1
|
Medlock L, Al-Basha D, Halawa A, Dedek C, Ratté S, Prescott SA. Encoding of Vibrotactile Stimuli by Mechanoreceptors in Rodent Glabrous Skin. J Neurosci 2024; 44:e1252242024. [PMID: 39379153 PMCID: PMC11561868 DOI: 10.1523/jneurosci.1252-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Somatosensory coding in rodents has been mostly studied in the whisker system and hairy skin, whereas the function of low-threshold mechanoreceptors (LTMRs) in the rodent glabrous skin has received scant attention, unlike in primates where the glabrous skin has been the focus. The relative activation of different LTMR subtypes carries information about vibrotactile stimuli, as does the rate and temporal patterning of LTMR spikes. Rate coding depends on the probability of a spike occurring on each stimulus cycle (reliability), whereas temporal coding depends on the timing of spikes relative to the stimulus cycle (precision). Using in vivo extracellular recordings in male rats and mice of either sex, we measured the reliability and precision of LTMR responses to tactile stimuli including sustained pressure and vibration. Similar to other species, rodent LTMRs were separated into rapid-adapting (RA) or slow-adapting based on their response to sustained pressure. However, unlike the dichotomous frequency preference characteristic of RA1 and RA2/Pacinian afferents in other species, rodent RAs fell along a continuum. Fitting generalized linear models to experimental data reproduced the reliability and precision of rodent RAs. The resulting model parameters highlight key mechanistic differences across the RA spectrum; specifically, the integration window of different RAs transitions from wide to narrow as tuning preferences across the population move from low to high frequencies. Our results show that rodent RAs can support both rate and temporal coding, but their heterogeneity suggests that coactivation patterns play a greater role in population coding than for dichotomously tuned primate RAs.
Collapse
Affiliation(s)
- Laura Medlock
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adel Halawa
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher Dedek
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Abdollahi N, Prescott SA. Impact of Extracellular Current Flow on Action Potential Propagation in Myelinated Axons. J Neurosci 2024; 44:e0569242024. [PMID: 38688722 PMCID: PMC11211723 DOI: 10.1523/jneurosci.0569-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Myelinated axons conduct action potentials, or spikes, in a saltatory manner. Inward current caused by a spike occurring at one node of Ranvier spreads axially to the next node, which regenerates the spike when depolarized enough for voltage-gated sodium channels to activate, and so on. The rate at which this process progresses dictates the velocity at which the spike is conducted and depends on several factors including axial resistivity and axon diameter that directly affect axial current. Here we show through computational simulations in modified double-cable axon models that conduction velocity also depends on extracellular factors whose effects can be explained by their indirect influence on axial current. Specifically, we show that a conventional double-cable model, with its outside layer connected to ground, transmits less axial current than a model whose outside layer is less absorptive. A more resistive barrier exists when an axon is packed tightly between other myelinated fibers, for example. We show that realistically resistive boundary conditions can significantly increase the velocity and energy efficiency of spike propagation, while also protecting against propagation failure. Certain factors like myelin thickness may be less important than typically thought if extracellular conditions are more resistive than normally considered. We also show how realistically resistive boundary conditions affect ephaptic interactions. Overall, these results highlight the unappreciated importance of extracellular conditions for axon function.
Collapse
Affiliation(s)
- Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Crombie D, Spacek MA, Leibold C, Busse L. Spiking activity in the visual thalamus is coupled to pupil dynamics across temporal scales. PLoS Biol 2024; 22:e3002614. [PMID: 38743775 PMCID: PMC11093384 DOI: 10.1371/journal.pbio.3002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
The processing of sensory information, even at early stages, is influenced by the internal state of the animal. Internal states, such as arousal, are often characterized by relating neural activity to a single "level" of arousal, defined by a behavioral indicator such as pupil size. In this study, we expand the understanding of arousal-related modulations in sensory systems by uncovering multiple timescales of pupil dynamics and their relationship to neural activity. Specifically, we observed a robust coupling between spiking activity in the mouse dorsolateral geniculate nucleus (dLGN) of the thalamus and pupil dynamics across timescales spanning a few seconds to several minutes. Throughout all these timescales, 2 distinct spiking modes-individual tonic spikes and tightly clustered bursts of spikes-preferred opposite phases of pupil dynamics. This multi-scale coupling reveals modulations distinct from those captured by pupil size per se, locomotion, and eye movements. Furthermore, coupling persisted even during viewing of a naturalistic movie, where it contributed to differences in the encoding of visual information. We conclude that dLGN spiking activity is under the simultaneous influence of multiple arousal-related processes associated with pupil dynamics occurring over a broad range of timescales.
Collapse
Affiliation(s)
- Davide Crombie
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Martin A. Spacek
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
| | - Christian Leibold
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| |
Collapse
|
4
|
Dimwamwa ED, Pala A, Chundru V, Wright NC, Stanley GB. Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness. Nat Commun 2024; 15:3529. [PMID: 38664415 PMCID: PMC11045850 DOI: 10.1038/s41467-024-47863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.
Collapse
Affiliation(s)
- Elaida D Dimwamwa
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Aurélie Pala
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Vivek Chundru
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Yang Q, Vazquez AL, Cui XT. Revealing in vivo cellular mechanisms of cerebral microbleeds on neurons and microglia across cortical layers. iScience 2024; 27:109371. [PMID: 38510113 PMCID: PMC10951986 DOI: 10.1016/j.isci.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Cerebral microbleeds (CMBs) are associated with higher risk for various neurological diseases including stroke, dementia, and Alzheimer's disease. However, the understanding of cellular pathology of CMBs, particularly in deep brain regions, remains limited. Utilizing two-photon microscopy and microprism implantation, we longitudinally imaged the impact of CMBs on neuronal and microglial activities across cortical depths in awake mice. A temporary decline in spontaneous neuronal activity occurred throughout cortical layers, followed by recovery within a week. However, significant changes of neuron-neuron activity correlations persisted for weeks. Moreover, microglial contact with neuron soma significantly increased post-microbleeds, indicating an important modulatory role of microglia. Notably, microglial contact, negatively correlated with neuronal firing rate in normal conditions, became uncorrelated after microbleeds, suggesting a decreased neuron-microglia inhibition. These findings reveal chronic alterations in cortical neuronal networks and microglial-neuronal interactions across cortical depths, shedding light on the pathology of CMBs.
Collapse
Affiliation(s)
- Qianru Yang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alberto L. Vazquez
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Reinartz S, Fassihi A, Ravera M, Paz L, Pulecchi F, Gigante M, Diamond ME. Direct contribution of the sensory cortex to the judgment of stimulus duration. Nat Commun 2024; 15:1712. [PMID: 38402290 PMCID: PMC10894222 DOI: 10.1038/s41467-024-45970-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Decision making frequently depends on monitoring the duration of sensory events. To determine whether, and how, the perception of elapsed time derives from the neuronal representation of the stimulus itself, we recorded and optogenetically modulated vibrissal somatosensory cortical activity as male rats judged vibration duration. Perceived duration was dilated by optogenetic excitation. A second set of rats judged vibration intensity; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway both to time and to stimulus feature processing. A model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time successfully replicated rats' choices. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself, suggesting that the experience of time may be further investigated with the toolbox of sensory coding.
Collapse
Affiliation(s)
- Sebastian Reinartz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Brain & Sound Lab, Department of Biomedicine, Basel University, 4056, Basel, Switzerland
| | - Arash Fassihi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Maria Ravera
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Luciano Paz
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Francesca Pulecchi
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Marco Gigante
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mathew E Diamond
- SENSEx Lab, International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
| |
Collapse
|
7
|
Dimwamwa E, Pala A, Chundru V, Wright NC, Stanley GB. Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549491. [PMID: 37503253 PMCID: PMC10370106 DOI: 10.1101/2023.07.18.549491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The feedback projections from cortical layer 6 (L6CT) to sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventro-posterior-medial nucleus of thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.
Collapse
|
8
|
Sagalajev B, Zhang T, Abdollahi N, Yousefpour N, Medlock L, Al-Basha D, Ribeiro-da-Silva A, Esteller R, Ratté S, Prescott SA. Absence of paresthesia during high-rate spinal cord stimulation reveals importance of synchrony for sensations evoked by electrical stimulation. Neuron 2024; 112:404-420.e6. [PMID: 37972595 DOI: 10.1016/j.neuron.2023.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Electrically activating mechanoreceptive afferents inhibits pain. However, paresthesia evoked by spinal cord stimulation (SCS) at 40-60 Hz becomes uncomfortable at high pulse amplitudes, limiting SCS "dosage." Kilohertz-frequency SCS produces analgesia without paresthesia and is thought, therefore, not to activate afferent axons. We show that paresthesia is absent not because axons do not spike but because they spike asynchronously. In a pain patient, selectively increasing SCS frequency abolished paresthesia and epidurally recorded evoked compound action potentials (ECAPs). Dependence of ECAP amplitude on SCS frequency was reproduced in pigs, rats, and computer simulations and is explained by overdrive desynchronization: spikes desychronize when axons are stimulated faster than their refractory period. Unlike synchronous spikes, asynchronous spikes fail to produce paresthesia because their transmission to somatosensory cortex is blocked by feedforward inhibition. Our results demonstrate how stimulation frequency impacts synchrony based on axon properties and how synchrony impacts sensation based on circuit properties.
Collapse
Affiliation(s)
- Boriss Sagalajev
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tianhe Zhang
- Boston Scientific Neuromodulation, Valencia, CA 25155, USA
| | - Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Laura Medlock
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Rodenkirch C, Wang Q. Optimization of Temporal Coding of Tactile Information in Rat Thalamus by Locus Coeruleus Activation. BIOLOGY 2024; 13:79. [PMID: 38392298 PMCID: PMC10886390 DOI: 10.3390/biology13020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The brainstem noradrenergic nucleus, the locus coeruleus (LC), exerts heavy influences on sensory processing, perception, and cognition through its diffuse projections throughout the brain. Previous studies have demonstrated that LC activation modulates the response and feature selectivity of thalamic relay neurons. However, the extent to which LC modulates the temporal coding of sensory information in the thalamus remains mostly unknown. Here, we found that LC stimulation significantly altered the temporal structure of the responses of the thalamic relay neurons to repeated whisker stimulation. A substantial portion of events (i.e., time points where the stimulus reliably evoked spikes as evidenced by dramatic elevations in the firing rate of the spike density function) were removed during LC stimulation, but many new events emerged. Interestingly, spikes within the emerged events have a higher feature selectivity, and therefore transmit more information about a tactile stimulus, than spikes within the removed events. This suggests that LC stimulation optimized the temporal coding of tactile information to improve information transmission. We further reconstructed the original whisker stimulus from a population of thalamic relay neurons' responses and corresponding feature selectivity. As expected, we found that reconstruction from thalamic responses was more accurate using spike trains of thalamic neurons recorded during LC stimulation than without LC stimulation, functionally confirming LC optimization of the thalamic temporal code. Together, our results demonstrated that activation of the LC-NE system optimizes temporal coding of sensory stimulus in the thalamus, presumably allowing for more accurate decoding of the stimulus in the downstream brain structures.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
10
|
Carlos-Lima E, Higa GSV, Viana FJC, Tamais AM, Cruvinel E, Borges FDS, Francis-Oliveira J, Ulrich H, De Pasquale R. Serotonergic Modulation of the Excitation/Inhibition Balance in the Visual Cortex. Int J Mol Sci 2023; 25:519. [PMID: 38203689 PMCID: PMC10778629 DOI: 10.3390/ijms25010519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Serotonergic neurons constitute one of the main systems of neuromodulators, whose diffuse projections regulate the functions of the cerebral cortex. Serotonin (5-HT) is known to play a crucial role in the differential modulation of cortical activity related to behavioral contexts. Some features of the 5-HT signaling organization suggest its possible participation as a modulator of activity-dependent synaptic changes during the critical period of the primary visual cortex (V1). Cells of the serotonergic system are among the first neurons to differentiate and operate. During postnatal development, ramifications from raphe nuclei become massively distributed in the visual cortical area, remarkably increasing the availability of 5-HT for the regulation of excitatory and inhibitory synaptic activity. A substantial amount of evidence has demonstrated that synaptic plasticity at pyramidal neurons of the superficial layers of V1 critically depends on a fine regulation of the balance between excitation and inhibition (E/I). 5-HT could therefore play an important role in controlling this balance, providing the appropriate excitability conditions that favor synaptic modifications. In order to explore this possibility, the present work used in vitro intracellular electrophysiological recording techniques to study the effects of 5-HT on the E/I balance of V1 layer 2/3 neurons, during the critical period. Serotonergic action on the E/I balance has been analyzed on spontaneous activity, evoked synaptic responses, and long-term depression (LTD). Our results pointed out that the predominant action of 5-HT implies a reduction in the E/I balance. 5-HT promoted LTD at excitatory synapses while blocking it at inhibitory synaptic sites, thus shifting the Hebbian alterations of synaptic strength towards lower levels of E/I balance.
Collapse
Affiliation(s)
- Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo 09210-580, SP, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Alicia Moraes Tamais
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, New York, NY 11203, USA;
| | - José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), São Paulo 05508-900, SP, Brazil;
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil; (E.C.-L.); (G.S.V.H.); (E.C.); (J.F.-O.)
| |
Collapse
|
11
|
Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation. PLoS Comput Biol 2022; 18:e1010628. [PMID: 36399437 PMCID: PMC9674146 DOI: 10.1371/journal.pcbi.1010628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial neural networks overwrite previously learned tasks when trained sequentially, a phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously, and typically learns best when new training is interleaved with periods of sleep for memory consolidation. Here we used spiking network to study mechanisms behind catastrophic forgetting and the role of sleep in preventing it. The network could be trained to learn a complex foraging task but exhibited catastrophic forgetting when trained sequentially on different tasks. In synaptic weight space, new task training moved the synaptic weight configuration away from the manifold representing old task leading to forgetting. Interleaving new task training with periods of off-line reactivation, mimicking biological sleep, mitigated catastrophic forgetting by constraining the network synaptic weight state to the previously learned manifold, while allowing the weight configuration to converge towards the intersection of the manifolds representing old and new tasks. The study reveals a possible strategy of synaptic weights dynamics the brain applies during sleep to prevent forgetting and optimize learning.
Collapse
|
12
|
Sukumar V, Johansson RS, Pruszynski JA. Precise and stable edge orientation signaling by human first-order tactile neurons. eLife 2022; 11:e81476. [PMID: 36314774 PMCID: PMC9642991 DOI: 10.7554/elife.81476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
Fast-adapting type 1 (FA-1) and slow-adapting type 1 (SA-1) first-order neurons in the human tactile system have distal axons that branch in the skin and form many transduction sites, yielding receptive fields with many highly sensitive zones or 'subfields.' We previously demonstrated that this arrangement allows FA-1 and SA-1 neurons to signal the geometric features of touched objects, specifically the orientation of raised edges scanned with the fingertips. Here, we show that such signaling operates for fine edge orientation differences (5-20°) and is stable across a broad range of scanning speeds (15-180 mm/s); that is, under conditions relevant for real-world hand use. We found that both FA-1 and SA-1 neurons weakly signal fine edge orientation differences via the intensity of their spiking responses and only when considering a single scanning speed. Both neuron types showed much stronger edge orientation signaling in the sequential structure of the evoked spike trains, and FA-1 neurons performed better than SA-1 neurons. Represented in the spatial domain, the sequential structure was strikingly invariant across scanning speeds, especially those naturally used in tactile spatial discrimination tasks. This speed invariance suggests that neurons' responses are structured via sequential stimulation of their subfields and thus links this capacity to their terminal organization in the skin. Indeed, the spatial precision of elicited action potentials rationally matched spatial acuity of subfield arrangements, which corresponds to a spatial period similar to the dimensions of individual fingertip ridges.
Collapse
|
13
|
Impact of somatostatin interneurons on interactions between barrels in plasticity induced by whisker deprivation. Sci Rep 2022; 12:17992. [PMID: 36289269 PMCID: PMC9605983 DOI: 10.1038/s41598-022-22801-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The activity of inhibitory interneurons has a profound role in shaping cortical plasticity. Somatostatin-expressing interneurons (SOM-INs) are involved in several aspects of experience-dependent cortical rewiring. We addressed the question of the barrel cortex SOM-IN engagement in plasticity formation induced by sensory deprivation in adult mice (2-3 months old). We used a spared vibrissa paradigm, resulting in a massive sensory map reorganization. Using chemogenetic manipulation, the activity of barrel cortex SOM-INs was blocked or activated by continuous clozapine N-oxide (CNO) administration during one-week-long deprivation. To visualize the deprivation-induced plasticity, [14C]-2-deoxyglucose mapping of cortical functional representation of the spared whisker was performed at the end of the deprivation. The plasticity was manifested as an extension of cortical activation in response to spared vibrissae stimulation. We found that SOM-IN inhibition in the cortical column of the spared whisker did not influence the areal extent of the cortex activated by the spared whisker. However, blocking the activity of SOM-INs in the deprived column, adjacent to the spared one, decreased the plasticity of the spared whisker representation. SOM-IN activation did not affect plasticity. These data show that SOM-IN activity is part of cortical circuitry that affects interbarrel interactions underlying deprivation-induced plasticity in adult mice.
Collapse
|
14
|
Physiological noise facilitates multiplexed coding of vibrotactile-like signals in somatosensory cortex. Proc Natl Acad Sci U S A 2022; 119:e2118163119. [PMID: 36067307 PMCID: PMC9478643 DOI: 10.1073/pnas.2118163119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons can use different aspects of their spiking to simultaneously represent (multiplex) different features of a stimulus. For example, some pyramidal neurons in primary somatosensory cortex (S1) use the rate and timing of their spikes to, respectively, encode the intensity and frequency of vibrotactile stimuli. Doing so has several requirements. Because they fire at low rates, pyramidal neurons cannot entrain 1:1 with high-frequency (100 to 600 Hz) inputs and, instead, must skip (i.e., not respond to) some stimulus cycles. The proportion of skipped cycles must vary inversely with stimulus intensity for firing rate to encode stimulus intensity. Spikes must phase-lock to the stimulus for spike times (intervals) to encode stimulus frequency, but, in addition, skipping must occur irregularly to avoid aliasing. Using simulations and in vitro experiments in which mouse S1 pyramidal neurons were stimulated with inputs emulating those induced by vibrotactile stimuli, we show that fewer cycles are skipped as stimulus intensity increases, as required for rate coding, and that intrinsic or synaptic noise can induce irregular skipping without disrupting phase locking, as required for temporal coding. This occurs because noise can modulate the reliability without disrupting the precision of spikes evoked by small-amplitude, fast-onset signals. Specifically, in the fluctuation-driven regime associated with sparse spiking, rate and temporal coding are both paradoxically improved by the strong synaptic noise characteristic of the intact cortex. Our results demonstrate that multiplexed coding by S1 pyramidal neurons is not only feasible under in vivo conditions, but that background synaptic noise is actually beneficial.
Collapse
|
15
|
Nashef A, Cohen O, Perlmutter SI, Prut Y. A cerebellar origin of feedforward inhibition to the motor cortex in non-human primates. Cell Rep 2022; 39:110803. [PMID: 35545040 DOI: 10.1016/j.celrep.2022.110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Voluntary movements are driven by coordinated activity across a large population of motor cortical neurons. Formation of this activity is controlled by local interactions and long-range inputs. How remote areas of the brain communicate with motor cortical neurons to effectively drive movement remains unclear. We address this question by studying the cerebellar-thalamocortical system. We find that thalamic input to the motor cortex triggers feedforward inhibition by contacting inhibitory cells via highly effective GluR2-lacking AMPA receptors and that, during task performance, the activity of parvalbumin (PV) and pyramidal cells exhibits relations comparable with movement parameters. We also find that the movement-related activity of PV interneurons precedes firing of pyramidal cells. This counterintuitive sequence of events, where inhibitory cells are recruited more strongly and before excitatory cells, may amplify the cortical effect of cerebellar signals in a way that exceeds their sheer synaptic efficacy by suppressing other inputs.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Oren Cohen
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Steve I Perlmutter
- Department of Physiology & Biophysics and Washington National Primate Research Center, University of Washington, Box 357330, Seattle, WA 98195, USA
| | - Yifat Prut
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel.
| |
Collapse
|
16
|
Xu Z, Zhou X, Xu Y, Wu W. Removing nonlinear misalignment in neuronal spike trains using the Fisher-Rao registration framework. J Neurosci Methods 2022; 367:109436. [PMID: 34890697 DOI: 10.1016/j.jneumeth.2021.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The temporal precision in neural spike train data is critically important for understanding functional mechanism in the nervous systems. However, the timing variability of spiking activity can be highly nonlinear in practical observations due to behavioral variability or unobserved/unobservable cognitive states. NEW METHOD In this study, we propose to adopt a powerful nonlinear method, referred to as the Fisher-Rao Registration (FRR), to remove such nonlinear phase variability in discrete neuronal spike trains. We also develop a smoothing procedure on the discrete spike train data in order to use the FRR framework. COMPARISON WITH EXISTING METHODS We systematically compare the FRR with the state-of-the-art linear and nonlinear methods in terms of model efficiency and effectiveness. RESULTS We show that the FRR has superior performance and the advantages are well illustrated with simulation and real experimental data. CONCLUSIONS It is found the FRR framework provides more appropriate alignment performance to understand the temporal variability in neuronal spike trains.
Collapse
Affiliation(s)
- Zishen Xu
- Department of Statistics, Florida State University, 117 N Woodward Ave., Tallahassee, FL 32306-4330, USA
| | - Xinyu Zhou
- Department of Statistics, Florida State University, 117 N Woodward Ave., Tallahassee, FL 32306-4330, USA
| | - Yiqi Xu
- Department of Statistics, Florida State University, 117 N Woodward Ave., Tallahassee, FL 32306-4330, USA
| | - Wei Wu
- Department of Statistics, Florida State University, 117 N Woodward Ave., Tallahassee, FL 32306-4330, USA
| |
Collapse
|
17
|
Ma L, Patel M. A model of lateral interactions as the origin of multiwhisker receptive fields in rat barrel cortex. J Comput Neurosci 2021; 50:181-201. [PMID: 34854018 DOI: 10.1007/s10827-021-00804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).
Collapse
Affiliation(s)
- Linda Ma
- Department of Mathematics, 200 Ukrop Way, Jones Hall, William & Mary, Williamsburg, 23185, VA, USA
| | - Mainak Patel
- Department of Mathematics, 200 Ukrop Way, Jones Hall, William & Mary, Williamsburg, 23185, VA, USA.
| |
Collapse
|
18
|
Adibi M, Lampl I. Sensory Adaptation in the Whisker-Mediated Tactile System: Physiology, Theory, and Function. Front Neurosci 2021; 15:770011. [PMID: 34776857 PMCID: PMC8586522 DOI: 10.3389/fnins.2021.770011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022] Open
Abstract
In the natural environment, organisms are constantly exposed to a continuous stream of sensory input. The dynamics of sensory input changes with organism's behaviour and environmental context. The contextual variations may induce >100-fold change in the parameters of the stimulation that an animal experiences. Thus, it is vital for the organism to adapt to the new diet of stimulation. The response properties of neurons, in turn, dynamically adjust to the prevailing properties of sensory stimulation, a process known as "neuronal adaptation." Neuronal adaptation is a ubiquitous phenomenon across all sensory modalities and occurs at different stages of processing from periphery to cortex. In spite of the wealth of research on contextual modulation and neuronal adaptation in visual and auditory systems, the neuronal and computational basis of sensory adaptation in somatosensory system is less understood. Here, we summarise the recent finding and views about the neuronal adaptation in the rodent whisker-mediated tactile system and further summarise the functional effect of neuronal adaptation on the response dynamics and encoding efficiency of neurons at single cell and population levels along the whisker-mediated touch system in rodents. Based on direct and indirect pieces of evidence presented here, we suggest sensory adaptation provides context-dependent functional mechanisms for noise reduction in sensory processing, salience processing and deviant stimulus detection, shift between integration and coincidence detection, band-pass frequency filtering, adjusting neuronal receptive fields, enhancing neural coding and improving discriminability around adapting stimuli, energy conservation, and disambiguating encoding of principal features of tactile stimuli.
Collapse
Affiliation(s)
- Mehdi Adibi
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
20
|
Simko J, Markram H. Morphology, physiology and synaptic connectivity of local interneurons in the mouse somatosensory thalamus. J Physiol 2021; 599:5085-5101. [PMID: 34591324 PMCID: PMC9298088 DOI: 10.1113/jp281711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
Abstract The thalamic reticular nucleus (TRN) neurons, projecting across the external medullary lamina, have long been considered to be the only significant source of inhibition of the somatosensory ventral posterior (VP) nuclei of the thalamus. Here we report for the first time effective local inhibition and disinhibition in the VP. Inhibitory interneurons were found in GAD67–GFP‐expressing mice and studied using in vitro multiple patch clamp. Inhibitory interneurons have expansive bipolar or tripolar morphologies, reach across most of the VP nucleus and display low threshold bursting behaviour. They form triadic and non‐triadic synaptic connections onto thalamocortical relay neurons and other interneurons, mediating feedforward inhibition and disinhibition. Synaptic inputs arrive before those expected from the TRN neurons, suggesting that local inhibition plays an early and significant role in the functioning of the somatosensory thalamus.
![]() Key points The physiology and structure of local interneurons in the mouse somatosensory thalamus is described for the first time. Inhibitory interneurons have extensive dendritic arborization providing significant local dendro‐dendritic inhibition in the somatosensory thalamus. Triadic and non‐triadic synaptic connectivity onto thalamic relay neurons and other interneurons provides both local feedforward inhibition and disinhibition. Interneurons of the somatosensory thalamus provide inhibition before the thalamic reticular nucleus, suggesting they play an important role in sensory perception.
Collapse
Affiliation(s)
- Jane Simko
- Laboratory of Neural Microcircuitry, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henry Markram
- Laboratory of Neural Microcircuitry, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
21
|
Prince LY, Tran MM, Grey D, Saad L, Chasiotis H, Kwag J, Kohl MM, Richards BA. Neocortical inhibitory interneuron subtypes are differentially attuned to synchrony- and rate-coded information. Commun Biol 2021; 4:935. [PMID: 34354206 PMCID: PMC8342442 DOI: 10.1038/s42003-021-02437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Neurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes. In order to address whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, Prince et al. used optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. They demonstrated that FS and RS interneurons had differential sensitivity to changes in synchrony and rate, which advances our understanding of neural processing in the neocortex.
Collapse
Affiliation(s)
- Luke Y Prince
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.,School of Computer Science, McGill University, Montreal, QC, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Matthew M Tran
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dorian Grey
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Lydia Saad
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Helen Chasiotis
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Michael M Kohl
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Blake A Richards
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada. .,School of Computer Science, McGill University, Montreal, QC, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Wright NC, Borden PY, Liew YJ, Bolus MF, Stoy WM, Forest CR, Stanley GB. Rapid Cortical Adaptation and the Role of Thalamic Synchrony during Wakefulness. J Neurosci 2021; 41:5421-5439. [PMID: 33986072 PMCID: PMC8221593 DOI: 10.1523/jneurosci.3018-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.
Collapse
Affiliation(s)
- Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Yi Juin Liew
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia 30332 and Beijing University, Beijing China 100871
| | - Michael F Bolus
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - William M Stoy
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Craig R Forest
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|
23
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
24
|
Gill JV, Lerman GM, Zhao H, Stetler BJ, Rinberg D, Shoham S. Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection. Neuron 2020; 108:382-393.e5. [PMID: 32841590 DOI: 10.1016/j.neuron.2020.07.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/15/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Sensory systems transform the external world into time-varying spike trains. What features of spiking activity are used to guide behavior? In the mouse olfactory bulb, inhalation of different odors leads to changes in the set of neurons activated, as well as when neurons are activated relative to each other (synchrony) and the onset of inhalation (latency). To explore the relevance of each mode of information transmission, we probed the sensitivity of mice to perturbations across each stimulus dimension (i.e., rate, synchrony, and latency) using holographic two-photon optogenetic stimulation of olfactory bulb neurons with cellular and single-action-potential resolution. We found that mice can detect single action potentials evoked synchronously across <20 olfactory bulb neurons. Further, we discovered that detection depends strongly on the synchrony of activation across neurons, but not the latency relative to inhalation.
Collapse
Affiliation(s)
- Jonathan V Gill
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Gilad M Lerman
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Hetince Zhao
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Benjamin J Stetler
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Physics, New York University, New York, NY 10003, USA.
| | - Shy Shoham
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Tech4Health Institute, New York University Langone Health, New York, NY 10016, USA; Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
25
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
26
|
Walsh DA, Brown JT, Randall AD. Neurophysiological alterations in the nucleus reuniens of a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 88:1-10. [PMID: 32065917 DOI: 10.1016/j.neurobiolaging.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials. Re neurons recorded from J20 mice did not exhibit increased action potential generation in response to depolarizing current stimuli but an increased propensity to rebound burst following hyperpolarizing current stimuli. Increased rebound firing did not appear to result from alterations to T-type Ca2+ channels. Finally, in J20 mice, there was an ~8% reduction in spike width, similar to what has been reported in CA1 pyramidal neurons from multiple amyloidopathy mice. We conclude that alterations to the intrinsic properties of Re neurons may contribute to hippocampal-thalmo-cortical hyperexcitability observed under pathological beta-amyloid load.
Collapse
Affiliation(s)
- Darren A Walsh
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Jon T Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK.
| |
Collapse
|
27
|
Williams AH, Poole B, Maheswaranathan N, Dhawale AK, Fisher T, Wilson CD, Brann DH, Trautmann EM, Ryu S, Shusterman R, Rinberg D, Ölveczky BP, Shenoy KV, Ganguli S. Discovering Precise Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time Warping. Neuron 2019; 105:246-259.e8. [PMID: 31786013 DOI: 10.1016/j.neuron.2019.10.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials. We demonstrate this method across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated patterns, such as 7 Hz oscillations in rat motor cortex that are not time locked to measured behaviors or LFP.
Collapse
Affiliation(s)
- Alex H Williams
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA.
| | - Ben Poole
- Google Brain, Google Inc., Mountain View, CA 94043, USA
| | | | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Tucker Fisher
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Christopher D Wilson
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - David H Brann
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Eric M Trautmann
- Neuroscience Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stephen Ryu
- Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Roman Shusterman
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Dmitry Rinberg
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Krishna V Shenoy
- Neurobiology Department, Stanford University, Stanford, CA 94305, USA; Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Bioengineering Department, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Wu Tsai Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Surya Ganguli
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA; Neurobiology Department, Stanford University, Stanford, CA 94305, USA; Electrical Engineering Department, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA; Wu Tsai Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Google Brain, Google Inc., Mountain View, CA 94043, USA.
| |
Collapse
|
28
|
Enhanced Thalamocortical Synaptic Transmission and Dysregulation of the Excitatory-Inhibitory Balance at the Thalamocortical Feedforward Inhibitory Microcircuit in a Genetic Mouse Model of Migraine. J Neurosci 2019; 39:9841-9851. [PMID: 31645463 DOI: 10.1523/jneurosci.1840-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Migraine is a complex brain disorder, characterized by attacks of unilateral headache and global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. The finding of enhanced excitatory, but unaltered inhibitory, neurotransmission at intracortical synapses in mouse models of familial hemiplegic migraine (FHM) suggested the hypothesis that dysregulation of the excitatory-inhibitory balance in specific circuits is a key pathogenic mechanism. Here, we investigated the thalamocortical (TC) feedforward inhibitory microcircuit in FHM1 mice of both sexes carrying a gain-of-function mutation in CaV2.1. We show that TC synaptic transmission in somatosensory cortex is enhanced in FHM1 mice. Due to similar gain of function of TC excitation of layer 4 excitatory and fast-spiking inhibitory neurons elicited by single thalamic stimulations, neither the excitatory-inhibitory balance nor the integration time window set by the TC feedforward inhibitory microcircuit was altered in FHM1 mice. However, during repetitive thalamic stimulation, the typical shift of the excitatory-inhibitory balance toward excitation and the widening of the integration time window were both smaller in FHM1 compared with WT mice, revealing a dysregulation of the excitatory-inhibitory balance, whereby the balance is relatively skewed toward inhibition. This is due to an unexpected differential effect of the FHM1 mutation on short-term synaptic plasticity at TC synapses on cortical excitatory and fast-spiking inhibitory neurons. Our findings point to enhanced transmission of sensory, including trigeminovascular nociceptive, signals from thalamic nuclei to cortex and TC excitatory-inhibitory imbalance as mechanisms that may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.SIGNIFICANCE STATEMENT Migraine is a complex brain disorder, characterized by attacks of unilateral headache and by global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. Here we provide insights into these mechanisms by investigating thalamocortical (TC) synaptic transmission and the function of the TC feedforward inhibitory microcircuit in a mouse model of a rare monogenic migraine. This microcircuit is critical for gating information flow to cortex and for sensory processing. We reveal increased TC transmission and dysregulation of the cortical excitatory-inhibitory balance set by the TC feedforward inhibitory microcircuit, whereby the balance is relatively skewed toward inhibition during repetitive thalamic activity. These alterations may contribute to headache, increased sensory gain, and sensory processing dysfunctions in migraine.
Collapse
|
29
|
Nashef A, Cohen O, Israel Z, Harel R, Prut Y. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions. Cell Rep 2019; 23:1275-1285. [PMID: 29719244 DOI: 10.1016/j.celrep.2018.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022] Open
Abstract
In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC) system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Oren Cohen
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Hospital, Jerusalem, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Yifat Prut
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel.
| |
Collapse
|
30
|
Analysis of feedforward mechanisms of multiwhisker receptive field generation in a model of the rat barrel cortex. J Theor Biol 2019; 477:51-62. [PMID: 31201881 DOI: 10.1016/j.jtbi.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
There is substantial anatomical segregation in the organization of the rodent barrel system - each whisker on the mystacial pad sends input to TC cells within a dedicated thalamic barreloid, which in turn innervates a corresponding cortical barrel, and RS cells within a barrel respond primarily to deflections of the corresponding whisker at the beginning of the dedicated transmission line (the principal whisker, PW). However, it is also well-established that barrel cells exhibit multiwhisker receptive fields (RFs), and display lower amplitude, longer latency responses to deflections of non-PWs (or adjacent whiskers, AWs). There is considerable controversy regarding the origin of such multiwhisker RFs; three possibilities include: (i) TC cells within a barreloid respond to multiple whiskers, and barrel RS cells simply inherit multiwhisker responses from their aligned barreloid; (ii) TC cells respond only to the PW, but individual barreloids innervate multiple barrels; (iii) multiwhisker responses of barrel cells arise from lateral corticocortical (barrel-to-barrel) synaptic transmission. Ablation studies attempting to pinpoint the source of RS cell AW responses are often contradictory (though experimental work tends to suggest possibilities (i) or (iii) to be most plausible), and hence it is important to carefully evaluate these hypotheses in terms of available physiological data on barreloid and barrel response dynamics. In this work, I employ a biologically detailed model of the rat barrel cortex to evaluate possibility (i), and I show that, within the model, hypothesis (i) is capable of explaining a broad range of the available physiological data on responses to single (PW or AW) deflections and paired whisker deflections (AW deflection followed by PW deflection), as well as the dependence of such responses on the angular direction of whisker deflection. In particular, the model shows that barrel RS cells can exhibit AW direction tuning despite the fact that barreloid to barrel wiring has no systematic dependence on the AW direction preference of TC cells. Future modeling work will examine the other possibilities for the generation of multiwhisker RS cell RFs, and compare and contrast the different possible mechanisms within the context of available experimental data.
Collapse
|
31
|
Interaction of Cortical and Amygdalar Synaptic Input Modulates the Window of Opportunity for Information Processing in the Rhinal Cortices. eNeuro 2019; 6:ENEURO.0020-19.2019. [PMID: 31387874 PMCID: PMC6712206 DOI: 10.1523/eneuro.0020-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022] Open
Abstract
The perirhinal (PER) and lateral entorhinal (LEC) cortex function as a gateway for information transmission between (sub)cortical areas and the hippocampus. It is hypothesized that the amygdala, a key structure in emotion processing, can modulate PER-LEC neuronal activity before information enters the hippocampal memory pathway. This study determined the integration of synaptic activity evoked by simultaneous neocortical and amygdala electrical stimulation in PER-LEC deep layer principal neurons and parvalbumin (PV) interneurons in mouse brain slices. The data revealed that both deep layer PER-LEC principal neurons and PV interneurons receive synaptic input from the neocortical agranular insular cortex (AiP) and the lateral amygdala (LA). Furthermore, simultaneous stimulation of the AiP and LA never reached the firing threshold in principal neurons of the PER-LEC deep layers. PV interneurons however, mainly showed linear summation of simultaneous AiP and LA inputs and reached their firing threshold earlier. This early PV firing was reflected in the forward shift of the evoked inhibitory conductance in principal neurons, thereby creating a more precise temporal window for coincidence detection, which likely plays a crucial role in information processing.
Collapse
|
32
|
Bhatia A, Moza S, Bhalla US. Precise excitation-inhibition balance controls gain and timing in the hippocampus. eLife 2019; 8:43415. [PMID: 31021319 PMCID: PMC6517031 DOI: 10.7554/elife.43415] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating in many brain circuits. Subsets of synaptic input can be selected or 'gated' by precise modulation of finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial analysis of excitatory and inhibitory inputs. Using patterned optogenetic stimulation of mouse hippocampal CA3 neurons, we show that hundreds of unique CA3 input combinations recruit excitation and inhibition with a nearly identical ratio, demonstrating precise EI balance at the hippocampus. Crucially, the delay between excitation and inhibition decreases as excitatory input increases from a few synapses to tens of synapses. This creates a dynamic millisecond-range window for postsynaptic excitation, controlling membrane depolarization amplitude and timing via subthreshold divisive normalization. We suggest that this combination of precise EI balance and dynamic EI delays forms a general mechanism for millisecond-range input gating and subthreshold gain control in feedforward networks.
Collapse
Affiliation(s)
- Aanchal Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sahil Moza
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
33
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
34
|
Ranjbar-Slamloo Y, Arabzadeh E. Diverse tuning underlies sparse activity in layer 2/3 vibrissal cortex of awake mice. J Physiol 2019; 597:2803-2817. [PMID: 30932197 DOI: 10.1113/jp277506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/22/2019] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Sparse population activity is a common feature observed across cortical areas, yet the implications for sensory coding are not clear. We recorded single neuron activity in the vibrissal somatosensory cortex of awake head-fixed mice using the cell-attached technique. Unlike the anaesthetised condition, in awake mice a high-velocity, piezo-controlled whisker deflection excited only a small fraction of neurons. Manual probing of whiskers revealed that the majority of these silent neurons could be activated by specific forms of whisker-object contact. Our results suggest that sparse coding in vibrissal cortex may be due to high dimensionality of the stimulus space and narrow tuning of individual neurons. ABSTRACT It is widely reported that superficial layers of the somatosensory cortex exhibit sparse firing. This sparseness could reflect weak feedforward sensory inputs that are not sufficient to generate action potentials in these layers. Alternatively, sparseness might reflect tuning to unknown or higher-level complex features that are not fully explored in the stimulus space. Here, we examined these hypotheses by applying a range of vibrotactile and manual vibrissal stimuli in awake, head-fixed mice while performing loose-seal cell-attached recordings from the vibrissal primary somatosensory (vS1) cortex. A high-velocity stimulus delivered by a piezo-electric actuator evoked activity in a small fraction of regular spiking supragranular neurons (23%) in the awake condition. However, a majority of the supragranular regular spiking neurons (84%) were driven by manual stimulation of whiskers. Our results suggest that most neurons in the superficial layers of vS1 cortex contribute to coding in the awake condition when neurons may encounter their preferred feature(s) during whisker-object interactions.
Collapse
Affiliation(s)
- Yadollah Ranjbar-Slamloo
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
35
|
Feed-forward information and zero-lag synchronization in the sensory thalamocortical circuit are modulated during stimulus perception. Proc Natl Acad Sci U S A 2019; 116:7513-7522. [PMID: 30910974 DOI: 10.1073/pnas.1819095116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The direction of functional information flow in the sensory thalamocortical circuit may play a role in stimulus perception, but, surprisingly, this process is poorly understood. We addressed this problem by evaluating a directional information measure between simultaneously recorded neurons from somatosensory thalamus (ventral posterolateral nucleus, VPL) and somatosensory cortex (S1) sharing the same cutaneous receptive field while monkeys judged the presence or absence of a tactile stimulus. During stimulus presence, feed-forward information (VPL → S1) increased as a function of the stimulus amplitude, while pure feed-back information (S1 → VPL) was unaffected. In parallel, zero-lag interaction emerged with increasing stimulus amplitude, reflecting externally driven thalamocortical synchronization during stimulus processing. Furthermore, VPL → S1 information decreased during error trials. Also, VPL → S1 and zero-lag interaction decreased when monkeys were not required to report the stimulus presence. These findings provide evidence that both the direction of information flow and the instant synchronization in the sensory thalamocortical circuit play a role in stimulus perception.
Collapse
|
36
|
Kurada L, Bayat A, Joshi S, Koubeissi MZ. The Claustrum in Relation to Seizures and Electrical Stimulation. Front Neuroanat 2019; 13:8. [PMID: 30809132 PMCID: PMC6379271 DOI: 10.3389/fnana.2019.00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
The neural mechanisms of altered consciousness that accompanies most epileptic seizures are not known. We have reported alteration of consciousness resulting from electrical stimulation of the claustrum via a depth electrode in a woman with refractory focal epilepsy. Additionally, there are reports that suggest possible claustral involvement in focal epilepsy, including MRI findings of bilaterally increased T2 signal intensity in patients with status epilepticus (SE). Although its cytoarchitecture and connectivity have been studied extensively, the precise role of the claustrum in consciousness processing, and, thus, its contribution to the semiology of dyscognitive seizures are still elusive. To investigate the role of the claustrum in rats, we studied the effect of high-frequency stimulation (HFS) of the claustrum on performance in the operant chamber. We also studied the inter-claustral and the claustro-hippocampal connectivity through cerebro-cerebral evoked potentials (CCEPs), and investigated the involvement of the claustrum in kainate (KA)-induced seizures. We found that HFS of the claustrum decreased the performance in the operant task in a manner that was proportional to the current intensity used. In this article, we present previously unpublished data about the effect of stimulating extra-claustral regions in the operant chamber task as a control experiment. In these animals, stimulation of the corpus callosum, the largest interhemispheric commissure, as well as the orbitofrontal cortex in the vicinity of the claustrum did not produce that same effect as with claustral stimulation. Additionally, CCEPs established the presence of effective connectivity between both claustra, as well as between the claustrum and bilateral hippocampi indicating that these connections may be part of the circuitry involved in alteration of consciousness in limbic seizures. Lastly, some seizures induced by KA injections showed an early involvement of the claustrum with later propagation to the hippocampi. Further work is needed to clarify the exact role of the claustrum in mediating alteration of consciousness during epileptic seizures.
Collapse
Affiliation(s)
- Lalitha Kurada
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Arezou Bayat
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Sweta Joshi
- Department of Neurology, The George Washington University, Washington, DC, United States
| | - Mohamad Z Koubeissi
- Department of Neurology, The George Washington University, Washington, DC, United States
| |
Collapse
|
37
|
Vidyasagar TR, Levichkina E. An Integrated Neuronal Model of Claustral Function in Timing the Synchrony Between Cortical Areas. Front Neural Circuits 2019; 13:3. [PMID: 30804759 PMCID: PMC6371054 DOI: 10.3389/fncir.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that the function of the claustrum (CL) may be to orchestrate and integrate the activity of the different cortical areas that are involved in a particular function by boosting the synchronized oscillations that occur between these areas. We propose here a model of how this may be done, thanks to the unique synaptic morphology of the CL and its excitatory and inhibitory connections with most cortical areas. Using serial visual search as an example, we describe how the functional anatomy of the claustral connections can potentially execute the sequential activation of the representations of objects that are being processed serially. We also propose that cross-frequency coupling (CFC) between low frequency signals from CL and higher frequency oscillations in the cortical areas will be an efficient means of CL modulating neural activity across multiple brain regions in synchrony. This model is applicable to the wide range of functions one performs, from simple object recognition to reading and writing, listening to or performing music, etc.
Collapse
Affiliation(s)
- Trichur R. Vidyasagar
- Department of Optometry and Vision Science, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Australian Research Council Centre of Excellence in Integrative Brain Function, University of Melbourne Node, Melbourne, VIC, Australia
| | - Ekaterina Levichkina
- Department of Optometry and Vision Science, University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Zhang Z, Russell LE, Packer AM, Gauld OM, Häusser M. Closed-loop all-optical interrogation of neural circuits in vivo. Nat Methods 2018; 15:1037-1040. [PMID: 30420686 PMCID: PMC6513754 DOI: 10.1038/s41592-018-0183-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/04/2018] [Indexed: 11/09/2022]
Abstract
Understanding the causal relationship between neural activity and behavior requires the ability to perform rapid and targeted interventions in ongoing activity. Here we describe a closed-loop all-optical strategy for dynamically controlling neuronal activity patterns in awake mice. We rapidly tailored and delivered two-photon optogenetic stimulation based on online readout of activity using simultaneous two-photon imaging, thus enabling the manipulation of neural circuit activity 'on the fly' during behavior.
Collapse
Affiliation(s)
- Zihui Zhang
- Wolfson Institute for Biomedical Research, University College London, London, UK
- Department of Electronic & Electrical Engineering, University College London, London, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK.
- Oxford University, Oxford, UK.
| | - Oliver M Gauld
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
39
|
Masquelier T, Kheradpisheh SR. Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection. Front Comput Neurosci 2018; 12:74. [PMID: 30279653 PMCID: PMC6153331 DOI: 10.3389/fncom.2018.00074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Repeating spatiotemporal spike patterns exist and carry information. Here we investigated how a single spiking neuron can optimally respond to one given pattern (localist coding), or to either one of several patterns (distributed coding, i.e., the neuron's response is ambiguous but the identity of the pattern could be inferred from the response of multiple neurons), but not to random inputs. To do so, we extended a theory developed in a previous paper (Masquelier, 2017), which was limited to localist coding. More specifically, we computed analytically the signal-to-noise ratio (SNR) of a multi-pattern-detector neuron, using a threshold-free leaky integrate-and-fire (LIF) neuron model with non-plastic unitary synapses and homogeneous Poisson inputs. Surprisingly, when increasing the number of patterns, the SNR decreases slowly, and remains acceptable for several tens of independent patterns. In addition, we investigated whether spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimal SNR. To this aim, we simulated a LIF equipped with STDP, and repeatedly exposed it to multiple input spike patterns, embedded in equally dense Poisson spike trains. The LIF progressively became selective to every repeating pattern with no supervision, and stopped discharging during the Poisson spike trains. Furthermore, tuning certain STDP parameters, the resulting pattern detectors were optimal. Tens of independent patterns could be learned by a single neuron using a low adaptive threshold, in contrast with previous studies, in which higher thresholds led to localist coding only. Taken together these results suggest that coincidence detection and STDP are powerful mechanisms, fully compatible with distributed coding. Yet we acknowledge that our theory is limited to single neurons, and thus also applies to feed-forward networks, but not to recurrent ones.
Collapse
Affiliation(s)
- Timothée Masquelier
- Centre de Recherche Cerveau et Cognition, UMR5549 CNRS-Université Toulouse 3, Toulouse, France.,Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Saeed R Kheradpisheh
- Department of Computer Science, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran
| |
Collapse
|
40
|
Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK. Inhibitory Control of Prefrontal Cortex by the Claustrum. Neuron 2018; 99:1029-1039.e4. [PMID: 30122374 PMCID: PMC6168643 DOI: 10.1016/j.neuron.2018.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/17/2018] [Accepted: 07/18/2018] [Indexed: 11/21/2022]
Abstract
The claustrum is a small subcortical nucleus that has extensive excitatory connections with many cortical areas. While the anatomical connectivity from the claustrum to the cortex has been studied intensively, the physiological effect and underlying circuit mechanisms of claustrocortical communication remain elusive. Here we show that the claustrum provides strong, widespread, and long-lasting feedforward inhibition of the prefrontal cortex (PFC) sufficient to silence ongoing neural activity. This claustrocortical feedforward inhibition was predominantly mediated by interneurons containing neuropeptide Y, and to a lesser extent those containing parvalbumin. Therefore, in contrast to other long-range excitatory inputs to the PFC, the claustrocortical pathway is designed to provide overall inhibition of cortical activity. This unique circuit organization allows the claustrum to rapidly and powerfully suppress cortical networks and suggests a distinct role for the claustrum in regulating cognitive processes in prefrontal circuits. The claustrum strongly inhibits, rather than excites, prefrontal cortex Prefrontal NPY and PV interneurons are activated by the claustrum Claustrocortical feedforward inhibition is predominantly mediated by NPY neurons
Collapse
Affiliation(s)
- Jesse Jackson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | - Boris V Zemelman
- Department of Neuroscience, Center for Learning and Memory, University of Texas, University Station, C7000 Austin, TX 78712, USA
| | - Denis Burdakov
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
41
|
Patel MJ. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex. Front Comput Neurosci 2018; 12:45. [PMID: 29946250 PMCID: PMC6006271 DOI: 10.3389/fncom.2018.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells). TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation) and velocity (through synchrony of the TC population spikes) of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials) sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials) exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the first model, to my knowledge, that simulates both whisker deflection velocity and angular direction and examines the ability of the RS population response to pinpoint both stimulus features within the context of adaptation.
Collapse
Affiliation(s)
- Mainak J Patel
- Department of Mathematics, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
42
|
Hegdé J. Neural Mechanisms of High-Level Vision. Compr Physiol 2018; 8:903-953. [PMID: 29978891 DOI: 10.1002/cphy.c160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The last three decades have seen major strides in our understanding of neural mechanisms of high-level vision, or visual cognition of the world around us. Vision has also served as a model system for the study of brain function. Several broad insights, as yet incomplete, have recently emerged. First, visual perception is best understood not as an end unto itself, but as a sensory process that subserves the animal's behavioral goal at hand. Visual perception is likely to be simply a side effect that reflects the readout of visual information processing that leads to behavior. Second, the brain is essentially a probabilistic computational system that produces behaviors by collectively evaluating, not necessarily consciously or always optimally, the available information about the outside world received from the senses, the behavioral goals, prior knowledge about the world, and possible risks and benefits of a given behavior. Vision plays a prominent role in the overall functioning of the brain providing the lion's share of information about the outside world. Third, the visual system does not function in isolation, but rather interacts actively and reciprocally with other brain systems, including other sensory faculties. Finally, various regions of the visual system process information not in a strict hierarchical manner, but as parts of various dynamic brain-wide networks, collectively referred to as the "connectome." Thus, a full understanding of vision will ultimately entail understanding, in granular, quantitative detail, various aspects of dynamic brain networks that use visual sensory information to produce behavior under real-world conditions. © 2017 American Physiological Society. Compr Physiol 8:903-953, 2018.
Collapse
Affiliation(s)
- Jay Hegdé
- Brain and Behavior Discovery Institute, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,The Graduate School, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
43
|
Spiking and Excitatory/Inhibitory Input Dynamics of Barrel Cells in Response to Whisker Deflections of Varying Velocity and Angular Direction. Neuroscience 2018; 369:15-28. [PMID: 29122591 DOI: 10.1016/j.neuroscience.2017.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
Abstract
The spiking of barrel regular-spiking (RS) cells is tuned for both whisker deflection direction and velocity. Velocity tuning arises due to thalamocortical (TC) synchrony (but not spike quantity) varying with deflection velocity, coupled with feedforward inhibition, while direction selectivity is not fully understood, though may be due partly to direction tuning of TC spiking. Data show that as deflection direction deviates from the preferred direction of an RS cell, excitatory input to the RS cell diminishes minimally, but temporally shifts to coincide with the time-lagged inhibitory input. This work constructs a realistic large-scale model of a barrel; model RS cells exhibit velocity and direction selectivity due to TC input dynamics, with the experimentally observed sharpening of direction tuning with decreasing velocity. The model puts forth the novel proposal that RS→RS synapses can naturally and simply account for the unexplained direction dependence of RS cell inputs - as deflection direction deviates from the preferred direction of an RS cell, and TC input declines, RS→RS synaptic transmission buffers the decline in total excitatory input and causes a shift in timing of the excitatory input peak from the peak in TC input to the delayed peak in RS input. The model also provides several experimentally testable predictions on the velocity dependence of RS cell inputs. This model is the first, to my knowledge, to study the interaction of direction and velocity and propose physiological mechanisms for the stimulus dependence in the timing and amplitude of RS cell inputs.
Collapse
|
44
|
Sanda P, Skorheim S, Bazhenov M. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task. PLoS Comput Biol 2017; 13:e1005705. [PMID: 28961245 PMCID: PMC5636167 DOI: 10.1371/journal.pcbi.1005705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 10/11/2017] [Accepted: 07/26/2017] [Indexed: 12/01/2022] Open
Abstract
Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mechanisms for homeostatic regulation of synaptic efficacy, including heterosynaptic plasticity, gain control, output balancing, activity normalization of rewarded STDP and hard limits on synaptic strength. We found that addition of a hidden layer of neurons employing non-rewarded STDP created neurons that responded to the specific combinations of inputs and thus performed basic classification of the input patterns. When combined with a following layer of neurons implementing rewarded STDP, the network was able to learn, despite the absence of labeled training data, discrimination between rewarding patterns and the patterns designated as punishing. Synaptic noise allowed for trial-and-error learning that helped to identify the goal-oriented strategies which were effective in task solving. The study predicts a critical set of properties of the spiking neuronal network with STDP that was sufficient to solve a complex foraging task involving pattern classification and decision making. This study explores how intelligent behavior emerges from the basic principles known at the cellular level of biological neuronal network dynamics. Compared to the approaches used in the artificial intelligence community, we applied biologically realistic modeling of neuronal dynamics and plasticity. The building blocks of the model are spiking neurons, spike-time dependent plasticity (STDP) and homeostatic rules, known experimentally, which are shown to play a fundamental role in both keeping the network stable and capable of continous learning. Our study predicts that a combination of these principles makes possible a foraging behavior in a previously unknown environment, including pattern classification to distinct between environment shapes which are rewarded and those which are punished and decision making to select the optimal strategy to acquire the maximal number of the rewarded elements. To solve this complex task we used multi-layer neuronal processing that implemented pattern generalization by unsupervised STDP at the earlier processing step, as commonly observed in the animal and human sensory processing, followed by reinforcement learning at the later steps. In the model, the intelligent behavior emerged spontaneously due to the network organization implementing both local unsupervised plasticity and reward feedback resulting from a successful behavior in the environment.
Collapse
Affiliation(s)
- Pavel Sanda
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Steven Skorheim
- Information and Systems Sciences Lab, HRL Laboratories, LLC, Malibu, California, United States of America
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Schmidt H, Gour A, Straehle J, Boergens KM, Brecht M, Helmstaedter M. Axonal synapse sorting in medial entorhinal cortex. Nature 2017; 549:469-475. [DOI: 10.1038/nature24005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2017] [Indexed: 11/09/2022]
|
46
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
D'Souza RD, Burkhalter A. A Laminar Organization for Selective Cortico-Cortical Communication. Front Neuroanat 2017; 11:71. [PMID: 28878631 PMCID: PMC5572236 DOI: 10.3389/fnana.2017.00071] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
The neocortex is central to mammalian cognitive ability, playing critical roles in sensory perception, motor skills and executive function. This thin, layered structure comprises distinct, functionally specialized areas that communicate with each other through the axons of pyramidal neurons. For the hundreds of such cortico-cortical pathways to underlie diverse functions, their cellular and synaptic architectures must differ so that they result in distinct computations at the target projection neurons. In what ways do these pathways differ? By originating and terminating in different laminae, and by selectively targeting specific populations of excitatory and inhibitory neurons, these “interareal” pathways can differentially control the timing and strength of synaptic inputs onto individual neurons, resulting in layer-specific computations. Due to the rapid development in transgenic techniques, the mouse has emerged as a powerful mammalian model for understanding the rules by which cortical circuits organize and function. Here we review our understanding of how cortical lamination constrains long-range communication in the mammalian brain, with an emphasis on the mouse visual cortical network. We discuss the laminar architecture underlying interareal communication, the role of neocortical layers in organizing the balance of excitatory and inhibitory actions, and highlight the structure and function of layer 1 in mouse visual cortex.
Collapse
Affiliation(s)
- Rinaldo D D'Souza
- Department of Neuroscience, Washington University School of MedicineSt. Louis, MO, United States
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University School of MedicineSt. Louis, MO, United States
| |
Collapse
|
48
|
Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex. J Neurosci 2017; 36:9391-406. [PMID: 27605614 DOI: 10.1523/jneurosci.0874-16.2016] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/18/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared with nearby corticostriatal neurons. However, these inputs are even more powerful at parvalbumin and somatostatin expressing interneurons. BLA inputs thus activate two parallel inhibitory networks, whose contributions change during repetitive activity. Finally, connections from these interneurons are also more powerful at corticoamygdala neurons compared with corticostriatal neurons. Together, our results demonstrate how the BLA predominantly inhibits the PFC via a complex sequence involving multiple cell-type and input-specific connections.
Collapse
|
49
|
Retinal Circuitry Balances Contrast Tuning of Excitation and Inhibition to Enable Reliable Computation of Direction Selectivity. J Neurosci 2017; 36:5861-76. [PMID: 27225774 DOI: 10.1523/jneurosci.4013-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Feedforward (FF) inhibition is a common motif in many neural networks. Typically, excitatory inputs drive both principal neurons and interneurons; the interneurons then inhibit the principal neurons, thereby regulating the strength and timing of the FF signal. The interneurons introduce a likely nonlinear processing step that could distort the excitation/inhibition (E/I) ratio in the principal neuron, potentially degrading the reliability of computation in the circuit. In the retina, FF inhibition is an essential feature of the circuitry underlying direction selectivity (DS): glutamatergic bipolar cells (BCs) provide excitatory input to direction-selective ganglion cells (DSGCs) and GABAergic starburst amacrine cells (SACs), and the SACs then provide FF inhibition onto DSGCs. Robust DS computation requires a consistent synaptic E/I ratio in the DSGC in various visual conditions. Here, we show in mouse retina that the E/I ratio is maintained in DSGCs over a wide stimulus contrast range due to compensatory mechanisms in the diverse population of presynaptic BCs. BC inputs to SACs exhibit higher contrast sensitivity, so that the subsequent nonlinear transformation in SACs reduces the contrast sensitivity of FF inhibition to match the sensitivity of direct excitatory inputs onto DSGCs. Measurements of light-evoked responses from individual BC synaptic terminals suggest that the distinct sensitivity of BC inputs reflects different contrast sensitivity between BC subtypes. Numerical simulations suggest that this network arrangement is crucial for reliable DS computation. SIGNIFICANCE STATEMENT Properly balanced excitation and inhibition are essential for many neuronal computations across brain regions. Feedforward inhibition circuitry, in which a common excitatory source drives both the principal cell and an interneuron, is a typical mechanism by which neural networks maintain this balance. Feedforward circuits may become imbalanced at low stimulation levels, however, if the excitatory drive is too weak to overcome the activation threshold in the interneuron. Here we reveal how excitation and inhibition remain balanced in direction selective ganglion cells in the mouse retina over a wide visual stimulus range.
Collapse
|
50
|
Mechanisms underlying a thalamocortical transformation during active tactile sensation. PLoS Comput Biol 2017; 13:e1005576. [PMID: 28591219 PMCID: PMC5479597 DOI: 10.1371/journal.pcbi.1005576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/21/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit. We study how information is transformed between connected brain areas: the thalamus, the gateway to the cortex, and layer 4 (L4) in cortex, which is the first station to process sensory input from the thalamus. When mice perform an active object localization task with their whiskers, thalamic neurons and inhibitory fast-spiking (FS) interneurons in L4 encode whisker movement and touch, whereas L4 excitatory neurons respond almost exclusively to touch. To explain these observations, we constructed a computational model based on measured circuit parameters. The model reveals that without touch, when thalamic activity varies slowly, strong inhibition from FS neurons prevents activity in L4 excitatory neurons. Brief and strong touch-induced thalamic activity excites both excitatory and FS neurons in L4. FS neurons inhibit excitatory neurons with a delay of approximately 1 ms relative to ascending excitation, allowing L4 excitatory neurons to spike. Our results demonstrate that cortical circuits exploit synaptic delays for fast computations. Similar mechanisms likely also operate for rapid stimuli in the visual and auditory systems.
Collapse
|