1
|
Chen Z, Wo D, Wu C, Ma E, Peng J, Zhu W, Ren DN. Paclitaxel alleviates spinal cord injury via activation of the Wnt/β-catenin signaling pathway. Mol Med 2025; 31:172. [PMID: 40329167 PMCID: PMC12053863 DOI: 10.1186/s10020-025-01240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 05/01/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a disability that causes severe traumatic damage to the central nervous system, with increasing prevalence worldwide. Paclitaxel (PTX) is a naturally occurring plant metabolite that has been shown to exhibit various neuroprotective effects in the central nervous system, however, the specific mechanisms underlying its protective effects in SCI remain unclear. In this study, we aimed to explore the therapeutic effects of PTX in SCI, as well as elucidate the underlying molecular mechanisms associated with its neuroprotective potential. METHODS Murine models of spinal cord compression were performed followed by intrathecal administration of corresponding agents for 21 days. Mice were randomly divided into the following four groups: Sham, SCI + Saline, SCI + PTX, and SCI + PTX + XAV939. Recovery of lower limb function and strength, as well as muscular atrophy were examined via multiple scored tests. Degree of neuronal and axonal damage, as well as fibrosis were examined via immunohistochemical staining. RESULTS PTX administration significantly improved the recovery of lower limb function and strength, prevented muscular atrophy, as well as decreased the extent of neuronal and axonal death following SCI surgery. PTX also robustly activated the Wnt/β-catenin protein signaling pathway that played a key role in its therapeutic effects. Co-administration with a Wnt/β-catenin pathway inhibitor - XAV939, significantly abolished the beneficial effects of PTX after SCI. CONCLUSION This study provides important new mechanistic insight on the beneficial effects of PTX in protecting against spinal cord injury, as well as the experimental basis for its potential therapeutic use.
Collapse
Affiliation(s)
- Zhifeng Chen
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Celiang Wu
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinhui Peng
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weidong Zhu
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Dan-Ni Ren
- Academy of Integrative Medicine, College of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Wang Y, Yuan Z, Zhai L, Lv M, Iqbal H, Ur-Rehman U, Ning X, Jin Z, Yi Z, Xiao R. An overview of Sgc8 aptamer as a potential theranostic agent for cancer with PTK7 oncogenic target. Sci Prog 2025; 108:368504251325385. [PMID: 40033943 PMCID: PMC11877490 DOI: 10.1177/00368504251325385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Aptamers have attracted exceptional attention in medical field due to their intrinsic properties equivalent to antibodies such as high target affinity, low immunogenicity and toxicity, cost-effectiveness and ease of synthesis and modification, and good stability under extreme conditions, thereby providing new avenues for basic research and clinical application. Protein tyrosine kinase 7 (PTK7) has been proved to be closely linked with the progression of many types of cancer. The aberrant expression of PTK7 has positioned it as a potential theranostic biomarker for multiple cancers. Aptamer sgc8 was initially identified for its high-affinity binding to PTK7 on the T-cell acute lymphoblastic leukemia cell line (CCRF-CEM) through cell-SELEX (systematic evolution of ligands by exponential enrichment) and subsequently has demonstrated the ability to effectively recognize many types of cancer cells that express PTK7 oncogenic target. The easily modifiable nature of sgc8 facilitates its conjugation with functional agents and drugs. This identification mode and modification approach of aptamers against cancer cells provides a potential strategy for cancer diagnosis and treatment. In this review, we discuss the potential of sgc8 aptamers in early cancer diagnosis and targeted therapy, focusing specifically on their interaction with the oncogenic biomarker PTK7.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Tianjin University, Tianjin University, Tianjin, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ziyin Yuan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lina Zhai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Man Lv
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- School of Life Science, Tianjin University, Tianjin, China
| | - Haroon Iqbal
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Uzair Ur-Rehman
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xin Ning
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Zihui Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Run Xiao
- Medical College of Tianjin University, Tianjin University, Tianjin, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Jiang Y, Cai Y, Yang N, Gao S, Li Q, Pang Y, Su P. Molecular mechanisms of spinal cord injury repair across vertebrates: A comparative review. Eur J Neurosci 2024; 60:4552-4568. [PMID: 38978308 DOI: 10.1111/ejn.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.
Collapse
Affiliation(s)
- Ying Jiang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yang Cai
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ning Yang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Si Gao
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Cheah M, Cheng Y, Petrova V, Cimpean A, Jendelova P, Swarup V, Woolf CJ, Geschwind DH, Fawcett JW. Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program. J Neurosci 2023; 43:4775-4794. [PMID: 37277179 PMCID: PMC10312060 DOI: 10.1523/jneurosci.2076-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Veselina Petrova
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Anda Cimpean
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
5
|
Marfull-Oromí P, Onishi K, Han X, Yates JR, Zou Y. The Fragile X Messenger Ribonucleoprotein 1 Participates in Axon Guidance Mediated by the Wnt/Planar Cell Polarity Pathway. Neuroscience 2023; 508:76-86. [PMID: 36191829 DOI: 10.1016/j.neuroscience.2022.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023]
Abstract
The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that Fragile X Messenger Ribonucleoprotein 1 (FMRP) interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of post-crossing commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
Collapse
Affiliation(s)
- Pau Marfull-Oromí
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Keisuke Onishi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Xuemei Han
- Department of Chemical Physiology, TheScripps Research Institute, La Jolla, CA 92037, United States
| | - John R Yates
- Department of Chemical Physiology, TheScripps Research Institute, La Jolla, CA 92037, United States
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Hendi A, Niu LG, Snow AW, Ikegami R, Wang ZW, Mizumoto K. Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in C. elegans. eLife 2022; 11:80555. [PMID: 36378164 PMCID: PMC9665852 DOI: 10.7554/elife.80555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Precise synaptic connection of neurons with their targets is essential for the proper functioning of the nervous system. A plethora of signaling pathways act in concert to mediate the precise spatial arrangement of synaptic connections. Here we show a novel role for a gap junction protein in controlling tiled synaptic arrangement in the GABAergic motor neurons in Caenorhabditis elegans, in which their axons and synapses overlap minimally with their neighboring neurons within the same class. We found that while EGL-20/Wnt controls axonal tiling, their presynaptic tiling is mediated by a gap junction protein UNC-9/Innexin, that is localized at the presynaptic tiling border between neighboring dorsal D-type GABAergic motor neurons. Strikingly, the gap junction channel activity of UNC-9 is dispensable for its function in controlling tiled presynaptic patterning. While gap junctions are crucial for the proper functioning of the nervous system as channels, our finding uncovered the novel channel-independent role of UNC-9 in synapse patterning.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
| | - Long-Gang Niu
- Department of Neuroscience, University of Connecticut Health Center
| | - Andrew William Snow
- Graduate Program in Cell and Developmental Biology, University of British Columbia
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia
- Life Sciences Institute, University of British Columbia
- Graduate Program in Cell and Developmental Biology, University of British Columbia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia
| |
Collapse
|
7
|
Boligala GP, Yang MV, van Wunnik JC, Pruitt K. Nuclear Dishevelled: An enigmatic role in governing cell fate and Wnt signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119305. [PMID: 35688346 DOI: 10.1016/j.bbamcr.2022.119305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity and subsequent work has now demonstrated its importance in critical and diverse aspects of biology. Since those early discoveries, Dishevelled has been shown to coordinate a plethora of developmental and cellular processes that range from controlling cell polarity during gastrulation to partnering with chromatin modifying enzymes to regulate histone methylation at genomic loci. While the role of DVL in development is well-respected and the cytosolic function of DVL has been studied more extensively, its nuclear role continues to remain murky. In this review we highlight some of the seminal discoveries that have contributed to the field, but the primary focus is to discuss recent advances with respect to the nuclear role of Dishevelled. This nuclear function of Dishevelled is a dimension which is proving to be increasingly important yet remains enigmatic.
Collapse
Affiliation(s)
- Geetha Priya Boligala
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mingxiao V Yang
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jenna C van Wunnik
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
8
|
Tao L, Coakley S, Shi R, Shen K. Dendrites use mechanosensitive channels to proofread ligand-mediated neurite extension during morphogenesis. Dev Cell 2022; 57:1615-1629.e3. [PMID: 35709764 DOI: 10.1016/j.devcel.2022.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Ligand-receptor interactions guide axon navigation and dendrite arborization. Mechanical forces also influence guidance choices. However, the nature of such mechanical stimulations, the mechanosensor identity, and how they interact with guidance receptors are unknown. Here, we demonstrate that mechanosensitive DEG/ENaC channels are required for dendritic arbor morphogenesis in Caenorhabditis elegans. Inhibition of DEG/ENaC channels causes reduced dendritic outgrowth and branching in vivo, a phenotype that is alleviated by overexpression of the mechanosensitive channels PEZO-1/Piezo or YVC1/TrpY1. DEG/ENaCs trigger local Ca2+ transients in growing dendritic filopodia via activation of L-type voltage-gated Ca2+ channels. Anchoring of filopodia by dendrite ligand-receptor complexes is required for the mechanical activation of DEG/ENaC channels. Therefore, mechanosensitive channels serve as a checkpoint for appropriate chemoaffinity by activating Ca2+ transients required for neurite growth.
Collapse
Affiliation(s)
- Li Tao
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca Shi
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA; Neurosciences IDP, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Deans MR. Planar cell polarity signaling guides cochlear innervation. Dev Biol 2022; 486:1-4. [DOI: 10.1016/j.ydbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 01/24/2023]
|
10
|
Tang Z, Yang C, He Z, Deng Z, Li X. Notoginsenoside R1 alleviates spinal cord injury through the miR-301a/KLF7 axis to activate Wnt/β-catenin pathway. Open Med (Wars) 2022; 17:741-755. [PMID: 35509687 PMCID: PMC9008318 DOI: 10.1515/med-2022-0461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating incident that induces neuronal loss and dysfunction. Notoginsenoside R1 (NGR1) has been reported to exhibit a neuroprotective role after SCI. In this study, the effect and molecular mechanisms of NGR1 in models of SCI were further investigated. Rat adrenal pheochromocytoma cell line (PC-12) were stimulated with lipopolysaccharide (LPS) to establish a cell model of SCI-like condition. The changes of proinflammatory cytokines and associated proteins were analyzed using enzyme linked immunosorbent assay (ELISA) and western blotting. A rat model of SCI was established. Nissl staining were used to observe the morphological characteristics of spinal cord tissues. reverse transcription-quantitative PCR (RT-qPCR) was used to measure the expression of miR-301a andKrüppel-like factor 7 (KLF7). Our results showed that NGR1 alleviated LPS-triggered apoptosis and inflammation in PC-12 cells. MiR-301a was upregulated in LPS-stimulated PC-12 cells and was downregulated by NGR1 treatment. MiR-301a overexpression reversed the effect of NGR1 in LPS-treated PC-12 cells. KLF7 was verified to be targeted by miR-301a. NGR1 activated Wnt/β-catenin signaling in LPS-treated PC-12 cells by inhibiting miR-301a and upregulating KLF7. Moreover, blocking wingless/integrated (Wnt)/β-catenin signaling eliminated the protective effect of NGR1 against SCI in vitro and in vivo. Overall, NGR1 could reduce inflammation and apoptosis and promote functional recovery of SCI rats by activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Chunhua Yang
- Department of Orthopaedics, The First Hospital of Changsha, Kaifu District, Changsha 410005, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Zhiyong Deng
- Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Xiaoming Li
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha 410005, Hunan, China
| |
Collapse
|
11
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
12
|
Zhang N, Lin J, Chin JS, Wiraja C, Xu C, McGrouther DA, Chew SY. Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush. J Tissue Eng 2022; 13:20417314221087417. [PMID: 35422984 PMCID: PMC9003641 DOI: 10.1177/20417314221087417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 01/09/2023] Open
Abstract
Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Duncan Angus McGrouther
- Department of Hand and Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Sato Y, Fu Y, Liu H, Lee MY, Shaw MH. Tumor-immune profiling of CT-26 and Colon 26 syngeneic mouse models reveals mechanism of anti-PD-1 response. BMC Cancer 2021; 21:1222. [PMID: 34774008 PMCID: PMC8590766 DOI: 10.1186/s12885-021-08974-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapies have changed the paradigm of cancer therapies. However, anti-tumor response of the ICB is insufficient for many patients and limited to specific tumor types. Despite many preclinical and clinical studies to understand the mechanism of anti-tumor efficacy of ICB, the mechanism is not completely understood. Harnessing preclinical tumor models is one way to understand the mechanism of treatment response. METHODS In order to delineate the mechanisms of anti-tumor activity of ICB in preclinical syngeneic tumor models, we selected two syngeneic murine colorectal cancer models based on in vivo screening for sensitivity with anti-PD-1 therapy. We performed tumor-immune profiling of the two models to identify the potential mechanism for anti-PD-1 response. RESULTS We performed in vivo screening for anti-PD-1 therapy across 23 syngeneic tumor models and found that CT-26 and Colon 26, which are murine colorectal carcinoma derived from BALB/c mice, showed different sensitivity to anti-PD-1. CT-26 tumor mice were more sensitive to the anti-PD-1 antibody than Colon 26, while both models show similarly sensitivity to anti-CTLA4 antibody. Immune-profiling showed that CT-26 tumor tissue was infiltrated with more immune cells than Colon 26. Genomic/transcriptomic analyses highlighted thatWnt pathway was one of the potential differences between CT-26 and Colon 26, showing Wnt activity was higher in Colon 26 than CT-26. . CONCLUSIONS CT-26 and Colon 26 syngeneic tumor models showed different sensitivity to anti-PD-1 therapy, although both tumor cells are murine colorectal carcinoma cell lines from BALB/c strain. By characterizing the mouse cells lines and tumor-immune context in the tumor tissues with comprehensive analysis approaches, we found that CT-26 showed "hot tumor" profile with more infiltrated immune cells than Colon 26. Further pathway analyses enable us to propose a hypothesis that Wnt pathway could be one of the major factors to differentiate CT-26 from Colon 26 model and link to anti-PD-1 response. Our approach to focus on preclinical tumor models with similar genetic background but different sensitivity to anti-PD-1 therapy would contribute to illustrating the potential mechanism of anti-PD-1 response and to generating a novel concept to synergize current anti-PD-1 therapies for cancer patients.
Collapse
Affiliation(s)
- Yosuke Sato
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.
| | - Yu Fu
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.,Guardant Health, 720 3rd Ave Suite 2100, Seattle, WA, 98104, USA
| | - Hong Liu
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA.,Checkmate Pharmaceuticals, 245 Main St, Cambridge, MA, 02142, USA
| | - Min Young Lee
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA
| | - Michael H Shaw
- Immuno-oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc. a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne St, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Yu J, She Y, Yang L, Zhuang M, Han P, Liu J, Lin X, Wang N, Chen M, Jiang C, Zhang Y, Yuan Y, Ji S. The m 6 A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101329. [PMID: 34643063 PMCID: PMC8596126 DOI: 10.1002/advs.202101329] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/26/2021] [Indexed: 05/23/2023]
Abstract
Messenger RNA m6 A modification is shown to regulate local translation in axons. However, how the m6 A codes in axonal mRNAs are read and decoded by the m6 A reader proteins is still unknown. Here, it is found that the m6 A readers YTHDF1 and YTHDF2 are both expressed in cerebellar granule cells (GCs) and their axons. Knockdown (KD) of YTHDF1 or YTHDF2 significantly increases GC axon growth rates in vitro. By integrating anti-YTHDF1&2 RIP-Seq with the quantitative proteomic analysis or RNA-seq after KD of YTHDF1 or YTHDF2, a group of transcripts which may mediate the regulation of GC axon growth by YTHDFs is identified. Among them, Dvl1 and Wnt5a, encoding the key components of Wnt pathway, are further found to be locally translated in axons, which are controlled by YTHDF1 and YTHDF2, respectively. Specific ablation of Ythdf1 or Ythdf2 in GCs increases parallel fiber growth, promotes synapse formation in cerebellum in vivo, and improves motor coordination ability. Together, this study identifies a mechanism by which the m6 A readers YTHDF1 and YTHDF2 work synergistically on the Wnt5a pathway through regulating local translation in GC axons to control cerebellar parallel fiber development.
Collapse
Affiliation(s)
- Jun Yu
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
- SUSTech‐HKU Joint PhD ProgramSchool of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yuanchu She
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Lixin Yang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Mengru Zhuang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Peng Han
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianhui Liu
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xiaoyan Lin
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Nijia Wang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Mengxian Chen
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Chunxuan Jiang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yujia Zhang
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Yujing Yuan
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sheng‐Jian Ji
- School of Life SciencesDepartment of BiologyShenzhen Key Laboratory of Gene Regulation and Systems BiologyBrain Research CenterSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
15
|
Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, Zou Y. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. SCIENCE ADVANCES 2021; 7:eabh2974. [PMID: 34613779 PMCID: PMC8494439 DOI: 10.1126/sciadv.abh2974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
Whether there exists a common signaling mechanism that assembles all glutamatergic synapses is unknown. We show here that knocking out Prickle1 and Prickle2 reduced the formation of the PSD-95–positive glutamatergic synapses in the hippocampus and medial prefrontal cortex in postnatal development by 70–80%. Prickle1 and Prickle2 double knockout in adulthood lead to the disassembly of 70 to 80% of the postsynaptic-density(PSD)-95–positive glutamatergic synapses. PSD-95–positive glutamatergic synapses in the hippocampus of Prickle2E8Q/E8Q mice were reduced by 50% at postnatal day 14. Prickle2 promotes synapse formation by antagonizing Vangl2 and stabilizing the intercellular complex of the planar cell polarity (PCP) components, whereas Prickle2 E8Q fails to do so. Coculture experiments show that the asymmetric PCP complexes can determine the presynaptic and postsynaptic polarity. In summary, the PCP components regulate the assembly and maintenance of a large number of glutamatergic synapses and specify the direction of synaptic transmission.
Collapse
Affiliation(s)
- Yue Ban
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Yu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Feng
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charlotte Lorenz
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaojia Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clayton Baker
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Pascual-Vargas P, Salinas PC. A Role for Frizzled and Their Post-Translational Modifications in the Mammalian Central Nervous System. Front Cell Dev Biol 2021; 9:692888. [PMID: 34414184 PMCID: PMC8369345 DOI: 10.3389/fcell.2021.692888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Wnt pathway is a key signalling cascade that regulates the formation and function of neuronal circuits. The main receptors for Wnts are Frizzled (Fzd) that mediate diverse functions such as neurogenesis, axon guidance, dendritogenesis, synapse formation, and synaptic plasticity. These processes are crucial for the assembly of functional neuronal circuits required for diverse functions ranging from sensory and motor tasks to cognitive performance. Indeed, aberrant Wnt-Fzd signalling has been associated with synaptic defects during development and in neurodegenerative conditions such as Alzheimer's disease. New studies suggest that the localisation and stability of Fzd receptors play a crucial role in determining Wnt function. Post-translational modifications (PTMs) of Fzd are emerging as an important mechanism that regulates these Wnt receptors. However, only phosphorylation and glycosylation have been described to modulate Fzd function in the central nervous system (CNS). In this review, we discuss the function of Fzd in neuronal circuit connectivity and how PTMs contribute to their function. We also discuss other PTMs, not yet described in the CNS, and how they might modulate the function of Fzd in neuronal connectivity. PTMs could modulate Fzd function by affecting Fzd localisation and stability at the plasma membrane resulting in local effects of Wnt signalling, a feature particularly important in polarised cells such as neurons. Our review highlights the importance of further studies into the role of PTMs on Fzd receptors in the context of neuronal connectivity.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Bedogni F, Hevner RF. Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Front Mol Neurosci 2021; 14:686034. [PMID: 34321999 PMCID: PMC8313239 DOI: 10.3389/fnmol.2021.686034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cortex projection neurons (PNs) are generated from intermediate progenitors (IPs), which are in turn derived from radial glial progenitors (RGPs). To investigate developmental processes in IPs, we profiled IP transcriptomes in embryonic mouse neocortex, using transgenic Tbr2-GFP mice, cell sorting, and microarrays. These data were used in combination with in situ hybridization to ascertain gene sets specific for IPs, RGPs, PNs, interneurons, and other neural and non-neural cell types. RGP-selective transcripts (n = 419) included molecules for Notch receptor signaling, proliferation, neural stem cell identity, apical junctions, necroptosis, hippo pathway, and NF-κB pathway. RGPs also expressed specific genes for critical interactions with meningeal and vascular cells. In contrast, IP-selective genes (n = 136) encoded molecules for activated Delta ligand presentation, epithelial-mesenchymal transition, core planar cell polarity (PCP), axon genesis, and intrinsic excitability. Interestingly, IPs expressed several “dependence receptors” (Unc5d, Dcc, Ntrk3, and Epha4) that induce apoptosis in the absence of ligand, suggesting a competitive mechanism for IPs and new PNs to detect key environmental cues or die. Overall, our results imply a novel role for IPs in the patterning of neuronal polarization, axon differentiation, and intrinsic excitability prior to mitosis. Significantly, IPs highly express Wnt-PCP, netrin, and semaphorin pathway molecules known to regulate axon polarization in other systems. In sum, IPs not only amplify neurogenesis quantitatively, but also molecularly “prime” new PNs for axogenesis, guidance, and excitability.
Collapse
Affiliation(s)
| | - Robert F Hevner
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
van Vliet AC, Lee J, van der Poel M, Mason MRJ, Noordermeer JN, Fradkin LG, Tannemaat MR, Malessy MJA, Verhaagen J, De Winter F. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury. PLoS One 2021; 16:e0249748. [PMID: 33848304 PMCID: PMC8043392 DOI: 10.1371/journal.pone.0249748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Arie C. van Vliet
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jinhui Lee
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marlijn van der Poel
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Matthew R. J. Mason
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Martijn R. Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. A. Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021; 10:cells10040839. [PMID: 33917816 PMCID: PMC8068170 DOI: 10.3390/cells10040839] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays an important role in the physiological and pathophysiological processes of the central nervous system and the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We reviewed the literature pertinent to WNT/β–catenin signaling in ALS from cellular studies, animal models, and human clinical trials. WNT, WNT receptors, and other components of the WNT signaling pathway are expressed in both ALS patients and transgenic mice, and are involved in the pathogenesis of ALS. Studies have shown that abnormal activation of the WNT/β–catenin signaling pathway is related to neuronal degeneration and glial cell proliferation. WNT/Ca2+ signaling is associated with the pro–inflammatory phenotype of microglia; data on the muscle skeletal receptor Tyr kinase receptor in superoxide dismutase–1–G93A mice indicate that gene therapy is necessary for successful treatment of ALS. The varying profiles of lipoprotein receptor–related protein 4 antibodies in different ethnic groups suggest that individual treatment and multifactorial personalized approaches may be necessary for effective ALS therapy. In conclusion, the WNT signaling pathway is important to the ALS disease process, making it a likely therapeutic target.
Collapse
|
20
|
Zou Y. Targeting axon guidance cues for neural circuit repair after spinal cord injury. J Cereb Blood Flow Metab 2021; 41:197-205. [PMID: 33167744 PMCID: PMC7812507 DOI: 10.1177/0271678x20961852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/02/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
At least two-thirds of spinal cord injury cases are anatomically incomplete, without complete spinal cord transection, although the initial injuries cause complete loss of sensory and motor functions. The malleability of neural circuits and networks allows varied extend of functional restoration in some individuals after successful rehabilitative training. However, in most cases, the efficiency and extent are both limited and uncertain, largely due to the many obstacles of repair. The restoration of function after anatomically incomplete injury is in part made possible by the growth of new axons or new axon branches through the spared spinal cord tissue and the new synaptic connections they make, either along the areas they grow through or in the areas they terminate. This review will discuss new progress on the understanding of the role of axon guidance molecules, particularly the Wnt family proteins, in spinal cord injury and how the knowledge and tools of axon guidance can be applied to increase the potential of recovery. These strategies, combined with others, such as neuroprotection and rehabilitation, may bring new promises. The recovery strategies for anatomically incomplete spinal cord injuries are relevant and may be applicable to traumatic brain injury and stroke.
Collapse
Affiliation(s)
- Yimin Zou
- Neurobiology Section, Biological Sciences
Division, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Tsata V, Möllmert S, Schweitzer C, Kolb J, Möckel C, Böhm B, Rosso G, Lange C, Lesche M, Hammer J, Kesavan G, Beis D, Guck J, Brand M, Wehner D. A switch in pdgfrb + cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 2021; 56:509-524.e9. [PMID: 33412105 DOI: 10.1016/j.devcel.2020.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
In mammals, perivascular cell-derived scarring after spinal cord injury impedes axonal regrowth. In contrast, the extracellular matrix (ECM) in the spinal lesion site of zebrafish is permissive and required for axon regeneration. However, the cellular mechanisms underlying this interspecies difference have not been investigated. Here, we show that an injury to the zebrafish spinal cord triggers recruitment of pdgfrb+ myoseptal and perivascular cells in a PDGFR signaling-dependent manner. Interference with pdgfrb+ cell recruitment or depletion of pdgfrb+ cells inhibits axonal regrowth and recovery of locomotor function. Transcriptional profiling and functional experiments reveal that pdgfrb+ cells upregulate expression of axon growth-promoting ECM genes (cthrc1a and col12a1a/b) and concomitantly reduce synthesis of matrix molecules that are detrimental to regeneration (lum and mfap2). Our data demonstrate that a switch in ECM composition is critical for axon regeneration after spinal cord injury and identify the cellular source and components of the growth-promoting lesion ECM.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Stephanie Möllmert
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Christine Schweitzer
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Julia Kolb
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Conrad Möckel
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Benjamin Böhm
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Christian Lange
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gokul Kesavan
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dimitris Beis
- Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Jochen Guck
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Wehner
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Science of Light, 91058 Erlangen, Germany; Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
| |
Collapse
|
22
|
Klein R, Pasterkamp RJ. Recent advances in inter-cellular interactions during neural circuit assembly. Curr Opin Neurobiol 2021; 69:25-32. [PMID: 33383489 DOI: 10.1016/j.conb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Neural circuit assembly is regulated by inter-cellular interactions involving secreted and surface-tethered guidance molecules. Here, we review recent progress in our understanding of their mechanisms-of-action and biological effects. We discuss mechanisms through which the secreted cue Netrin-1 regulates neuron migration and highlight novel roles for axon-derived secreted guidance cues. We cover recent structural work at atomic resolution that provides new insights into the activation mechanisms of axon guidance receptors and into protein complexes containing cell adhesion molecules, such as Teneurin (Ten), Latrophilin (Lphn) and FLRT. Ten-Ten homophilic, Ten-Lphn heterophilic, and Ten-Lphn-FLRT tripartite complexes seem to elicit distinct context-dependent cellular responses. Seemingly opposite responses can also be triggered by the Eph/ephrin signaling system. Here, recent work provides a simple mechanism for the decision of forming a new synapse versus rejection of the pre-synaptic partner. These studies identify novel regulatory mechanisms and biological functions that will apply generally in developing neural systems.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
23
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, Rodríguez FJ. Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 2020; 77:4631-4662. [PMID: 31900623 PMCID: PMC11104978 DOI: 10.1007/s00018-019-03427-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the experimental evidence pointing to a significant role of the Wnt family of proteins in physiological and pathological rodent spinal cord functioning, its potential relevance in the healthy and traumatically injured human spinal cord as well as its therapeutic potential in spinal cord injury (SCI) are still poorly understood. To get further insight into these interesting issues, we first demonstrated by quantitative Real-Time PCR and simple immunohistochemistry that detectable mRNA expression of most Wnt components, as well as protein expression of all known Wnt receptors, can be found in the healthy human spinal cord, supporting its potential involvement in human spinal cord physiology. Moreover, evaluation of Frizzled (Fz) 1 expression by double immunohistochemistry showed that its spatio-temporal and cellular expression pattern in the traumatically injured human spinal cord is equivalent to that observed in a clinically relevant model of rat SCI and suggests its potential involvement in SCI progression/outcome. Accordingly, we found that long-term lentiviral-mediated overexpression of the Fz1 ligand Wnt1 after rat SCI improves motor functional recovery, increases myelin preservation and neuronal survival, and reduces early astroglial reactivity and NG2+ cell accumulation, highlighting the therapeutic potential of Wnt1 in this neuropathological situation.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de La Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | |
Collapse
|
24
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, García-Ovejero D, Rodríguez FJ. Spatio-temporal and Cellular Expression Patterns of PTK7 in the Healthy and Traumatically Injured Rat and Human Spinal Cord. Cell Mol Neurobiol 2020; 40:1087-1103. [PMID: 31974907 PMCID: PMC11448799 DOI: 10.1007/s10571-020-00794-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Despite the emerging role of protein tyrosine kinase 7 (PTK7) as a Wnt co-receptor and the relevant functions of the Wnt family of proteins in spinal cord injury (SCI), the potential involvement of PTK7 in SCI is currently unknown. As a first essential step to shed light on this issue, we evaluated the spatio-temporal and cellular expression patterns of PTK7 in healthy and traumatically injured rat and human spinal cords. In the uninjured rats, PTK7 expression was observed in the ependymal epithelium, endothelial cells, meningeal fibronectin-expressing cells, and specific axonal tracts, but not in microglia, astrocytes, neurons, oligodendrocytes, or NG2+ cells. After rat SCI, the mRNA expression of PTK7 was significantly increased, while its spatio-temporal and cellular protein expression patterns also suffered evident changes in the injured region. Briefly, the expression of PTK7 in the affected areas was observed in axons, reactive astrocytes, NG2+ and fibronectin-expressing cells, and in a subpopulation of reactive microglia/macrophages and blood vessels. Finally, in both healthy and traumatically injured human spinal cords, PTK7 expression pattern was similar to that observed in the rat, although some specific differences were found. In conclusion, we demonstrate for the first time that PTK7 is constitutively expressed in the healthy adult rat and human spinal cord and that its expression pattern clearly varied after rat and human SCI which, to our knowledge, constitutes the first experimental evidence pointing to the potential involvement of this co-receptor in physiological and pathological spinal cord functioning.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | | | |
Collapse
|
25
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2020; 112:5086-5100. [PMID: 32919018 DOI: 10.1016/j.ygeno.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
26
|
Kulus M, Kranc W, Jeseta M, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Celichowski P, Moncrieff L, Kocherova I, Józkowiak M, Kulus J, Wieczorkiewicz M, Piotrowska-Kempisty H, Skowroński MT, Bukowska D, Machatkova M, Hanulakova S, Mozdziak P, Jaśkowski JM, Kempisty B, Antosik P. Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro. Genes (Basel) 2020; 11:genes11070815. [PMID: 32708880 PMCID: PMC7397037 DOI: 10.3390/genes11070815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Marie Machatkova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Sarka Hanulakova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Correspondence: ; Tel.: +48-61-854-6418
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| |
Collapse
|
27
|
LRRK2 mediates axon development by regulating Frizzled3 phosphorylation and growth cone-growth cone communication. Proc Natl Acad Sci U S A 2020; 117:18037-18048. [PMID: 32641508 PMCID: PMC7395514 DOI: 10.1073/pnas.1921878117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axon-axon interactions are essential for axon guidance during nervous system wiring. However, it is unknown whether and how the growth cones communicate with each other while sensing and responding to guidance cues. We found that the Parkinson's disease gene, leucine-rich repeat kinase 2 (LRRK2), has an unexpected role in growth cone-growth cone communication. The LRRK2 protein acts as a scaffold and induces Frizzled3 hyperphosphorylation indirectly by recruiting other kinases and also directly phosphorylates Frizzled3 on threonine 598 (T598). In LRRK1 or LRRK2 single knockout, LRRK1/2 double knockout, and LRRK2 G2019S knockin, the postcrossing spinal cord commissural axons are disorganized and showed anterior-posterior guidance errors after midline crossing. Growth cones from either LRRK2 knockout or G2019S knockin mice showed altered interactions, suggesting impaired communication. Intercellular interaction between Frizzled3 and Vangl2 is essential for planar cell polarity signaling. We show here that this interaction is regulated by phosphorylation of Frizzled3 at T598 and can be regulated by LRRK2 in a kinase activity-dependent way. In the LRRK1/2 double knockout or LRRK2 G2019S knockin, the dopaminergic axon bundle in the midbrain was significantly widened and appeared disorganized, showing aberrant posterior-directed growth. Our findings demonstrate that LRRK2 regulates growth cone-growth cone communication in axon guidance and that both loss-of-function mutation and a gain-of-function mutation (G2019S) cause axon guidance defects in development.
Collapse
|
28
|
Tavares-Ferreira D, Lawless N, Bird EV, Atkins S, Collier D, Sher E, Malki K, Lambert DW, Boissonade FM. Correlation of miRNA expression with intensity of neuropathic pain in man. Mol Pain 2020; 15:1744806919860323. [PMID: 31218919 PMCID: PMC6620726 DOI: 10.1177/1744806919860323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Peripheral nerve injury causes changes in expression of multiple receptors and mediators that participate in pain processing. We investigated the expression of microRNAs (miRNAs) – a class of post-transcriptional regulators involved in many physiological and pathophysiological processes – and their potential role in the development or maintenance of chronic neuropathic pain following lingual nerve injury in human and rat. Methods We profiled miRNA expression in Sprague-Dawley rat and human lingual nerve neuromas using TaqMan® low-density array cards. Expression of miRNAs of interest was validated via specific probes and correlated with nerve injury-related behavioural change in rat (time spent drinking) and clinical pain (visual analogue scale (VAS) score). Target prediction was performed using publicly available algorithms; gene enrichment and pathway analysis were conducted with MetaCore. Networks of miRNAs and putative target genes were created with Cytoscape; interaction of miRNAs and target genomes in rat and human was displayed graphically using CircosPlot. Results rno-miR-138 was upregulated in lingual nerve of injured rats versus sham controls. rno-miR-138 and rno-miR-667 expression correlated with behavioural change at day 3 post-injury (with negative (rno-miR-138) and positive (rno-miR-667) correlations between expression and time spent drinking). In human, hsa-miR-29a was downregulated in lingual nerve neuromas of patients with higher pain VAS scores (painful group) versus patients with lower pain VAS scores (non-painful). A statistically significant negative correlation was observed between expression of both hsa-miR-29a and hsa-miR-500a, and pain VAS score. Conclusions Our results show that following lingual nerve injury, there are highly significant correlations between abundance of specific miRNAs, altered behaviour and pain scores. This study provides the first demonstration of correlations between human miRNA levels and VAS scores for neuropathic pain and suggests a potential contribution of specific miRNAs to the development of chronic pain following lingual nerve injury. Putative targets for candidate miRNAs include genes related to interleukin and chemokine receptors and potassium channels.
Collapse
Affiliation(s)
| | - Nathan Lawless
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emma V Bird
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - Simon Atkins
- 1 School of Clinical Dentistry, University of Sheffield, UK
| | - David Collier
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Emanuele Sher
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | - Karim Malki
- 2 Lilly Research Centre, Eli Lilly and Company, Surrey, UK
| | | | | |
Collapse
|
29
|
Zou Y. Breaking symmetry - cell polarity signaling pathways in growth cone guidance and synapse formation. Curr Opin Neurobiol 2020; 63:77-86. [PMID: 32361599 DOI: 10.1016/j.conb.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
Directional and positional information is essential for the diverse neuronal morphology and connectivity during development. The direction of axon growth is critical for building the correct networks among neurons, sometimes from far away. Neuronal synapses are asymmetric cell-cell junctions with distinct presynaptic and postsynaptic structures to convey neural activity in a directional fashion. Recent studies show that some of the key asymmetry is mediated by highly conversed cell polarity signaling pathways. These pathways, planar cell polarity and apical-basal polarity, are not required for the global axon-dendrite polarity. Therefore, the apparent distinct types of morphological asymmetry in the nervous system, growth cone turning and synaptic junctions, are mediated by similar cell polarity signaling mechanisms widely used in cellular and tissue morphogenesis.
Collapse
Affiliation(s)
- Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, CA 92093, United States.
| |
Collapse
|
30
|
Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, Liu N, Chamberlain KA, Sheng ZH, Xu XM. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab 2020; 31:623-641.e8. [PMID: 32130884 PMCID: PMC7188478 DOI: 10.1016/j.cmet.2020.02.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/24/2019] [Accepted: 01/31/2020] [Indexed: 01/30/2023]
Abstract
Axonal regeneration in the central nervous system (CNS) is a highly energy-demanding process. Extrinsic insults and intrinsic restrictions lead to an energy crisis in injured axons, raising the question of whether recovering energy deficits facilitates regeneration. Here, we reveal that enhancing axonal mitochondrial transport by deleting syntaphilin (Snph) recovers injury-induced mitochondrial depolarization. Using three CNS injury mouse models, we demonstrate that Snph-/- mice display enhanced corticospinal tract (CST) regeneration passing through a spinal cord lesion, accelerated regrowth of monoaminergic axons across a transection gap, and increased compensatory sprouting of uninjured CST. Notably, regenerated CST axons form functional synapses and promote motor functional recovery. Administration of the bioenergetic compound creatine boosts CST regenerative capacity in Snph-/- mice. Our study provides mechanistic insights into intrinsic regeneration failure in CNS and suggests that enhancing mitochondrial transport and cellular energetics are promising strategies to promote regeneration and functional restoration after CNS injuries.
Collapse
Affiliation(s)
- Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josue D Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Huh
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Naikui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Karge A, Bonar NA, Wood S, Petersen CP. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. eLife 2020; 9:47293. [PMID: 31958270 PMCID: PMC6970515 DOI: 10.7554/elife.47293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023] Open
Abstract
Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis.
Collapse
Affiliation(s)
- Alexander Karge
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Scott Wood
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
32
|
Han L, Dai S, Li Z, Zhang C, Wei S, Zhao R, Zhang H, Zhao L, Shan B. Combination of the natural compound Periplocin and TRAIL induce esophageal squamous cell carcinoma apoptosis in vitro and in vivo: Implication in anticancer therapy. J Exp Clin Cancer Res 2019; 38:501. [PMID: 31864387 PMCID: PMC6925860 DOI: 10.1186/s13046-019-1498-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors in the world. With currently available therapies, only 20% ~ 30% patients can survive this disease for more than 5 years. TRAIL, a natural ligand for death receptors that can induce the apoptosis of cancer cells, has been explored as a therapeutic agent for cancers, but it has been reported that many cancer cells are resistant to TRAIL, limiting the potential clinical use of TRAIL as a cancer therapy. Meanwhile, Periplocin (CPP), a natural compound from dry root of Periploca sepium Bge, has been studied for its anti-cancer activity in a variety of cancers. It is not clear whether CPP and TRAIL can have activity on esophageal squamous cell carcinoma (ESCC) cells, or whether the combination of these two agents can have synergistic activity. METHODS We used MTS assay, flow cytometry and TUNEL assay to detect the effects of CPP alone or in combination with TRAIL on ESCC cells. The mechanism of CPP enhances the activity of TRAIL was analyzed by western blot, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay. The anti-tumor effects and the potential toxic side effects of CPP alone or in combination with TRAIL were also evaluated in vivo. RESULTS In our studies, we found that CPP alone or in combination with TRAIL could inhibit the proliferation of ESCC cells and induce apoptosis, and we certificated that combination of two agents exert synergized functions. For the first time, we identified FoxP3 as a key transcriptional repressor for both DR4 and DR5. By down-regulating FoxP3, CPP increases the expression of DR4/DR5 and renders ESCC cells much more sensitive to TRAIL. We also showed that CPP reduced the expression of Survivin by inhibiting the activity of Wnt/β-catenin pathway. All these contributed to synergistic activity of CPP and TRAIL on ESCC cells in vitro and in vivo. CONCLUSION Our data suggest that CPP and TRAIL could be further explored as potential therapeutic approach for esophageal cancer.
Collapse
Affiliation(s)
- Lujuan Han
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Suli Dai
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Zhirong Li
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Cong Zhang
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Sisi Wei
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Ruinian Zhao
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lianmei Zhao
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| | - Baoen Shan
- Research Centre, the Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
33
|
Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lü HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics 2019; 112:2092-2105. [PMID: 31830526 DOI: 10.1016/j.ygeno.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
34
|
Roig-Puiggros S, Vigouroux RJ, Beckman D, Bocai NI, Chiou B, Davimes J, Gomez G, Grassi S, Hoque A, Karikari TK, Kiffer F, Lopez M, Lunghi G, Mazengenya P, Meier S, Olguín-Albuerne M, Oliveira MM, Paraíso-Luna J, Pradhan J, Radiske A, Ramos-Hryb AB, Ribeiro MC, Schellino R, Selles MC, Singh S, Theotokis P, Chédotal A. Construction and reconstruction of brain circuits: normal and pathological axon guidance. J Neurochem 2019; 153:10-32. [PMID: 31630412 DOI: 10.1111/jnc.14900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.
Collapse
Affiliation(s)
| | - Robin J Vigouroux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Danielle Beckman
- California National Primate Research Center, UC Davis, Davis, California, USA
| | - Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brian Chiou
- Department of Pediatrics, University of California - San Francisco, San Francisco, California, USA
| | - Joshua Davimes
- Faculty of Health Sciences School of Anatomical Sciences, University of the Witwatersrand, Parktown Johannesburg, South Africa
| | - Gimena Gomez
- Laboratorio de Parkinson Experimental, Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,School of Life Sciences, University of Warwick, Coventry, UK.,Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, UK
| | - Frederico Kiffer
- Division of Radiation Health, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary Lopez
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicin, University of Milano, Segrate, Italy
| | - Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonja Meier
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio M Oliveira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan Paraíso-Luna
- Ramón y Cajal Institute of Health Research (IRYCIS), Department of Biochemistry and Molecular Biology and University Research Institute in Neurochemistry (IUIN), Complutense University, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Belén Ramos-Hryb
- Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina.,Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Roberta Schellino
- Neuroscience Department "Rita Levi-Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Maria Clara Selles
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shripriya Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Macedonia, Greece
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
35
|
Ding SQ, Chen J, Wang SN, Duan FX, Chen YQ, Shi YJ, Hu JG, Lü HZ. Identification of serum exosomal microRNAs in acute spinal cord injured rats. Exp Biol Med (Maywood) 2019; 244:1149-1161. [PMID: 31450959 DOI: 10.1177/1535370219872759] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is important to find specific and easily detectable diagnostic markers in acute stage of spinal cord injury for guiding treatment and estimating prognosis. Although, microRNAs are attractive biomarkers, there is still no uniform standard for clinical evaluation of spinal cord injury based on “free circulation” miRNA spectrum. The reason may be that miRNA analysis from biological fluids is influenced by many pre-analysis variables. Exosome miRNAs are widely distributed in body fluids and have many advantages comparing with free miRNAs. The specific miRNAs in the central nervous system can be transported to the peripheral circulation and concentrated in exosomes. Therefore, we hypothesized that there might be some physiological changes associated with spinal cord injury in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute spinal cord injury rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute spinal cord injury can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute spinal cord injury. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute spinal cord injury. More interestingly, we also found some valuable known and novel miRNAs. Further bioinformatics analysis and functional research will be of great help to make clear their role in the pathological process of spinal cord injury and judging whether they can be used as diagnostic markers. Impact statement This research hypothesized that there might be some physiological changes associated with SCI in serum exosomal miRNAs. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and acute SCI rats were analyzed, and integrative bioinformatics were used to analyze the function and regulation of putative target genes. The results showed that acute SCI can lead to changes in miRNA expression in the circulating exosomes. The changed miRNAs and their associated pathways may explain the pathology of acute SCI. More importantly, we determined serum exosomal miR-125b-5p, miR-152-3p, and miR-130a-3p are specific and easily detectable diagnostic markers in acute SCI.
Collapse
Affiliation(s)
- Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Sai-Nan Wang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Fei-Xiang Duan
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Yu-Qing Chen
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| | - Yu-Jiao Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui 233004, P.R. China.,Department of Immunology, Bengbu Medical College, Anhui 233030, P.R. China
| |
Collapse
|
36
|
Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 2019; 11:10. [PMID: 31202261 PMCID: PMC6571119 DOI: 10.1186/s11689-019-9268-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background The development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment. Main body Recent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD. Conclusion The understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Sunil Rai
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
37
|
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med 2019; 25:898-908. [PMID: 31160817 DOI: 10.1038/s41591-019-0475-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Individuals with spinal cord injury (SCI) can face decades with permanent disabilities. Advances in clinical management have decreased morbidity and improved outcomes, but no randomized clinical trial has demonstrated the efficacy of a repair strategy for improving recovery from SCI. Here, we summarize recent advances in biological and engineering strategies to augment neuroplasticity and/or functional recovery in animal models of SCI that are pushing toward clinical translation.
Collapse
Affiliation(s)
- Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland. .,Department of Neurosurgery, University Hospital Lausanne (CHUV), Lausanne, Switzerland.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
38
|
Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy. Int J Mol Sci 2019; 20:ijms20092075. [PMID: 31035542 PMCID: PMC6539236 DOI: 10.3390/ijms20092075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The etiology of cerebral palsy (CP) is complex and remains inadequately understood. Early detection of CP is an important clinical objective as this improves long term outcomes. We performed genome-wide DNA methylation analysis to identify epigenomic predictors of CP in newborns and to investigate disease pathogenesis. Methylation analysis of newborn blood DNA using an Illumina HumanMethylation450K array was performed in 23 CP cases and 21 unaffected controls. There were 230 significantly differentially-methylated CpG loci in 258 genes. Each locus had at least 2.0-fold change in methylation in CP versus controls with a FDR p-value ≤ 0.05. Methylation level for each CpG locus had an area under the receiver operating curve (AUC) ≥ 0.75 for CP detection. Using Artificial Intelligence (AI) platforms/Machine Learning (ML) analysis, CpG methylation levels in a combination of 230 significantly differentially-methylated CpG loci in 258 genes had a 95% sensitivity and 94.4% specificity for newborn prediction of CP. Using pathway analysis, multiple canonical pathways plausibly linked to neuronal function were over-represented. Altered biological processes and functions included: neuromotor damage, malformation of major brain structures, brain growth, neuroprotection, neuronal development and de-differentiation, and cranial sensory neuron development. In conclusion, blood leucocyte epigenetic changes analyzed using AI/ML techniques appeared to accurately predict CP and provided plausible mechanistic information on CP pathogenesis.
Collapse
|
39
|
Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/β-catenin signaling pathway. Brain Res Bull 2019; 148:91-99. [PMID: 30940474 DOI: 10.1016/j.brainresbull.2019.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022]
Abstract
The neuronal apoptosis program associated with spinal cord injury (SCI) has a severe impact on spinal cord function, which leads to further secondary and permanent neuronal damage that may cause irreparable damage to the central nervous system. Activation of the Wnt/β-catenin signaling pathway is effective in reducing apoptosis and preventing SCI. Harpagide is one of the main active constituents of the iridoid class of molecules, which have neuroprotective effects after SCI. In this study, we demonstrated that harpagide attenuated neuronal apoptosis via activation of the Wnt/β-catenin signaling pathway. This resulted in a promotion of axonal regeneration and an inhibition of glial scar formation, which ultimately improved functional behavioral recovery after SCI in rats. Specifically, the administration of harpagide after SCI increased the expression levels of β-catenin, c-myc and cyclin D1 proteins in spinal cord neurons, as well as increased the number of motor neurons and reduced the size of the SCI lesion area. In addition, the administration of harpagide after SCI also decreased the protein expression levels as well as the number of cells immuno-stained for the pro-apoptotic proteins Bax and cleaved-caspase 3. The expression level of the anti-apoptotic protein Bcl-2 was also increased. When the Wnt /β-catenin signaling pathway was inhibited, a weakened anti-apoptotic effect of harpagide was observed. Additionally, the application of harpagide led to an increase in NF200 staining and a reduction in GFAP staining in the SCI injury site. In summary, our study suggested that harpagide may be a promising drug for the treatment of SCI.
Collapse
|
40
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
41
|
Park EC, Rongo C. RPM-1 and DLK-1 regulate pioneer axon outgrowth by controlling Wnt signaling. Development 2018; 145:dev.164897. [PMID: 30093552 DOI: 10.1242/dev.164897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
Abstract
Axons must correctly reach their targets for proper nervous system function, although we do not fully understand the underlying mechanism, particularly for the first 'pioneer' axons. In C. elegans, AVG is the first neuron to extend an axon along the ventral midline, and this pioneer axon facilitates the proper extension and guidance of follower axons that comprise the ventral nerve cord. Here, we show that the ubiquitin ligase RPM-1 prevents the overgrowth of the AVG axon by repressing the activity of the DLK-1/p38 MAPK pathway. Unlike in damaged neurons, where this pathway activates CEBP-1, we find that RPM-1 and the DLK-1 pathway instead regulate the response to extracellular Wnt cues in developing AVG axons. The Wnt LIN-44 promotes the posterior growth of the AVG axon. In the absence of RPM-1 activity, AVG becomes responsive to a different Wnt, EGL-20, through a mechanism that appears to be independent of canonical Fz-type receptors. Our results suggest that RPM-1 and the DLK-1 pathway regulate axon guidance and growth by preventing Wnt signaling crosstalk.
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
42
|
The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus. Biosci Rep 2018; 38:BSR20180011. [PMID: 29789397 PMCID: PMC6028759 DOI: 10.1042/bsr20180011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/10/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Various reports have suggested that secreted frizzled-related protein (SFRP) 5 (SFRP5) plays a regulatory role in the processes of cellular proliferation and differentiation, by means of inactivating the Wnt/β-catenin signaling pathway. Recently, SFRP5 has been identified as an anti-inflammatory adipokine, which may be induced during preadipocyte proliferation, differentiation, and maturation. This review aims to identify the recent progress in the research and development of SFRP5 that can play a role in influencing lipid metabolism, inflammation, and type 2 diabetes mellitus (T2DM). Recent evidence has indicated that SFRP5 is capable of stimulating adipocyte differentiation via inhibition of the Wnt/β-catenin signaling pathway. In addition, SFRP5 binding with wingless-type murine mammary tumor virus integration site family, member 5A (Wnt5a), inhibits the activation of c-Jun N-terminal kinase (JNK) downstream of the Wnt signaling pathway. An antagonistic relationship has been found between the reductions in inflammatory cytokine production and serine phosphorylation of insulin receptor substrate-1 (IRS-1) in regard to inhibition of insulin signaling network. By this mechanism, SFRP5 exerts its influence on metabolic function. Based on our review of the current available literature, we support the notion that SFRP5 can be used as a therapeutic target in the treatment of T2DM.
Collapse
|
43
|
Ghosh S, Hui SP. Axonal regeneration in zebrafish spinal cord. REGENERATION (OXFORD, ENGLAND) 2018; 5:43-60. [PMID: 29721326 PMCID: PMC5911453 DOI: 10.1002/reg2.99] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
In the present review we discuss two interrelated events-axonal damage and repair-known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals.
Collapse
Affiliation(s)
- Sukla Ghosh
- Department of BiophysicsMolecular Biology and BioinformaticsUniversity of Calcutta92 A. P. C. RoadKolkata 700009India
| | - Subhra Prakash Hui
- Department of BiophysicsMolecular Biology and BioinformaticsUniversity of Calcutta92 A. P. C. RoadKolkata 700009India
- Victor Chang Cardiac Research InstituteLowy Packer Building, 405 Liverpool StDarlinghurstNSW 2010Australia.
| |
Collapse
|
44
|
González-Casacuberta I, Morén C, Juárez-Flores DL, Esteve-Codina A, Sierra C, Catalán-García M, Guitart-Mampel M, Tobías E, Milisenda JC, Pont-Sunyer C, Martí MJ, Cardellach F, Tolosa E, Artuch R, Ezquerra M, Fernández-Santiago R, Garrabou G. Transcriptional alterations in skin fibroblasts from Parkinson's disease patients with parkin mutations. Neurobiol Aging 2018; 65:206-216. [PMID: 29501959 DOI: 10.1016/j.neurobiolaging.2018.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana-Luz Juárez-Flores
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Esteve-Codina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Sierra
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Tobías
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - José César Milisenda
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Claustre Pont-Sunyer
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Martí
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Tolosa
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Rubén Fernández-Santiago
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
45
|
Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 2018; 8:742. [PMID: 29335507 PMCID: PMC5768751 DOI: 10.1038/s41598-017-18757-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.
Collapse
Affiliation(s)
- Paige E Herman
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Angelos Papatheodorou
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Stephanie A Bryant
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | | | - Joseph R Herdy
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Anthony A Arcese
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Joseph D Buxbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Jeramiah J Smith
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Jennifer R Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA.
| |
Collapse
|
46
|
Macks C, Gwak SJ, Lynn M, Lee JS. Rolipram-Loaded Polymeric Micelle Nanoparticle Reduces Secondary Injury after Rat Compression Spinal Cord Injury. J Neurotrauma 2018; 35:582-592. [PMID: 29065765 DOI: 10.1089/neu.2017.5092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Among the complex pathophysiological events following spinal cord injury (SCI), one of the most important molecular level consequences is a dramatic reduction in neuronal cyclic adenosine monophosphate (cAMP) levels. Many studies shown that rolipram (Rm), a phosphodiesterase IV inhibitor, can protect against secondary cell death, reduce inflammatory cytokine levels and immune cell infiltration, and increase white matter sparing and functional improvement. Previously, we developed a polymeric micelle nanoparticle, poly(lactide-co-glycolide)-graft-polyethylenimine (PgP), for combinatorial delivery of therapeutic nucleic acids and drugs for SCI repair. In this study, we evaluated PgP as an Rm delivery carrier for SCI repair. Rolipram's water solubility was increased ∼6.8 times in the presence of PgP, indicating drug solubilization in the micelle hydrophobic core. Using hypoxia as an in vitro SCI model, Rm-loaded PgP (Rm-PgP) restored cAMP levels and increased neuronal cell survival of cerebellar granular neurons. The potential efficacy of Rm-PgP was evaluated in a rat compression SCI model. After intraspinal injection, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine Iodide-loaded PgP micelles were retained at the injection site for up to 5 days. Finally, we show that a single injection of Rm-PgP nanoparticles restored cAMP in the SCI lesion site and reduced apoptosis and the inflammatory response. These results suggest that PgP may offer an efficient and translational approach to delivering Rm as a neuroprotectant following SCI.
Collapse
Affiliation(s)
- Christian Macks
- 1 Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - So-Jung Gwak
- 1 Department of Bioengineering, Clemson University , Clemson, South Carolina
| | - Michael Lynn
- 2 Department of Neurosurgery, Greenville Health System , Greenville, South Carolina
| | - Jeoung Soo Lee
- 1 Department of Bioengineering, Clemson University , Clemson, South Carolina
| |
Collapse
|
47
|
Garcia AL, Udeh A, Kalahasty K, Hackam AS. A growing field: The regulation of axonal regeneration by Wnt signaling. Neural Regen Res 2018; 13:43-52. [PMID: 29451203 PMCID: PMC5840987 DOI: 10.4103/1673-5374.224359] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone movement. Therefore, these studies suggest that Wnt-induced pathways responsible for regulating axonal growth during embryogenesis could be repurposed to promote axonal growth after injury.
Collapse
Affiliation(s)
- Armando L Garcia
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adanna Udeh
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karthik Kalahasty
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
48
|
Lu Y, Xie S, Zhang W, Zhang C, Gao C, Sun Q, Cai Y, Xu Z, Xiao M, Xu Y, Huang X, Wu X, Liu W, Wang F, Kang Y, Zhou T. Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Res 2017; 27:1422-1440. [PMID: 28829046 PMCID: PMC5717399 DOI: 10.1038/cr.2017.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/25/2016] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
Hyperactivation of Wnt/β-catenin signaling is one of the major causes of human colorectal cancer (CRC). A hallmark of Wnt signaling is the nuclear accumulation of β-catenin. Although β-catenin nuclear import and export have been widely investigated, the underlying mechanism of β-catenin's nuclear retention remains largely unknown. Here, we report that Twa1/Gid8 is a key nuclear retention factor for β-catenin during Wnt signaling and colorectal carcinogenesis. In the absence of Wnt, Twa1 exists together with β-catenin in the Axin complex and undergoes ubiquitination and degradation. Upon Wnt signaling, Twa1 translocates into the nucleus, where it binds and retains β-catenin. Depletion of Twa1 attenuates Wnt-stimulated gene expression, dorsal development of zebrafish embryos and xenograft tumor growth of CRC cells. Moreover, nuclear Twa1 is significantly upregulated in human CRC tissues, correlating with the nuclear accumulation of β-catenin and poor prognosis. Thus, our results identify Twa1 as a previously undescribed regulator of the Wnt pathway for promoting colorectal tumorigenesis by facilitating β-catenin nuclear retention.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Shanshan Xie
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Zhang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Gao
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Sun
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Current address: Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Zhangqi Xu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min Xiao
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanjun Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiao Huang
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ximei Wu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Fudi Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
49
|
Chen CJ, Liu DZ, Yao WF, Gu Y, Huang F, Hei ZQ, Li X. Identification of key genes and pathways associated with neuropathic pain in uninjured dorsal root ganglion by using bioinformatic analysis. J Pain Res 2017; 10:2665-2674. [PMID: 29180893 PMCID: PMC5694199 DOI: 10.2147/jpr.s143431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis. Materials and methods The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein–protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model. Results A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs. Conclusion This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain.
Collapse
Affiliation(s)
- Chao-Jin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - De-Zhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei-Feng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Onishi K, Zou Y. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2. eLife 2017; 6:25269. [PMID: 28885142 PMCID: PMC5779225 DOI: 10.7554/elife.25269] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes.
Collapse
Affiliation(s)
- Keisuke Onishi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, San Diego, United States
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, San Diego, United States
| |
Collapse
|