1
|
Yoon D, Lee H. In silico discovery of novel compounds for FAK activation using virtual screening, AI-based prediction, and molecular dynamics. Comput Biol Chem 2025; 117:108420. [PMID: 40157227 DOI: 10.1016/j.compbiolchem.2025.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025]
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a crucial role in cell proliferation, migration, and signal transduction. FAK is overexpressed in metastatic and advanced-stage cancers, where it is considered a key kinase in cancer growth and metastasis. However, recent research has revealed that FAK activity decreases in various diseases. we aimed to identify compounds that could enhance FAK activity using structure-based virtual screening and artificial intelligence models from a vast chemical database. We began with an extensive chemical database containing over 10 million compounds and used our newly developed pipeline to screen candidate molecules. To select compounds structurally similar to ZINC40099027 (ZN27), a known FAK activator, we calculated Tanimoto Similarity scores and chose compounds with a score of at least 0.8. Clustering was performed using K-means based on the molecular properties. Subsequently, we utilized docking simulation, deep learning and SAScorer to evaluate and predict the protein-ligand docking affinity and physicochemical properties of the candidate compounds. The deep learning models were selected as state-of-the-art models: GLAM predicts the blood-brain barrier permeability of FAK, and elEmBERT predicts the potential toxicity of compound. The combined results were used to create an evaluation matrix. We selected 10 promising candidate compounds from the initial dataset of 10 million. To evaluate the stability of these top 10 candidate compounds in interaction with the FAK protein, we conducted Molecular Dynamics (MD) simulations. We performed a molecular dynamics simulation for a total of 50 ns and identified the top three promising candidate compounds.
Collapse
Affiliation(s)
- Deokhyeon Yoon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hyunsu Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
2
|
Mao LM, Mahmood T, Wang JQ. Dopamine D 2 receptor antagonists alter autophosphorylation of focal adhesion kinases in the mouse forebrain in vivo. Neurosci Lett 2025; 850:138145. [PMID: 39894197 PMCID: PMC11867810 DOI: 10.1016/j.neulet.2025.138145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase expressed in neurons of the developing and adult brain in addition to non-neuronal cells. Activation of FAK is initiated by autophosphorylation of the kinase at tyrosine 397 (Y397). Active FAK transmits extracellular signals inside neurons to integrate cytoskeletal rearrangements and modulate synaptic transmission and plasticity. Here we investigated roles of dopamine receptors, i.e., Gαs/olf-coupled D1 and Gαi/o-coupled D2 subtypes, in regulation of FAK autophosphorylation in two major dopamine-innervated areas of the mouse brain in vivo. We found that acute systemic administration of a dopamine D1 or D2 receptor agonist had no effect on basal FAK autophosphorylation at Y397 in the striatum and medial prefrontal cortex (mPFC). Similarly, a D1 receptor antagonist did not alter striatal and cortical Y397 phosphorylation. However, acute injection of a D2 receptor antagonist (eticlopride or haloperidol) induced a marked increase in Y397 phosphorylation in the striatum and mPFC. The eticlopride-induced Y397 phosphorylation can be seen in the two striatal subdivisions, the caudate putamen and nucleus accumbens, and was induced at two effective doses (0.1 and 0.5 mg/kg). All drug treatments caused insignificant changes in cellular FAK protein expression. These results reveal an existence of a tonic inhibitory tone of dopamine D2 receptors over basal FAK autophosphorylation in the mouse striatum and mPFC.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Tayyibah Mahmood
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Mutalik SP, Ho CT, O’Shaughnessy EC, Frasineanu AG, Shah AB, Gupton SL. TRIM9 Controls Growth Cone Responses to Netrin Through DCC and UNC5C. J Neurochem 2025; 169:e70002. [PMID: 39871643 PMCID: PMC11834693 DOI: 10.1111/jnc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. We find that repulsive turning in a netrin gradient is blocked by knockdown of UNC5C, whereas attractive turning is impaired by knockdown of DCC. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C. We find that deletion of murine Trim9 alters both attractive and repulsive axon turning and changes in growth cones size in response to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in the surface levels of DCC and UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates the growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of both repulsive and attractive concentrations of netrin-1. Together, our work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
Affiliation(s)
- Sampada P. Mutalik
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anca G. Frasineanu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aneri B. Shah
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Correspondence to: Stephanie L. Gupton ()
| |
Collapse
|
4
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
5
|
Tripathi U, Rosh I, Ben Ezer R, Nayak R, Hussein Y, Choudhary A, Djamus J, Manole A, Houlden H, Gage FH, Stern S. Upregulated ECM genes and increased synaptic activity in Parkinson's human DA neurons with PINK1/ PRKN mutations. NPJ Parkinsons Dis 2024; 10:103. [PMID: 38762512 PMCID: PMC11102563 DOI: 10.1038/s41531-024-00715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/25/2024] [Indexed: 05/20/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but PD also affects the hippocampus and cortex, usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations, suggesting a unique interplay between these two mutations that drives different PD mechanisms.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ran Ben Ezer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Andreea Manole
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry Houlden
- UCL queen square institute of neurology, University College London, London, England
| | - Fred H Gage
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Mutalik SP, O'Shaughnessy EC, Ho CT, Gupton SL. TRIM9 controls growth cone responses to netrin through DCC and UNC5C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593135. [PMID: 38765979 PMCID: PMC11100671 DOI: 10.1101/2024.05.08.593135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits these diverse axonal responses, beyond engaging the attractive receptor DCC and repulsive receptors of the UNC5 family, remains elusive. Here we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C, and that deletion of murine Trim9 alters both attractive and repulsive responses to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in surface levels of DCC and total levels of UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of netrin-1. We investigate membrane dynamics of the UNC5C receptor using pH-mScarlet fused to the extracellular domain of UNC5C. Minutes after netrin addition, levels of UNC5C at the plasma membrane drop in a TRIM9-independent fashion, however TRIM9 regulated the mobility of UNC5C in the plasma membrane in the absence of netrin-1. Together this work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
|
7
|
Paes D, Schepers M, Willems E, Rombaut B, Tiane A, Solomina Y, Tibbo A, Blair C, Kyurkchieva E, Baillie GS, Ricciarelli R, Brullo C, Fedele E, Bruno O, van den Hove D, Vanmierlo T, Prickaerts J. Ablation of specific long PDE4D isoforms increases neurite elongation and conveys protection against amyloid-β pathology. Cell Mol Life Sci 2023; 80:178. [PMID: 37306762 DOI: 10.1007/s00018-023-04804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-β. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-β in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Emily Willems
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Assia Tiane
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yevgeniya Solomina
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Amy Tibbo
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connor Blair
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Elka Kyurkchieva
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Roberta Ricciarelli
- Section of General Pathology, Department of Experimental Medicine, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Brullo
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Ernesto Fedele
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Section of Pharmacology and Toxicology, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Olga Bruno
- Section of Medicinal Chemistry, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Rocha DN, Carvalho ED, Relvas JB, Oliveira MJ, Pêgo AP. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Front Neurosci 2022; 16:861613. [PMID: 35573316 PMCID: PMC9096357 DOI: 10.3389/fnins.2022.861613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are continuously exposed to physical forces and the central nervous system (CNS) is no exception. Cells dynamically adapt their behavior and remodel the surrounding environment in response to forces. The importance of mechanotransduction in the CNS is illustrated by exploring its role in CNS pathology development and progression. The crosstalk between the biochemical and biophysical components of the extracellular matrix (ECM) are here described, considering the recent explosion of literature demonstrating the powerful influence of biophysical stimuli like density, rigidity and geometry of the ECM on cell behavior. This review aims at integrating mechanical properties into our understanding of the molecular basis of CNS disease. The mechanisms that mediate mechanotransduction events, like integrin, Rho/ROCK and matrix metalloproteinases signaling pathways are revised. Analysis of CNS pathologies in this context has revealed that a wide range of neurological diseases share as hallmarks alterations of the tissue mechanical properties. Therefore, it is our belief that the understanding of CNS mechanotransduction pathways may lead to the development of improved medical devices and diagnostic methods as well as new therapeutic targets and strategies for CNS repair.
Collapse
Affiliation(s)
- Daniela Nogueira Rocha
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Eva Daniela Carvalho
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Engenharia (FEUP), Universidade do Porto, Porto, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Wang DY, Melero C, Albaraky A, Atherton P, Jansen KA, Dimitracopoulos A, Dajas-Bailador F, Reid A, Franze K, Ballestrem C. Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Exp Cell Res 2021; 407:112805. [PMID: 34487728 DOI: 10.1016/j.yexcr.2021.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 08/21/2021] [Indexed: 11/29/2022]
Abstract
Integrin receptors are transmembrane proteins that bind to the extracellular matrix (ECM). In most animal cell types integrins cluster together with adaptor proteins at focal adhesions that sense and respond to external mechanical signals. In the central nervous system (CNS), ECM proteins are sparsely distributed, the tissue is comparatively soft and neurons do not form focal adhesions. Thus, how neurons sense tissue stiffness is currently poorly understood. Here, we found that integrins and the integrin-associated proteins talin and focal adhesion kinase (FAK) are required for the outgrowth of neuronal processes. Vinculin, however, whilst not required for neurite outgrowth was a key regulator of integrin-mediated mechanosensing of neurons. During growth, growth cones of axons of CNS derived cells exerted dynamic stresses of around 10-12 Pa on their environment, and axons grew significantly longer on soft (0.4 kPa) compared to stiff (8 kPa) substrates. Depletion of vinculin blocked this ability of growth cones to distinguish between soft and stiff substrates. These data suggest that vinculin in neurons acts as a key mechanosensor, involved in the regulation of growth cone motility.
Collapse
Affiliation(s)
- De-Yao Wang
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Cristina Melero
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Ashwaq Albaraky
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul Atherton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK
| | - Karin A Jansen
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | | | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre. Manchester, M13 9PT, UK; Department of Plastic Surgery & Nurns, Wythenshawe Hospital, Manchester University NHS Foundation Trust. Manchester Academic Health Science Centre, Manchester, M23 9LT, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK; Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - Christoph Ballestrem
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health. The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
11
|
Grijalvo S, Díaz DD. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration. Neurochem Int 2021; 147:105005. [PMID: 33667593 DOI: 10.1016/j.neuint.2021.105005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Peripheral nerve injury (PNI) is a serious clinical health problem caused by the damage of peripheral nerves which results in neurological deficits and permanent disability. There are several factors that may cause PNI such as localized damage (car accident, trauma, electrical injury) and outbreak of the systemic diseases (autoimmune or diabetes). While various diagnostic procedures including X-ray, magnetic resonance imaging (MRI), as well as other type of examinations such as electromyography or nerve conduction studies have been efficiently developed, a full recovery in patients with PNI is in many cases deficient or incomplete. This is the reason why additional therapeutic strategies should be explored to favor a complete rehabilitation in order to get appropriate nerve injury regeneration. The use of biomaterials acting as scaffolds opens an interesting approach in regenerative medicine and tissue engineering applications due to their ability to guide the growth of new tissues, adhesion and proliferation of cells including the expression of bioactive signals. This review discusses the preparation and therapeutic strategies describing in vitro and in vivo experiments using graphene-based materials in the context of PNI and their ability to promote nerve tissue regeneration.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - David Díaz Díaz
- Department of Organic Chemistry, University of La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain; Institute of Bio-Organic Antonio González, University of La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206, La Laguna, Tenerife, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg, 93053, Germany.
| |
Collapse
|
12
|
Mezzena R, Masciullo C, Antonini S, Cremisi F, Scheffner M, Cecchini M, Tonazzini I. Study of adhesion and migration dynamics in ubiquitin E3A ligase (UBE3A)-silenced SYSH5Y neuroblastoma cells by micro-structured surfaces. NANOTECHNOLOGY 2021; 32:025708. [PMID: 33055385 DOI: 10.1088/1361-6528/abbb03] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During neuronal development, neuronal cells read extracellular stimuli from the micro/nano-environment within which they exist, retrieving essential directionality and wiring information. Here, focal adhesions (FAs-protein clusters anchoring integrins to cytoskeleton) act as sensors, by integrating signals from both the extracellular matrix environment and chemotactic factors, contributing to the final neuronal pathfinding and migration. In the processes that orchestrate neuronal development, the important function of ubiquitin E3A ligase (UBE3A) is emerging. UBE3A has crucial functions in the brain and changes in its expression levels lead to neurodevelopmental disorders: the lack of UBE3A leads to Angelman syndrome (AS, OMIN 105830), while its increase causes autisms (Dup15q-autism). By using nano/micro-structured anisotropic substrates we previously showed that UBE3A-deficient neurons have deficits in contact guidance (Tonazzini et al, Mol Autism 2019). Here, we investigate the adhesion and migration dynamics of UBE3A-silenced SH-SY5Y neuroblastoma cells in vitro by exploiting nano/micro-grooved substrates. We analyze the molecular processes regulating the development of FAs by transfection with EGFP-vector encoding for paxillin, a protein of FA clusters, and by live-cell total-internal-reflection-fluorescence microscopy. We show that UBE3A-silenced SH-SY5Y cells have impaired FA morphological development and pathway activation, which lead to a delayed adhesion and also explain the defective contact guidance in response to directional topographical stimuli. However, UBE3A-silenced SH-SY5Y cells show an overall normal migration behavior, in terms of speed and ability to follow the GRs directional stimulus. Only the collective cell migration upon cell gaps was slightly delayed for UBE3Ash SHs. Overall, the deficits of UBE3Ash SHS-SY5Y cells in FA maturation/sensing and in collective migration may have patho-physiological implications, in AS condition, considering the much more complex stimuli that neurons find in vivo during the neurodevelopment.
Collapse
Affiliation(s)
- R Mezzena
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - C Masciullo
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - S Antonini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - F Cremisi
- Scuola Normale Superiore, Bio@SNS, Pisa, Italy
| | - M Scheffner
- University of Konstanz, Department of Biology, Konstanz, Germany
| | - M Cecchini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
| | - I Tonazzini
- NEST, Istituto Nanoscienze- CNR and Scuola Normale Superiore, Pisa, Italy
- Fondazione Umberto Veronesi, Milano, Italy
| |
Collapse
|
13
|
Wang Y, Guo Y, Tang C, Han X, Xu M, Sun J, Zhao Y, Zhang Y, Wang M, Cao X, Zhu X, Guo W. Developmental Cytoplasmic-to-Nuclear Translocation of RNA-Binding Protein HuR Is Required for Adult Neurogenesis. Cell Rep 2020; 29:3101-3117.e7. [PMID: 31801076 DOI: 10.1016/j.celrep.2019.10.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Although adult neurogenesis recapitulates processes that occur during embryonic development, it exhibits distinct characteristics from the embryonic counterpart. However, the intrinsic mechanism underlying the differential regulation of neurogenesis between these two stages remains unclear. Herein, we show that the ablation of RNA-binding protein HuR in NSCs impairs adult but not embryonic neurogenesis. HuR is predominantly expressed in the cytoplasm of embryonic NSCs but translocates into the nucleus of adult NSCs. Transcriptomic analysis of HuR-deficient adult NSCs revealed that HuR primarily regulates alternative splicing of numerous premRNA transcripts, including focal adhesion kinase (FAK). HuR-deficient adult NSCs generate increased FAK mRNA isoforms with shorter 5'-UTRs, leading to enhanced FAK mRNA translation and hyperactivated FAK signaling, and inhibition of FAK ameliorates defective adult neurogenesis and impaired hippocampus-dependent learning in HuR-deficient mice. These findings provide mechanistic insights into the differential regulation of embryonic and adult neurogenesis through developmental cytoplasmic-to-nuclear translocation of HuR.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ye Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changyong Tang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xiu Han
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifei Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Yiwen Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Di Biase E, Lunghi G, Fazzari M, Maggioni M, Pomè DY, Valsecchi M, Samarani M, Fato P, Ciampa MG, Prioni S, Mauri L, Sonnino S, Chiricozzi E. Gangliosides in the differentiation process of primary neurons: the specific role of GM1-oligosaccharide. Glycoconj J 2020; 37:329-343. [PMID: 32198666 DOI: 10.1007/s10719-020-09919-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and neuroprotective properties of GM1 ganglioside. In addition to this, differently from GM1, GM1-oligosaccharide is not taken up by the cells, remaining solubilized into the extracellular environment interacting with cell surface proteins. Those characteristics make GM1-oligosaccharide a good tool to study the properties of the endogenous GM1, avoiding to interfere with the ganglioside natural metabolic pathway. In this study, we show that GM1-oligosaccharide administered to mice cerebellar granule neurons by interacting with cell surface induces TrkA-MAP kinase pathway activation enhancing neuron clustering, arborization and networking. Accordingly, in the presence of GM1-oligosaccharide, neurons show a higher phosphorylation rate of FAK and Src proteins, the intracellular key regulators of neuronal motility. Moreover, treated cells express increased level of specific neuronal markers, suggesting an advanced stage of maturation compared to controls. In parallel, we found that in the presence of GM1-oligosaccharide, neurons accelerate the expression of complex gangliosides and reduce the level of the simplest ones, displaying the typical ganglioside pattern of mature neurons. Our data confirms the specific role of GM1 in neuronal differentiation and maturation, determined by its oligosaccharide portion. GM1-oligosacchairide interaction with cell surface receptors triggers the activation of intracellular biochemical pathways responsible for neuronal migration, dendrites emission and axon growth.
Collapse
Affiliation(s)
- Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Margherita Maggioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Diego Yuri Pomè
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Pamela Fato
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, MI, Italy.
| |
Collapse
|
15
|
Tonazzini I, Van Woerden GM, Masciullo C, Mientjes EJ, Elgersma Y, Cecchini M. The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons. Mol Autism 2019; 10:41. [PMID: 31798818 PMCID: PMC6884852 DOI: 10.1186/s13229-019-0293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Geeske M. Van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Cecilia Masciullo
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Edwin J. Mientjes
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Marco Cecchini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
16
|
Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials 2018; 175:93-109. [DOI: 10.1016/j.biomaterials.2018.05.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
|
17
|
Hinojosa AJ, Deogracias R, Rico B. The Microtubule Regulator NEK7 Coordinates the Wiring of Cortical Parvalbumin Interneurons. Cell Rep 2018; 24:1231-1242. [PMID: 30067978 PMCID: PMC6088228 DOI: 10.1016/j.celrep.2018.06.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Functional networks in the mammalian cerebral cortex rely on the interaction between glutamatergic pyramidal cells and GABAergic interneurons. Both neuronal populations exhibit an extraordinary divergence in morphology and targeting areas, which ultimately dictate their precise function in cortical circuits. How these prominent morphological differences arise during development is not well understood. Here, we conducted a high-throughput screen for genes differentially expressed by pyramidal cells and interneurons during cortical wiring. We found that NEK7, a kinase involved in microtubule polymerization, is mostly expressed in parvalbumin (PV+) interneurons at the time when they establish their connectivity. Functional experiments revealed that NEK7-deficient PV+ interneurons show altered microtubule dynamics, axon growth cone steering and reduced axon length, arbor complexity, and total number of synaptic contacts formed with pyramidal cells. Altogether, our results reveal a molecular mechanism by which the microtubule-associated kinase NEK7 regulates the wiring of PV+ interneurons.
Collapse
Affiliation(s)
- Antonio Jesús Hinojosa
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Rubén Deogracias
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
18
|
Neuroprotective effects of quercetin 4'-O-β-d-diglucoside on human striatal precursor cells in nutrient deprivation condition. Acta Histochem 2018; 120:122-128. [PMID: 29336843 DOI: 10.1016/j.acthis.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
Abstract
Several investigations have demonstrated neuroprotective effects of quercetin, a polyphenol widely present in nature, against neurotoxic chemicals, as well as in neuronal injury/neurodegenerative disease models. Most of these studies have been performed with quercetin aglycone and its metabolites, while scanty data are available on its glycosides. This study is aimed at investigating the neuroprotective effects of quercetin 3,4'-O-β-d-diglucoside (Q3,4'dG), isolated from the bulbs of the white cultivar (Allium cepa L.), using an in vitro model of human striatal precursor cells (HSPs), a primary culture isolated from the striatal primordium and previously characterized. To study the effect of Q3,4'dG on cell survival, HSPs were exposed to nutrient deprivation created by replacing culture medium with phosphate buffer saline (PBS). Our findings showed that Q3,4'dG treatment significantly promoted cell survival and strongly decreased apoptosis induced by nutrient deprivation, as evaluated by cell proliferation/death analyses. In addition, since the adhesive capacities of cells are essential for cell survival, the expression of some adhesion molecules, such as pancadherin and focal adhesion kinase, was evaluated. Interestingly, PBS exposure significantly decreased the expression of both molecules, while in the presence of Q3,4'dG this effect was prevented. This study provides evidence of a neuroprotective role exerted by Q3,4'dG and suggests its possible implication in sustaining neuronal survival for prevention and treatment of neurodegenerative disorders.
Collapse
|
19
|
Abundant Focal Adhesion Kinase Causes Aberrant Neuronal Migration Via Its Phosphorylation at Tyr925. J Mol Neurosci 2017; 64:102-110. [DOI: 10.1007/s12031-017-1010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023]
|
20
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
21
|
Abstract
Dp71 dystrophin is the main DMD gene product expressed in the central nervous system. Experiments using PC12 cells as a neuronal model have shown that Dp71 isoforms are involved in differentiation, adhesion, cell division, and nuclear architecture. To contribute to the knowledge of Dp71 domains function, we previously reported the isolation and partial characterization of the dystrophin Dp71[INCREMENT]78-79 (a mutant that lacks exons 71, 78, and 79), which stimulates the neuronal differentiation of PC12-C11 clone. In this article, we generated a doxycycline (Dox)-inducible expression system in PC12 Tet-On cells (B10 cells) to overexpress and control the transcription of Dp71[INCREMENT]78-79. Western blotting and confocal microscopy showed an increase in the amount of Dp71[INCREMENT]78-79 (217±75-fold) with the addition of Dox to growth medium. Cell proliferation assays and morphometric analyses demonstrated that Dp71[INCREMENT]78-79 increases the growth rate of B10 cells and reduces the nerve growth factor-neuronal differentiation. Western blotting analysis revealed an upregulation in the expression of proliferating cell nuclear antigen, focal adhesion kinase, and β-dystroglycan in B10 cells compared with control cells. Our results show that the inducible expression of Dp71[INCREMENT]78-79 increases the growth rate of PC12 Tet-On cells, suggesting a role of this protein in cell proliferation.
Collapse
|
22
|
Masdeu MDM, Armendáriz BG, Soriano E, Ureña JM, Burgaya F. New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry. Biochim Biophys Acta Gen Subj 2016; 1860:1388-94. [PMID: 27033120 DOI: 10.1016/j.bbagen.2016.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 02/23/2016] [Indexed: 01/29/2023]
Abstract
The regulation of focal adhesion kinase (FAK) involves phosphorylation and multiple interactions with other signaling proteins. Some of these pathways are relevant for nervous system functions such as branching, axonal guidance, and plasticity. In this study, we screened mouse brain to identify FAK-interactive proteins and phosphorylatable residues as a first step to address the neuronal functions of this kinase. Using mass spectrometry analysis, we identified new phosphorylated sites (Thr 952, Thr 1048, and Ser 1049), which lie in the FAT domain; and putative new partners for FAK, which include cytoskeletal proteins such as drebrin and MAP 6, adhesion regulators such as neurabin-2 and plakophilin 1, and synapse-associated proteins such as SynGAP and a NMDA receptor subunit. Our findings support the participation of brain-localized FAK in neuronal plasticity.
Collapse
Affiliation(s)
- Maria del Mar Masdeu
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Beatriz G Armendáriz
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Eduardo Soriano
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain; Vall d´Hebron Institute of Research, 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Jesús Mariano Ureña
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ferran Burgaya
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.
| |
Collapse
|
23
|
Lian X, Wang XT, Wang WT, Yang X, Suo ZW, Hu XD. Peripheral inflammation activated focal adhesion kinase signaling in spinal dorsal horn of mice. J Neurosci Res 2015; 93:873-81. [DOI: 10.1002/jnr.23551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/18/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Xia Lian
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xin-Tai Wang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Wen-Tao Wang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xian Yang
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology; School of Pharmacy, Lanzhou University; Lanzhou Gansu People's Republic of China
| |
Collapse
|