1
|
Mizutani K, Toyoda M, Ojima‐Kato T, Maturana AD, Niimi T. Glu592 of the axon guidance receptor ROBO3 mediates a pH-dependent interaction with NELL2 ligand. FEBS Lett 2025; 599:571-580. [PMID: 39531524 PMCID: PMC11848016 DOI: 10.1002/1873-3468.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
There are only a few studies on the function of neuronal axon guidance molecules during low brain pH conditions. We previously reported that roundabout (ROBO) 2, a receptor for the axon guidance molecule SLIT, can bind to the neural epidermal growth factor-like-like (NELL) ligands in acidic conditions by conformational change of its ectodomain. Here, we show that the ROBO3 receptor also exhibits a pH-dependent increase in binding to the NELL2 ligand. We found that the Glu592 residue of ROBO3 at the binding interface between NELL2 and ROBO3 is a pH sensor and that the formation of a new hydrogen bonding network, due to protonation of the Glu592, leads to increased binding in acidic conditions. These results suggest that NELL2-ROBO3 signaling could be regulated by extracellular pH.
Collapse
Affiliation(s)
| | | | | | | | - Tomoaki Niimi
- Graduate School of Bioagricultural SciencesNagoya UniversityJapan
| |
Collapse
|
2
|
Xu Z, Shi J, Liu R, Li Z, Xu S, Gong H, Fu M, Xu H, Yu S, Liu J, Wu H, Li X, Liu S, Wei W. CircSATB2 modulates fear extinction memory via Robo3-driven synaptic plasticity. Brain Res Bull 2025; 220:111167. [PMID: 39675489 DOI: 10.1016/j.brainresbull.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Circular RNAs (circRNAs) are novel class of stable regulatory RNAs abundantly expressed in the brain. However, their role in fear extinction (EXT) memory remains largely unexplored. To investigate the mechanisms of Circular Special AT-rich Sequence Binding Protein 2 (circSatb2) in EXT memory, we constructed a lentivirus overexpressing circSatb2 and injected it into the infralimbic prefrontal cortex (ILPFC) of the mouse brain. Following extinction training and subsequent testing, we observed an essential role of circSatb2 in this dynamic process. RNA sequencing (RNA-seq) and bioinformatics analyses revealed that circSatb2 enhances the transcription of Roundabout Guidance Receptor 3 (Robo3), a key gene implicated in axon guidance and synaptic plasticity, which was validated by RT-qPCR. Neuronal morphology was assessed using confocal microscopy to determine changes in dendritic spine density. Our results demonstrated that circSatb2 significantly enhances Robo3 transcription, leading to increased dendritic spine formation and improved synaptic plasticity. In conclusion, circSatb2 promotes the formation of EXT memory by upregulating Robo3 transcription and enhancing synaptic plasticity. These findings position circSatb2 as a potential therapeutic target for disorders associated with memory impairment.
Collapse
Affiliation(s)
- Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jichun Shi
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Runming Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhehao Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane 4702, Australia
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangqi Yu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhui Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huiqing Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China; Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Markouli M, Papachristou A, Politis A, Boviatsis E, Piperi C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024; 14:1231. [PMID: 39456164 PMCID: PMC11506736 DOI: 10.3390/biom14101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Gliomas represent the most common primary Central Nervous System (CNS) tumors, characterized by increased heterogeneity, dysregulated intracellular signaling, extremely invasive properties, and a dismal prognosis. They are generally resistant to existing therapies and only a few molecular targeting options are currently available. In search of signal transduction pathways with a potential impact in glioma growth and immunotherapy, the Slit guidance ligands (Slits) and their Roundabout (Robo) family of receptors have been revealed as key regulators of tumor cells and their microenvironment. Recent evidence indicates the implication of the Slit/Robo signaling pathway in inflammation, cell migration, angiogenesis, and immune cell infiltration of gliomas, suppressing or promoting the expression of pivotal proteins, such as cell adhesion molecules, matrix metalloproteinases, interleukins, angiogenic growth factors, and immune checkpoints. Herein, we discuss recent data on the significant implication of the Slit/Robo signaling pathway in glioma pathology along with the respective targeting options, including immunotherapy, monoclonal antibody therapy, and protein expression modifiers.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Athina Papachristou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| | - Anastasios Politis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| |
Collapse
|
4
|
Misgar RA, Chhabra A, Qadir A, Arora S, Wani AI, Bashir MI, Masoodi SR. Pituitary stalk interruption syndrome due to novel ROBO1 mutation presenting as combined pituitary hormone deficiency and central diabetes insipidus. J Pediatr Endocrinol Metab 2024; 37:477-481. [PMID: 38444307 DOI: 10.1515/jpem-2023-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The genetic causes of pituitary stalk interruption syndrome (PSIS) remain elusive in 95 % of cases. The roundabout receptor-1 gene (ROBO1) plays critical roles in axonal guidance and cell migration. Recently, mutations in the ROBO1 gene have been reported patients with PSIS. CASE PRESENTATION We report a 2.9-year-old boy with PSIS who presented with combined pituitary hormone deficiency, central diabetes insipidus, and the classical triad of MRI findings. Through clinical exome sequencing using next-generation sequencing techniques, a previously unidentified novel heterozygous frame shift mutation in the ROBO1 gene was identified. This is the first report of ROBO1 mutation associated with posterior pituitary dysfunction. CONCLUSIONS We conclude and emphasize that ROBO1 should be investigated in patients with PSIS. Our case is unique in the published literature in that we are first time reporting posterior pituitary dysfunction as manifestation of ROBO1 mutation. The full clinical spectrum of the mutations may not be fully known.
Collapse
Affiliation(s)
- Raiz Ahmad Misgar
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Ankit Chhabra
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Ajaz Qadir
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Sidharth Arora
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Arshad Iqbal Wani
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Mir Iftikhar Bashir
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| | - Shariq Rashid Masoodi
- Department of Endocrinology, 29078 Sher-i-Kashmir Institute of Medical Sciences , Srinagar, Kashmir, India
| |
Collapse
|
5
|
Hoving JJA, Harford-Wright E, Wingfield-Digby P, Cattin AL, Campana M, Power A, Morgan T, Torchiaro E, Quereda V, Lloyd AC. N-cadherin directs the collective Schwann cell migration required for nerve regeneration through Slit2/3-mediated contact inhibition of locomotion. eLife 2024; 13:e88872. [PMID: 38591541 PMCID: PMC11052573 DOI: 10.7554/elife.88872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.
Collapse
Affiliation(s)
- Julian JA Hoving
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Elizabeth Harford-Wright
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Patrick Wingfield-Digby
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Anne-Laure Cattin
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Mariana Campana
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alex Power
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Toby Morgan
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Erica Torchiaro
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Victor Quereda
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| |
Collapse
|
6
|
de las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, et alde las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, Liu K, Liu J, Lohman K, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Milaneschi Y, Nauck M, Nelson CP, O’Connell JR, Palmer ND, Pereira AC, Perls T, Peters A, Polašek O, Raitakari OT, Rice K, Rice TK, Rich SS, Sabanayagam C, Schreiner PJ, Shu XO, Sidney S, Sims M, Smith JA, Starr JM, Strauch K, Tai ES, Taylor KD, Tsai MY, Uitterlinden AG, van Heemst D, Waldenberger M, Wang YX, Wei WB, Wilson G, Xuan D, Yao J, Yu C, Yuan JM, Zhao W, Becker DM, Bonnefond A, Bowden DW, Cooper RS, Deary IJ, Divers J, Esko T, Franks PW, Froguel P, Gieger C, Jonas JB, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, North KE, Ntalla I, Penninx B, Samani NJ, Snieder H, Spedicati B, van der Harst P, Völzke H, Wagenknecht LE, Weir DR, Wojczynski MK, Wu T, Zheng W, Zhu X, Bouchard C, Chasman DI, Evans MK, Fox ER, Gudnason V, Hayward C, Horta BL, Kardia SLR, Krieger JE, Mook-Kanamori DO, Peyser PA, Province MM, Psaty BM, Rudan I, Sim X, Smith BH, van Dam RM, van Duijn CM, Wong TY, Arnett DK, Rao DC, Gauderman J, Liu CT, Morrison AC, Rotter JI, Fornage M. Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci. Front Genet 2023; 14:1235337. [PMID: 38028628 PMCID: PMC10651736 DOI: 10.3389/fgene.2023.1235337] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia B. Munroe
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Biochemistry and Molecular Genetics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Hugo Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
- Département de Génomes et Génétique, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Stella Aslibekyan
- School of Public Health, Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Fernando P. Hartwig
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Andrea Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K. Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Melissa A. Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Albert V. Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Icelandic Heart Association, Kopavogur, Iceland
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institutes of Health, Baltimore, MD, United States
| | - Maris Alver
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathilde Boissel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Barry I. Freedman
- Nephrology Division, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah E. Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Federica Laguzzi
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
- Department of Mathematics and Statistics, St. Cloud State University, St. Cloud, MN, United States
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamar Sofer
- Biostatistics, Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Peter J. van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yiqiang Zhan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, United States
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Ulrich Broeckel
- Section on Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mickaël Canouil
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Xiaoran Chai
- Data Science Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ahn Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Virginia Fisher
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - James S. Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Terrence Forrester
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Yechiel Friedlander
- Braun School of Public Health, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Göran Hallmans
- Section for Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
| | - Steven Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Reedik Mägi
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Colin A. McKenzie
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Matthias Nauck
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, United States
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Thomas Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Neuherberg, Germany
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Treva K. Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, United States
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantin Strauch
- German Research Center for Environmental Health, Helmholtz Zentrum München, Institute of Genetic Epidemiology, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ya-Xing Wang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Wen-Bin Wei
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study Graduate Training Center, School of Public, Jackson State University, Jackson, MS, United States
| | - Deng Xuan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Diane M. Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amélie Bonnefond
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Richard S. Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Ian J. Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jasmin Divers
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tõnu Esko
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard Chan School of Public Health, Boston, MA, United States
| | - Philippe Froguel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jost B. Jonas
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ioanna Ntalla
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- Celgene, Bristol Myers Squibb, Mississauga, ON, Canada
| | | | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pim van der Harst
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Henry Völzke
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lynne E. Wagenknecht
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Ervin R. Fox
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernardo L. Horta
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Michael M. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Donna K. Arnett
- College of Public Health, Dean’s Office, University of Kentucky, Lexington, KY, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - James Gauderman
- Division of Biostatistics, Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
7
|
Kerstein PC, Agreda YS, Curran BM, Ma L, Wright KM. Gbx2 controls amacrine cell dendrite stratification through Robo1/2 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551861. [PMID: 37577554 PMCID: PMC10418232 DOI: 10.1101/2023.08.03.551861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Within the neuronal classes of the retina, amacrine cells (ACs) exhibit the greatest neuronal diversity in morphology and function. We show that the selective expression of the transcription factor Gbx2 is required for cell fate specification and dendritic stratification of an individual AC subtype in the mouse retina. We identify Robo1 and Robo2 as downstream effectors that when deleted, phenocopy the dendritic misprojections seen in Gbx2 mutants. Slit1 and Slit2, the ligands of Robo receptors, are localized to the OFF layers of the inner plexiform layer where we observe the dendritic misprojections in both Gbx2 and Robo1/2 mutants. We show that Robo receptors also are required for the proper dendritic stratification of additional AC subtypes, such as Vglut3+ ACs. These results show both that Gbx2 functions as a terminal selector in a single AC subtype and identify Slit-Robo signaling as a developmental mechanism for ON-OFF pathway segregation in the retina.
Collapse
|
8
|
Wang T, Wang Z, Yang J, Chen Y, Min H. Screening and Identification of Key Biomarkers in Metastatic Uveal Melanoma: Evidence from a Bioinformatic Analysis. J Clin Med 2022; 11:jcm11237224. [PMID: 36498797 PMCID: PMC9739237 DOI: 10.3390/jcm11237224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: To identify key biomarkers in the metastasis of uveal melanoma (UM). Methods: The microarray datasets GSE27831 and GSE22138 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified, and functional enrichment analyses were performed. A protein−protein interaction network was constructed, and four algorithms were performed to increase the reliability of hub genes. Biomarker analysis and metastasis-free survival analysis were performed to screen and verify prognostic hub genes. Results: A total of 138 DEGs were identified, consisting of 71 downregulated genes and 67 upregulated genes. Four genes (ROBO1, FMN1, FYN and FXR1) were selected as hub genes. Biomarker analysis and metastasis-free survival analysis showed that ROBO1, FMN1, FYN and FXR1 were factors affecting the metastasis and metastasis-free survival of UM (all p < 0.05). High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. Multivariable logistic regression and Cox analyses in GSE 27831 indicated that ROBO1 was an independent factor affecting metastasis and metastasis-free survival of UM (p = 0.010 and p = 0.009), while ROBO1 and FMN1 were independent factors affecting metastasis and metastasis-free survival of UM in GSE22138 (all p < 0.05). Conclusions: ROBO1, FMN1, FYN and FXR1 should be regarded as diagnostic biomarkers for the metastasis of UM, especially ROBO1 and FMN1. High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. This study may facilitate the understanding of the molecular mechanisms underlying the metastasis of UM.
Collapse
Affiliation(s)
- Tan Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixing Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hanyi Min
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-186-0136-7871; Fax: +86-010-6915-6815
| |
Collapse
|
9
|
Dobramysl U, Holcman D. Computational methods and diffusion theory in triangulation sensing to model neuronal navigation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:104601. [PMID: 36075196 DOI: 10.1088/1361-6633/ac906b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Computational methods are now recognized as powerful and complementary approaches in various applied sciences such as biology. These computing methods are used to explore the gap between scales such as the one between molecular and cellular. Here we present recent progress in the development of computational approaches involving diffusion modeling, asymptotic analysis of the model partial differential equations, hybrid methods and simulations in the generic context of cell sensing and guidance via external gradients. Specifically, we highlight the reconstruction of the location of a point source in two and three dimensions from the steady-state diffusion fluxes arriving to narrow windows located on the cell. We discuss cases in which these windows are located on the boundary of a two-dimensional plane or three-dimensional half-space, on a disk in free space or inside a two-dimensional corridor, or a ball in three dimensions. The basis of this computational approach is explicit solutions of the Neumann-Green's function for the mentioned geometry. This analysis can be used to design hybrid simulations where Brownian paths are generated only in small regions in which the local spatial organization is relevant. Particle trajectories outside of this region are only implicitly treated by generating exit points at the boundary of this domain of interest. This greatly accelerates the simulation time by avoiding the explicit computation of Brownian paths in an infinite domain and serves to generate statistics, without following all trajectories at the same time, a process that can become numerically expensive quickly. Moreover, these computational approaches are used to reconstruct a point source and estimating the uncertainty in the source reconstruction due to an additive noise perturbation present in the fluxes. We also discuss the influence of various window configurations (cluster vs uniform distributions) on recovering the source position. Finally, the applications in developmental biology are formulated into computational principles that could underly neuronal navigation in the brain.
Collapse
Affiliation(s)
- Ulrich Dobramysl
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - David Holcman
- Group of Data Modeling and Computational Biology, IBENS-PSL Ecole Normale Superieure, Paris, France
| |
Collapse
|
10
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Callejas-Marin A, Moreno-Bravo JA, Company V, Madrigal MP, Almagro-García F, Martínez S, Puelles E. Gli2-Mediated Shh Signaling Is Required for Thalamocortical Projection Guidance. Front Neuroanat 2022; 16:830758. [PMID: 35221935 PMCID: PMC8866834 DOI: 10.3389/fnana.2022.830758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
The thalamocortical projections are part of the most important higher level processing connections in the vertebrates and follow a highly ordered pathway from their origin in the thalamus to the cerebral cortex. Their functional complexities are not only due to an extremely elaborate axon guidance process but also due to activity-dependent mechanisms. Gli2 is an intermediary transcription factor in the Sonic hedgehog (Shh) pathway. During neural early development, Shh has an important role in dorsoventral patterning, diencephalic anteroposterior patterning, and many later developmental processes, such as axon guidance and cell migration. Using a Gli2 knockout mouse line, we have studied the role of Shh signaling mediated by Gli2 in the development of the thalamocortical projections during embryonic development. In wild-type brains, we have described the normal trajectory of the thalamocortical axons into the context of the prosomeric model. Then, we have compared it with the altered thalamocortical axons course in Gli2 homozygous embryos. The thalamocortical axons followed different trajectories and were misdirected to other territories probably due to alterations in the Robo/Slit signaling mechanism. In conclusion, the alteration of Gli2-mediated Shh signaling produces an erroneous specification of several territories related with the thalamocortical axons. This is translated into a huge modification in the pathfinding signaling mechanisms needed for the correct wiring of the thalamocortical axons.
Collapse
Affiliation(s)
- Antuca Callejas-Marin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Juan Antonio Moreno-Bravo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Verónica Company
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
| | - M. Pilar Madrigal
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Salvador Martínez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández de Elche, Elche, Spain
- *Correspondence: Eduardo Puelles,
| |
Collapse
|
12
|
Ung CY, Levee TM, Zhang C, Correia C, Yeo KS, Li H, Zhu S. Gene utility recapitulates chromosomal aberrancies in advanced stage neuroblastoma. Comput Struct Biotechnol J 2022; 20:3291-3303. [PMID: 35832612 PMCID: PMC9251784 DOI: 10.1016/j.csbj.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic. Here, we conceptualize the Gene Utility Model (GUM) that seeks to identify genes driving biological signaling via their collective gene utilities and apply it to understand the impact of those differentially utilized genes on constraining the evolution of NB karyotypes. By employing a computational process-guided flow algorithm to model gene utility in protein–protein networks that built based on transcriptomic data, we conducted several pairwise comparative analyses to uncover genes with differential utilities in stage 4 NBs with distinct classification. We then constructed a utility karyotype by mapping these differentially utilized genes to their respective chromosomal loci. Intriguingly, hotspots of the utility karyotype, to certain extent, can consistently recapitulate the major chromosomal abnormalities of NBs and also provides clues to yet identified predisposition sites. Hence, our study not only provides a new look, from a gene utility perspective, into the known chromosomal abnormalities detected by integrative genomic sequencing efforts, but also offers new insights into the etiology of NB and provides a framework to facilitate the identification of novel therapeutic targets for this devastating childhood cancer.
Collapse
|
13
|
Increased Diagnostic Yield of Array Comparative Genomic Hybridization for Autism Spectrum Disorder in One Institution in Taiwan. Medicina (B Aires) 2021; 58:medicina58010015. [PMID: 35056323 PMCID: PMC8779646 DOI: 10.3390/medicina58010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives: Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNVs) and is recommended for the initial genetic testing of patients with autism spectrum disorder (ASD). This study aims to determine the diagnostic yield of array comparative genomic hybridization (array-CGH) in ASD patients from a cohort of Chinese patients in Taiwan. Materials and Methods: Enrolled in this study were 80 ASD children (49 males and 31 females; 2–16 years old) followed up at Taipei MacKay Memorial Hospital between January 2010 and December 2020. The genomic DNA extracted from blood samples was analyzed by array-CGH via the Affymetrix GeneChip Genome-Wide Human single nucleotide polymorphism (SNP) and NimbleGen International Standards for Cytogenomic Arrays (ISCA) Plus Cytogenetic Arrays. The CNVs were classified into five groups: pathogenic (pathologic variant), likely pathogenic (potential pathologic variant), likely benign (potential normal genomic variant), benign (normal genomic variant), and uncertain clinical significance (variance of uncertain significance), according to the American College of Medical Genetics (ACMG) guidelines. Results: We identified 47 CNVs, 31 of which in 27 patients were clinically significant. The overall diagnostic yield was 33.8%. The most frequently clinically significant CNV was 15q11.2 deletion, which was present in 4 (5.0%) patients. Conclusions: In this study, a satisfactory diagnostic yield of array-CGH was demonstrated in a Taiwanese ASD patient cohort, supporting the clinical usefulness of array-CGH as the first-line testing of ASD in Taiwan.
Collapse
|
14
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
15
|
Tampakaki M, Oraiopoulou ME, Tzamali E, Tzedakis G, Makatounakis T, Zacharakis G, Papamatheakis J, Sakkalis V. PML Differentially Regulates Growth and Invasion in Brain Cancer. Int J Mol Sci 2021; 22:ijms22126289. [PMID: 34208139 PMCID: PMC8230868 DOI: 10.3390/ijms22126289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is the most malignant brain tumor among adults. Despite multimodality treatment, it remains incurable, mainly because of its extensive heterogeneity and infiltration in the brain parenchyma. Recent evidence indicates dysregulation of the expression of the Promyelocytic Leukemia Protein (PML) in primary Glioblastoma samples. PML is implicated in various ways in cancer biology. In the brain, PML participates in the physiological migration of the neural progenitor cells, which have been hypothesized to serve as the cell of origin of Glioblastoma. The role of PML in Glioblastoma progression has recently gained attention due to its controversial effects in overall Glioblastoma evolution. In this work, we studied the role of PML in Glioblastoma pathophysiology using the U87MG cell line. We genetically modified the cells to conditionally overexpress the PML isoform IV and we focused on its dual role in tumor growth and invasive capacity. Furthermore, we targeted a PML action mediator, the Enhancer of Zeste Homolog 2 (EZH2), via the inhibitory drug DZNeP. We present a combined in vitro–in silico approach, that utilizes both 2D and 3D cultures and cancer-predictive computational algorithms, in order to differentiate and interpret the observed biological results. Our overall findings indicate that PML regulates growth and invasion through distinct cellular mechanisms. In particular, PML overexpression suppresses cell proliferation, while it maintains the invasive capacity of the U87MG Glioblastoma cells and, upon inhibition of the PML-EZH2 pathway, the invasion is drastically eliminated. Our in silico simulations suggest that the underlying mechanism of PML-driven Glioblastoma physiology regulates invasion by differential modulation of the cell-to-cell adhesive and diffusive capacity of the cells. Elucidating further the role of PML in Glioblastoma biology could set PML as a potential molecular biomarker of the tumor progression and its mediated pathway as a therapeutic target, aiming at inhibiting cell growth and potentially clonal evolution regarding their proliferative and/or invasive phenotype within the heterogeneous tumor mass.
Collapse
Affiliation(s)
- Maria Tampakaki
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (M.T.); (M.-E.O.); (E.T.); (G.T.)
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Mariam-Eleni Oraiopoulou
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (M.T.); (M.-E.O.); (E.T.); (G.T.)
| | - Eleftheria Tzamali
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (M.T.); (M.-E.O.); (E.T.); (G.T.)
| | - Giorgos Tzedakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (M.T.); (M.-E.O.); (E.T.); (G.T.)
| | - Takis Makatounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece;
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
- Correspondence: (G.Z.); (J.P.); (V.S.)
| | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 70013 Heraklion, Greece
- Correspondence: (G.Z.); (J.P.); (V.S.)
| | - Vangelis Sakkalis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (M.T.); (M.-E.O.); (E.T.); (G.T.)
- Correspondence: (G.Z.); (J.P.); (V.S.)
| |
Collapse
|
16
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
17
|
Sex-Specific Role for SLIT1 in Regulating Stress Susceptibility. Biol Psychiatry 2021; 91:81-91. [PMID: 33896623 PMCID: PMC8390577 DOI: 10.1016/j.biopsych.2021.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.
Collapse
|
18
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
19
|
Blockus H, Polleux F. Developmental mechanisms underlying circuit wiring: Novel insights and challenges ahead. Curr Opin Neurobiol 2021; 66:205-211. [PMID: 33421713 PMCID: PMC8058300 DOI: 10.1016/j.conb.2020.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Synaptic connectivity within neural circuits is characterized by high degrees of cellular and subcellular specificity. This precision arises from the combined action of several classes of molecular cues, transmembrane receptors, secreted cues and extracellular matrix components, coordinating transitions between axon guidance, dendrite patterning, axon branching and synapse specificity. We focus this review on recent insights into some of the molecular and cellular mechanisms controlling these transitions and present the results of large-scale efforts and technological developments aimed at mapping neural connectivity at single cell resolution in the mouse cortex as a mammalian model organism. Finally, we outline some of the technical and conceptual challenges lying ahead as the field is starting to explore one of the most challenging problems in neuroscience: the molecular and cellular logic underlying the emergence of the connectome characterizing specific circuits within the central nervous system of mammals.
Collapse
Affiliation(s)
- Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
20
|
Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids. Mol Psychiatry 2021; 26:7760-7783. [PMID: 34158620 PMCID: PMC8873021 DOI: 10.1038/s41380-021-01189-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human-specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined "enviromimetic" compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass-spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. However, of our 6 treatment groups, human-derived organoids treated with the cannabinoid agonist WIN 55,212-2 exhibited the least convergence of all groups. Single-cell analysis revealed that WIN 55,212-2 increased DNA fragmentation, an indicator of apoptosis, in human-derived dorsal forebrain organoids. We subsequently confirmed induction of DNA damage and apoptosis by WIN 55,212-2 within 3D human-derived dorsal forebrain organoids. Lastly, in a BrdU pulse-chase neocortical neurogenesis paradigm, we identified that WIN 55,212-2 was the only enviromimetic treatment to disrupt newborn neuron numbers within human-derived dorsal forebrain organoids. Cumulatively this study serves as both a resource and foundation from which human 3D biologics can be used to resolve the non-genomic effects of neuropsychiatric risk factors under controlled laboratory conditions. While synthetic cannabinoids can differ from naturally occurring compounds in their effects, our data nonetheless suggests that exposure to WIN 55,212-2 elicits neurotoxicity within human-derived developing forebrain tissue. These human-derived data therefore support the long-standing belief that maternal use of cannabinoids may require caution so to avoid any potential neurodevelopmental effects upon developing offspring in utero.
Collapse
|
21
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
22
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Pituitary stalk interruption syndrome is characterized by genetic heterogeneity. PLoS One 2020; 15:e0242358. [PMID: 33270637 PMCID: PMC7714207 DOI: 10.1371/journal.pone.0242358] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following-midline development and/or pituitary development or function (BMP4, CDON, GLI2, GLI3, HESX1, KIAA0556, LHX9, NKX2-1, PROP1, PTCH1, SHH, TBX19, TGIF1), syndromic and non-syndromic forms of hypogonadotropic hypogonadism (CCDC141, CHD7, FANCA, FANCC, FANCD2, FANCE, FANCG, IL17RD, KISS1R, NSMF, PMM2, SEMA3E, WDR11), syndromic forms of short stature (FGFR3, NBAS, PRMT7, RAF1, SLX4, SMARCA2, SOX11), cerebellum atrophy with optic anomalies (DNMT1, NBAS), axonal migration (ROBO1, SLIT2), and agenesis of the corpus callosum (ARID1B, CC2D2A, CEP120, CSPP1, DHCR7, INPP5E, VPS13B, ZNF423). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity.
Collapse
Affiliation(s)
- Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institute Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Zhang L, Qin Y, Wu G, Wang J, Cao J, Wang Y, Wu D, Yang K, Zhao Z, He L, Lyu J, Li H, Gu H. PRRG4 promotes breast cancer metastasis through the recruitment of NEDD4 and downregulation of Robo1. Oncogene 2020; 39:7196-7208. [PMID: 33037408 DOI: 10.1038/s41388-020-01494-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
Abstract
Metastasis is responsible for the death of most breast cancer patients. Robo1 has been implicated as a tumor suppressor for various cancers including breast cancer. However, it is not well understood how Robo1 expression is regulated during tumorigenesis. In this study, we uncovered that the transmembrane proline rich γ-carboxyglutamic acid protein 4 (PRRG4) promotes breast cancer metastasis by downregulating Robo1. Analysis of mRNA expression data in The Cancer Genome Atlas and immunohistochemistry assay on breast tumor samples showed that PRRG4 expression was higher in breast tumors than in normal breast tissues. Experiments with PRRG4 knockdown and overexpression revealed that PRRG4 promoted migration and invasion of breast cancer cells, and enhanced metastasis in an experimental metastasis model. Mechanistically, we found that PRRG4 via its LPSY and PPPY motifs recruited the E3 ubiquitin ligase NEDD4, which induced ubiquitination and degradation of Robo1, thus contributing to migration and invasion of breast cancer cells. In addition, PRRG4 interacted with and enhanced protein tyrosine kinase Src and FAK activation. Overall, our data support a model that PRRG4 via NEDD4 downregulates the Robo1, resulting in the activation of Src and FAK and promoting breast cancer metastasis. PRRG4 may be a novel target for treating metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqian Qin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jieyi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiawei Cao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqi Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Du Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Kaiyan Yang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hongzhi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
24
|
Alvarez S, Varadarajan SG, Butler SJ. Dorsal commissural axon guidance in the developing spinal cord. Curr Top Dev Biol 2020; 142:197-231. [PMID: 33706918 DOI: 10.1016/bs.ctdb.2020.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Commissural axons have been a key model system for identifying axon guidance signals in vertebrates. This review summarizes the current thinking about the molecular and cellular mechanisms that establish a specific commissural neural circuit: the dI1 neurons in the developing spinal cord. We assess the contribution of long- and short-range signaling while sequentially following the developmental timeline from the birth of dI1 neurons, to the extension of commissural axons first circumferentially and then contralaterally into the ventral funiculus.
Collapse
Affiliation(s)
- Sandy Alvarez
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States
| | | | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
25
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
26
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
27
|
Expression of Genes Involved in Axon Guidance: How Much Have We Learned? Int J Mol Sci 2020; 21:ijms21103566. [PMID: 32443632 PMCID: PMC7278939 DOI: 10.3390/ijms21103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Neuronal axons are guided to their target during the development of the brain. Axon guidance allows the formation of intricate neural circuits that control the function of the brain, and thus the behavior. As the axons travel in the brain to find their target, they encounter various axon guidance cues, which interact with the receptors on the tip of the growth cone to permit growth along different signaling pathways. Although many scientists have performed numerous studies on axon guidance signaling pathways, we still have an incomplete understanding of the axon guidance system. Lately, studies on axon guidance have shifted from studying the signal transduction pathways to studying other molecular features of axon guidance, such as the gene expression. These new studies present evidence for different molecular features that broaden our understanding of axon guidance. Hence, in this review we will introduce recent studies that illustrate different molecular features of axon guidance. In particular, we will review literature that demonstrates how axon guidance cues and receptors regulate local translation of axonal genes and how the expression of guidance cues and receptors are regulated both transcriptionally and post-transcriptionally. Moreover, we will highlight the pathological relevance of axon guidance molecules to specific diseases.
Collapse
|
28
|
Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci 2020; 77:1435-1460. [PMID: 31563997 PMCID: PMC11104948 DOI: 10.1007/s00018-019-03315-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The cerebral cortex varies dramatically in size and complexity between amniotes due to differences in neuron number and composition. These differences emerge during embryonic development as a result of variations in neurogenesis, which are thought to recapitulate modifications occurred during evolution that culminated in the human neocortex. Here, we review work from the last few decades leading to our current understanding of the evolution of neurogenesis and size of the cerebral cortex. Focused on specific examples across vertebrate and amniote phylogeny, we discuss developmental mechanisms regulating the emergence, lineage, complexification and fate of cortical germinal layers and progenitor cell types. At the cellular level, we discuss the fundamental impact of basal progenitor cells and the advent of indirect neurogenesis on the increased number and diversity of cortical neurons and layers in mammals, and on cortex folding. Finally, we discuss recent work that unveils genetic and molecular mechanisms underlying this progressive expansion and increased complexity of the amniote cerebral cortex during evolution, with a particular focus on those leading to human-specific features. Whereas new genes important in human brain development emerged the recent hominid lineage, regulation of the patterns and levels of activity of highly conserved signaling pathways are beginning to emerge as mechanisms of central importance in the evolutionary increase in cortical size and complexity across amniotes.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernández, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
29
|
García-González J, Brock AJ, Parker MO, Riley RJ, Joliffe D, Sudwarts A, Teh MT, Busch-Nentwich EM, Stemple DL, Martineau AR, Kaprio J, Palviainen T, Kuan V, Walton RT, Brennan CH. Identification of slit3 as a locus affecting nicotine preference in zebrafish and human smoking behaviour. eLife 2020; 9:e51295. [PMID: 32209227 PMCID: PMC7096180 DOI: 10.7554/elife.51295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.
Collapse
Affiliation(s)
- Judit García-González
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Alistair J Brock
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of PortsmouthPortsmouthUnited Kingdom
| | - Riva J Riley
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - David Joliffe
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Ari Sudwarts
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| | - Muy-Teck Teh
- Centre for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of CambridgeCambridgeUnited Kingdom
| | | | - Adrian R Martineau
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFEHelsinkiFinland
- Department of Public Health, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | | | - Valerie Kuan
- Institute of Cardiovascular Science, University College LondonLondonUnited Kingdom
| | - Robert T Walton
- Barts and The London School of Medicine and Dentistry, Blizard InstituteLondonUnited Kingdom
| | - Caroline H Brennan
- School of Biological and Chemical Sciences, Queen Mary, University of LondonLondonUnited Kingdom
| |
Collapse
|
30
|
Gonsior M, Ismat A. sli is required for proper morphology and migration of sensory neurons in the Drosophila PNS. Neural Dev 2019; 14:10. [PMID: 31651354 PMCID: PMC6813078 DOI: 10.1186/s13064-019-0135-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/17/2019] [Indexed: 11/12/2022] Open
Abstract
Neurons and glial cells coordinate with each other in many different aspects of nervous system development. Both types of cells are receiving multiple guidance cues to guide the neurons and glial cells to their proper final position. The lateral chordotonal organs (lch5) of the Drosophila peripheral nervous system (PNS) are composed of five sensory neurons surrounded by four different glial cells, scolopale cells, cap cells, attachment cells and ligament cells. During embryogenesis, the lch5 neurons go through a rotation and ventral migration to reach their final position in the lateral region of the abdomen. We show here that the extracellular ligand sli is required for the proper ventral migration and morphology of the lch5 neurons. We further show that mutations in the Sli receptors Robo and Robo2 also display similar defects as loss of sli, suggesting a role for Slit-Robo signaling in lch5 migration and positioning. Additionally, we demonstrate that the scolopale, cap and attachment cells follow the mis-migrated lch5 neurons in sli mutants, while the ventral stretching of the ligament cells seems to be independent of the lch5 neurons. This study sheds light on the role of Slit-Robo signaling in sensory neuron development.
Collapse
Affiliation(s)
- Madison Gonsior
- Department of Biology, University of St. Thomas, Saint Paul, MN, 55104, USA
| | - Afshan Ismat
- Department of Biology, University of St. Thomas, Saint Paul, MN, 55104, USA.
| |
Collapse
|
31
|
Johnson V, Junge HJ, Chen Z. Temporal regulation of axonal repulsion by alternative splicing of a conserved microexon in mammalian Robo1 and Robo2. eLife 2019; 8:e46042. [PMID: 31392959 PMCID: PMC6687390 DOI: 10.7554/elife.46042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Proper connectivity of the nervous system requires temporal and spatial control of axon guidance signaling. As commissural axons navigate across the CNS midline, ROBO-mediated repulsion has traditionally been thought to be repressed before crossing, and then to become upregulated after crossing. The regulation of the ROBO receptors involves multiple mechanisms that control protein expression, trafficking, and activity. Here, we report that mammalian ROBO1 and ROBO2 are not uniformly inhibited precrossing and are instead subject to additional temporal control via alternative splicing at a conserved microexon. The NOVA splicing factors regulate the developmental expression of ROBO1 and ROBO2 variants with small sequence differences and distinct guidance activities. As a result, ROBO-mediated axonal repulsion is activated early in development to prevent premature crossing and becomes inhibited later to allow crossing. Postcrossing, the ROBO1 and ROBO2 isoforms are disinhibited to prevent midline reentry and to guide postcrossing commissural axons to distinct mediolateral positions.
Collapse
Affiliation(s)
- Verity Johnson
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Harald J Junge
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Zhe Chen
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
- Linda Crnic Institute for Down SyndromeUniversity of Colorado school of MedicineAuroraUnited States
| |
Collapse
|
32
|
Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep 2019; 26:3298-3312.e4. [PMID: 30893602 PMCID: PMC6913780 DOI: 10.1016/j.celrep.2019.02.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Commissural axons initially respond to attractive signals at the midline, but once they cross, they become sensitive to repulsive cues. This switch prevents axons from re-entering the midline. In insects and mammals, negative regulation of Roundabout (Robo) receptors prevents premature response to the midline repellant Slit. In Drosophila, the endosomal protein Commissureless (Comm) prevents Robo1 surface expression before midline crossing by diverting Robo1 into late endosomes. Notably, Comm is not conserved in vertebrates. We identified two Nedd-4-interacting proteins, Ndfip1 and Ndfip2, that act analogously to Comm to localize Robo1 to endosomes. Ndfip proteins recruit Nedd4 E3 ubiquitin ligases to promote Robo1 ubiquitylation and degradation. Ndfip proteins are expressed in commissural axons in the developing spinal cord and removal of Ndfip proteins results in increased Robo1 expression and reduced midline crossing. Our results define a conserved Robo1 intracellular sorting mechanism between flies and mammals to avoid premature responsiveness to Slit.
Collapse
Affiliation(s)
- Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Awo Akosua Kesewa Layman
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Paula M Oliver
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
During the course of evolution the human brain has increased in size and complexity, ultimately these differences are the result of changes at the genetic level. Identifying and characterizing molecular evolution requires an understanding of both the genetic underpinning of the system as well as the comparative genetic tools to identify signatures of selection. This chapter aims to describe our current understanding of the genetics of human brain evolution. Primarily this is the story of the evolution of the human brain since our last common ape ancestor, but where relevant we will also discuss changes that are unique to the primate brain (compared to other mammals) or various other lineages in the evolution of humans more generally. It will focus on genetic changes that both directly affected the development and function of the brain as well as those that have indirectly influenced brain evolution through both prenatal and postnatal environment. This review is not meant to be exhaustive, but rather to begin to construct a general framework for understanding the full array of data being generated.
Collapse
Affiliation(s)
- Eric J Vallender
- University of Mississippi Medical Center, Jackson, MS, United States; Tulane National Primate Research Center, Covington, LA, United States.
| |
Collapse
|
34
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
35
|
Gregory LC, Dattani MT. Embryologic and Genetic Disorders of the Pituitary Gland. CONTEMPORARY ENDOCRINOLOGY 2019:3-27. [DOI: 10.1007/978-3-030-11339-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Park SM, Plachez C, Huang S. Sex-Dependent Motor Deficit and Increased Anxiety-Like States in Mice Lacking Autism-Associated Gene Slit3. Front Behav Neurosci 2018; 12:261. [PMID: 30483073 PMCID: PMC6243047 DOI: 10.3389/fnbeh.2018.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Altered neuronal connectivity has been implicated in the pathophysiology of Autism Spectrum Disorder (ASD). SLIT/ROBO signaling plays an important role in developmental processes of neuronal connectivity, including axon guidance, neuronal migration, and axonal and dendritic branching. Genetic evidence supports that SLIT3, one of the genes encoding SLITs, is associated with ASD. Yet the causal link between SLIT3 mutation and autism symptoms has not been examined. Here we assessed ASD-associated behaviors in Slit3 knockout (KO) mice. Our data showed that Slit3-KO mice exhibited reduced marble burying behaviors but normal social behaviors. In addition, Slit3-KO mice displayed hypolocomotion in the open field test and impaired motor coordination in the rotarod test. Anxiety-like behaviors were mainly observed in female KO mice assessed by three types of behavioral tests, namely, the open field test, elevated plus maze test, and light/dark box test. No differences were observed between KO and wildtype mice in recognition memory in the novel object recognition test or depression-like behavior in the tail suspension test. Taken together, loss of Slit3 may result in disrupted neural circuits related to motor function and increased anxiety-like states, which are co-occurring symptoms in ASD.
Collapse
Affiliation(s)
- Su Mi Park
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Céline Plachez
- Autism & Brain Development Laboratory, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| | - Shiyong Huang
- Laboratory of Neural Circuits & Behavior, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, United States
| |
Collapse
|
37
|
Wang H, Zhou Y, Cong M, Zhang L, Gu X, Tang X. Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Sci Rep 2018; 8:11990. [PMID: 30097601 PMCID: PMC6086926 DOI: 10.1038/s41598-018-30463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injury impairs motor and sensory function in humans, and its functional recovery largely depends on the axonal outgrowth required for the accurate reinnervation of appropriate targets. To better understand how motor and sensory nerve fibres select their terminal pathways, an unbiased cDNA microarray analysis was conducted to examine differential gene expression patterns in peripheral efferent and afferent fibres at different developmental stages in mice. Gene ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG) analyses revealed common and distinct features of enrichment for differentially expressed genes during motor and sensory nerve fibre development. Ingenuity Pathway Analysis (IPA) further indicated that the key differentially expressed genes were associated with trans-synaptic neurexin-neuroligin signalling components and a variety of gamma-aminobutyric acid (GABA) receptors. The aim of this study was to generate a framework of gene networks regulated during motor and sensory neuron differentiation/maturation. These data may provide new clues regarding the underlying cellular and molecular mechanisms that determine the intrinsic capacity of neurons to regenerate after peripheral nerve injury. Our findings may thus facilitate further development of a potential intervention to manipulate the therapeutic efficiency of peripheral nerve repair in the clinic.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Youlang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, JS, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Li Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
38
|
Korlach J, Gedman G, Kingan SB, Chin CS, Howard JT, Audet JN, Cantin L, Jarvis ED. De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads. Gigascience 2018; 6:1-16. [PMID: 29020750 PMCID: PMC5632298 DOI: 10.1093/gigascience/gix085] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/23/2017] [Indexed: 01/27/2023] Open
Abstract
Reference-quality genomes are expected to provide a resource for studying gene structure, function, and evolution. However, often genes of interest are not completely or accurately assembled, leading to unknown errors in analyses or additional cloning efforts for the correct sequences. A promising solution is long-read sequencing. Here we tested PacBio-based long-read sequencing and diploid assembly for potential improvements to the Sanger-based intermediate-read zebra finch reference and Illumina-based short-read Anna's hummingbird reference, 2 vocal learning avian species widely studied in neuroscience and genomics. With DNA of the same individuals used to generate the reference genomes, we generated diploid assemblies with the FALCON-Unzip assembler, resulting in contigs with no gaps in the megabase range, representing 150-fold and 200-fold improvements over the current zebra finch and hummingbird references, respectively. These long-read and phased assemblies corrected and resolved what we discovered to be numerous misassemblies in the references, including missing sequences in gaps, erroneous sequences flanking gaps, base call errors in difficult-to-sequence regions, complex repeat structure errors, and allelic differences between the 2 haplotypes. These improvements were validated by single long-genome and transcriptome reads and resulted for the first time in completely resolved protein-coding genes widely studied in neuroscience and specialized in vocal learning species. These findings demonstrate the impact of long reads, sequencing of previously difficult-to-sequence regions, and phasing of haplotypes on generating the high-quality assemblies necessary for understanding gene structure, function, and evolution.
Collapse
Affiliation(s)
| | - Gregory Gedman
- Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA
| | | | | | - Jason T Howard
- Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Nicolas Audet
- Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA.,Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Lindsey Cantin
- Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, Box 54, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
39
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
40
|
Arbeille E, Bashaw GJ. Brain Tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. PLoS Genet 2018; 14:e1007314. [PMID: 29617376 PMCID: PMC5902039 DOI: 10.1371/journal.pgen.1007314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline. The establishment of neuronal connections that cross the midline of the animal is essential to generate neural circuits that coordinate the left and right sides of the body. Axons that cross the midline to form these connections are called commissural axons and the molecules and mechanisms that control midline axon crossing are remarkably conserved across animal evolution. In this study we have used a genetic screen in the fruit fly in an attempt to uncover additional players in this key developmental process, and have identified a novel role for the Brain Tumor (Brat) protein in promoting commissural axon growth across the midline. Unlike its previous described functions, in the context of midline axon guidance Brat cooperates with the microtubule stabilizing protein Apc2 to coordinate axon growth and guidance. Molecular and genetic analyses point to the conserved B box motifs of the Brat protein as key in promoting the association of Apc2 with the plus ends of microtubules. Brat is highly conserved and future studies will determine whether homologous genes play analogous roles in mammalian neural development.
Collapse
Affiliation(s)
- Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
42
|
Di Donato V, De Santis F, Albadri S, Auer TO, Duroure K, Charpentier M, Concordet JP, Gebhardt C, Del Bene F. An Attractive Reelin Gradient Establishes Synaptic Lamination in the Vertebrate Visual System. Neuron 2018; 97:1049-1062.e6. [PMID: 29429939 DOI: 10.1016/j.neuron.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/11/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
A conserved organizational and functional principle of neural networks is the segregation of axon-dendritic synaptic connections into laminae. Here we report that targeting of synaptic laminae by retinal ganglion cell (RGC) arbors in the vertebrate visual system is regulated by a signaling system relying on target-derived Reelin and VLDLR/Dab1a on the projecting neurons. Furthermore, we find that Reelin is distributed as a gradient on the target tissue and stabilized by heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM). Through genetic manipulations, we show that this Reelin gradient is important for laminar targeting and that it is attractive for RGC axons. Finally, we suggest a comprehensive model of synaptic lamina formation in which attractive Reelin counter-balances repulsive Slit1, thereby guiding RGC axons toward single synaptic laminae. We establish a mechanism that may represent a general principle for neural network assembly in vertebrate species and across different brain areas.
Collapse
Affiliation(s)
- Vincenzo Di Donato
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Flavia De Santis
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Shahad Albadri
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Thomas Oliver Auer
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Marine Charpentier
- Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris 75231, France
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris 75231, France
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France.
| |
Collapse
|
43
|
Fukuda T, Yanagi S. Psychiatric behaviors associated with cytoskeletal defects in radial neuronal migration. Cell Mol Life Sci 2017; 74:3533-3552. [PMID: 28516224 PMCID: PMC11107632 DOI: 10.1007/s00018-017-2539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022]
Abstract
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.
Collapse
Affiliation(s)
- Toshifumi Fukuda
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
44
|
PRRG4 function reveals that Robo trafficking is evolutionarily conserved. PLoS Genet 2017; 13:e1006927. [PMID: 28859080 PMCID: PMC5578483 DOI: 10.1371/journal.pgen.1006927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet 2017; 13:e1006865. [PMID: 28859078 PMCID: PMC5578492 DOI: 10.1371/journal.pgen.1006865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
WAGR syndrome is characterized by Wilm's tumor, aniridia, genitourinary abnormalities and intellectual disabilities. WAGR is caused by a chromosomal deletion that includes the PAX6, WT1 and PRRG4 genes. PRRG4 is proposed to contribute to the autistic symptoms of WAGR syndrome, but the molecular function of PRRG4 genes remains unknown. The Drosophila commissureless (comm) gene encodes a short transmembrane protein characterized by PY motifs, features that are shared by the PRRG4 protein. Comm intercepts the Robo axon guidance receptor in the ER/Golgi and targets Robo for degradation, allowing commissural axons to cross the CNS midline. Expression of human Robo1 in the fly CNS increases midline crossing and this was enhanced by co-expression of PRRG4, but not CYYR, Shisa or the yeast Rcr genes. In cell culture experiments, PRRG4 could re-localize hRobo1 from the cell surface, suggesting that PRRG4 is a functional homologue of Comm. Comm is required for axon guidance and synapse formation in the fly, so PRRG4 could contribute to the autistic symptoms of WAGR by disturbing either of these processes in the developing human brain.
Collapse
Affiliation(s)
- Elizabeth D. Justice
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Sarah J. Barnum
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| | - Thomas Kidd
- Department of Biology/ms 314, University of Nevada, Reno, Nevada, United States of America
| |
Collapse
|
46
|
Amodeo V, A D, Betts J, Bartesaghi S, Zhang Y, Richard-Londt A, Ellis M, Roshani R, Vouri M, Galavotti S, Oberndorfer S, Leite AP, Mackay A, Lampada A, Stratford EW, Li N, Dinsdale D, Grimwade D, Jones C, Nicotera P, Michod D, Brandner S, Salomoni P. A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS. Cell Rep 2017; 20:411-426. [PMID: 28700942 DOI: 10.1016/j.celrep.2017.06.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells.
Collapse
Affiliation(s)
- Valeria Amodeo
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Deli A
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Joanne Betts
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Stefano Bartesaghi
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Ying Zhang
- UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | | | - Rozita Roshani
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Mikaella Vouri
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sara Galavotti
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sarah Oberndorfer
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Ana Paula Leite
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Alan Mackay
- Institute of Cancer Research, Sutton, London SM2 5NG, UK
| | - Aikaterini Lampada
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | | | - Ningning Li
- UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | - David Grimwade
- Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Chris Jones
- Institute of Cancer Research, Sutton, London SM2 5NG, UK
| | - Pierluigi Nicotera
- German Centre for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - David Michod
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK; UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Paolo Salomoni
- UCL Cancer Institute, London, WC1E 6DD, UK; Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
47
|
Bashamboo A, Bignon-Topalovic J, Moussi N, McElreavey K, Brauner R. Mutations in the Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome. J Clin Endocrinol Metab 2017; 102:2401-2406. [PMID: 28402530 DOI: 10.1210/jc.2016-1095] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Context Pituitary stalk interruption syndrome (PSIS) is characterized by a thin or absent pituitary stalk usually in association with an ectopic posterior pituitary and hypoplasia/aplasia of the anterior pituitary. Associated phenotypes include varied ocular anomalies, hypoglycemia, micropenis/cryptorchidism, growth failure, or combined pituitary hormone deficiencies. Although genetic causes have been identified, they explain only around 5% of PSIS cases. Objective To identify genetic causes of PSIS by exome sequencing. Design Exon enrichment was performed using the Agilent SureSelect Human All Exon V4. Paired-end sequencing was performed on the Illumina HiSeq2000 platform with an average sequencing coverage of ×50. Patients Patients with unexplained PSIS were included in the study. Results In five cases of unexplained PSIS including two familial cases, we identified a novel heterozygous frameshift and nonsense and missense mutations in the ROBO1 gene (p.Ala977Glnfs*40, two affected sibs; p.Tyr1114Ter, sporadic case, and p.Cys240Ser, affected child and paternal aunt) that controls embryonic axon guidance, and branching in the nervous system. Interestingly, four of the five cases of PSIS also presented with ocular anomalies, including hypermetropia with strabismus as well as ptosis. Conclusions These data suggest that mutations in ROBO1 contribute to PSIS and associated ocular anomalies.
Collapse
Affiliation(s)
- Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, 75015 Paris, France
| | | | - Nasser Moussi
- Human Developmental Genetics, Institut Pasteur, 75015 Paris, France
| | - Ken McElreavey
- Human Developmental Genetics, Institut Pasteur, 75015 Paris, France
| | - Raja Brauner
- Université Paris Descartes and Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France
| |
Collapse
|
48
|
Feng G, Zhu Z, Li WJ, Lin Q, Chai Y, Dong MQ, Ou G. Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans. EMBO J 2016; 36:334-345. [PMID: 28011581 DOI: 10.15252/embj.201695734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2S139 Live imaging analysis of genome-edited animals indicates that MIG-2S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility.
Collapse
Affiliation(s)
- Guoxin Feng
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Wen-Jun Li
- National Institute of Biological Science, Beijing, China
| | - Qirong Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. Am J Hum Genet 2016; 99:253-74. [PMID: 27453576 PMCID: PMC4974071 DOI: 10.1016/j.ajhg.2016.05.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a common condition with considerable genetic heterogeneity. Next-generation sequencing of large cohorts has identified an increasing number of genes implicated in ID, but their roles in neurodevelopment remain largely unexplored. Here we report an ID syndrome caused by de novo heterozygous missense, nonsense, and frameshift mutations in BCL11A, encoding a transcription factor that is a putative member of the BAF swi/snf chromatin-remodeling complex. Using a comprehensive integrated approach to ID disease modeling, involving human cellular analyses coupled to mouse behavioral, neuroanatomical, and molecular phenotyping, we provide multiple lines of functional evidence for phenotypic effects. The etiological missense variants cluster in the amino-terminal region of human BCL11A, and we demonstrate that they all disrupt its localization, dimerization, and transcriptional regulatory activity, consistent with a loss of function. We show that Bcl11a haploinsufficiency in mice causes impaired cognition, abnormal social behavior, and microcephaly in accordance with the human phenotype. Furthermore, we identify shared aberrant transcriptional profiles in the cortex and hippocampus of these mouse models. Thus, our work implicates BCL11A haploinsufficiency in neurodevelopmental disorders and defines additional targets regulated by this gene, with broad relevance for our understanding of ID and related syndromes.
Collapse
|
50
|
Siu WK, Lam CW, Mak CM, Lau ETK, Tang MHY, Tang WF, Poon-Mak RSM, Lee CC, Hung SF, Leung PWL, Kwong KL, Yau EKC, Ng GSF, Fong NC, Chan KY. Diagnostic yield of array CGH in patients with autism spectrum disorder in Hong Kong. Clin Transl Med 2016; 5:18. [PMID: 27271878 PMCID: PMC4896892 DOI: 10.1186/s40169-016-0098-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNV) and it is advocated to be the first tier genetic testing for patients with autism spectrum disorder (ASD). In this regard, diagnostic yield of array comparative genomic hybridization (CGH) for ASD patients is determined in a cohort of Chinese patients in Hong Kong. Methods A combined adult and paediatric cohort of 68 Chinese ASD patients (41 patients in adult group and 27 patients in paediatric group). The genomic DNA extracted from blood samples were analysed by array CGH using NimbleGen CGX-135K oligonucleotide array. Results We identified 15 CNV and eight of them were clinically significant. The overall diagnostic yield was 11.8 %. Five clinically significant CNV were detected in the adult group and three were in the paediatric group, providing diagnostic yields of 12.2 and 11.1 % respectively. The most frequently detected CNV was 16p13.11 duplications which were present in 4 patients (5.9 % of the cohort). Conclusions In this study, a satisfactory diagnostic yield of array CGH was demonstrated in a Chinese ASD patient cohort which supported the clinical usefulness of array CGH as the first line testing of ASD in Hong Kong. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0098-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wai-Kwan Siu
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.,Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Elizabeth Tak-Kwong Lau
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Mary Hoi-Yin Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wing-Fai Tang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | - Chi-Chiu Lee
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | - Se-Fong Hung
- Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China
| | | | - Karen Ling Kwong
- Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, China
| | - Eric Kin-Cheong Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Grace Sui-Fun Ng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Nai-Chung Fong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Kwok-Yin Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| |
Collapse
|