neurodevelopmentally important alternative splicing events and clinically relevant neuronal transcriptional programs in the development of human neurons.
Collapse
Affiliation(s)
| | | | | | | | | | - Fuying Gao
- Program in Neurogenetics, Department of Neurology
| | | | | | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology
- Department of Psychiatry and
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Abstract
The axon initial segment (AIS), with its dense clusters of voltage-gated ion channels decorating the axonal membrane, regulates action potential initiation and modulation. The AIS also functions as a barrier to maintain axodendritic polarity, and its precise axonal location contributes to the fine-tuning of neuronal excitability. Therefore, it is not surprising that mutations in AIS-related genes, disruption of the molecular organization of the AIS and altered AIS ion channel expression, function, location and/or density are emerging as key players in neurological disorders. Here, we consider the role of the AIS in nervous system disease and injury.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, BCM295, Houston, TX 77030, USA
| | | |
Collapse
|
31
|
Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proc Natl Acad Sci U S A 2012; 109:4116-21. [PMID: 22371566 DOI: 10.1073/pnas.1116560109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic transmission is mediated by a complex set of molecular events that must be coordinated in time and space. While many proteins that function at the synapse have been identified, the signaling pathways regulating these molecules are poorly understood. Pak5 (p21-activated kinase 5) is a brain-specific isoform of the group II Pak kinases whose substrates and roles within the central nervous system are largely unknown. To gain insight into the physiological roles of Pak5, we engineered a Pak5 mutant to selectively radiolabel its substrates in murine brain extract. Using this approach, we identified two novel Pak5 substrates, Pacsin1 and Synaptojanin1, proteins that directly interact with one another to regulate synaptic vesicle endocytosis and recycling. Pacsin1 and Synaptojanin1 were phosphorylated by Pak5 and the other group II Paks in vitro, and Pak5 phosphorylation promoted Pacsin1-Synaptojanin1 binding both in vitro and in vivo. These results implicate Pak5 in Pacsin1- and Synaptojanin1-mediated synaptic vesicle trafficking and may partially account for the cognitive and behavioral deficits observed in group II Pak-deficient mice.
Collapse
|
32
|
Lin L, Tran T, Hu S, Cramer T, Komuniecki R, Steven RM. RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans. PLoS One 2012; 7:e31499. [PMID: 22363657 PMCID: PMC3282746 DOI: 10.1371/journal.pone.0031499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
RhoGEF proteins activate the Rho family of small GTPases and thus play a key role in regulating fundamental cellular processes such as cell morphology and polarity, cell cycle progression and gene transcription. We identified a Caenorhabditis elegans RhoGEF protein, RHGF-2, as a binding partner of the C. elegans multi-PDZ domain scaffold protein MPZ-1 (MUPP1 in mammals). RHGF-2 exhibits significant identity to the mammalian RhoGEFs PLEKHG5/Tech/Syx and contains a class I C-terminal PDZ binding motif (SDV) that interacts most strongly to MPZ-1 PDZ domain eight. RHGF-2 RhoGEF activity is specific to the C. elegans RhoA homolog RHO-1 as determined by direct binding, GDP/GTP exchange and serum response element-driven reporter activity. rhgf-2 is an essential gene since rhgf-2 deletion mutants do not elongate during embryogenesis and hatch as short immobile animals that arrest development. Interestingly, the expression of a functional rhgf-2::gfp transgene appears to be exclusively neuronal and rhgf-2 overexpression results in loopy movement with exaggerated body bends. Transient expression of RHGF-2 in N1E-115 neuroblastoma cells prevents neurite outgrowth similar to constitutive RhoA activation in these cells. Together, these observations indicate neuronally expressed RHGF-2 is an essential RHO-1 specific RhoGEF that binds most strongly to MPZ-1 PDZ domain eight and is required for wild-type C. elegans morphology and growth.
Collapse
Affiliation(s)
- Li Lin
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Thuy Tran
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Shuang Hu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Todd Cramer
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Robert M. Steven
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome. J Neurosci 2012; 31:17637-48. [PMID: 22131424 DOI: 10.1523/jneurosci.4162-11.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential initiation in neurons. Recent studies have demonstrated activity-dependent regulation of the AIS, including homeostatic changes in AIS length, membrane excitability, and the localization of voltage-gated Na(+) channels. The neurodevelopmental disorder Angelman syndrome (AS) is usually caused by the deletion of small portions of the maternal copy of chromosome 15, which includes the UBE3A gene. A mouse model of AS has been generated and these mice exhibit multiple neurological abnormalities similar to those observed in humans. We examined intrinsic properties of pyramidal neurons in hippocampal area CA1 from AS model mice and observed alterations in resting membrane potential, threshold potential, and action potential amplitude. The altered intrinsic properties in the AS mice were correlated with significant increases in the expression of the α1 subunit of Na/K-ATPase (α1-NaKA), the Na(+) channel NaV1.6, and the AIS anchoring protein ankyrin-G, as well as an increase in length of the AIS. These findings are the first evidence for pathology of intrinsic membrane properties and AIS-specific changes in AS, a neurodevelopmental disorder associated with autism.
Collapse
|
34
|
Levenga J, Willemsen R. Perturbation of dendritic protrusions in intellectual disability. PROGRESS IN BRAIN RESEARCH 2012; 197:153-68. [PMID: 22541292 DOI: 10.1016/b978-0-444-54299-1.00008-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intellectual disability (ID) affects 1-3% of the general population and is defined by an intelligence quotient score under 70 and the presence of two or more adaptive behaviors. Learning and memory involves the change in the transmission efficacy at the synapse (synaptic plasticity). Synaptic plasticity is the ability of the connection, or synapse, between two functional neurons to change in strength. Many molecular mechanisms are involved in the change in synaptic strength, which can result in changes in spine morphology. Spines are specialized dendritic protrusions and their change in morphology is implicated in learning and memory. In several cases of ID, the link between spine abnormalities (abnormal in number, size, and shape) and ID is well described, including nonsyndromic ID and Down, Fragile X, and Rett syndromes. This chapter discusses the underlying molecular mechanisms of this altered spine phenotype.
Collapse
Affiliation(s)
- Josien Levenga
- Department of Physiology and Neuroscience, New York University, School of Medicine, New York, NY, USA
| | | |
Collapse
|
35
|
Synaptic dysfunction and intellectual disability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:433-49. [PMID: 22351067 DOI: 10.1007/978-3-7091-0932-8_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is a common and highly heterogeneous paediatric disorder with a very severe social impact. Intellectual disability can be caused by environmental and/or genetic factors. Although in the last two decades a number of genes have been discovered whose mutations cause mental retardation, we are still far from identifying the impact of these mutations on brain functions. Many of the genes mutated in ID code for several proteins with a variety of functions: chromatin remodelling, pre-/post-synaptic activity, and intracellular trafficking. The prevailing hypothesis suggests that the ID phenotype could emerge from abnormal cellular processing leading to pre- and/or post-synaptic dysfunction. In this chapter, we focus on the role of small GTPases and adhesion molecules, and we discuss the mechanisms through which they lead to synaptic network dysfunction.
Collapse
|
36
|
Hampson DR, Gholizadeh S, Pacey LKK. Pathways to Drug Development for Autism Spectrum Disorders. Clin Pharmacol Ther 2011; 91:189-200. [DOI: 10.1038/clpt.2011.245] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Depolarization gates spine calcium transients and spike-timing-dependent potentiation. Curr Opin Neurobiol 2011; 22:509-15. [PMID: 22051693 DOI: 10.1016/j.conb.2011.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 09/24/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022]
Abstract
Timing-dependent long-term potentiation (t-LTP) is induced when synaptic activity is immediately followed by one or more back-propagating action potentials (bAPs) in the postsynaptic cell. As a mechanistic explanation, it has been proposed that the bAP removes the Mg2+ block of synaptic NMDA receptors, allowing for rapid Ca2+ entry at the active synapse. Recent experimental studies suggest that this model is incomplete: NMDA receptor-based coincidence detection requires strong postsynaptic depolarization, usually provided by AMPA receptor currents. Apparently, the brief AMPA-EPSP does not only enable t-LTP, it is also responsible for the very narrow time window for t-LTP induction. The emerging consensus puts the spine in the center of coincidence detection, as active conductances on the spine together with the electrical resistance of the spine neck regulate the depolarization of the spine head and thus Ca2+ influx during pairing. A focus on postsynaptic voltage during synaptic activation not only encompasses spike-timing-dependent plasticity (STDP), but explains also the cooperativity and frequency-dependence of plasticity.
Collapse
|
38
|
Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA. A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 2011; 35:1363-96. [DOI: 10.1016/j.neubiorev.2011.02.015] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 02/01/2023]
|
39
|
Hampson DR, Adusei DC, Pacey LKK. The neurochemical basis for the treatment of autism spectrum disorders and Fragile X Syndrome. Biochem Pharmacol 2011; 81:1078-86. [PMID: 21333634 DOI: 10.1016/j.bcp.2011.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/29/2023]
Abstract
Autism spectrum disorders (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders that share overlapping behavioral characteristics. While FXS is known to result from a specific genetic mutation, the causes of the majority of cases of ASD are unknown. Animal models of FXS have revealed new insight into the cellular and biochemical changes that occur in the central nervous system in this disorder, while human genetic studies on individuals with autism have identified sets of genes that may increase susceptibility to the disorder. Together these discoveries suggest overlapping biochemical characteristics and reveal new directions for the potential development of pharmacological therapies that might prove useful in the treatment of both FXS and ASD. In particular, delayed synaptic maturation, abnormal synaptic structure and/or function and alterations in intracellular signaling pathways have been linked to the pathogenesis of FXS and ASD. Aberrations in GABA(A) receptor ion channels and the G-protein coupled metabotropic glutamate and GABA(B) transmitter systems are also linked to both disorders and these receptors are currently at the forefront of preclinical and clinical research into treatments for both autism and Fragile X Syndrome.
Collapse
Affiliation(s)
- David R Hampson
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S3M2, Canada.
| | | | | |
Collapse
|
40
|
Shi L, Fu AK, Ip NY. Multiple roles of the Rho GEF ephexin1 in synapse remodeling. Commun Integr Biol 2010; 3:622-4. [PMID: 21331259 DOI: 10.4161/cib.3.6.13481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022] Open
Abstract
Synapse remodeling, which involves changes in the synaptic structure and their molecular composition, is required for the maturation and refinement of neural circuits. Although synapse remodeling is known to be tightly dependent on the assembly of local actin cytoskeleton, how actin directs the structural changes of synapse and targeting of synaptic proteins are not fully understood. Recently, we identified ephexin1, a Rho guanine nucleotide exchange factor (GEF) that regulates actin dynamics, to play an essential role in the maturation and functioning of the mammalian neuromuscular junction (NMJ). We showed that ephexin1 regulates the synaptic organization of the neurotransmitter receptor acetylcholine receptor (AChR) clusters through RhoA-dependent actin reorganization. Interestingly, ephexin1 has been implicated in the regulation of postsynaptic structure as well as the presynaptic vesicle release at various types of synapses. Our findings thus establish a novel function of ephexin1 in synapse remodeling through regulating the synaptic targeting of neurotransmitter receptors, revealing a versatile role of ephexin1 at synapses.
Collapse
Affiliation(s)
- Lei Shi
- Department of Biochemistry; Molecular Neuroscience Center; State Key Laboratory of Molecular Neuroscience; The Hong Kong University of Science and Technology; Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
41
|
Cubelos B, Nieto M. Intrinsic programs regulating dendrites and synapses in the upper layer neurons of the cortex. Commun Integr Biol 2010; 3:483-6. [PMID: 21331220 DOI: 10.4161/cib.3.6.12755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Dendrites and spines are key regulators of neuronal function often affected in cognitive disorders. Neuronal subclasses are characterized by a wide range of dendritic morphologies that aid their specific functions. However, how subclass-specific dendritic trees arise during vertebrate development remains largely unknown. We have recently reported that the restricted expression of Cux1 and Cux2 genes in the upper layers of the cerebral cortex determines the specific morphology of dendrites and spines and the function of these neurons. Since Cux genes are the vertebrate homologs of Drosophila Cut, which specifies the dendritic morphologies of certain sensory neuron populations, our findings suggest that mechanisms of dendrite differentiation are conserved between Drosophila and mammals, which had yet to be demonstrated. Importantly, we found that Cux genes not only modulate dendritic branching, but also dendritic spine morphogenesis, the functional synapse and cognition. Dendritic spine stabilization was partly mediated by direct repression of genes of the Xlr family, previously implicated in cognitive defects in a model of Turner syndrome. Hence, our work indicates that neuronal subclass specific determinants may intrinsically affect synaptic activity beyond expected. The functions of Cux1 and Cux2 were additive and complement each other to establish the final pattern of the dendritic tree and the number and strength of the synapses. This work unravels novel mechanisms of dendritogenesis and synaptogenesis and illustrates how regulating dendritic structures contributes to the specialization of upper layer neurons. It will be interesting to dissect how these mechanisms regulate cortical activity, area specialization and cognitive functions.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Centro Nacional de Biotecnología; CSIC; Campus de Cantoblanco; Madrid, Spain
| | | |
Collapse
|