1
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
2
|
Carrillo GL, Su J, Cawley ML, Wei D, Gill SK, Blader IJ, Fox MA. Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection. J Neurochem 2024; 168:3365-3385. [PMID: 36683435 PMCID: PMC10363253 DOI: 10.1111/jnc.15770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jianmin Su
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Mikel L. Cawley
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Derek Wei
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Simran K. Gill
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Department of Psychology, Roanoke College, Salem, Virginia, 24153, USA
- NeuroSURF Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, 14203, USA
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| |
Collapse
|
3
|
Fernández-Linsenbarth I, Mijancos-Martínez G, Bachiller A, Núñez P, Rodríguez-González V, Beño-Ruiz-de-la-Sierra RM, Roig-Herrero A, Arjona-Valladares A, Poza J, Mañanas MÁ, Molina V. Relation between task-related activity modulation and cortical inhibitory function in schizophrenia and healthy controls: a TMS-EEG study. Eur Arch Psychiatry Clin Neurosci 2024; 274:837-847. [PMID: 38243018 PMCID: PMC11127880 DOI: 10.1007/s00406-023-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Schizophrenia has been associated with a reduced task-related modulation of cortical activity assessed through electroencephalography (EEG). However, to the best of our knowledge, no study so far has assessed the underpinnings of this decreased EEG modulation in schizophrenia. A possible substrate of these findings could be a decreased inhibitory function, a replicated finding in the field. In this pilot study, our aim was to explore the association between EEG modulation during a cognitive task and the inhibitory system function in vivo in a sample including healthy controls and patients with schizophrenia. We hypothesized that the replicated decreased task-related activity modulation during a cognitive task in schizophrenia would be related to a hypofunction of the inhibitory system. For this purpose, 27 healthy controls and 22 patients with schizophrenia (including 13 first episodes) performed a 3-condition auditory oddball task from which the spectral entropy modulation was calculated. In addition, cortical reactivity-as an index of the inhibitory function-was assessed by the administration of 75 monophasic transcranial magnetic stimulation single pulses over the left dorsolateral prefrontal cortex. Our results replicated the task-related cortical activity modulation deficit in schizophrenia patients. Moreover, schizophrenia patients showed higher cortical reactivity following transcranial magnetic stimulation single pulses over the left dorsolateral prefrontal cortex compared to healthy controls. Cortical reactivity was inversely associated with EEG modulation, supporting the idea that a hypofunction of the inhibitory system could hamper the task-related modulation of EEG activity.
Collapse
Affiliation(s)
- Inés Fernández-Linsenbarth
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain
| | - Gema Mijancos-Martínez
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Polytechnic University of Catalonia, Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
| | - Alejandro Bachiller
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Polytechnic University of Catalonia, Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
| | - Pablo Núñez
- Coma Science Group, CIGA-Consciousness, University of Liège, Liège, Belgium
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Biomaterials and Nanomedicine (BICER-BBN), CIBER of Bioengineering, Madrid, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Biomaterials and Nanomedicine (BICER-BBN), CIBER of Bioengineering, Madrid, Spain
| | | | - Alejandro Roig-Herrero
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain
- Imaging Processing Laboratory, University of Valladolid, Valladolid, Spain
| | - Antonio Arjona-Valladares
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Biomaterials and Nanomedicine (BICER-BBN), CIBER of Bioengineering, Madrid, Spain
- Instituto de Investigación en Matemáticas (IMUCA), University of Valladolid, Valladolid, Spain
| | - Miguel Ángel Mañanas
- Biomedical Engineering Research Centre (CREB), Department of Automatic Control (ESAII), Polytechnic University of Catalonia, Barcelona, Spain
- Institute of Research Sant Joan de Déu, Barcelona, Spain
- Biomaterials and Nanomedicine (BICER-BBN), CIBER of Bioengineering, Madrid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.
- Psychiatry Service, Clinical Hospital of Valladolid, Valladolid, Spain.
- Neurosciences Institute of Castilla y Léon (INCYL), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
4
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526850. [PMID: 36778499 PMCID: PMC9915678 DOI: 10.1101/2023.02.02.526850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used transgenic mouse lines to identify and characterize subtypes of SOM interneurons by morphological, electrophysiological and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electro-transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of type-specific mouse driver lines. To begin to address these issues we crossed Flp and Cre driver mouse lines and a dual-color combinatorial reporter, allowing experimental access to genetically defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye-labeled from the pial surface to identify layer 1-projecting neurons, and immunostained against several marker proteins, allowing correlation of genetic label, axonal target and marker protein expression in the same neurons. Using whole-cell recordings ex-vivo, we compared electrophysiological properties between intersectional and transgenic SOM subsets. We identified two layer 1-targeting intersectional subsets with non-overlapping marker protein expression and electrophysiological properties which, together with a previously characterized layer 4-targeting subtype, account for about half of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior. SIGNIFICANCE STATEMENT Inhibitory neurons are critically important for proper development and function of the cerebral cortex. Although a minority population, they are highly diverse, which poses a major challenge to investigating their contributions to cortical computations and animal and human behavior. As a step towards understanding this diversity we crossed genetically modified mouse lines to allow detailed examination of genetically-defined groups of the most diverse inhibitory subtype, somatostatin-containing interneurons. We identified and characterized three somatostatin subtypes in the deep cortical layers with distinct combinations of anatomical, neurochemical and electrophysiological properties. Future studies could now use these genetic tools to examine how these different subtypes are integrated into the cortical circuit and what roles they play during sensory, cognitive or motor behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Hang Hu
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| | - Ariel Agmon
- Dept. of Neuroscience, West Virginia University School of Medicine, WV Rockefeller Neuroscience Institute, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Gandhi T, Liu CC, Adeyelu TT, Canepa CR, Lee CC. Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Front Behav Neurosci 2023; 17:1114789. [PMID: 36998537 PMCID: PMC10043266 DOI: 10.3389/fnbeh.2023.1114789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Autism spectrum disorders (ASDs) arise from altered development of the central nervous system, and manifest behaviorally as social interaction deficits and restricted and repetitive behaviors. Alterations to parvalbumin (PV) expressing interneurons have been implicated in the neuropathological and behavioral deficits in autism. In addition, perineuronal nets (PNNs), specialized extracellular matrix structures that enwrap the PV-expressing neurons, also may be altered, which compromises neuronal function and susceptibility to oxidative stress. In particular, the prefrontal cortex (PFC), which regulates several core autistic traits, relies on the normal organization of PNNs and PV-expressing cells, as well as other neural circuit elements. Consequently, we investigated whether PNNs and PV-expressing cells were altered in the PFC of the CNTNAP2 knockout mouse model of ASD and whether these contributed to core autistic-like behaviors in this model system. We observed an overexpression of PNNs, PV-expressing cells, and PNNs enwrapping PV-expressing cells in adult CNTNAP2 mice. Transient digestion of PNNs from the prefrontal cortex (PFC) by injection of chondroitinase ABC in CNTNAP2 mutant mice rescued some of the social interaction deficits, but not the restricted and repetitive behaviors. These findings suggest that the neurobiological regulation of PNNs and PVs in the PFC contribute to social interaction behaviors in neurological disorders including autism.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Tolulope T. Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Cade R. Canepa
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Shu S, Xu SY, Ye L, Liu Y, Cao X, Jia JQ, Bian HJ, Liu Y, Zhu XL, Xu Y. Prefrontal parvalbumin interneurons deficits mediate early emotional dysfunction in Alzheimer's disease. Neuropsychopharmacology 2023; 48:391-401. [PMID: 36229597 PMCID: PMC9750960 DOI: 10.1038/s41386-022-01435-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and has an insidious onset. Exploring the characteristics and mechanism of the early symptoms of AD plays a critical role in the early diagnosis and intervention of AD. Here we found that depressive-like behavior and short-term spatial memory dysfunction appeared in APPswe/PS1dE9 mice (AD mice) as early as 9-11 weeks of age. Electrophysiological analysis revealed excitatory/inhibitory (E/I) imbalance in the prefrontal cortex (PFC). This E/I imbalance was induced by significant reduction in the number and activity of parvalbumin interneurons (PV+ INs) in this region. Furthermore, optogenetic and chemogenetic activation of residual PV+ INs effectively ameliorated depressive-like behavior and rescued short-term spatial memory in AD mice. These results suggest the PFC is selectively vulnerable in the early stage of AD and prefrontal PV+ INs deficits play a key role in the occurrence and development of early symptoms of AD.
Collapse
Affiliation(s)
- Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Jun-Qiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Hui-Jie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China.
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
7
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
8
|
Medalla M, Chang W, Ibañez S, Guillamon-Vivancos T, Nittmann M, Kapitonava A, Busch SE, Moore TL, Rosene DL, Luebke JI. Layer-specific pyramidal neuron properties underlie diverse anterior cingulate cortical motor and limbic networks. Cereb Cortex 2022; 32:2170-2196. [PMID: 34613380 PMCID: PMC9113240 DOI: 10.1093/cercor/bhab347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.
Collapse
Affiliation(s)
- Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Wayne Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Teresa Guillamon-Vivancos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Instituto de Neurociencias de Alicante, Alicante, Spain
| | - Mathias Nittmann
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Anastasia Kapitonava
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Silas E Busch
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
9
|
Sun C, Lin KC, Yeung CY, Ching ESC, Huang YT, Lai PY, Chan CK. Revealing directed effective connectivity of cortical neuronal networks from measurements. Phys Rev E 2022; 105:044406. [PMID: 35590680 DOI: 10.1103/physreve.105.044406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
In the study of biological networks, one of the major challenges is to understand the relationships between network structure and dynamics. In this paper, we model in vitro cortical neuronal cultures as stochastic dynamical systems and apply a method that reconstructs directed networks from dynamics [Ching and Tam, Phys. Rev. E 95, 010301(R) (2017)2470-004510.1103/PhysRevE.95.010301] to reveal directed effective connectivity, namely, the directed links and synaptic weights, of the neuronal cultures from voltage measurements recorded by a multielectrode array. The effective connectivity so obtained reproduces several features of cortical regions in rats and monkeys and has similar network properties as the synaptic network of the nematode Caenorhabditis elegans, whose entire nervous system has been mapped out. The distribution of the incoming degree is bimodal and the distributions of the average incoming and outgoing synaptic strength are non-Gaussian with long tails. The effective connectivity captures different information from the commonly studied functional connectivity, estimated using statistical correlation between spiking activities. The average synaptic strengths of excitatory incoming and outgoing links are found to increase with the spiking activity in the estimated effective connectivity but not in the functional connectivity estimated using the same sets of voltage measurements. These results thus demonstrate that the reconstructed effective connectivity can capture the general properties of synaptic connections and better reveal relationships between network structure and dynamics.
Collapse
Affiliation(s)
- Chumin Sun
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - K C Lin
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - C Y Yeung
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Emily S C Ching
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yu-Ting Huang
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
| | - C K Chan
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| |
Collapse
|
10
|
Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits 2022; 15:795325. [PMID: 35087381 PMCID: PMC8786743 DOI: 10.3389/fncir.2021.795325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex-the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)-are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons-identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)-expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
Collapse
Affiliation(s)
- Alexandra Tsolias
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
11
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
12
|
Cai W, Liu SS, Li BM, Zhang XH. Presynaptic HCN channels constrain GABAergic synaptic transmission in pyramidal cells of the medial prefrontal cortex. Biol Open 2021; 11:272636. [PMID: 34709375 PMCID: PMC8966777 DOI: 10.1242/bio.058840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.
Collapse
Affiliation(s)
- Wei Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shu-Su Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Bao-Ming Li
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xue-Han Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Huang Y, Jiang H, Zheng Q, Fok AHK, Li X, Lau CG, Lai CSW. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 2021; 26:2533-2552. [PMID: 33473150 DOI: 10.1038/s41380-020-01005-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE's beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE's beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.
Collapse
Affiliation(s)
- Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hehai Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoyang Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Geoffrey Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Carrillo GL, Ballard VA, Glausen T, Boone Z, Teamer J, Hinkson CL, Wohlfert EA, Blader IJ, Fox MA. Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses. Glia 2020; 68:1968-1986. [PMID: 32157745 PMCID: PMC7423646 DOI: 10.1002/glia.23816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.
Collapse
Affiliation(s)
- Gabriela L. Carrillo
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Valerie A. Ballard
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Roanoke Valley Governor’s School, Roanoke VA 24015
| | - Taylor Glausen
- Department of Microbiology and Immunology, University at Buffalo, Buffalo NY 14260
| | - Zack Boone
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
| | - Joseph Teamer
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- FBRI neuroSURF Program, Roanoke, VA 24016
| | - Cyrus L. Hinkson
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | | | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo NY 14260
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
15
|
Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020; 40:7421-7435. [PMID: 32847968 DOI: 10.1523/jneurosci.0613-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.
Collapse
|
16
|
ErbB4 Null Mice Display Altered Mesocorticolimbic and Nigrostriatal Dopamine Levels as well as Deficits in Cognitive and Motivational Behaviors. eNeuro 2020; 7:ENEURO.0395-19.2020. [PMID: 32354758 PMCID: PMC7242816 DOI: 10.1523/eneuro.0395-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Natural genetic variants of Neuregulin1 (NRG1) and its cognate receptor ErbB4 are associated with a risk for schizophrenia. Whereas most studies on NRG1-ErbB4 signaling have focused on GABAergic interneurons, ErbB4 is also expressed by midbrain dopaminergic neurons where it modulates extracellular dopamine (DA) levels. Here, we report that extracellular steady-state levels of DA are reduced in the medial prefrontal cortex (mPFC; −65%), hippocampus (−53%) and nucleus accumbens (NAc; −35%), but are elevated in the dorsal striatum (+25%) of ErbB4 knock-out mice (ErbB4 KOs) relative to wild-type controls. This pattern of DA imbalance recapitulates the reported prefrontal cortical reduction and striatal increase of DA levels in schizophrenia patients. Next, we report on a battery of behavioral tasks used to evaluate locomotor, cognitive and motivational behaviors in ErbB4 KOs relative to controls. We found that ErbB4 KOs are hyperactive in a novel open field but not in their familiar home cage, are more sensitive to amphetamine, perform poorly in the T-maze and novel object recognition (NOR) tasks, exhibit reduced spatial learning and memory on the Barnes maze, and perform markedly worse in conditioned place preference (CPP) tasks when associating cued-reward palatable food with location. However, we found that the poor performance of ErbB4 KOs in CPP are likely due to deficits in spatial memory, instead of reward seeking, as ErbB4 KOs are more motivated to work for palatable food rewards. Our findings indicate that ErbB4 signaling affects tonic DA levels and modulates a wide array of behavioral deficits relevant to psychiatric disorders, including schizophrenia.
Collapse
|
17
|
Yamamuro K, Yoshino H, Ogawa Y, Okamura K, Nishihata Y, Makinodan M, Saito Y, Kishimoto T. Juvenile Social Isolation Enhances the Activity of Inhibitory Neuronal Circuits in the Medial Prefrontal Cortex. Front Cell Neurosci 2020; 14:105. [PMID: 32477068 PMCID: PMC7235301 DOI: 10.3389/fncel.2020.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
During brain development, the design of primary neural networks is primarily determined by environmental stimuli after their formation. In particular, the juvenile period is critical, during which neuronal circuits that consist of both excitatory and inhibitory neurons are remodeled by experience. Social isolation during the juvenile period profoundly affects brain development and contributes to the development of psychiatric disorders. We previously reported that 2 weeks of social isolation after weaning reduced excitatory synaptic inputs and intrinsic excitability in a subtype of layer 5 pyramidal cells, which we defined as prominent h-current (PH) cells, in the medial prefrontal cortex (mPFC) in mice. However, it remains unclear how juvenile social isolation affects inhibitory neuronal circuits that consist of pyramidal cells and interneurons. We found that 2 weeks of social isolation after weaning increased inhibitory synaptic inputs exclusively onto PH cells with a concomitant deterioration of action potential properties. Although social isolation did not alter the inhibitory synaptic release mechanisms or the number of inhibitory functional synapses on PH cells, we found that it increased the intrinsic excitability of fast-spiking (FS) interneurons with less excitatory synaptic inputs and more h-current. Our findings indicate that juvenile social isolation enhances the activity of inhibitory neuronal circuits in the mPFC.
Collapse
Affiliation(s)
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Yoichi Ogawa
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Yosuke Nishihata
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
18
|
Disruption of gamma-delta relationship related to working memory deficits in first-episode psychosis. J Neural Transm (Vienna) 2019; 127:103-115. [PMID: 31858267 DOI: 10.1007/s00702-019-02126-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2019] [Indexed: 12/22/2022]
Abstract
Working memory (WM) deficits constitute a core symptom of schizophrenia. Inadequacy of WM maintenance in schizophrenia has been reported to reflect abnormalities in the excitation/inhibition (E/I) balance between pyramidal neurons and parvalbumin basket cells, which may explain alterations of the dynamics of gamma and delta oscillations. To address this issue, we assessed event-related gamma (35-45 Hz) and delta (0.5-4 Hz) oscillatory responses in a visual n-back WM task in patients with first-episode psychosis (FEP) and healthy controls (HC). Periodicity analyses of oscillations were computed to explore the relationship between the psychiatric status and the WM load-related processes reflected by each frequency range. The correspondence between nested delta-gamma oscillations was estimated to assess the strength of the frontal E/I balance. In HC, gamma oscillations were synchronized by the stimulus in a 50-150 ms time range for all tasks, and periodicity of the delta cycle was comparable between the tasks. In addition, synchronization of gamma oscillations in HC occurred at the maximal descending phase of the delta cycle half-period, supporting the coexistence of delta-nested gamma oscillations. Compared with controls, FEP patients showed a lack of gamma synchronization independently of the nature of the task, and the period of delta oscillation increased significantly with the difficulty of the WM task. We thus demonstrated in FEP an inability to encode multiple items in short-term memory associated with abnormalities in the relationship between oscillations related to the difficulty of the WM task. These results argue in favor of a dysfunction of the E/I balance in psychosis.
Collapse
|
19
|
Alhourani A, Fish KN, Wozny TA, Sudhakar V, Hamilton RL, Richardson RM. GABA bouton subpopulations in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy. J Neurophysiol 2019; 123:392-406. [PMID: 31800363 DOI: 10.1152/jn.00523.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Medically intractable temporal lobe epilepsy is a devastating disease, for which surgical removal of the seizure onset zone is the only known cure. Multiple studies have found evidence of abnormal dentate gyrus network circuitry in human mesial temporal lobe epilepsy (MTLE). Principal neurons within the dentate gyrus gate entorhinal input into the hippocampus, providing a critical step in information processing. Crucial to that role are GABA-expressing neurons, particularly parvalbumin (PV)-expressing basket cells (PVBCs) and chandelier cells (PVChCs), which provide strong, temporally coordinated inhibitory signals. Alterations in PVBC and PVChC boutons have been described in epilepsy, but the value of these studies has been limited due to methodological hurdles associated with studying human tissue. We developed a multilabel immunofluorescence confocal microscopy and a custom segmentation algorithm to quantitatively assess PVBC and PVChC bouton densities and to infer relative synaptic protein content in the human dentate gyrus. Using en bloc specimens from MTLE subjects with and without hippocampal sclerosis, paired with nonepileptic controls, we demonstrate the utility of this approach for detecting cell-type specific synaptic alterations. Specifically, we found increased density of PVBC boutons, while PVChC boutons decreased significantly in the dentate granule cell layer of subjects with hippocampal sclerosis compared with matched controls. In contrast, bouton densities for either PV-positive cell type did not differ between epileptic subjects without sclerosis and matched controls. These results may explain conflicting findings from previous studies that have reported both preserved and decreased PV bouton densities and establish a new standard for quantitative assessment of interneuron boutons in epilepsy.NEW & NOTEWORTHY A state-of-the-art, multilabel immunofluorescence confocal microscopy and custom segmentation algorithm technique, developed previously for studying synapses in the human prefrontal cortex, was modified to study the hippocampal dentate gyrus in specimens surgically removed from patients with temporal lobe epilepsy. The authors discovered that chandelier and basket cell boutons in the human dentate gyrus are differentially altered in mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ahmad Alhourani
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas A Wozny
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Vivek Sudhakar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - R Mark Richardson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Tong J, Huang J, Luo X, Chen S, Cui Y, An H, Xiu M, Tan S, Wang Z, Yuan Y, Zhang J, Yang F, Li CSR, Hong LE, Tan Y. Elevated serum anti-NMDA receptor antibody levels in first-episode patients with schizophrenia. Brain Behav Immun 2019; 81:213-219. [PMID: 31201848 PMCID: PMC6754783 DOI: 10.1016/j.bbi.2019.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has shown that N-methyl-D-aspartate (NMDA) glutamate receptors (NMDAR) are implicated in the pathophysiology of neurological and psychiatric disorders, and that patients with NMDAR antibody encephalitis develop psychopathological symptoms. Therefore, we hypothesized that NMDAR antibodies play a key role in the etiology of schizophrenia. In this study, we enrolled 110 first-episode patients with schizophrenia (FEP) and 50 healthy controls (HC). Cognitive function and psychopathology were assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) and Positive and Negative Syndrome Scale (PANSS), respectively. NMDAR antibody levels were measured using enzyme-linked immunosorbent assay. Our results showed that FEP with schizophrenia exhibited cognitive deficits in all domains of the MCCB and had elevated levels of serum anti-NMDAR antibody compared with the healthy controls (9.2 ± 3.5 vs. 7.3 ± 2.9 ng/ml, t = 3.10, p = 0.002). Furthermore, serum antibody levels were positively correlated with PANSS positive, negative and total score, and inversely correlated with performances of verbal learning and memory, working memory, speed of processing and MCCB total score in the patient group. These results indicate that elevated levels of NMDAR antibody may play a role in the pathogenesis of schizophrenia, leading to NMDAR dysfunction, thereby inducing symptoms of psychosis and cognitive impairment. Therefore, NMDAR antibodies may serve as a biomarker and provide a new avenue for treatment of schizophrenia.
Collapse
Affiliation(s)
- Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P.R. China
| | - Huimei An
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Ying Yuan
- School of Foreign Languages and Literature, Tianjin University, Tianjin, P. R. China
| | - Jianxin Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, P. R. China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China.
| |
Collapse
|
21
|
Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G. Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors. PLoS One 2019; 14:e0210094. [PMID: 30615651 PMCID: PMC6322723 DOI: 10.1371/journal.pone.0210094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
GABAA receptors (GABAA-Rs) play critical roles in brain development and synchronization of neural network activity. While synaptic GABAA-Rs can exert rapid inhibition, the extrasynaptic GABAA-Rs can tonically inhibit neuronal activity due to constant activation by ambient GABA. The δ subunit-containing GABAA-Rs are expressed abundantly in the cerebellum, hippocampus and thalamus to mediate the major tonic inhibition in the brain. While electrophysiological and pharmacological properties of the δ-GABAA-Rs have been well characterized, the molecular interacting partners of the δ-GABAA-Rs are not clearly defined. Here, using a yeast two-hybrid screening assay, we identified transthyretin (TTR) as a novel regulatory molecule for the δ-GABAA-Rs. Knockdown of TTR in cultured cerebellar granule neurons significantly decreased the δ receptor expression; whereas overexpressing TTR in cortical neurons increased the δ receptor expression. Electrophysiological analysis confirmed that knockdown or overexpression of TTR in cultured neurons resulted in a corresponding decrease or increase of tonic currents. Furthermore, in vivo analysis of TTR-/- mice revealed a significant decrease of the surface expression of the δ-GABAA-Rs in cerebellar granule neurons. Together, our studies identified TTR as a novel regulator of the δ-GABAA-Rs.
Collapse
Affiliation(s)
- Li Zhou
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Xin Tang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Xinyi Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Yuting Bai
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
22
|
Parvalbumin-containing GABA cells and schizophrenia: experimental model based on targeted gene delivery through adeno-associated viruses. Behav Pharmacol 2018; 28:630-641. [PMID: 29120948 DOI: 10.1097/fbp.0000000000000360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Understanding the contribution of transmitter systems in behavioural pharmacology has a long tradition. Multiple techniques such as transmitter-specific lesions, and also localized administration of pharmacological toxins including agonists and antagonists of selected receptors have been applied. More recently, modern genetic tools have permitted cell-type selective interferences, for example by expression of light-sensitive channels followed by optogenetic stimulation in behaviourally meaningful settings or by engineered channels termed DREADDS that respond to peripherally administered drugs. We here took a similar approach and employed a Cre recombinase-dependent viral delivery system (adeno-associated virus) to express tetanus toxin light chain (TeLc) and thus, block neural transmission specifically in parvalbumin-positive (PV+) neurons of the limbic and infralimbic prefrontal circuitry. PV-TeLc cohorts presented with normal circadian activity as recorded in PhenoTyper home cages, but a reproducible increase in anxiety was extracted in both the open field and light-dark box. Interestingly, working memory assessed in a spontaneous alternation Y-maze task was impaired in PV-TeLc mice. We also recorded local field potentials from a separate cohort and found no global changes in brain activity, but found a behaviourally relevant lack of modulation in the gamma spectral band. These anomalies are reminiscent of endophenotypes of schizophrenia and appear to be critically dependent on GABAergic signalling through PV neurones. At the same time, these observations validate the use of viral vector delivery and its expression in Cre-lines as a useful tool for understanding the role of selective components of the brain in behaviour and the underpinning physiology.
Collapse
|
23
|
Cardarelli RA, Martin R, Jaaro-Peled H, Sawa A, Powell EM, O'Donnell P. Dominant-Negative DISC1 Alters the Dopaminergic Modulation of Inhibitory Interneurons in the Mouse Prefrontal Cortex. MOLECULAR NEUROPSYCHIATRY 2018; 4:20-29. [PMID: 29998115 DOI: 10.1159/000488030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/26/2018] [Indexed: 11/19/2022]
Abstract
A truncated disrupted in schizophrenia 1 (Disc1) gene increases the risk of psychiatric disorders, probably affecting cortical interneurons. Here, we sought to determine whether this cell population is affected in mice carrying a truncated (Disc1) allele (DN-DISC1). We utilized whole cell recordings to assess electrophysiological properties and modulation by dopamine (DA) in two classes of interneurons: fast-spiking (FS) and low threshold-spiking (LTS) interneurons in wild-type and DN-DISC1 mice. In DN-DISC1 mice, FS interneurons, but not LTS interneurons, exhibited altered action potentials. Further, the perineuronal nets that surround FS interneurons exhibited abnormal morphology in DN-DISC1 mice, and the DA modulation of this cell type was altered in DN-DISC1 mice. We conclude that early-life manipulation of a gene associated with risk of psychiatric disease can result in dysfunction, but not loss, of specific GABAergic interneurons. The resulting alteration of excitatory-inhibitory balance is a critical element in DISC1 pathophysiology.
Collapse
Affiliation(s)
- Ross A Cardarelli
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Rolicia Martin
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Hanna Jaaro-Peled
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Powell
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| | - Patricio O'Donnell
- Program in Neuroscience, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland, USA.,Department of Psychiatry, University of Maryland Medical School, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Xu MY, Wong AHC. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol Sin 2018; 39:733-753. [PMID: 29565038 DOI: 10.1038/aps.2017.172] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/25/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is considered primarily as a cognitive disorder. However, functional outcomes in schizophrenia are limited by the lack of effective pharmacological and psychosocial interventions for cognitive impairment. GABA (gamma-aminobutyric acid) interneurons are the main inhibitory neurons in the central nervous system (CNS), and they play a critical role in a variety of pathophysiological processes including modulation of cortical and hippocampal neural circuitry and activity, cognitive function-related neural oscillations (eg, gamma oscillations) and information integration and processing. Dysfunctional GABA interneuron activity can disrupt the excitatory/inhibitory (E/I) balance in the cortex, which could represent a core pathophysiological mechanism underlying cognitive dysfunction in schizophrenia. Recent research suggests that selective modulation of the GABAergic system is a promising intervention for the treatment of schizophrenia-associated cognitive defects. In this review, we summarized evidence from postmortem and animal studies for abnormal GABAergic neurotransmission in schizophrenia, and how altered GABA interneurons could disrupt neuronal oscillations. Next, we systemically reviewed a variety of up-to-date subtype-selective agonists, antagonists, positive and negative allosteric modulators (including dual allosteric modulators) for α5/α3/α2 GABAA and GABAB receptors, and summarized their pro-cognitive effects in animal behavioral tests and clinical trials. Finally, we also discuss various representative histone deacetylases (HDAC) inhibitors that target GABA system through epigenetic modulations, GABA prodrug and presynaptic GABA transporter inhibitors. This review provides important information on current potential GABA-associated therapies and future insights for development of more effective treatments.
Collapse
|
25
|
Kotzadimitriou D, Nissen W, Paizs M, Newton K, Harrison PJ, Paulsen O, Lamsa K. Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor-Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK. eNeuro 2018; 5:ENEURO.0418-17.2018. [PMID: 29740596 PMCID: PMC5938717 DOI: 10.1523/eneuro.0418-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/21/2022] Open
Abstract
Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmission in diverse inhibitory interneuron populations. One putative risk gene is neuregulin 1 (NRG1), which signals via the receptor tyrosine kinase ErbB4, itself a schizophrenia risk gene. The type I isoform of NRG1 shows increased expression in the brain of SZ patients, and ErbB4 is enriched in GABAergic interneurons expressing parvalbumin (PV) or cholecystokinin (CCK). Here, we investigated ErbB4 expression and synaptic transmission in interneuronal populations of the hippocampus of transgenic mice overexpressing NRG1 type I (NRG1tg-type-I mice). Immunohistochemical analyses confirmed that ErbB4 was coexpressed with either PV or CCK in hippocampal interneurons, but we observed a reduced number of ErbB4-immunopositive interneurons in the NRG1tg-type-I mice. NMDAR-mediated currents in interneurons expressing PV (including PV+ basket cells) or CCK were reduced in NRG1tg-type-I mice compared to their littermate controls. We found no difference in AMPA receptor-mediated currents. Optogenetic activation (5 pulses at 20 Hz) of local glutamatergic fibers revealed a decreased NMDAR-mediated contribution to disynaptic GABAergic inhibition of pyramidal cells in the NRG1tg-type-I mice. GABAergic synaptic transmission from either PV+ or CCK+ interneurons, and glutamatergic transmission onto pyramidal cells, did not significantly differ between genotypes. The results indicate that synaptic NMDAR-mediated signaling in hippocampal interneurons is sensitive to chronically elevated NGR1 type I levels. This may contribute to the pathophysiological consequences of increased NRG1 expression in SZ.
Collapse
Affiliation(s)
| | - Wiebke Nissen
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Melinda Paizs
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Karri Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| |
Collapse
|
26
|
Heslin K, Coutellier L. Npas4 deficiency and prenatal stress interact to affect social recognition in mice. GENES BRAIN AND BEHAVIOR 2018; 17:e12448. [PMID: 29227584 DOI: 10.1111/gbb.12448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene-by-environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock-out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild-type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4.
Collapse
Affiliation(s)
- K Heslin
- Department of Psychology, The Ohio State University, Columbus, Ohio
| | - L Coutellier
- Department of Psychology, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Marked bias towards spontaneous synaptic inhibition distinguishes non-adapting from adapting layer 5 pyramidal neurons in the barrel cortex. Sci Rep 2017; 7:14959. [PMID: 29097689 PMCID: PMC5668277 DOI: 10.1038/s41598-017-14971-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
Pyramidal neuron subtypes differ in intrinsic electrophysiology properties and dendritic morphology. However, do different pyramidal neuron subtypes also receive synaptic inputs that are dissimilar in frequency and in excitation/inhibition balance? Unsupervised clustering of three intrinsic parameters that vary by cell subtype – the slow afterhyperpolarization, the sag, and the spike frequency adaptation – split layer 5 barrel cortex pyramidal neurons into two clusters: one of adapting cells and one of non-adapting cells, corresponding to previously described thin- and thick-tufted pyramidal neurons, respectively. Non-adapting neurons presented frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) three- and two-fold higher, respectively, than those of adapting neurons. The IPSC difference between pyramidal subtypes was activity independent. A subset of neurons were thy1-GFP positive, presented characteristics of non-adapting pyramidal neurons, and also had higher IPSC and EPSC frequencies than adapting neurons. The sEPSC/sIPSC frequency ratio was higher in adapting than in non-adapting cells, suggesting a higher excitatory drive in adapting neurons. Therefore, our study on spontaneous synaptic inputs suggests a different extent of synaptic information processing in adapting and non-adapting barrel cortex neurons, and that eventual deficits in inhibition may have differential effects on the excitation/inhibition balance in adapting and non-adapting neurons.
Collapse
|
28
|
Strength and Diversity of Inhibitory Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex. J Neurosci 2017; 37:4717-4734. [PMID: 28381592 DOI: 10.1523/jneurosci.3757-16.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/18/2017] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) of the primate play distinctive roles in the mediation of complex cognitive tasks. Compared with the LPFC, integration of information by the ACC can span longer timescales and requires stronger engagement of inhibitory processes. Here, we reveal the synaptic mechanism likely to underlie these differences using in vitro patch-clamp recordings of synaptic events and multiscale imaging of synaptic markers in rhesus monkeys. Although excitatory synaptic signaling does not differ, the level of synaptic inhibition is much higher in ACC than LPFC layer 3 pyramidal neurons, with a significantly higher frequency (∼6×) and longer duration of inhibitory synaptic currents. The number of inhibitory synapses and the ratio of cholecystokinin to parvalbumin-positive inhibitory inputs are also significantly higher in ACC compared with LPFC neurons. Therefore, inhibition is functionally and structurally more robust and diverse in ACC than in LPFC, resulting in a lower excitatory: inhibitory ratio and a greater dynamic range for signal integration and network oscillation by the ACC. These differences in inhibitory circuitry likely underlie the distinctive network dynamics in ACC and LPC during normal and pathological brain states.SIGNIFICANCE STATEMENT The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) play temporally distinct roles during the execution of cognitive tasks (rapid working memory during ongoing tasks and long-term memory to guide future action, respectively). Compared with LPFC-mediated tasks, ACC-mediated tasks can span longer timescales and require stronger engagement of inhibition. This study shows that inhibitory signaling is much more robust and diverse in the ACC than in the LPFC. Therefore, there is a lower excitatory: inhibitory synaptic ratio and a greater dynamic range for signal integration and oscillatory behavior in the ACC. These significant differences in inhibitory synaptic transmission form an important basis for the differential timing of cognitive processing by the LPFC and ACC in normal and pathological brain states.
Collapse
|
29
|
Luoni A, Richetto J, Longo L, Riva MA. Chronic lurasidone treatment normalizes GABAergic marker alterations in the dorsal hippocampus of mice exposed to prenatal immune activation. Eur Neuropsychopharmacol 2017; 27:170-179. [PMID: 27939135 DOI: 10.1016/j.euroneuro.2016.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022]
Abstract
Prenatal maternal infection represents a risk factor for the development of psychopathologic conditions later in life. Clinical evidence is also supported by animal models in which the vulnerability to develop a schizophrenic-like phenotype likely originates from inflammatory processes as early as in the womb. Prenatal immune challenge, for example, induces a variety of long-term behavioral alterations in mice, such as deficits in recognition and spatial working memory, perseverative behaviors and social impairments, which are relevant to different symptom clusters of schizophrenia. Here, we investigated the modulation of GABAergic markers in the dorsal and ventral hippocampus of adult mice exposed to late prenatal immune challenge with the viral mimetic Poly(I:C) (polyriboinosinic-polyribocytidilic-acid) at gestational day 17, and we evaluated the ability of chronic treatment with the multi-receptor antipsychotic lurasidone to modulate the alterations produced by maternal infection. Poly(I:C) mice show a significant reduction of key GABAergic markers, such as GAD67 and parvalbumin, specifically in the dorsal hippocampus, which were normalized by chronic lurasidone administration. Moreover, chronic drug administration increases the expression of the pool of brain derived neurotrophic factor (BDNF) transcripts with the long 3'-UTR as well as the levels of mature BDNF protein in the synaptosomal compartment, selectively in dorsal hippocampus. All in all, our findings demonstrate that lurasidone is effective in ameliorating molecular abnormalities observed in Poly(I:C) mice, providing further support to the neuroplastic properties of this multi-receptor antipsychotic drug.
Collapse
Affiliation(s)
- A Luoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - J Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - L Longo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | - M A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
30
|
Su J, Cole J, Fox MA. Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon. ASN Neuro 2017; 9:1759091416689020. [PMID: 28090790 PMCID: PMC5298462 DOI: 10.1177/1759091416689020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023] Open
Abstract
Perineuronal nets (PNNs) are lattice-like supramolecular assemblies of extracellular glycoproteins that surround subsets of neuronal cell bodies in the mammalian telencephalon. PNNs emerge at the end of the critical period of brain development, limit neuronal plasticity in the adult brain, and are lost in a variety of complex brain disorders diseases, including schizophrenia. The link between PNNs and schizophrenia led us to question whether neuronally expressed extracellular matrix (ECM) molecules associated with schizophrenia contribute to the assembly of these specialized supramolecular ECM assemblies. We focused on collagen XIX-a minor, nonfibrillar collagen expressed by subsets of telencephalic interneurons. Genetic alterations in the region encoding collagen XIX have been associated with familial schizophrenia, and loss of this collagen in mice results in altered inhibitory synapses, seizures, and the acquisition of schizophrenia-related behaviors. Here, we demonstrate that loss of collagen XIX also results in a reduction of telencephalic PNNs. Loss of PNNs was accompanied with reduced levels of aggrecan (Acan), a major component of PNNs. Despite reduced levels of PNN constituents in collagen XIX-deficient mice ( col19a1-/-), we failed to detect reduced expression of genes encoding these ECM molecules. Instead, we discovered a widespread upregulation of extracellular proteases capable of cleaving Acan and other PNN constituents in col19a1-/- brains. Taken together, these results suggest a mechanism by which the loss of collagen XIX speeds PNN degradation and they identify a novel mechanism by which the loss of collagen XIX may contribute to complex brain disorders.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James Cole
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Michael A. Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
31
|
Castillo-Gómez E, Pérez-Rando M, Vidueira S, Nacher J. Polysialic Acid Acute Depletion Induces Structural Plasticity in Interneurons and Impairs the Excitation/Inhibition Balance in Medial Prefrontal Cortex Organotypic Cultures. Front Cell Neurosci 2016; 10:170. [PMID: 27445697 PMCID: PMC4925659 DOI: 10.3389/fncel.2016.00170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/10/2016] [Indexed: 01/08/2023] Open
Abstract
The structure and function of the medial prefrontal cortex (mPFC) is affected in several neuropsychiatric disorders, including schizophrenia and major depression. Recent studies suggest that imbalances between excitatory and inhibitory activity (E/I) may be responsible for this cortical dysfunction and therefore, may underlie the core symptoms of these diseases. This E/I imbalance seems to be correlated with alterations in the plasticity of interneurons but there is still scarce information on the mechanisms that may link these phenomena. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate, because it modulates the neuronal plasticity of interneurons and its expression is altered in schizophrenia and major depression. To address this question, we have developed an in vitro model using mPFC organotypic cultures of transgenic mice displaying fluorescent spiny interneurons. After enzymatic depletion of PSA, the spine density of interneurons, the number of synaptic puncta surrounding pyramidal neuron somata and the E/I ratio were strongly affected. These results point to the polysialylation of NCAM as an important factor in the maintenance of E/I balance and the structural plasticity of interneurons. This may be particularly relevant for better understanding the etiology of schizophrenia and major depression.
Collapse
Affiliation(s)
- Esther Castillo-Gómez
- Neurobiology Unit/BIOTECMED, Cell Biology Department, Universitat de ValènciaValencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM): Spanish National Network for Research in Mental HealthMadrid, Spain
| | - Marta Pérez-Rando
- Neurobiology Unit/BIOTECMED, Cell Biology Department, Universitat de València Valencia, Spain
| | - Sandra Vidueira
- Neurobiology Unit/BIOTECMED, Cell Biology Department, Universitat de València Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit/BIOTECMED, Cell Biology Department, Universitat de ValènciaValencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM): Spanish National Network for Research in Mental HealthMadrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVAValencia, Spain
| |
Collapse
|
32
|
Bolkan SS, Carvalho Poyraz F, Kellendonk C. Using human brain imaging studies as a guide toward animal models of schizophrenia. Neuroscience 2016; 321:77-98. [PMID: 26037801 PMCID: PMC4664583 DOI: 10.1016/j.neuroscience.2015.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points toward the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients.
Collapse
Affiliation(s)
- S S Bolkan
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - F Carvalho Poyraz
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - C Kellendonk
- Department of Pharmacology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
33
|
Honeycutt JA, Keary Iii KM, Kania VM, Chrobak JJ. Developmental Age Differentially Mediates the Calcium-Binding Protein Parvalbumin in the Rat: Evidence for a Selective Decrease in Hippocampal Parvalbumin Cell Counts. Dev Neurosci 2016; 38:105-14. [PMID: 27002731 DOI: 10.1159/000444447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
Local circuit GABAergic neurons, including parvalbumin (PV)-containing basket cells, likely play a key role in the development, physiology, and pathology of neocortical circuits. Regionally selective and well-defined decreases in PV have been described in human postmortem schizophrenic brain tissue in both the hippocampus and prefrontal cortex. Animal models of schizophreniform dysfunction following acute and/or chronic ketamine treatment have also demonstrated decreases in PV expression. Conflicting reports with respect to PV immunoreactivity following acute and chronic ketamine treatments in rodents question the utility of using PV as a biological marker of pathology-related dysfunction. The current literature lacks sufficient and systematic characterization of normative PV expression in pharmacologically and behaviorally naïve rodent tissue. In order to understand developmental changes in PV and its putative role in neuropathology, we examined the baseline distribution of the number of cells expressing this protein at distinct developmental ages. The present study examined PV cell counts across the septotemporal axis of the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus, as well as within the retrosplenial, somatosensory, and prefrontal cortices, in 1-, 6-, and 12-month-old naïve rats. Our findings suggest that the hippocampal PV+ cell number significantly decreases as a function of age with considerable regional (CA1, CA3, and DG) and septotemporal variation, a finding that was specific to the hippocampus. Additionally, we observed a modest increase in PV cell number within the prefrontal (anterior cingulate) cortex, which is in line with findings indicating a delayed developmental maturation of this region. The present work highlights decreases in PV+ cell counts within the hippocampus across development, and points to the need for a greater understanding of the role of PV and local circuit developmental changes, as well as consideration of their development when modeling developmentally related neuropathological disorders (e.g. schizophrenia, autism).
Collapse
Affiliation(s)
- Jennifer A Honeycutt
- Department of Psychology, Division of Behavioral Neuroscience, University of Connecticut, Storrs, Conn., USA
| | | | | | | |
Collapse
|
34
|
Kaplan ES, Cooke SF, Komorowski RW, Chubykin AA, Thomazeau A, Khibnik LA, Gavornik JP, Bear MF. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity. eLife 2016; 5:e11450. [PMID: 26943618 PMCID: PMC4786407 DOI: 10.7554/elife.11450] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/03/2016] [Indexed: 01/03/2023] Open
Abstract
The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity.
Collapse
Affiliation(s)
- Eitan S Kaplan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Sam F Cooke
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Robert W Komorowski
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue University, West Lafayette, United States
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Lena A Khibnik
- Department of Neurology, Sanford Health, Fargo, United States
| | | | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
35
|
De Stasi AM, Farisello P, Marcon I, Cavallari S, Forli A, Vecchia D, Losi G, Mantegazza M, Panzeri S, Carmignoto G, Bacci A, Fellin T. Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cereb Cortex 2016; 26:1778-94. [PMID: 26819275 PMCID: PMC4785957 DOI: 10.1093/cercor/bhw002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a−/+ mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfunction at the circuit level in vivo are unknown. Here, we investigated whether Scn1a−/+ mice showed alterations in cortical network function. We found that various forms of spontaneous network activity were similar in Scn1a−/+ during the pre-epileptic period compared with wild-type (WT) in vivo. Importantly, in brain slices from Scn1a−/+ mice, the excitability of parvalbumin (PV) and somatostatin (SST) interneurons was reduced, epileptiform activity propagated more rapidly, and complex synaptic changes were observed. However, in vivo, optogenetic reduction of firing in PV or SST cells in WT mice modified ongoing network activities, and juxtasomal recordings from identified PV and SST interneurons showed unaffected interneuronal firing during spontaneous cortical dynamics in Scn1a−/+ compared with WT. These results demonstrate that interneuronal hypoexcitability is not observed in Scn1a−/+ mice during spontaneous activities in vivo and suggest that additional mechanisms may contribute to homeostatic rearrangements and the pathogenesis of SMEI.
Collapse
Affiliation(s)
- Angela Michela De Stasi
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Pasqualina Farisello
- Optical Approaches to Brain Function Laboratory Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy
| | - Iacopo Marcon
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Stefano Cavallari
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Gabriele Losi
- CNR Neuroscience Institute and University of Padova, Padova, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275 and University of Nice-Sophia Antipolis, Valbonne, France
| | - Stefano Panzeri
- Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Alberto Bacci
- Fondazione EBRI "Rita Levi-Montalcini", Roma, Italy Sorbonne Universités UPMC Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France ICM-Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory Neural Coding Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
36
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|
37
|
Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 2015; 167:98-107. [PMID: 25583246 PMCID: PMC4724170 DOI: 10.1016/j.schres.2014.12.026] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-d-aspartate receptor (NMDAR) function. By highlighting postmortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Samuel M. Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donald C. Goff
- Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Michael M. Halassa
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
,Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,To whom correspondence should be addressed:
| |
Collapse
|
38
|
Wolff AR, Bilkey DK. Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals. Brain Behav Immun 2015; 48:232-43. [PMID: 25843370 DOI: 10.1016/j.bbi.2015.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/12/2015] [Accepted: 03/24/2015] [Indexed: 12/27/2022] Open
Abstract
Prenatal maternal immune activation (MIA) is a risk factor for several developmental neuropsychiatric disorders, including autism, bipolar disorder and schizophrenia. Adults with these disorders display alterations in memory function that may result from changes in the structure and function of the hippocampus. In the present study we use an animal model to investigate the effect that a transient prenatal maternal immune activation episode has on the spatially-modulated firing activity of hippocampal neurons in adult animals. MIA was induced in pregnant rat dams with a single injection of the synthetic cytokine inducer polyinosinic:polycytidylic acid (poly I:C) on gestational day 15. Control dams were given a saline equivalent. Firing activity and local field potentials (LFPs) were recorded from the CA1 region of the adult male offspring of these dams as they moved freely in an open arena. Most neurons displayed characteristic spatially-modulated 'place cell' firing activity and while there was no between-group difference in mean firing rate between groups, place cells had smaller place fields in MIA-exposed animals when compared to control-group cells. Cells recorded in MIA-group animals also displayed an altered firing-phase synchrony relationship to simultaneously recorded LFPs. When the floor of the arena was rotated, the place fields of MIA-group cells were more likely to shift in the same direction as the floor rotation, suggesting that local cues may have been more salient for these animals. In contrast, place fields in control group cells were more likely to shift firing position to novel spatial locations suggesting an altered response to contextual cues. These findings show that a single MIA intervention is sufficient to change several important characteristics of hippocampal place cell activity in adult offspring. These changes could contribute to the memory dysfunction that is associated with MIA, by altering the encoding of spatial context and by disrupting plasticity mechanisms that are dependent on spike timing synchrony.
Collapse
Affiliation(s)
- Amy R Wolff
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
39
|
Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex. Neural Plast 2015; 2015:753179. [PMID: 26161272 PMCID: PMC4487934 DOI: 10.1155/2015/753179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/14/2015] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC) in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28) or P58 on the density of parvalbumin (PV), calbindin (CB), and calretinin (CR) neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6). Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity.
Collapse
|
40
|
Loss of cyclin-dependent kinase 5 from parvalbumin interneurons leads to hyperinhibition, decreased anxiety, and memory impairment. J Neurosci 2015; 35:2372-83. [PMID: 25673832 DOI: 10.1523/jneurosci.0969-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.
Collapse
|
41
|
Li W, Ghose S, Gleason K, Begovic’ A, Perez J, Bartko J, Russo S, Wagner AD, Selemon L, Tamminga CA. Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. Am J Psychiatry 2015; 172:373-82. [PMID: 25585032 PMCID: PMC4457341 DOI: 10.1176/appi.ajp.2014.14010123] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In schizophrenia, hippocampal perfusion is increased and declarative memory function is degraded. Based on an a priori model of hippocampal dysfunction in schizophrenic psychosis, the authors postulated molecular and cellular changes in CA3 consistent with increased NMDA receptor signaling. METHOD Postmortem hippocampal subfield tissue (CA3, CA1) from subjects with schizophrenia and nonpsychiatric comparison subjects was analyzed using Western blotting and Golgi histochemistry to examine the hypothesized outcomes. RESULTS The GluN2B-containing NMDA receptors (GluN2B/GluN1) and their associated postsynaptic membrane protein PSD95 were both increased in schizophrenia in CA3 tissue, but not in CA1 tissue. Quantitative analyses of Golgi-stained hippocampal neurons showed an increase in spine density on CA3 pyramidal cell apical dendrites (stratum radiatum) and an increase in the number of thorny excrescences. CONCLUSIONS The hippocampal data are consistent with increased excitatory signaling in CA3 and/or with an elevation in silent synapses in CA3, a state that may contribute to an increase in long-term potentiation in CA3 with subsequent stimulation and "unsilencing." These changes are plausibly associated with increased associational activity in CA3, with degraded declarative memory function, and with formation of false memories with psychotic content. The influence of these hyperactive hippocampal projections on targets in the limbic neocortex could contribute to components of schizophrenia manifestations in other cerebral regions.
Collapse
Affiliation(s)
- Wei Li
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Subroto Ghose
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Kelly Gleason
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anita Begovic’
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Jessica Perez
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - John Bartko
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Scott Russo
- Neuroscience Department, Mount Sinai Medical School, NY NY 10029
| | - Anthony D. Wagner
- Department of Psychology and Neuroscience Program, Stanford University, Palo Alto, CA 94305
| | - Lynn Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Carol A. Tamminga
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
42
|
Vandenberg A, Piekarski DJ, Caporale N, Munoz-Cuevas FJ, Wilbrecht L. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent. Front Neural Circuits 2015; 9:5. [PMID: 25762898 PMCID: PMC4329800 DOI: 10.3389/fncir.2015.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs) in Layer 5 cell-types in the mouse anterior cingulate (Cg) across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral Cg and ipsilateral pons. We found that YFP− neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21–25). YFP− neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21–25 vs. P40–50), which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB) signaling during P23–50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs). Our data suggest that the maturation of inhibitory inputs onto Layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.
Collapse
Affiliation(s)
- Angela Vandenberg
- Neuroscience Graduate Program, University of California San Francisco, CA, USA
| | - David J Piekarski
- Department of Psychology, University of California Berkeley, CA, USA
| | - Natalia Caporale
- Department of Psychology, University of California Berkeley, CA, USA
| | | | - Linda Wilbrecht
- Department of Psychology, University of California Berkeley, CA, USA ; Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| |
Collapse
|
43
|
Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci 2015; 34:13549-66. [PMID: 25274830 DOI: 10.1523/jneurosci.2021-14.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling.
Collapse
|
44
|
Kirli KK, Ermentrout GB, Cho RY. Computational study of NMDA conductance and cortical oscillations in schizophrenia. Front Comput Neurosci 2014; 8:133. [PMID: 25368573 PMCID: PMC4201161 DOI: 10.3389/fncom.2014.00133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI), incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), and γ-aminobutyric acid (GABA) synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz) as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.
Collapse
Affiliation(s)
- Kübra Komek Kirli
- Program in Neural Computation, Carnegie Mellon University Pittsburgh, PA, USA ; Center for the Neural Basis of Cognition Pittsburgh, PA, USA
| | - G B Ermentrout
- Center for the Neural Basis of Cognition Pittsburgh, PA, USA ; Department of Mathematics, University of Pittsburgh Pittsburgh, PA, USA
| | - Raymond Y Cho
- Center for the Neural Basis of Cognition Pittsburgh, PA, USA ; Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA ; Department of Psychiatry, University of Texas Health Science Center at Houston Houston, TX, USA
| |
Collapse
|
45
|
Zhong P, Yan Z. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons. Cereb Cortex 2014; 26:180-91. [PMID: 25146372 DOI: 10.1093/cercor/bhu190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dopamine D4 receptor (D4R), which is strongly linked to neuropsychiatric disorders, such as attention-deficit hyperactivity disorder and schizophrenia, is highly expressed in pyramidal neurons and GABAergic interneurons in prefrontal cortex (PFC). In this study, we examined the impact of D4R on the excitability of these 2 neuronal populations. We found that D4R activation decreased the frequency of spontaneous action potentials (sAPs) in PFC pyramidal neurons, whereas it induced a transient increase followed by a decrease of sAP frequency in PFC parvalbumin-positive (PV+) interneurons. D4R activation also induced distinct effects in both types of PFC neurons on spontaneous excitatory and inhibitory postsynaptic currents, which drive the generation of sAP. Moreover, dopamine substantially decreased sAP frequency in PFC pyramidal neurons, but markedly increased sAP frequency in PV+ interneurons, and both effects were partially mediated by D4R activation. In the phencyclidine model of schizophrenia, the decreasing effect of D4R on sAP frequency in both types of PFC neurons was attenuated, whereas the increasing effect of D4R on sAP in PV+ interneurons was intact. These results suggest that D4R activation elicits distinct effects on synaptically driven excitability in PFC projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA VA Western New York Healthcare System, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA VA Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
46
|
Steullet P, Cabungcal JH, Cuénod M, Do KQ. Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss. Front Cell Neurosci 2014; 8:244. [PMID: 25191228 PMCID: PMC4139002 DOI: 10.3389/fncel.2014.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.
Collapse
Affiliation(s)
- Pascal Steullet
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne Prilly-Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne Prilly-Lausanne, Switzerland
| | - Michel Cuénod
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne Prilly-Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Center of Psychiatric Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne Prilly-Lausanne, Switzerland
| |
Collapse
|
47
|
Association of aberrant neural synchrony and altered GAD67 expression following exposure to maternal immune activation, a risk factor for schizophrenia. Transl Psychiatry 2014; 4:e418. [PMID: 25072323 PMCID: PMC4119228 DOI: 10.1038/tp.2014.64] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/15/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022] Open
Abstract
A failure of integrative processes within the brain, mediated via altered GABAergic inhibition, may underlie several features of schizophrenia. The present study examined, therefore, whether maternal immune activation (MIA), a risk factor for schizophrenia, altered inhibitory markers in the hippocampus and medial prefrontal cortex (mPFC), while also altering electroencephalogram (EEG) coherence between these regions. Pregnant rats were treated with saline or polyinosinic:polycytidylic acid mid-gestation. EEG depth recordings were made from the dorsal and ventral hippocampus and mPFC of male adult offspring. Glutamic decarboxylase (GAD67) levels were separately assayed in these regions using western blot. GAD67 expression was also assessed within parvalbumin-positive cells in the dorsal and ventral hippocampus using immunofluorescence alongside stereological analysis of parvalbumin-positive cell numbers. EEG coherence was reduced between the dorsal hippocampus and mPFC, but not the ventral hippocampus and mPFC, in MIA animals. Western blot and immunofluorescence analyses revealed that GAD67 expression within parvalbumin-positive cells was also reduced in the dorsal hippocampus relative to ventral hippocampus in MIA animals when compared with controls. This reduction was observed in the absence of parvalbumin-positive neuronal loss. Overall, MIA produced a selective reduction in EEG coherence between the dorsal hippocampus and mPFC that was paralleled by a similarly specific reduction in GAD67 within parvalbumin-positive cells of the dorsal hippocampus. These results suggest a link between altered inhibitory mechanisms and synchrony and, therefore point to potential mechanisms via which a disruption in neurodevelopmental processes might lead to pathophysiology associated with schizophrenia.
Collapse
|
48
|
Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014; 48:512-29. [PMID: 24803587 DOI: 10.1177/0004867414533012] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Whilst dopaminergic dysfunction remains a necessary component involved in the pathogenesis of schizophrenia, our current pharmacological armoury of dopamine antagonists does little to control the negative symptoms of schizophrenia. This suggests other pathological processes must be implicated. This paper aims to elaborate on such theories. METHODS Data for this review were sourced from the electronic database PUBMED, and was not limited by language or date of publication. RESULTS It has been suggested that multiple 'hits' may be required to unveil the clinical syndrome in susceptible individuals. Such hits potentially first occur in utero, leading to neuronal disruption, epigenetic changes and the establishment of an abnormal inflammatory response. The development of schizophrenia may therefore potentially be viewed as a neuroprogressive response to these early stressors, driven on by changes in tryptophan catabolite (TRYCAT) metabolism, reactive oxygen species handling and N-methyl d-aspartate (NMDA) circuitry. Given the potential for such progression over time, it is prudent to explore the new treatment strategies which may be implemented before such changes become established. CONCLUSIONS Outside of the dopaminergic model, the potential pathogenesis of schizophrenia has yet to be fully elucidated, but common themes include neuropil shrinkage, the development of abnormal neuronal circuitry, and a chronic inflammatory state which further disrupts neuronal function. Whilst some early non-dopaminergic treatments show promise, none have yet to be fully studied in appropriately structured randomized controlled trials and they remain little more than potential attractive targets.
Collapse
Affiliation(s)
- Justin Davis
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Steven Moylan
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Brian H Harvey
- Division of Pharmacology, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Orygen Youth Health Research Centre, Parkville, Australia Centre of Youth Mental Health, University of Melbourne, Parkville, Australia Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
49
|
Packer AM, McConnell DJ, Fino E, Yuste R. Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. Cereb Cortex 2013; 23:2790-802. [PMID: 22941716 PMCID: PMC3968298 DOI: 10.1093/cercor/bhs210] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neocortical GABAergic interneurons have important roles in the normal and pathological states of the circuit. Recent work has revealed that somatostatin-positive (SOM) and parvalbumin-positive (PV) interneurons connect promiscuously to pyramidal cells (PCs). We investigated whether Peters' rule, that is, the spatial overlap of axons and dendrites, could explain this unspecific connectivity. We reconstructed the morphologies of P11-17 mouse SOM and PV interneurons and their PC targets, and performed Monte Carlo simulations to build maps of predicted connectivity based on Peters' rule. We then compared the predicted with the real connectivity maps, measured with 2-photon uncaging experiments, and found no statistical differences between them in the probability of connection as a function of distance and in the spatial structure of the maps. Finally, using reconstructions of connected SOM-PCs and PV-PCs, we investigated the subcellular targeting specificity, by analyzing the postsynaptic position of the contacts, and found that their spatial distributions match the distribution of postsynaptic PC surface area, in agreement with Peters' rule. Thus, the spatial profile of the connectivity maps and even the postsynaptic position of interneuron contacts could result from the mere overlap of axonal and dendritic arborizations and their laminar projections patterns.
Collapse
Affiliation(s)
- Adam M Packer
- HHMI, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
50
|
Tan HRM, Lana L, Uhlhaas PJ. High-frequency neural oscillations and visual processing deficits in schizophrenia. Front Psychol 2013; 4:621. [PMID: 24130535 PMCID: PMC3793130 DOI: 10.3389/fpsyg.2013.00621] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder.
Collapse
Affiliation(s)
- Heng-Ru May Tan
- Institute of Neuroscience and Psychology, College of Science and Engineering and College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | | | | |
Collapse
|