1
|
Rau EMB, Fellner MC, Heinen R, Zhang H, Yin Q, Vahidi P, Kobelt M, Asano E, Kim-McManus O, Sattar S, Lin JJ, Auguste KI, Chang EF, King-Stephens D, Weber PB, Laxer KD, Knight RT, Johnson EL, Ofen N, Axmacher N. Reinstatement and transformation of memory traces for recognition. SCIENCE ADVANCES 2025; 11:eadp9336. [PMID: 39970226 PMCID: PMC11838014 DOI: 10.1126/sciadv.adp9336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Episodic memory relies on the formation and retrieval of content-specific memory traces. In addition to their veridical reactivation, previous studies have indicated that traces may undergo substantial transformations. However, the exact time course and regional distribution of reinstatement and transformation during recognition memory have remained unclear. We applied representational similarity analysis to human intracranial electroencephalography to track the spatiotemporal dynamics underlying the reinstatement and transformation of memory traces. Specifically, we examined how reinstatement and transformation of item-specific representations across occipital, ventral visual, and lateral parietal cortices contribute to successful memory formation and recognition. Our findings suggest that reinstatement in temporal cortex and transformation in parietal cortex coexist and provide complementary strategies for recognition. Further, we find that generalization and differentiation of neural representations contribute to memory and probe memory-specific correspondence with deep neural network (DNN) model features. Our results suggest that memory formation is particularly supported by generalized and mnemonic representational formats beyond the visual features of a DNN.
Collapse
Affiliation(s)
- Elias M. B. Rau
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Qin Yin
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Parisa Vahidi
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, USA
| | - Malte Kobelt
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Eishi Asano
- Departments of Pediatrics and Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Olivia Kim-McManus
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Shifteh Sattar
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Kurtis I. Auguste
- Department of Pediatric Neurosurgery, Benioff Children's Hospital, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B. Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D. Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Robert T. Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Elizabeth L. Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Vorobiova AN, Feurra M, Pavone EF, Stieglitz L, Imbach L, Moiseeva V, Sarnthein J, Fedele T. Functional segregation of rostral and caudal hippocampus in associative memory. Front Hum Neurosci 2025; 19:1509163. [PMID: 39996022 PMCID: PMC11848949 DOI: 10.3389/fnhum.2025.1509163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction The hippocampus plays a crucial role in episodic memory. Given its complexity, the hippocampus participates in multiple aspects of higher cognitive functions, among which are semantics-based encoding and retrieval. However, the "where," "when" and "how" of distinct aspects of memory processing in the hippocampus are still under debate. Methods Here, we employed a visual associative memory task that involved encoding three levels of subjective congruence to delineate the differential involvement of the rostral and caudal portions (also referred as anterior/posterior portions) of the human hippocampus during memory encoding, recognition and associative recall. Results Through stereo-EEG recordings in epilepsy patients we show that associative memory is reflected by rostral hippocampal activity during encoding, and caudal hippocampal activity during retrieval. In contrast, recognition memory encoding selectively activates the rostral hippocampus. The temporal dynamics of memory processing are manifested by gamma power increase, which partially overlaps with low-frequency power decrease during encoding and retrieval. Congruence levels modulate low-frequency activity prominently in the caudal hippocampus. Discussion These findings highlight an anatomical segregation in the hippocampus in accordance with the contributions of its partitions to associative and recognition memory.
Collapse
Affiliation(s)
- Alicia Nunez Vorobiova
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russia
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Lennart Stieglitz
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Victoria Moiseeva
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | - Tommaso Fedele
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- Swiss Epilepsy Center, Zurich, Switzerland
- Children's Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Cross ZR, Gray SM, Dede AJO, Rivera YM, Yin Q, Vahidi P, Rau EMB, Cyr C, Holubecki AM, Asano E, Lin JJ, McManus OK, Sattar S, Saez I, Girgis F, King-Stephens D, Weber PB, Laxer KD, Schuele SU, Rosenow JM, Wu JY, Lam SK, Raskin JS, Chang EF, Shaikhouni A, Brunner P, Roland JL, Braga RM, Knight RT, Ofen N, Johnson EL. The development of aperiodic neural activity in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622714. [PMID: 39574667 PMCID: PMC11581045 DOI: 10.1101/2024.11.08.622714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The neurophysiological mechanisms supporting brain maturation are fundamental to attention and memory capacity across the lifespan. Human brain regions develop at different rates, with many regions developing into the third and fourth decades of life. Here, in this preregistered study (https://osf.io/gsru7), we analyzed intracranial EEG (iEEG) recordings from widespread brain regions in a large developmental cohort. Using task-based (i.e., attention to-be-remembered visual stimuli) and task-free (resting-state) data from 101 children and adults (5.93 - 54.00 years, 63 males; n electrodes = 5691), we mapped aperiodic (1/ƒ-like) activity, a proxy of excitation:inhibition (E:I) balance with steeper slopes indexing inhibition and flatter slopes indexing excitation. We reveal that aperiodic slopes flatten with age into young adulthood in both association and sensorimotor cortices, challenging models of early sensorimotor development based on brain structure. In prefrontal cortex (PFC), attentional state modulated age effects, revealing steeper task-based than task-free slopes in adults and the opposite in children, consistent with the development of cognitive control. Age-related differences in task-based slopes also explained age-related gains in memory performance, linking the development of PFC cognitive control to the development of memory. Last, with additional structural imaging measures, we reveal that age-related differences in gray matter volume are differentially associated with aperiodic slopes in association and sensorimotor cortices. Our findings establish developmental trajectories of aperiodic activity in localized brain regions and illuminate the development of PFC inhibitory control during adolescence in the development of attention and memory.
Collapse
Affiliation(s)
| | | | | | | | - Qin Yin
- Wayne State University
- University of Texas, Dallas
| | | | | | | | | | | | | | | | - Shifteh Sattar
- University of California, San Diego, and Rady Children’s Hospital
| | - Ignacio Saez
- University of California, Davis
- University of Calgary
| | - Fady Girgis
- University of California, Davis
- University of Calgary
| | | | | | | | | | | | - Joyce Y. Wu
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Sandi K. Lam
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - Jeffrey S. Raskin
- Northwestern University
- Ann & Robert H. Lurie Children’s Hospital of Chicago
| | | | | | | | - Jarod L. Roland
- Washington University in St. Louis
- Department of Neurosurgery, Washington University in St Louis
| | | | | | - Noa Ofen
- Wayne State University
- University of Texas, Dallas
| | | |
Collapse
|
4
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
5
|
Tzovara A, Fedele T, Sarnthein J, Ledergerber D, Lin JJ, Knight RT. Predictable and unpredictable deviance detection in the human hippocampus and amygdala. Cereb Cortex 2024; 34:bhad532. [PMID: 38216528 PMCID: PMC10839835 DOI: 10.1093/cercor/bhad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown. Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared with the amygdala and hippocampus. Deviance effects in 1-20 Hz local field potentials were detected in the lateral temporal cortex, irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses in the hippocampus (1-8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction error signals needs to be extended.
Collapse
Affiliation(s)
- Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Institute of Computer Science, University of Bern, Bern, Neubrückstrasse 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Freiburgstrasse 3010, Switzerland
| | - Tommaso Fedele
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Johannes Sarnthein
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Bleulerstrasse 8008, Switzerland
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Folsom Boulevard, Davis, CA 95816, USA
- The Center of Mind and Brain, University of California, Davis, Cousteau Pl, Davis, CA 95618, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
| |
Collapse
|
6
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Villafane Barraza V, Voegtle A, de Matos Mansur B, Reichert C, Nasuto SJ, Sweeney-Reed CM. Parietal cortical alpha/beta suppression during prospective memory retrieval. Cereb Cortex 2023; 33:11235-11246. [PMID: 37804246 DOI: 10.1093/cercor/bhad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
Prospective memory (PM) impairment is among the most frequent memory complaints, yet little is known about the underlying neural mechanisms. PM for a planned intention may be achieved through strategic monitoring of the environment for cues, involving ongoing attentional processes, or through spontaneous retrieval. We hypothesized that parietal spectral power modulation accompanies prospectively encoded intention retrieval, irrespective of PM retrieval approach. A cognitively engaging arithmetic-based ongoing task (OGT) was employed to encourage spontaneous retrieval, with a focal, internally generated PM cue to eliminate OGT/PM trial differentiation based on perceptual or conceptual PM cue features. Two PM repetition frequencies were used to vary the extent of strategic monitoring. We observed a transient parietal alpha/beta spectral power reduction directly preceding the response, which was distinguishable on a single trial basis, as revealed by an OGT/PM trial classification rate exceeding 70% using linear discriminant analysis. The alpha/beta idling rhythm reflects cortical inhibition. A disengagement of task-relevant neural assemblies from this rhythm, reflected in alpha/beta power reduction, is deemed to increase information content, facilitate information integration, and enable engagement of neural assemblies in task-related cortical networks. The observed power reduction is consistent with the Dual Pathways model, where PM strategies converge at the PM retrieval stage.
Collapse
Affiliation(s)
- Viviana Villafane Barraza
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Bruno de Matos Mansur
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Slawomir J Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
8
|
Vogel JW, Corriveau-Lecavalier N, Franzmeier N, Pereira JB, Brown JA, Maass A, Botha H, Seeley WW, Bassett DS, Jones DT, Ewers M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat Rev Neurosci 2023; 24:620-639. [PMID: 37620599 DOI: 10.1038/s41583-023-00731-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.
Collapse
Affiliation(s)
- Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden.
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Acadamy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Neuro Division, Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Dani S Bassett
- Departments of Bioengineering, Electrical and Systems Engineering, Physics and Astronomy, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Johnson EL, Lin JJ, King-Stephens D, Weber PB, Laxer KD, Saez I, Girgis F, D'Esposito M, Knight RT, Badre D. A rapid theta network mechanism for flexible information encoding. Nat Commun 2023; 14:2872. [PMID: 37208373 DOI: 10.1038/s41467-023-38574-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Flexible behavior requires gating mechanisms that encode only task-relevant information in working memory. Extant literature supports a theoretical division of labor whereby lateral frontoparietal interactions underlie information maintenance and the striatum enacts the gate. Here, we reveal neocortical gating mechanisms in intracranial EEG patients by identifying rapid, within-trial changes in regional and inter-regional activities that predict subsequent behavioral outputs. Results first demonstrate information accumulation mechanisms that extend prior fMRI (i.e., regional high-frequency activity) and EEG evidence (inter-regional theta synchrony) of distributed neocortical networks in working memory. Second, results demonstrate that rapid changes in theta synchrony, reflected in changing patterns of default mode network connectivity, support filtering. Graph theoretical analyses further linked filtering in task-relevant information and filtering out irrelevant information to dorsal and ventral attention networks, respectively. Results establish a rapid neocortical theta network mechanism for flexible information encoding, a role previously attributed to the striatum.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA.
| | - Jack J Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Ignacio Saez
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Departments of Neuroscience, Neurosurgery, and Neurology, Ichan School of Medicine at Mt. Sinai, New York, NY, USA
| | - Fady Girgis
- Department of Neurological Surgery, University of California, Davis, CA, USA
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA
| | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Hippocampal Theta and Episodic Memory. J Neurosci 2023; 43:613-620. [PMID: 36639900 PMCID: PMC9888505 DOI: 10.1523/jneurosci.1045-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases. Their survey also notes that the theta oscillations appear most prominently in contrasts that isolate memory retrieval processes and when aggregating signals across large brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings captured as 162 neurosurgical patients (n = 86 female) performed a free recall task. Using the Irregular-Resampling Auto-Spectral Analysis (IRASA) to separate broad and narrowband components of the field potential, we show that (1) broadband and narrowband components of theta exhibit opposite effects, with broadband signals decreasing and narrowband theta increasing during successful encoding; (2) whereas low-frequency theta oscillations increase before successful recall, higher-frequency theta and alpha oscillations decrease, masking the positive effect of theta when aggregating across the full band; and (3) the effects of theta on memory encoding and retrieval do not differ between reference schemes that accentuate local signals (bipolar) and those that aggregate signals globally (whole-brain average). In line with computational models that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during successful memory encoding and before spontaneous recall of previously studied items.SIGNIFICANCE STATEMENT Analyzing recordings from 162 participants, we resolve a long-standing question regarding the role of hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that broadband spectral changes confound estimates of narrowband theta activity, thereby accounting for inconsistent results in the literature. After accounting for broadband effects, we find that increased theta activity marks successful encoding and retrieval of episodic memories, supporting rodent models that ascribe a key role for hippocampal theta in memory function.
Collapse
|
11
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Stiso J, Lynn CW, Kahn AE, Rangarajan V, Szymula KP, Archer R, Revell A, Stein JM, Litt B, Davis KA, Lucas TH, Bassett DS. Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning. eNeuro 2022; 9:ENEURO.0361-21.2022. [PMID: 35105662 PMCID: PMC8896554 DOI: 10.1523/eneuro.0361-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by forming cognitive maps, or underlying representations of the latent space which links items in the sequence. Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge. Sequences can then be generated from walks through the latent space, with different spaces giving rise to different sequence statistics. Individual or group differences in sequence learning can be modeled by changing the time scale over which estimates of transition probabilities are built, or in other words, by changing the amount of temporal discounting. Latent space models with temporal discounting bear a resemblance to models of navigation through Euclidean spaces. However, few explicit links have been made between predictions from Euclidean spatial navigation and neural activity during human sequence learning. Here, we use a combination of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neural activity might support the formation of space-like cognitive maps through temporal discounting during sequence learning. Specifically, we acquire human reaction times from a sequential reaction time task, to which we fit a model that formulates the amount of temporal discounting as a single free parameter. From the parameter, we calculate each individual's estimate of the latent space. We find that neural activity reflects these estimates mostly in the temporal lobe, including areas involved in spatial navigation. Similar to spatial navigation, we find that low-dimensional representations of neural activity allow for easy separation of important features, such as modules, in the latent space. Lastly, we take advantage of the high temporal resolution of iEEG data to determine the time scale on which latent spaces are learned. We find that learning typically happens within the first 500 trials, and is modulated by the underlying latent space and the amount of temporal discounting characteristic of each participant. Ultimately, this work provides important links between behavioral models of sequence learning and neural activity during the same behavior, and contextualizes these results within a broader framework of domain general cognitive maps.
Collapse
Affiliation(s)
- Jennifer Stiso
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Vinitha Rangarajan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Karol P Szymula
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan Archer
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew Revell
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy H Lucas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104
- The Santa Fe Institute, Santa Fe, NM 87501
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
13
|
Johnson EL, Yin Q, O'Hara NB, Tang L, Jeong JW, Asano E, Ofen N. Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 2022; 32:1457-1469.e4. [PMID: 35172128 PMCID: PMC9007830 DOI: 10.1016/j.cub.2022.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Qin Yin
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nolan B O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
14
|
Missing links: The functional unification of language and memory (L∪M). Neurosci Biobehav Rev 2021; 133:104489. [PMID: 34929226 DOI: 10.1016/j.neubiorev.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The field of neurocognition is currently undergoing a significant change of perspective. Traditional neurocognitive models evolved into an integrative and dynamic vision of cognitive functioning. Dynamic integration assumes an interaction between cognitive domains traditionally considered to be distinct. Language and declarative memory are regarded as separate functions supported by different neural systems. However, they also share anatomical structures (notably, the inferior frontal gyrus, the supplementary motor area, the superior and middle temporal gyrus, and the hippocampal complex) and cognitive processes (such as semantic and working memory) that merge to endorse our quintessential daily lives. We propose a new model, "L∪M" (i.e., Language/union/Memory), that considers these two functions interactively. We fractionated language and declarative memory into three fundamental dimensions or systems ("Receiver-Transmitter", "Controller-Manager" and "Transformer-Associative" Systems), that communicate reciprocally. We formalized their interactions at the brain level with a connectivity-based approach. This new taxonomy overcomes the modular view of cognitive functioning and reconciles functional specialization with plasticity in neurological disorders.
Collapse
|
15
|
Proverbio AM, Broido V, De Benedetto F, Zani A. Scalp-recorded N40 visual evoked potential: Sensory and attentional properties. Eur J Neurosci 2021; 54:6553-6574. [PMID: 34486754 PMCID: PMC9293152 DOI: 10.1111/ejn.15443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 11/26/2022]
Abstract
N40 is a well-known component of evoked potentials with respect to the auditory and somatosensory modality but not much recognized with regard to the visual modality. To be detected with event-related potentials (ERPs), it requires an optimal signal-to-noise ratio. To investigate the nature of visual N40, we recorded EEG/ERP signals from 20 participants. Each of them was presented with 1800 spatial frequency gratings of 0.75, 1.5, 3 and 6 c/deg. Data were collected from 128 sites while participants were engaged in both passive viewing and attention conditions. N40 (30-55 ms) was modulated by alertness and selective attention; in fact, it was larger to targets than irrelevant and passively viewed spatial frequency gratings. Its strongest intracranial sources were the bilateral thalamic nuclei of pulvinar, according to swLORETA. The active network included precuneus, insula and inferior parietal lobule. An N80 component (60-90 ms) was also identified, which was larger to targets than irrelevant/passive stimuli and more negative to high than low spatial frequencies. In contrast, N40 was not sensitive to spatial frequency per se, nor did it show a polarity inversion as a function of spatial frequency. Attention, alertness and spatial frequency effects were also found for the later components P1, N2 and P300. The attentional effects increased in magnitude over time. The data showed that ERPs can pick up the earliest synchronized activity, deriving in part from thalamic nuclei, before the visual information has actually reached the occipital cortex.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Veronica Broido
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Alberto Zani
- School of Psychology, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Jun S, Kim JS, Chung CK. Prediction of Successful Memory Encoding Based on Lateral Temporal Cortical Gamma Power. Front Neurosci 2021; 15:517316. [PMID: 34113226 PMCID: PMC8185029 DOI: 10.3389/fnins.2021.517316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Prediction of successful memory encoding is important for learning. High-frequency activity (HFA), such as gamma frequency activity (30–150 Hz) of cortical oscillations, is induced during memory tasks and is thought to reflect underlying neuronal processes. Previous studies have demonstrated that medio-temporal electrophysiological characteristics are related to memory formation, but the effects of neocortical neural activity remain underexplored. The main aim of the present study was to evaluate the ability of gamma activity in human electrocorticography (ECoG) signals to differentiate memory processes into remembered and forgotten memories. A support vector machine (SVM) was employed, and ECoG recordings were collected from six subjects during verbal memory recognition task performance. Two-class classification using an SVM was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies (low gamma, 30–60 Hz; high gamma, 60–150 Hz) at time points during pre- and during stimulus intervals. The SVM classifier distinguished memory performance between remembered and forgotten trials with a mean maximum accuracy of 87.5% using temporal cortical gamma activity during the 0- to 1-s interval. Our results support the functional relevance of ECoG for memory formation and suggest that lateral temporal cortical HFA may be utilized for memory prediction.
Collapse
Affiliation(s)
- Soyeon Jun
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - June Sic Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
17
|
Gilleen J, Nottage J, Yakub F, Kerins S, Valdearenas L, Uz T, Lahu G, Tsai M, Ogrinc F, Williams SC, Ffytche D, Mehta MA, Shergill SS. The effects of roflumilast, a phosphodiesterase type-4 inhibitor, on EEG biomarkers in schizophrenia: A randomised controlled trial. J Psychopharmacol 2021; 35:15-22. [PMID: 32854568 DOI: 10.1177/0269881120946300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients with schizophrenia have significant cognitive deficits, which may profoundly impair quality of life. These deficits are also evident at the neurophysiological level with patients demonstrating altered event-related potential in several stages of cognitive processing compared to healthy controls; within the auditory domain, for example, there are replicated alterations in Mismatch Negativity, P300 and Auditory Steady State Response. However, there are no approved pharmacological treatments for cognitive deficits in schizophrenia. AIMS Here we examine whether the phosphodiesterase-4 inhibitor, roflumilast, can improve neurophysiological deficits in schizophrenia. METHODS Using a randomised, double-blind, placebo-controlled, crossover design study in 18 patients with schizophrenia, the effect of the phosphodiesterase-4 inhibitor, roflumilast (100 µg and 250 µg) on auditory steady state response (early stage), mismatch negativity and theta (intermediate stage) and P300 (late stage) was examined using electroencephalogram. A total of 18 subjects were randomised and included in the analysis. RESULTS Roflumilast 250 µg significantly enhanced the amplitude of both the mismatch negativity (p=0.04) and working memory-related theta oscillations (p=0.02) compared to placebo but not in the other (early- or late-stage) cognitive markers. CONCLUSIONS The results suggest that phosphodiesterase-4 inhibition, with roflumilast, can improve electroencephalogram cognitive markers, which are impaired in schizophrenia, and that phosphodiesterase-4 inhibition acts at an intermediate rather than early or late cognitive processing stage. This study also underlines the use of neurophysiological measures as cognitive biomarkers in experimental medicine.
Collapse
Affiliation(s)
- James Gilleen
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,Department of Psychology, University of Roehampton, London, UK
| | - Judith Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK.,Department of Psychiatry, University of Oxford, Oxford, UK
| | - Farah Yakub
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Sarah Kerins
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Lorena Valdearenas
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,South London and Maudsley Hospital NHS Foundation Trust, London, UK.,North Middlesex University Hospital, Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | - Tolga Uz
- Takeda Development Center Americas, Deerfield, USA
| | - Gez Lahu
- Takeda Development Center Americas, Deerfield, USA
| | - Max Tsai
- Eli Lilly and Company, Indianapolis, USA
| | - Frank Ogrinc
- Takeda Development Center Americas, Deerfield, USA
| | - Steve C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Dominic Ffytche
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - Sukhi S Shergill
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| |
Collapse
|
18
|
The Architecture of Human Memory: Insights from Human Single-Neuron Recordings. J Neurosci 2020; 41:883-890. [PMID: 33257323 DOI: 10.1523/jneurosci.1648-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023] Open
Abstract
Deciphering the mechanisms of human memory is a central goal of neuroscience, both from the point of view of the fundamental biology of memory and for its translational relevance. Here, we review some contributions that recordings from neurons in humans implanted with electrodes for clinical purposes have made toward this goal. Recordings from the medial temporal lobe, including the hippocampus, reveal the existence of two classes of cells: those encoding highly selective and invariant representations of abstract concepts, and memory-selective cells whose activity is related to familiarity and episodic retrieval. Insights derived from observing these cells in behaving humans include that semantic representations are activated before episodic representations, that memory content and memory strength are segregated, and that the activity of both types of cells is related to subjective awareness as expected from a substrate for declarative memory. Visually selective cells can remain persistently active for several seconds, thereby revealing a cellular substrate for working memory in humans. An overarching insight is that the neural code of human memory is interpretable at the single-neuron level. Jointly, intracranial recording studies are starting to reveal aspects of the building blocks of human memory at the single-cell level. This work establishes a bridge to cellular-level work in animals on the one hand, and the extensive literature on noninvasive imaging in humans on the other hand. More broadly, this work is a step toward a detailed mechanistic understanding of human memory that is needed to develop therapies for human memory disorders.
Collapse
|
19
|
Zheng W, Minama Reddy GK, Dai F, Chandramani A, Brang D, Hunter S, Kohrman MH, Rose S, Rossi M, Tao J, Wu S, Byrne R, Frim DM, Warnke P, Towle VL. Chasing language through the brain: Successive parallel networks. Clin Neurophysiol 2020; 132:80-93. [PMID: 33360179 DOI: 10.1016/j.clinph.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the spatio-temporal dynamics and interactions during linguistic and memory tasks. METHODS Event-related electrocorticographic (ECoG) spectral patterns obtained during cognitive tasks from 26 epilepsy patients (aged: 9-60 y) were analyzed in order to examine the spatio-temporal patterns of activation of cortical language areas. ECoGs (1024 Hz/channel) were recorded from 1567 subdural electrodes and 510 depth electrodes chronically implanted over or within the frontal, parietal, occipital and/or temporal lobes as part of their surgical work-up for intractable seizures. Six language/memory tasks were performed, which required responding verbally to auditory or visual word stimuli. Detailed analysis of electrode locations allowed combining results across patients. RESULTS Transient increases in induced ECoG gamma power (70-100 Hz) were observed in response to hearing words (central superior temporal gyrus), reading text and naming pictures (occipital and fusiform cortex) and speaking (pre-central, post-central and sub-central cortex). CONCLUSIONS Between these activations there was widespread spatial divergence followed by convergence of gamma activity that reliably identified cortical areas associated with task-specific processes. SIGNIFICANCE The combined dataset supports the concept of functionally-specific locally parallel language networks that are widely distributed, partially interacting in succession to serve the cognitive and behavioral demands of the tasks.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Engineering, The University of Illinois, Chicago, IL, USA
| | | | - Falcon Dai
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Hunter
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Michael H Kohrman
- Department of Pediatrics, The University of Chicago, Chicago, IL 60487, USA
| | - Sandra Rose
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Marvin Rossi
- Department of Neurology, Rush University, Chicago, IL, USA
| | - James Tao
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Richard Byrne
- Department of Surgery, Rush University, Chicago, IL, USA
| | - David M Frim
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Peter Warnke
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Vernon L Towle
- Department of Neurology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
21
|
Maffei A. Spectrally resolved EEG intersubject correlation reveals distinct cortical oscillatory patterns during free‐viewing of affective scenes. Psychophysiology 2020; 57:e13652. [DOI: 10.1111/psyp.13652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Maffei
- Department of General Psychology University of Padua Padua Italy
| |
Collapse
|
22
|
Katz CN, Patel K, Talakoub O, Groppe D, Hoffman K, Valiante TA. Differential Generation of Saccade, Fixation, and Image-Onset Event-Related Potentials in the Human Mesial Temporal Lobe. Cereb Cortex 2020; 30:5502-5516. [PMID: 32494805 PMCID: PMC7472212 DOI: 10.1093/cercor/bhaa132] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/23/2022] Open
Abstract
Event-related potentials (ERPs) are a commonly used electrophysiological signature for studying mesial temporal lobe (MTL) function during visual memory tasks. The ERPs associated with the onset of visual stimuli (image-onset) and eye movements (saccades and fixations) provide insights into the mechanisms of their generation. We hypothesized that since eye movements and image-onset provide MTL structures with salient visual information, perhaps they both engage similar neural mechanisms. To explore this question, we used intracranial electroencephalographic data from the MTLs of 11 patients with medically refractory epilepsy who participated in a visual search task. We characterized the electrophysiological responses of MTL structures to saccades, fixations, and image-onset. We demonstrated that the image-onset response is an evoked/additive response with a low-frequency power increase. In contrast, ERPs following eye movements appeared to arise from phase resetting of higher frequencies than the image-onset ERP. Intriguingly, this reset was associated with saccade onset and not termination (fixation), suggesting it is likely the MTL response to a corollary discharge, rather than a response to visual stimulation. We discuss the distinct mechanistic underpinnings of these responses which shed light on the underlying neural circuitry involved in visual memory processing.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kramay Patel
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Omid Talakoub
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - David Groppe
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada
| | - Kari Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Taufik A Valiante
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON M5T 1M8, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
23
|
Eichenlaub JB, Biswal S, Peled N, Rivilis N, Golby AJ, Lee JW, Westover MB, Halgren E, Cash SS. Reactivation of Motor-Related Gamma Activity in Human NREM Sleep. Front Neurosci 2020; 14:449. [PMID: 32477056 PMCID: PMC7235414 DOI: 10.3389/fnins.2020.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Models of memory consolidation posit a central role for reactivation of brain activity patterns during sleep, especially in non-Rapid Eye Movement (NREM) sleep. While such "replay" of recent waking experiences has been well-demonstrated in rodents, electrophysiological evidence of reactivation in human sleep is still largely lacking. In this intracranial study in patients with epilepsy (N = 9) we explored the spontaneous electroencephalographic reactivation during sleep of spatial patterns of brain activity evoked by motor learning. We first extracted the gamma-band (60-140 Hz) patterns underlying finger movements during a tapping task and underlying no-movement during a short rest period just prior to the task, and trained a binary classifier to discriminate between motor movements vs. rest. We then used the trained model on NREM sleep data immediately after the task and on NREM sleep during a control sleep period preceding the task. Compared with the control sleep period, we found, at the subject level, an increase in the detection rate of motor-related patterns during sleep following the task, but without association with performance changes. These data provide electrophysiological support for the reoccurrence in NREM sleep of the neural activity related to previous waking experience, i.e. that a basic tenet of the reactivation theory does occur in human sleep.
Collapse
Affiliation(s)
- Jean-Baptiste Eichenlaub
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Siddharth Biswal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Noam Peled
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole Rivilis
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric Halgren
- Departments of Radiology and Neuroscience, Kavli Institute for Brain and Mind, University of California, San Diego, San Diego, CA, United States
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Guterstam A, Collins KL, Cronin JA, Zeberg H, Darvas F, Weaver KE, Ojemann JG, Ehrsson HH. Direct Electrophysiological Correlates of Body Ownership in Human Cerebral Cortex. Cereb Cortex 2020; 29:1328-1341. [PMID: 30496342 PMCID: PMC6373693 DOI: 10.1093/cercor/bhy285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
Over the past decade, numerous neuroimaging studies based on hemodynamic markers of brain activity have examined the feeling of body ownership using perceptual body-illusions in humans. However, the direct electrophysiological correlates of body ownership at the cortical level remain unexplored. To address this, we studied the rubber hand illusion in 5 patients (3 males and 2 females) implanted with intracranial electrodes measuring cortical surface potentials. Increased high-γ (70–200 Hz) activity, an index of neuronal firing rate, in premotor and intraparietal cortices reflected the feeling of ownership. In both areas, high-γ increases were intimately coupled with the subjective illusion onset and sustained both during and in-between touches. However, intraparietal activity was modulated by tactile stimulation to a higher degree than the premotor cortex through effective connectivity with the hand-somatosensory cortex, which suggests different functional roles. These findings constitute the first intracranial electrophysiological characterization of the rubber hand illusion and extend our understanding of the dynamic mechanisms of body ownership.
Collapse
Affiliation(s)
- Arvid Guterstam
- Princeton Neuroscience Institute, Princeton University, New Jersey, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kelly L Collins
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jeneva A Cronin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Hugo Zeberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Felix Darvas
- Departments Biomedical Engineering and Radiology, University of Washington, Seattle, WA, USA
| | - Kurt E Weaver
- Department of Radiology, University of Washington, Seattle, WA, USA.,Integrated Brain Imaging Center, UW Radiology, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity. eNeuro 2020; 7:ENEURO.0374-19.2020. [PMID: 32127347 PMCID: PMC7189483 DOI: 10.1523/eneuro.0374-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Working memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short-term memory (STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC could associate, maintain, and update multimodal LTM representations. Our simulations demonstrate how simultaneous, brief multimodal memory cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index can then reactivate spontaneously and thereby also the associated LTM representations. Cueing one LTM item rapidly pattern completes the associated uncued item via PFC. The PFC–STM network updates flexibly as new stimuli arrive, thereby gradually overwriting older representations.
Collapse
|
26
|
Hill PF, King DR, Lega BC, Rugg MD. Comparison of fMRI correlates of successful episodic memory encoding in temporal lobe epilepsy patients and healthy controls. Neuroimage 2019; 207:116397. [PMID: 31770638 PMCID: PMC7238288 DOI: 10.1016/j.neuroimage.2019.116397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Intra-cranial electroencephalographic brain recordings (iEEG) provide a powerful tool for investigating the neural processes supporting episodic memory encoding and form the basis of experimental therapies aimed at improving memory dysfunction. However, given the invasiveness of iEEG, investigations are constrained to patients with drug-resistant epilepsy for whom such recordings are clinically indicated. Particularly in the case of temporal lobe epilepsy (TLE), neuropathology and the possibility of functional reorganization are potential constraints on the generalizability of intra-cerebral findings and pose challenges to the development of therapies for memory disorders stemming from other etiologies. Here, samples of TLE (N = 16; all of whom had undergone iEEG) and age-matched healthy control (N = 19) participants underwent fMRI as they studied lists of concrete nouns. fMRI BOLDresponses elicited by the study words were segregated according to subsequent performance on tests of delayed free recall and recognition memory. Subsequent memory effects predictive of both successful recall and recognition memory were evident in several neural regions, most prominently in the left inferior frontal gyrus, and did not demonstrate any group differences. Behaviorally, the groups did not differ in overall recall performance or in the strength of temporal contiguity effects. However, group differences in serial position effects and false alarm rates were evident during the free recall and recognition memory tasks, respectively. Despite these behavioral differences, neuropathology associated with temporal lobe epilepsy was apparently insufficient to give rise to detectable differences in the functional neuroanatomy of episodic memory encoding relative to neurologically healthy controls. The findings provide reassurance that iEEG findings derived from experimental paradigms similar to those employed here generalize to the neurotypical population.
Collapse
Affiliation(s)
- Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Danielle R King
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd 6th Floor Suite 108, Dallas, TX, 75390, USA
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 6363 Forest Park Rd 7th Floor Suite 749, Dallas, TX, 75235, USA
| |
Collapse
|
27
|
Quantitative Signal Characteristics of Electrocorticography and Stereoelectroencephalography: The Effect of Contact Depth. J Clin Neurophysiol 2019; 36:195-203. [PMID: 30925509 PMCID: PMC6493682 DOI: 10.1097/wnp.0000000000000577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Purpose: Patients undergoing epilepsy surgery often require invasive EEG, but few studies have examined the signal characteristics of contacts on the surface of the brain (electrocorticography, ECOG) versus depth contacts, used in stereoelectroencephalography (SEEG). As SEEG and ECOG have significant differences in complication rates, it is important to determine whether both modalities produce similar signals for analysis, to ultimately guide management of medically intractable epilepsy. Methods: Twenty-seven patients who underwent SEEG (19), ECOG (6), or both (2) were analyzed for quantitative measures of activity including spectral power and phase–amplitude coupling during approximately 1 hour of wakefulness. The position of the contacts was calculated by coregistering the postoperative computed tomography with a reconstructed preoperative MRI. Using two types of referencing schemes—local versus common average reference—the brain regions where any quantitative measure differed systematically with contact depth were established. Results: Using even the most permissive statistical criterion, few quantitative measures were significantly correlated with contact depth in either ECOG or SEEG contacts. The factors that predicted changes in spectral power and phase–amplitude coupling with contact depth were failing to baseline correct spectral power measures, use of a local rather than common average reference, using baseline correction for phase–amplitude coupling measures, and proximity of other grey matter structures near the region where the contact was located. Conclusions: The signals recorded by ECOG and SEEG have very similar spectral power and phase–amplitude coupling, suggesting that both modalities are comparable from an electrodiagnostic standpoint in delineation of the epileptogenic network.
Collapse
|
28
|
Yang Y, Sani OG, Chang EF, Shanechi MM. Dynamic network modeling and dimensionality reduction for human ECoG activity. J Neural Eng 2019; 16:056014. [DOI: 10.1088/1741-2552/ab2214] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Holdgraf C, Appelhoff S, Bickel S, Bouchard K, D'Ambrosio S, David O, Devinsky O, Dichter B, Flinker A, Foster BL, Gorgolewski KJ, Groen I, Groppe D, Gunduz A, Hamilton L, Honey CJ, Jas M, Knight R, Lachaux JP, Lau JC, Lee-Messer C, Lundstrom BN, Miller KJ, Ojemann JG, Oostenveld R, Petridou N, Piantoni G, Pigorini A, Pouratian N, Ramsey NF, Stolk A, Swann NC, Tadel F, Voytek B, Wandell BA, Winawer J, Whitaker K, Zehl L, Hermes D. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. Sci Data 2019; 6:102. [PMID: 31239438 PMCID: PMC6592874 DOI: 10.1038/s41597-019-0105-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 11/09/2022] Open
Abstract
The Brain Imaging Data Structure (BIDS) is a community-driven specification for organizing neuroscience data and metadata with the aim to make datasets more transparent, reusable, and reproducible. Intracranial electroencephalography (iEEG) data offer a unique combination of high spatial and temporal resolution measurements of the living human brain. To improve internal (re)use and external sharing of these unique data, we present a specification for storing and sharing iEEG data: iEEG-BIDS.
Collapse
Affiliation(s)
- Christopher Holdgraf
- The Berkeley Institute for Data Science, Berkeley, USA.
- University of California at Berkeley, Berkeley, USA.
| | - Stefan Appelhoff
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| | - Stephan Bickel
- Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, New York, USA
| | - Kristofer Bouchard
- Biological Systems and Engineering Division, Lawrence Berkeley Lab, Berkeley, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mainak Jas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Med. School, Charlestown, USA
| | | | | | - Jonathan C Lau
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Canada
| | | | | | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, USA
| | | | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Karolinska Institutet, Nijmegen, The Netherlands
| | - Natalia Petridou
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gio Piantoni
- UMC Utrecht Brain Center, Utrecht, The Netherlands
| | | | | | | | - Arjen Stolk
- University of California at Berkeley, Berkeley, USA
| | | | - François Tadel
- Universite Grenoble Alpes, Inserm, France
- CHU Grenoble Alpes, GIN, Grenoble, France
| | | | | | | | - Kirstie Whitaker
- Alan Turing Institute, London, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lyuba Zehl
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dora Hermes
- Stanford University, Stanford, USA.
- UMC Utrecht Brain Center, Utrecht, The Netherlands.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, USA.
| |
Collapse
|
30
|
Rutishauser U. Testing Models of Human Declarative Memory at the Single-Neuron Level. Trends Cogn Sci 2019; 23:510-524. [PMID: 31031021 DOI: 10.1016/j.tics.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
Deciphering the mechanisms of declarative memory is a major goal of neuroscience. While much theoretical progress has been made, it has proven difficult to experimentally verify key predictions of some foundational models of memory. Recently, single-neuron recordings in human patients have started to provide direct experimental verification of some theories, including mnemonic evidence accumulation, balance-of-evidence for confidence judgments, sparse coding, contextual reinstatement, and the ventral tegmental area (VTA)-hippocampus loop model. Here, we summarize the cell types that have been described in the medial temporal lobe and posterior parietal cortex, discuss their properties, and reflect on how these findings inform theoretical work. This body of work exemplifies the scientific power of a synergistic combination of modeling and human single-neuron recordings to advance cognitive neuroscience.
Collapse
Affiliation(s)
- Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Ofen N, Tang L, Yu Q, Johnson EL. Memory and the developing brain: From description to explanation with innovation in methods. Dev Cogn Neurosci 2019; 36:100613. [PMID: 30630777 PMCID: PMC6529263 DOI: 10.1016/j.dcn.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/13/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022] Open
Abstract
Recent advances in human cognitive neuroscience show great promise in extending our understanding of the neural basis of memory development. We briefly review the current state of knowledge, highlighting that most work has focused on describing the neural correlates of memory in cross-sectional studies. We then delineate three examples of the application of innovative methods in addressing questions that go beyond description, towards a mechanistic understanding of memory development. First, structural brain imaging and the harmonization of measurements across laboratories may uncover ways in which the maturation of the brain constrains the development of specific aspects of memory. Second, longitudinal designs and sophisticated modeling of the data may identify age-driven changes and the factors that determine individual developmental trajectories. Third, recording memory-related activity directly from the developing brain presents an unprecedented opportunity to examine how distinct brain structures support memory in real time. Finally, the growing prevalence of data sharing offers additional means to tackle questions that demand large-scale datasets, ambitious designs, and access to rare samples. We propose that the use of such innovative methods will move our understanding of memory development from a focus on describing trends to explaining the causal factors that shape behavior.
Collapse
Affiliation(s)
- Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, Michigan, United States; Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Qijing Yu
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Department of Psychology, Wayne State University, Detroit, Michigan, United States
| | - Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, Michigan, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| |
Collapse
|
32
|
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream. eNeuro 2019; 6:eN-NWR-0214-18. [PMID: 30847390 PMCID: PMC6402539 DOI: 10.1523/eneuro.0214-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65–115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream.
Collapse
|
33
|
Timing matters in elaborative processing of positive stimuli: Gamma band reactivity in schizophrenia compared to depression and healthy adults. Schizophr Res 2019; 204:111-119. [PMID: 30121184 PMCID: PMC6377351 DOI: 10.1016/j.schres.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/12/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
Abstract
Some individuals with schizophrenia report similar feelings of positive affect "in the moment" compared to control participants but report decreased trait positive affect overall. One possible explanation for this disconnection between state and trait positive affect is the extent to which individuals with schizophrenia engage in elaborative processing of positive stimuli. To assess this, we examined evoked gamma band activity in response to positive words over several seconds in a group with schizophrenia, a group with major depressive disorder, and a healthy control group. From a pre-stimulus baseline to 2000 ms after onset of the stimulus (henceforth, "early period"), the schizophrenia group showed a reliable increase in gamma activity compared to both the control and depressed groups, who did not differ from each other. In contrast, the depressed group showed a reliable increase in gamma activity from 2001 to 8000 ms (henceforth, "late period") compared to the other groups, who did not differ from each other. At the same time, the schizophrenia group showed a reliable decrease from the early to late period while the depressed group showed the opposite pattern. In addition, self-reported depression and social anhedonia in the schizophrenia group were related to decreased gamma band activity over the entire processing window. Overall, these results suggest that schizophrenia is associated with increased initial reactivity but decreased sustained elaborative processing over time, which could be related to decreased trait positive affect. The results also highlight the importance of considering depressive symptomology and anhedonia when examining emotional abnormalities in schizophrenia.
Collapse
|
34
|
Johnson EL, King-Stephens D, Weber PB, Laxer KD, Lin JJ, Knight RT. Spectral Imprints of Working Memory for Everyday Associations in the Frontoparietal Network. Front Syst Neurosci 2019; 12:65. [PMID: 30670953 PMCID: PMC6333050 DOI: 10.3389/fnsys.2018.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
How does the human brain rapidly process incoming information in working memory? In growing divergence from a single-region focus on the prefrontal cortex (PFC), recent work argues for emphasis on how distributed neural networks are rapidly coordinated in support of this central neurocognitive function. Previously, we showed that working memory for everyday “what,” “where,” and “when” associations depends on multiplexed oscillatory systems, in which signals of different frequencies simultaneously link the PFC to parieto-occipital and medial temporal regions, pointing to a complex web of sub-second, bidirectional interactions. Here, we used direct brain recordings to delineate the frontoparietal oscillatory correlates of working memory with high spatiotemporal precision. Seven intracranial patients with electrodes simultaneously localized to prefrontal and parietal cortices performed a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. First, task-induced oscillations in the same delta-theta (2–7 Hz) and alpha-beta (9–24 Hz) frequency ranges previously identified using scalp electroencephalography (EEG) carried information about the contents of working memory. Second, maintenance was linked to directional connectivity from the parietal cortex to the PFC. However, presentation of the test prompt to cue identity, spatial, or temporal information changed delta-theta coordination from a unidirectional, parietal-led system to a bidirectional, frontoparietal system. Third, the processing of spatiotemporal information was more bidirectional in the delta-theta range than was the processing of identity information, where alpha-beta connectivity did not exhibit sensitivity to the contents of working memory. These findings implicate a bidirectional delta-theta mechanism for frontoparietal control over the contents of working memory.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States.,Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, United States
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, United States
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, United States
| | - Jack J Lin
- Comprehensive Epilepsy Program, Department of Neurology, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States.,Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
35
|
Johnson EL, Tang L, Yin Q, Asano E, Ofen N. Direct brain recordings reveal prefrontal cortex dynamics of memory development. SCIENCE ADVANCES 2018; 4:eaat3702. [PMID: 30585286 PMCID: PMC6300397 DOI: 10.1126/sciadv.aat3702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Prevailing theories link prefrontal cortex (PFC) maturation to the development of declarative memory. However, the precise spatiotemporal correlates of memory formation in the developing brain are not known. We provide rare intracranial evidence that the spatiotemporal propagation of frontal activity supports memory formation in children. Seventeen subjects (6.2 to 19.4 years) studied visual scenes in preparation for a recognition memory test while undergoing direct cortical monitoring. Earlier PFC activity predicted greater accuracy, and subsecond deviations in activity flow between subregions predicted memory formation. Activity flow between inferior and precentral sites was refined during adolescence, partially explaining gains in memory. In contrast, middle frontal activity predicted memory independent of age. These findings show with subsecond temporal precision that the developing PFC links scene perception and memory formation and underscore the role of the PFC in supporting memory development.
Collapse
Affiliation(s)
- E. L. Johnson
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (E.L.J.); (N.O.)
| | - L. Tang
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Q. Yin
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - E. Asano
- Departments of Pediatrics and Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI, USA
| | - N. Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, MI, USA
- Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author. (E.L.J.); (N.O.)
| |
Collapse
|
36
|
Theta oscillations underlie retrieval success effects in the nucleus accumbens and anterior thalamus: Evidence from human intracranial recordings. Neurobiol Learn Mem 2018; 155:104-112. [DOI: 10.1016/j.nlm.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
|
37
|
Watson BO, Ding M, Buzsáki G. Temporal coupling of field potentials and action potentials in the neocortex. Eur J Neurosci 2018; 48:2482-2497. [PMID: 29250852 PMCID: PMC6005737 DOI: 10.1111/ejn.13807] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/27/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022]
Abstract
The local field potential (LFP) is an aggregate measure of group neuronal activity and is often correlated with the action potentials of single neurons. In recent years, investigators have found that action potential firing rates increase during elevations in power high-frequency band oscillations (50-200 Hz range). However, action potentials also contribute to the LFP signal itself, making the spike-LFP relationship complex. Here, we examine the relationship between spike rates and LFP in varying frequency bands in rat neocortical recordings. We find that 50-180 Hz oscillations correlate most consistently with high firing rates, but that other LFP bands also carry information relating to spiking, including in some cases anti-correlations. Relatedly, we find that spiking itself and electromyographic activity contribute to LFP power in these bands. The relationship between spike rates and LFP power varies between brain states and between individual cells. Finally, we create an improved oscillation-based predictor of action potential activity by specifically utilizing information from across the entire recorded frequency spectrum of LFP. The findings illustrate both caveats and improvements to be taken into account in attempts to infer spiking activity from LFP.
Collapse
Affiliation(s)
- Brendon O. Watson
- Department of Psychiatry, University of Michigan, BSRB 109 Zina Pitcher Place, Ann Arbor, 48109 MI, USA
| | - Mingxin Ding
- Department of Psychiatry, University of Michigan, BSRB 109 Zina Pitcher Place, Ann Arbor, 48109 MI, USA
| | - György Buzsáki
- The Neuroscience Institute, School of Medicine, New York University, New York, NY, USA
- Center for Neural Science, School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
38
|
Yang CY, Huang CK. Working-memory evaluation based on EEG signals during n-back tasks. J Integr Neurosci 2018; 17:695-707. [DOI: 10.3233/jin-180096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Chia-Yen Yang
- Department of Biomedical Engineering, Ming Chuan University, No. 5 De Ming Rd., Gui Shan District, Taoyuan County 333, Taiwan
| | - Chong-Kai Huang
- Department of Electrical Engineering, Chang Gung University, No. 259, Wen hua 1st Rd., Gui shan District, Taoyuan County 333, Taiwan
| |
Collapse
|
39
|
Wang S, Mamelak AN, Adolphs R, Rutishauser U. Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain. Curr Biol 2018; 28:2058-2069.e4. [PMID: 29910078 DOI: 10.1016/j.cub.2018.04.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/03/2018] [Accepted: 04/27/2018] [Indexed: 10/14/2022]
Abstract
Neurons in the primate medial temporal lobe (MTL) respond selectively to visual categories such as faces, contributing to how the brain represents stimulus meaning. However, it remains unknown whether MTL neurons continue to encode stimulus meaning when it changes flexibly as a function of variable task demands imposed by goal-directed behavior. While classically associated with long-term memory, recent lesion and neuroimaging studies show that the MTL also contributes critically to the online guidance of goal-directed behaviors such as visual search. Do such tasks modulate responses of neurons in the MTL, and if so, do their responses mirror bottom-up input from visual cortices or do they reflect more abstract goal-directed properties? To answer these questions, we performed concurrent recordings of eye movements and single neurons in the MTL and medial frontal cortex (MFC) in human neurosurgical patients performing a memory-guided visual search task. We identified a distinct population of target-selective neurons in both the MTL and MFC whose response signaled whether the currently fixated stimulus was a target or distractor. This target-selective response was invariant to visual category and predicted whether a target was detected or missed behaviorally during a given fixation. The response latencies, relative to fixation onset, of MFC target-selective neurons preceded those in the MTL by ∼200 ms, suggesting a frontal origin for the target signal. The human MTL thus represents not only fixed stimulus identity, but also task-specified stimulus relevance due to top-down goal relevance.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemical and Biomedical Engineering, and Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26506, USA; Computation and Neural Systems, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Adam N Mamelak
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ralph Adolphs
- Computation and Neural Systems, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
40
|
Johnson EL, Adams JN, Solbakk AK, Endestad T, Larsson PG, Ivanovic J, Meling TR, Lin JJ, Knight RT. Dynamic frontotemporal systems process space and time in working memory. PLoS Biol 2018; 16:e2004274. [PMID: 29601574 PMCID: PMC5895055 DOI: 10.1371/journal.pbio.2004274] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/11/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences. How do we rapidly process incoming streams of information in working memory? Dominant views of working memory focus on the prefrontal cortex (PFC), but other data suggest a role for the medial temporal lobe (MTL). To delineate whether (and how) these brain regions interact during working memory, we recorded directly from PFC and MTL sites in humans performing a task that tests working memory for the types of “what,” “where,” and “when” information encountered every day. MTL oscillations in the theta band (3–7 Hz) directed PFC activity during the processing of spatiotemporal information, while PFC theta oscillations directed MTL activity for all types of information. This functional dissociation provides the first demonstration of bidirectional communication between the PFC and MTL during working memory. Our findings reveal that rapid, dynamic interactions between these two regions underlie working memory for everyday experiences, challenging dominant views on the central role of the PFC.
Collapse
Affiliation(s)
- Elizabeth L. Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne-Kristin Solbakk
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Pål G. Larsson
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Torstein R. Meling
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Division of Clinical Neuroscience, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jack J. Lin
- Comprehensive Epilepsy Program, Department of Neurology, University of California, Irvine, Irvine, California, United States of America
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Psychology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
41
|
Yang S, Deng B, Li H, Liu C, Wang J, Yu H, Qin Y. FPGA implementation of hippocampal spiking network and its real-time simulation on dynamical neuromodulation of oscillations. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Hawco C, Armony JL, Daskalakis ZJ, Berlim MT, Chakravarty MM, Pike GB, Lepage M. Differing Time of Onset of Concurrent TMS-fMRI during Associative Memory Encoding: A Measure of Dynamic Connectivity. Front Hum Neurosci 2017; 11:404. [PMID: 28855865 PMCID: PMC5557775 DOI: 10.3389/fnhum.2017.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
There has been a distinct shift in neuroimaging from localization of function into a more network based approach focused on connectivity. While fMRI has proven very fruitful for this, the hemodynamic signal is inherently slow which limits the temporal resolution of fMRI-only connectivity measures. The brain, however, works on a time scale of milliseconds. This study utilized concurrent transcranial magnetic stimulation (TMS)-fMRI in a novel way to obtain measures of dynamic connectivity by measuring changes in fMRI signal amplitude in regions distal to the site of stimulation following differing TMS onset times. Seventeen healthy subjects completed an associative memory encoding task known to involve the DLPFC, viewing pairs of objects which could be semantically related or unrelated. Three pulses of 10 Hz repetitive TMS were applied over the left DLPFC starting either at 200, 600, or 1000 ms after stimulus onset. Associations for related pairs were better remembered than unrelated pairs in a post-scan cued recall test. Differences in neural activity were assessed across different TMS onsets, separately for related and unrelated pairs. Time specific TMS effects were observed in several regions, including those associated with higher-level processing (lateral frontal, anterior cingulate), visual areas (occipital), and regions involved in semantic processing (e.g., left mid-temporal and medial frontal). Activity in the frontal cortex was decreased at 200 ms post-stimulus for unrelated pairs, and 1000 ms post-stimulus for related pairs. This suggests differences in the timing across conditions in which the DLFPC interacts with other PFC regions, consistent with the notion that the DLPFC is facilitating extended semantic processing for related items. This study demonstrates that time-varying TMS onset inside the MRI can be used to reliably measure fast dynamic connectivity with a temporal resolution in the hundreds of milliseconds.
Collapse
Affiliation(s)
- Colin Hawco
- Douglas Mental Health University Institute, McGill University, MontrealQC, Canada.,Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoON, Canada
| | - Jorge L Armony
- Douglas Mental Health University Institute, McGill University, MontrealQC, Canada
| | - Zafiris J Daskalakis
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, TorontoON, Canada
| | - Marcelo T Berlim
- Douglas Mental Health University Institute, McGill University, MontrealQC, Canada
| | - M Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, MontrealQC, Canada.,Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, MontrealQC, Canada
| | - G Bruce Pike
- Department of Radiology, University of Calgary, CalgaryAB, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
43
|
Kucewicz MT, Berry BM, Kremen V, Brinkmann BH, Sperling MR, Jobst BC, Gross RE, Lega B, Sheth SA, Stein JM, Das SR, Gorniak R, Stead SM, Rizzuto DS, Kahana MJ, Worrell GA. Dissecting gamma frequency activity during human memory processing. Brain 2017; 140:1337-1350. [DOI: 10.1093/brain/awx043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 11/14/2022] Open
|
44
|
Long NM, Kahana MJ. Modulation of task demands suggests that semantic processing interferes with the formation of episodic associations. J Exp Psychol Learn Mem Cogn 2016; 43:167-176. [PMID: 27617775 DOI: 10.1037/xlm0000300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record
Collapse
Affiliation(s)
- Nicole M Long
- Department of Psychology, University of Pennsylvania
| | | |
Collapse
|
45
|
Bailey J, Taylor K. Non-human primates in neuroscience research: The case against its scientific necessity. Altern Lab Anim 2016; 44:43-69. [PMID: 27031602 DOI: 10.1177/026119291604400101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Public opposition to non-human primate (NHP) experiments is significant, yet those who defend them cite minimal harm to NHPs and substantial human benefit. Here we review these claims of benefit, specifically in neuroscience, and show that: a) there is a default assumption of their human relevance and benefit, rather than robust evidence; b) their human relevance and essential contribution and necessity are wholly overstated; c) the contribution and capacity of non-animal investigative methods are greatly understated; and d) confounding issues, such as species differences and the effects of stress and anaesthesia, are usually overlooked. This is the case in NHP research generally, but here we specifically focus on the development and interpretation of functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), the understanding of neural oscillations and memory, and investigation of the neural control of movement and of vision/binocular rivalry. The increasing power of human-specific methods, including advances in fMRI and invasive techniques such as electrocorticography and single-unit recordings, is discussed. These methods serve to render NHP approaches redundant. We conclude that the defence of NHP use is groundless, and that neuroscience would be more relevant and successful for humans, if it were conducted with a direct human focus. We have confidence in opposing NHP neuroscience, both on scientific as well as on ethical grounds.
Collapse
|
46
|
A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2016; 2016:8491046. [PMID: 26819593 PMCID: PMC4706886 DOI: 10.1155/2016/8491046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/17/2022]
Abstract
We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.
Collapse
|
47
|
Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annu Rev Psychol 2016; 67:105-34. [PMID: 26726963 PMCID: PMC5060006 DOI: 10.1146/annurev-psych-113011-143733] [Citation(s) in RCA: 622] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The last decade has seen dramatic technological and conceptual changes in research on episodic memory and the brain. New technologies, and increased use of more naturalistic observations, have enabled investigators to delve deeply into the structures that mediate episodic memory, particularly the hippocampus, and to track functional and structural interactions among brain regions that support it. Conceptually, episodic memory is increasingly being viewed as subject to lifelong transformations that are reflected in the neural substrates that mediate it. In keeping with this dynamic perspective, research on episodic memory (and the hippocampus) has infiltrated domains, from perception to language and from empathy to problem solving, that were once considered outside its boundaries. Using the component process model as a framework, and focusing on the hippocampus, its subfields, and specialization along its longitudinal axis, along with its interaction with other brain regions, we consider these new developments and their implications for the organization of episodic memory and its contribution to functions in other domains.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada;
- Rotman Research Institute, Baycrest Center, Toronto, Ontario, M6A 2E1 Canada
- Department of Psychology, Baycrest Center, Toronto, Ontario M6A 2E1, Canada
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina 27708;
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Center, Toronto, Ontario, M6A 2E1 Canada
- Department of Psychology, Trent University, Peterborough, Ontario K9J 7B8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada;
| | - Lynn Nadel
- Department of Psychology and Cognitive Science Program, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
48
|
Scott L, Kiss T, Kawabe TT, Hajós M. Neuronal network activity in the hippocampus of tau transgenic (Tg4510) mice. Neurobiol Aging 2016; 37:66-73. [DOI: 10.1016/j.neurobiolaging.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
49
|
Abstract
Neural oscillations at distinct frequencies are increasingly being related to a number of basic and higher cognitive faculties. Oscillations enable the construction of coherently organized neuronal assemblies through establishing transitory temporal correlations. By exploring the elementary operations of the language faculty-labeling, concatenation, cyclic transfer-alongside neural dynamics, a new model of linguistic computation is proposed. It is argued that the universality of language, and the true biological source of Universal Grammar, is not to be found purely in the genome as has long been suggested, but more specifically within the extraordinarily preserved nature of mammalian brain rhythms employed in the computation of linguistic structures. Computational-representational theories are used as a guide in investigating the neurobiological foundations of the human "cognome"-the set of computations performed by the nervous system-and new directions are suggested for how the dynamics of the brain (the "dynome") operate and execute linguistic operations. The extent to which brain rhythms are the suitable neuronal processes which can capture the computational properties of the human language faculty is considered against a backdrop of existing cartographic research into the localization of linguistic interpretation. Particular focus is placed on labeling, the operation elsewhere argued to be species-specific. A Basic Label model of the human cognome-dynome is proposed, leading to clear, causally-addressable empirical predictions, to be investigated by a suggested research program, Dynamic Cognomics. In addition, a distinction between minimal and maximal degrees of explanation is introduced to differentiate between the depth of analysis provided by cartographic, rhythmic, neurochemical, and other approaches to computation.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College LondonLondon, UK
| |
Collapse
|
50
|
Stoiljkovic M, Kelley C, Nagy D, Hajós M. Modulation of hippocampal neuronal network oscillations by α7 nACh receptors. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|