1
|
Naderi R, Rezaei A, Amiri M, Peremans H. Unsupervised post-training learning in spiking neural networks. Sci Rep 2025; 15:17647. [PMID: 40399359 PMCID: PMC12095488 DOI: 10.1038/s41598-025-01749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
The human brain is a dynamic system that is constantly learning. It employs a combination of various learning strategies to facilitate complex learning processes. However, implementing biological learning mechanisms into Spiking Neural Networks (SNNs) remains challenging; thus, most SNNs are trained with only a single learning strategy such as spike timing dependent plasticity (STDP). Moreover, conventional neural networks are first trained on one dataset and subsequently evaluated on unseen data. In this traditional approach, the weights and structure of the model remain fixed once the training step concludes. In this research, we aim to modify this traditional approach and hypothesize that adding short-term plasticity (STP) to a trained SNN enables the model to learn post-training without changing synaptic weights. In particular, by combining triplet STDP for long-term learning during initial training and STP for short-term learning after training (post-training), we employ multiple learning rules to enhance the biological plausibility and computational abilities of SNNs. In this way, two unsupervised learning pipelines are designed for image classification as a proof of concept, in which the dynamic synapse model, driven by neurotransmitter release and synaptic strength, is integrated into the trained network. The proposed method outperforms traditional training by achieving higher classification accuracy and a faster convergence rate. Consequently, our results show that the concept of post-training learning can be realized by incorporating STP in SNNs. Future studies should extend this concept to other challenges and explore its applicability to new datasets.
Collapse
Affiliation(s)
- Reyhaneh Naderi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Rezaei
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Oláh G, Lákovics R, Shapira S, Leibner Y, Szücs A, Csajbók ÉA, Barzó P, Molnár G, Segev I, Tamás G. Accelerated signal propagation speed in human neocortical dendrites. eLife 2025; 13:RP93781. [PMID: 40272114 PMCID: PMC12021416 DOI: 10.7554/elife.93781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.
Collapse
Affiliation(s)
- Gáspár Oláh
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Rajmund Lákovics
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Sapir Shapira
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan Leibner
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Attila Szücs
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd UniversityBudapestHungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Pál Barzó
- Department of Neurosurgery, University of SzegedSzegedHungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Idan Segev
- Edmond and Lily Safra center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| |
Collapse
|
3
|
Sun Y, Wang X, Chen Y, Luan Z, Hao R. The impact of exogenous Oxytocin on visual cortex plasticity across different stages of visual development. Sci Rep 2025; 15:12137. [PMID: 40204929 PMCID: PMC11982226 DOI: 10.1038/s41598-025-96573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
The plasticity of ocular dominance is most prominent during the critical period of visual development, influenced by the balance of excitatory and inhibitory synaptic transmission in the visual cortex. Astrocytes play a crucial role in regulating synaptic plasticity through phagocytosis of synapses. However, the ability of astrocytes to modulate synaptic plasticity after the critical period remains unclear. Oxytocin (OT), a neuropeptide involved in neural circuit formation, has shown potential in enhancing synaptic plasticity. This study explores the role of OT in restoring visual cortical plasticity during and after the critical period of visual development. We performed monocular deprivation (MD) on mice during the critical period and extended the deprivation until adulthood. Visual cortical plasticity was evaluated using pattern visual evoked potentials (PVEPs), immunofluorescence staining, and western blotting. Excitatory synaptic markers (VGLUT1, PSD- 95) and inhibitory synaptic markers (VGAT, Gephyrin) were analyzed. The effects of OT administration, alone or combined with reverse occlusion (RO), on ocular dominance plasticity and astrocyte activity were assessed. During the critical period, MD induced a significant ocular dominance shift with reduced cortical response from the deprived eye, primarily through decreased excitatory synaptic markers (VGLUT1: P < 0.05; PSD- 95: P < 0.05). OT administration further enhanced this shift by reducing GFAP expression and decreasing astrocytic phagocytosis of excitatory synapses. After the critical period, prolonged MD reduced excitatory synaptic marker expression in the visual cortex (P < 0.05), and RO alone did not restore cortical plasticity. However, the combination of OT and RO increased excitatory synaptic marker expression (VGLUT1: P < 0.05; PSD- 95: P < 0.05 and restored ocular dominance plasticity. Our findings demonstrate that OT can modulate astrocyte activity and enhance excitatory synaptic plasticity, facilitating the recovery of visual cortical plasticity both during and after the critical period. These results highlight the potential of OT as a therapeutic intervention for visual impairments caused by disrupted sensory experiences during development.
Collapse
Affiliation(s)
- Yifan Sun
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Xiao Wang
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Yamin Chen
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Zichen Luan
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China.
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China.
- Nankai University Affiliated Eye Hospital, Nankai University, 300020, Tianjin, PR China.
| |
Collapse
|
4
|
Zheng S, Wang Y, Tang S, Guo Y, Ma D, Jiang X. Mechanism of nimodipine in treating neurodegenerative diseases: in silico target identification and molecular dynamic simulation. Front Pharmacol 2025; 16:1549953. [PMID: 40183081 PMCID: PMC11965916 DOI: 10.3389/fphar.2025.1549953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Aim Nimodipine has shown neuroprotective effects in several studies; however, the specific targets and mechanisms remain unclear. This study aims to explore the potential targets and mechanisms of nimodipine in the treatment of neurodegenerative diseases (NDDs), providing a theoretical foundation for repurposing nimodipine for NDDs. Methods Drug-related targets were predicted using SwissTargetPrediction and integrated with results from CTD, GeneCards, and DrugBank. These targets were then cross-referenced with disease-related targets retrieved from CTD to identify overlapping targets. The intersecting targets were imported into STRING to construct a protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R package ClusterProfiler. Molecular docking was carried out using AutoDock Vina, and the ligand-receptor complexes with the highest binding affinities were further simulated using GROMACS to assess the dynamic structural stability and interactions between the ligand and receptor in the dynamic system. Results A total of 33 intersecting drug-disease targets were identified. After constructing the PPI network and removing isolated targets, the network contained 28 nodes and 69 edges. Network degree analysis combined with enrichment analysis highlighted 12 key targets: CASP3, TNF, BAX, BCL2, IL1B, GSK3B, IL1A, MAOB, MAOA, BDNF, APP, and GFAP. Molecular docking analysis revealed binding energies greater than -6 kcal/mol for MAOA, GSK3B, MAOB, CASP3, BCL2, IL1B and APP. MAOA, with the highest binding energy of -7.343 kcal/mol, demonstrated a stable structure in a 100ns dynamic simulation with nimodipine, exhibiting an average dynamic binding energy of -52.39 ± 3.05 kcal/mol. The dynamic cross-correlation matrix (DCCM) of nimodipine resembled that of harmine, reducing the interactions between protein residues compared to the apo state (regardless of positive or negative correlations). Furthermore, nimodipine induced new negative correlations in residues 100-200 and 300-400. Conclusion Nimodipine binds to the internal pocket of MAOA and shows potential inhibitory effects. Given its brain-enrichment characteristics and proven neuroprotective effects, it is hypothesized that nimodipine may exert therapeutic effects on NDDs by inhibiting MAOA activity and modulating cerebral oxidative stress. Thus, MAOA emerges as a promising new target for nimodipine in the treatment of NDDs.
Collapse
Affiliation(s)
- Shuang Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Precision Genes Technology, INC., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, China
| | - Yin Wang
- Precision Genes Technology, INC., Nantong, China
| | | | - Yuntao Guo
- Precision Genes Technology, INC., Nantong, China
| | - Duan Ma
- Precision Genes Technology, INC., Nantong, China
| | - Xin Jiang
- Precision Genes Technology, INC., Nantong, China
| |
Collapse
|
5
|
Lamberti M, van Putten MJAM, Marzen S, le Feber J. The role of NMDA receptors in memory and prediction in cultured neural networks. J Neural Eng 2025; 22:016053. [PMID: 39946848 DOI: 10.1088/1741-2552/adb5c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Objective. Memory has been extensively studied at the behavioural as well as the cellular level. Spike timing dependent plasticity is widely considered essential for long-term memory and is associated with activation of N-methyl-D-aspartate (NMDA) receptors. This suggests that NMDA receptor activation plays a crucial role in enabling long-term memory. However, experimental evidence remains sparse, probably due to the complex combination of cellular and functional readouts required.Approach. Recent work showed thatin-vitrocortical networks memorize and predict inputs. The initial dependency of prediction on short-term memory decreased during the formation of long-term memory traces. Here, we stimulated networks of dissociated cortical neurons that were grown on multi electrode arrays to investigate memory and prediction under control conditions, or under NMDA block.Main results. The NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) at the used concentration impeded long-term memory trace formation, but did not significantly reduce network excitability. In APV-treated cultures short-term memory of stimuli persisted and they were still able to predict. In contrast to control cultures, prediction remained fully dependent on short-term memory.Significance. This confirms that NMDA receptor activation is essential for the formation of long-term memory traces and supports the notion that, as control cultures learn to memorize the stimulus, long-term memory starts to contribute to their predictive capability.
Collapse
Affiliation(s)
- Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, PO Box 217, Enschede 7500AE, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, PO Box 217, Enschede 7500AE, The Netherlands
| | - Sarah Marzen
- W. M. Keck Science Department, Claremont, CA 91711, United States of America
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, PO Box 217, Enschede 7500AE, The Netherlands
| |
Collapse
|
6
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. J Neurophysiol 2025; 133:399-413. [PMID: 39740351 DOI: 10.1152/jn.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The primate dorsolateral prefrontal cortex (DLPFC) displays unique in vivo activity patterns, but how in vivo activity regulates DLPFC pyramidal neuron (PN) properties remains unclear. We assessed the effects of in vivo Kir2.1 overexpression, a genetic silencing tool, on synapses in monkey DLPFC PNs. We show for the first time that recombinant ion channel expression successfully modifies the excitability of primate cortex neurons, producing effects on synaptic properties apparently different from those in the rodent cortex.
Collapse
Affiliation(s)
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yosuke Nishihata
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Olga L Krimer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirsten Wade
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Aizenbud I, Yoeli D, Beniaguev D, de Kock CPJ, London M, Segev I. What makes human cortical pyramidal neurons functionally complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628883. [PMID: 39763809 PMCID: PMC11702691 DOI: 10.1101/2024.12.17.628883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Humans exhibit unique cognitive abilities within the animal kingdom, but the neural mechanisms driving these advanced capabilities remain poorly understood. Human cortical neurons differ from those of other species, such as rodents, in both their morphological and physiological characteristics. Could the distinct properties of human cortical neurons help explain the superior cognitive capabilities of humans? Understanding this relationship requires a metric to quantify how neuronal properties contribute to the functional complexity of single neurons, yet no such standardized measure currently exists. Here, we propose the Functional Complexity Index (FCI), a generalized, deep learning-based framework to assess the input-output complexity of neurons. By comparing the FCI of cortical pyramidal neurons from different layers in rats and humans, we identified key morpho-electrical factors that underlie functional complexity. Human cortical pyramidal neurons were found to be significantly more functionally complex than their rat counterparts, primarily due to differences in dendritic membrane area and branching pattern, as well as density and nonlinearity of NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical basis for the enhanced functional properties of human neurons.
Collapse
Affiliation(s)
- Ido Aizenbud
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniela Yoeli
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christiaan PJ de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, VU Amsterdam
| | - Michael London
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
9
|
Libé-Philippot B, Polleux F, Vanderhaeghen P. If you please, draw me a neuron - linking evolutionary tinkering with human neuron evolution. Curr Opin Genet Dev 2024; 89:102260. [PMID: 39357501 PMCID: PMC11625661 DOI: 10.1016/j.gde.2024.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024]
Abstract
Animal speciation often involves novel behavioral features that rely on nervous system evolution. Human-specific brain features have been proposed to underlie specialized cognitive functions and to be linked, at least in part, to the evolution of synapses, neurons, and circuits of the cerebral cortex. Here, we review recent results showing that, while the human cortex is composed of a repertoire of cells that appears to be largely similar to the one found in other mammals, human cortical neurons do display specialized features at many levels, from gene expression to intrinsic physiological properties. The molecular mechanisms underlying human species-specific neuronal features remain largely unknown but implicate hominid-specific gene duplicates that encode novel molecular modifiers of neuronal function. The identification of human-specific genetic modifiers of neuronal function brings novel insights on brain evolution and function and, could also provide new insights on human species-specific vulnerabilities to brain disorders.
Collapse
Affiliation(s)
- Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium; Aix-Marseille Université, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), NeuroMarseille, Marseille, France.
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. https://twitter.com/@fpolleux
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Christopoulou E, Charrier C. Molecular mechanisms of the specialization of human synapses in the neocortex. Curr Opin Genet Dev 2024; 89:102258. [PMID: 39255688 DOI: 10.1016/j.gde.2024.102258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024]
Abstract
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Collapse
Affiliation(s)
- Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
11
|
Forqani MA, Akbarian M, Amirahmadi S, Soukhtanloo M, Hosseini M, Forouzanfar F. Carvacrol improved learning and memory and attenuated the brain tissue oxidative damage in aged male rats. Int J Neurosci 2024; 134:1242-1249. [PMID: 37694395 DOI: 10.1080/00207454.2023.2257877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Introduction: Aging is an unavoidable process in the body that is accompanied by impaired tissue homeostasis and various changes. Carvacrol has attracted considerable attention for its wide range of pharmacological activities. Therefore, this study attempted to explore the protective effect of carvacrol in aged rats.Materiel and methods: The aged rats were given carvacrol (15 or 30 mg/kg/day) for 4 weeks. Morris water maze and passive avoidance tests were used to determine the learning and memory abilities of the rats. The hippocampus and cortex samples were taken for biochemical analysis.Results: In comparison to young control rats, aged control rats showed learning and memory deficits. There was improvement in the Morris water navigation test and passive avoidance test performance in the treatment groups versus the aged control group. An increment in malondialdehyde (MDA) and a decrease in total thiol groups in the hippocampus and cortex samples of aged control rats in comparison to the young control group were observed. Carvacrol decreased MDA levels and increased total thiol groups in the hippocampus and cortex samples of aged rats.Conclusion: Carvacrol improved learning and memory in aged rats, probably through its anti-oxidation effects.
Collapse
Affiliation(s)
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
13
|
Assendorp N, Fossati M, Libé-Philippot B, Christopoulou E, Depp M, Rapone R, Dingli F, Loew D, Vanderhaeghen P, Charrier C. CTNND2 moderates the pace of synaptic maturation and links human evolution to synaptic neoteny. Cell Rep 2024; 43:114797. [PMID: 39352808 DOI: 10.1016/j.celrep.2024.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Human-specific genes are potential drivers of brain evolution. Among them, SRGAP2C has contributed to the emergence of features characterizing human cortical synapses, including their extended period of maturation. SRGAP2C inhibits its ancestral copy, the postsynaptic protein SRGAP2A, but the synaptic molecular pathways differentially regulated in humans by SRGAP2 proteins remain largely unknown. Here, we identify CTNND2, a protein implicated in severe intellectual disability (ID) in Cri-du-Chat syndrome, as a major partner of SRGAP2. We demonstrate that CTNND2 slows synaptic maturation and promotes neuronal integrity. During postnatal development, CTNND2 moderates neuronal excitation and excitability. In adults, it supports synapse maintenance. While CTNND2 deficiency is deleterious and results in synaptic loss of SYNGAP1, another major ID-associated protein, the human-specific protein SRGAP2C, enhances CTNND2 synaptic accumulation in human neurons. Our findings suggest that CTNND2 regulation by SRGAP2C contributes to synaptic neoteny in humans and link human-specific and ID genes at the synapse.
Collapse
Affiliation(s)
- Nora Assendorp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Matteo Fossati
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Baptiste Libé-Philippot
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Eirini Christopoulou
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Marine Depp
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Roberta Rapone
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCore Tech Mass Spectrometry Proteomics, 75005 Paris, France
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KUL, 3000 Leuven, Belgium
| | - Cécile Charrier
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.
| |
Collapse
|
14
|
Sheeler C, Labrada E, Duvick L, Thompson LM, Zhang Y, Orr HT, Cvetanovic M. Expanded ATXN1 alters transcription and calcium signaling in SCA1 human motor neurons differentiated from induced pluripotent stem cells. Neurobiol Dis 2024; 201:106673. [PMID: 39307401 PMCID: PMC11514977 DOI: 10.1016/j.nbd.2024.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.
Collapse
Affiliation(s)
- Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, United States of America
| | - Emmanuel Labrada
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Duvick
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Leslie M Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, United States of America
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry T Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Department of Lab Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States of America; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
15
|
Lenz M, Kruse P, Eichler A, Straehle J, Hemeling H, Stöhr P, Beck J, Vlachos A. Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex. Brain Commun 2024; 6:fcae351. [PMID: 39474044 PMCID: PMC11518857 DOI: 10.1093/braincomms/fcae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 10/04/2024] [Indexed: 01/05/2025] Open
Abstract
The interplay between neuronal structure and function underpins the dynamic nature of neocortical networks. Despite extensive studies in animal models, our understanding of structure-function interrelations in the adult human brain remains incomplete. Recent methodological advances have facilitated the functional analysis of individual neurons within the human neocortex, providing a new understanding of fundamental brain processes. However, the factors contributing to patient-specific neuronal properties have not been thoroughly explored. In this observational study, we investigated the structural and functional variability of superficial pyramidal neurons in the adult human neocortex. Using whole-cell patch-clamp recordings and post hoc analyses of dendritic spine morphology in acute neocortical slice preparations from surgical resections of seven patients, we assessed age-related effects on excitatory neurotransmission, membrane properties and dendritic spine morphologies. These results specify age as an endogenous factor that might affect the structural and functional properties of superficial pyramidal neurons.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Phyllis Stöhr
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Advanced Surgical Tissue Analysis (CAST), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Iwasaki Y, Bernou C, Gorda B, Colomb S, Ganesh G, Gaudin R. Organotypic culture of post-mortem adult human brain explants exhibits synaptic plasticity. Brain Stimul 2024; 17:1018-1023. [PMID: 39214185 DOI: 10.1016/j.brs.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Synaptic plasticity is an essential process encoding fine-tuned brain functions, but models to study this process in adult human systems are lacking. OBJECTIVE We aim to test whether ex vivo organotypic culture of post-mortem adult brain explants (OPABs) retain synaptic plasticity. METHODS OPABs were seeded on 3D microelectrode arrays to measure local field potential (LFP). Paired stimulation of distant electrodes was performed over three days to investigate our capacity to modulate specific neuronal connections. RESULTS Long-term potentiation (LTP) or depression (LTD) did not occur within a single day. In contrast, after two and three days of training, OPABs showed a significant modulation of the paired electrodes' response compared to the non-paired electrodes from the same array. This response was alleviated upon treatment with dopamine. CONCLUSION Our work highlights that adult human brain explants retain synaptic plasticity, offering novel approaches to neural circuitry in animal-free models.
Collapse
Affiliation(s)
- Yukiko Iwasaki
- Univ Montpellier, Montpellier, France; UM-CNRS Laboratoire D'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Corentin Bernou
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Barbara Gorda
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France
| | - Sophie Colomb
- Univ Montpellier, Montpellier, France; Equipe de droit pénal et sciences forensiques de Montpellier (EDPFM), Univ Montpellier, Département de médecine légale, Pôle Urgences, Centre Hospitalo-Universitaire de Montpellier, 371 Avenue du Doyen Gaston Giraud, Montpellier, France
| | - Gowrishankar Ganesh
- Univ Montpellier, Montpellier, France; UM-CNRS Laboratoire D'Informatique de Robotique et de Microelectronique de Montpellier (LIRMM), 161, Rue Ada, Montpellier, France.
| | - Raphael Gaudin
- Univ Montpellier, Montpellier, France; CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), 1919 Route de Mende, Montpellier, France.
| |
Collapse
|
17
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
18
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex. Cereb Cortex 2024; 34:bhae312. [PMID: 39106175 PMCID: PMC11302151 DOI: 10.1093/cercor/bhae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024] Open
Abstract
Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University—Cajal Institute, Arzobispo Morcillo 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| |
Collapse
|
19
|
Regele-Blasco E, Palmer LM. The plasticity of pyramidal neurons in the behaving brain. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230231. [PMID: 38853566 PMCID: PMC11407500 DOI: 10.1098/rstb.2023.0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Neurons are plastic. That is, they change their activity according to different behavioural conditions. This endows pyramidal neurons with an incredible computational power for the integration and processing of synaptic inputs. Plasticity can be investigated at different levels of investigation within a single neuron, from spines to dendrites, to synaptic input. Although most of our knowledge stems from the in vitro brain slice preparation, plasticity plays a vital role during behaviour by providing a flexible substrate for the execution of appropriate actions in our ever-changing environment. Owing to advances in recording techniques, the plasticity of neurons and the neural networks in which they are embedded is now beginning to be realized in the in vivo intact brain. This review focuses on the structural and functional synaptic plasticity of pyramidal neurons, with a specific focus on the latest developments from in vivo studies. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Elena Regele-Blasco
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| | - Lucy M. Palmer
- The Florey Institute of Neuroscience and Mental Health, The Florey Department of Neuroscience and Mental Health, University of Melbourne, Victoria3052, Australia
| |
Collapse
|
20
|
Khalifa MKA, Abdel-Sattar SA, Amin OM, Kohaf NA, Zaky HS, Abd El-Fattah MA, Mohammed KHA, Badawi NM, Mansoor I, Eassa HA. Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer's disease in a rat/mouse model: a systematic review. Daru 2024; 32:319-337. [PMID: 38079104 PMCID: PMC11087435 DOI: 10.1007/s40199-023-00494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurological disease that causes memory loss over time. Current therapies are limited and frequently inadequate. Epigallocatechin gallate (EGCG), has antioxidant, anti-inflammatory, antifibrosis, anti-remodeling and tissue-protective qualities that may be effective in treatment of different diseases, including AD. Because of nanoparticles' high surface area, they can enhance solubility, stability, pharmacokinetics and biodistribution, and diminish toxicities. Besides, lipid nanoparticles have a high binding affinity that can enhance the rate of drug transport across BBB. So, EGCG nanoparticles represent a promising treatment for AD. OBJECTIVES This systematic review sought to assess the efficacy of EGCG nanoparticles against AD in rat/mouse models. METHODS Study was conducted in accordance with PRISMA guidelines, and the protocol was registered in PROSPERO. Electronic databases were searched to discover relevant studies published up to October 2022. RESULTS Two studies met the inclusion criteria out of 1338 and were included in this systematic review. Collectively, the results indicate that EGCG has a significant potential for reducing AD pathology and improving cognitive deficits in rat/mouse models. The formulated particles were in the nanometer range, as indicated by TEM, with good particle size control and stability. EGCG nanoparticles showed superior pharmacokinetic characteristics and improved blood-brain barrier permeability, and increased brain bioavailability compared to free EGCG. Additionally, nanoEGCG were more effective in modulating oxidative stress than free formulation and decreased AChE in the cortex and hippocampus of AlCl3-treated rats. CONCLUSION This systematic analysis of the two studies included showed that EGCG nanoparticles are efficacious as a potential therapeutic intervention for AD in rat/mouse models. However, limited number of studies found indicates insufficient data in this research point that requires further investigation by experimental studies.
Collapse
Affiliation(s)
- Maha K A Khalifa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, 11884, Cairo, Egypt
| | - Omnya M Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Neveen A Kohaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, 11884, Cairo, Egypt
| | - Marwa A Abd El-Fattah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Kamilia H A Mohammed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | | | - Heba A Eassa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11884, Egypt.
- Department of Pharmaceutical Sciences, School of Pharmacy & Physician Assistant Studies, University of Saint Joseph, West Hartford, CT, 06117, USA.
| |
Collapse
|
21
|
Rokade KA, Kumbhar DD, Patil SL, Sutar SS, More KV, Dandge PB, Kamat RK, Dongale TD. CogniFiber: Harnessing Biocompatible and Biodegradable 1D Collagen Nanofibers for Sustainable Nonvolatile Memory and Synaptic Learning Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312484. [PMID: 38501916 DOI: 10.1002/adma.202312484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.
Collapse
Affiliation(s)
- Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Dhananjay D Kumbhar
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Santosh S Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, 416004, India
| | - Krantiveer V More
- Department of Chemistry, Shivaji University, Kolhapur, 416004, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur, 416004, India
- The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, 400032, India
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| |
Collapse
|
22
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
23
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
24
|
Jiang YY, Wei RY, Tang K, Wang Z, Tan NH. Ginsenoside Rg1 promotes neurite growth of retinal ganglion cells through cAMP/PKA/CREB pathways. J Ginseng Res 2024; 48:163-170. [PMID: 38465221 PMCID: PMC10920000 DOI: 10.1016/j.jgr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.
Collapse
Affiliation(s)
| | | | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning-hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
26
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
28
|
Pelkey KA, Vargish GA, Pellegrini LV, Calvigioni D, Chapeton J, Yuan X, Hunt S, Cummins AC, Eldridge MAG, Pickel J, Chittajallu R, Averbeck BB, Tóth K, Zaghloul K, McBain CJ. Evolutionary conservation of hippocampal mossy fiber synapse properties. Neuron 2023; 111:3802-3818.e5. [PMID: 37776852 PMCID: PMC10841147 DOI: 10.1016/j.neuron.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Geoffrey A Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo V Pellegrini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio Chapeton
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
30
|
Zhang T, Huang S, Lu Q, Song J, Teng J, Wang T, Shen Y. Effects of repetitive transcranial magnetic stimulation on episodic memory in patients with subjective cognitive decline: study protocol for a randomized clinical trial. Front Psychol 2023; 14:1298065. [PMID: 38022972 PMCID: PMC10646583 DOI: 10.3389/fpsyg.2023.1298065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Early decline of episodic memory is detectable in subjective cognitive decline (SCD). The left dorsolateral prefrontal cortex (DLPFC) is associated with encoding episodic memories. Repetitive transcranial magnetic stimulation (rTMS) is a novel and viable tool to improve cognitive function in Alzheimer's disease (AD) and mild cognitive impairment, but the treatment effect in SCD has not been studied. We aim to investigate the efficacy of rTMS on episodic memory in individuals with SCD, and to explore the potential mechanisms of neural plasticity. Methods In our randomized, sham-controlled trial, patients (n = 60) with SCD will receive 20 sessions (5 consecutive days per week for 4 weeks) of real rTMS (n = 30) or sham rTMS (n = 30) over the left DLPFC. The primary outcome is the Auditory Verbal Learning Test-Huashan version (AVLT-H). Other neuropsychological examinations and the long-term potentiation (LTP)-like cortical plasticity evaluation serve as the secondary outcomes. These outcomes will be assessed before and at the end of the intervention. Discussion If the episodic memory of SCD improve after the intervention, the study will confirm that rTMS is a promising intervention for cognitive function improvement on the early stage of dementia. This study will also provide important clinical evidence for early intervention in AD and emphasizes the significance that impaired LTP-like cortical plasticity may be a potential biomarker of AD prognosis by demonstrating the predictive role of LTP on cognitive improvement in SCD. Ethics and dissemination The study was approved by the Human Research Ethics Committee of the hospital (No. 2023-002-01). The results will be published in peer-review publications. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2300075517.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sisi Huang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Teng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Rumbeiha WK, Kim DS, Min A, Nair M, Giulivi C. Disrupted brain mitochondrial morphology after in vivo hydrogen sulfide exposure. Sci Rep 2023; 13:18129. [PMID: 37875542 PMCID: PMC10598273 DOI: 10.1038/s41598-023-44807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Changes in mitochondrial dynamics are often associated with dietary patterns, medical treatments, xenobiotics, and diseases. Toxic exposures to hydrogen sulfide (H2S) harm mitochondria by inhibiting Complex IV and via other mechanisms. However, changes in mitochondrial dynamics, including morphology following acute exposure to H2S, are not yet fully understood. This study followed mitochondrial morphology changes over time after a single acute LCt50 dose of H2S by examining electron microscopy thalami images of surviving mice. Our findings revealed that within the initial 48 h after H2S exposure, mitochondrial morphology was impaired by H2S, supported by the disruption and scarcity of the cristae, which are required to enhance the surface area for ATP production. At the 72-h mark point, a spectrum of morphological cellular changes was observed, and the disordered mitochondrial network, accompanied by the probable disruption of mitophagy, was tied to changes in mitochondrial shape. In summary, this study sheds light on how acute exposure to high levels of H2S triggers alterations in mitochondrial shape and structure as early as 24 h that become more evident at 72 h post-exposure. These findings underscore the impact of H2S on mitochondrial function and overall cellular health.
Collapse
Affiliation(s)
- Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angela Min
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Maya Nair
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDH, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
32
|
Zhu M, Xiao B, Xue T, Qin S, Ding J, Wu Y, Tang Q, Huang M, Zhao N, Ye Y, Zhang Y, Zhang B, Li J, Guo F, Jiang Y, Zhang L, Zhang L. Cdc42GAP deficiency contributes to the Alzheimer's disease phenotype. Brain 2023; 146:4350-4365. [PMID: 37254741 DOI: 10.1093/brain/awad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Alzheimer's disease, the most common cause of dementia, is a chronic degenerative disease with typical pathological features of extracellular senile plaques and intracellular neurofibrillary tangles and a significant decrease in the density of neuronal dendritic spines. Cdc42 is a member of the small G protein family that plays an important role in regulating synaptic plasticity and is regulated by Cdc42GAP, which switches Cdc42 from active GTP-bound to inactive GDP-bound states regulating downstream pathways via effector proteins. However, few studies have focused on Cdc42 in the progression of Alzheimer's disease. In a heterozygous Cdc42GAP mouse model that exhibited elevated Cdc42-GTPase activity accompanied by increased Cdc42-PAK1-cofilin signalling, we found impairments in cognitive behaviours, neuron senescence, synaptic loss with depolymerization of F-actin and the pathological phenotypes of Alzheimer's disease, including phosphorylated tau (p-T231, AT8), along with increased soluble and insoluble Aβ1-42 and Aβ1-40, which are consistent with typical Alzheimer's disease mice. Interestingly, these impairments increased significantly with age. Furthermore, the results of quantitative phosphoproteomic analysis of the hippocampus of 11-month-old GAP mice suggested that Cdc42GAP deficiency induces and accelerates Alzheimer's disease-like phenotypes through activation of GSK-3β by dephosphorylation at Ser9, Ser389 and/or phosphorylation at Tyr216. In addition, overexpression of dominant-negative Cdc42 in the primary hippocampal and cortical neurons of heterozygous Cdc42GAP mice reversed synaptic loss and tau hyperphosphorylation. Importantly, the Cdc42 signalling pathway, Aβ1-42, Aβ1-40 and GSK-3β activity were increased in the cortical sections of Alzheimer's disease patients compared with those in healthy controls. Together, these data indicated that Cdc42GAP is involved in regulating Alzheimer's disease-like phenotypes such as cognitive deficits, dendritic spine loss, phosphorylated tau (p-T231, AT8) and increased soluble and insoluble Aβ1-42 and Aβ1-40, possibly through the activation of GSK-3β, and these impairments increased significantly with age. Thus, we provide the first evidence that Cdc42 is involved in the progression of Alzheimer's disease-like phenotypes, which may provide new targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Mengjuan Zhu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Xiao
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tao Xue
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sifei Qin
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingqiu Tang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengfan Huang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yingshan Ye
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuning Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Boya Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Juan Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Center for Orthopedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229-3026, USA
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Center for Orthopedic Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Csemer A, Kovács A, Maamrah B, Pocsai K, Korpás K, Klekner Á, Szücs P, Nánási PP, Pál B. Astrocyte- and NMDA receptor-dependent slow inward currents differently contribute to synaptic plasticity in an age-dependent manner in mouse and human neocortex. Aging Cell 2023; 22:e13939. [PMID: 37489544 PMCID: PMC10497838 DOI: 10.1111/acel.13939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Slow inward currents (SICs) are known as excitatory events of neurons elicited by astrocytic glutamate via activation of extrasynaptic NMDA receptors. By using slice electrophysiology, we tried to provide evidence that SICs can elicit synaptic plasticity. Age dependence of SICs and their impact on synaptic plasticity was also investigated in both on murine and human cortical slices. It was found that SICs can induce a moderate synaptic plasticity, with features similar to spike timing-dependent plasticity. Overall SIC activity showed a clear decline with aging in humans and completely disappeared above a cutoff age. In conclusion, while SICs contribute to a form of astrocyte-dependent synaptic plasticity both in mice and humans, this plasticity is differentially affected by aging. Thus, SICs are likely to play an important role in age-dependent physiological and pathological alterations of synaptic plasticity.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Adrienn Kovács
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Baneen Maamrah
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Krisztina Pocsai
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Álmos Klekner
- Department of Neurosurgery, Clinical CentreUniversity of DebrecenDebrecenHungary
| | - Péter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Dental Physiology and Pharmacology, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Balázs Pál
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
34
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. 3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex. Cereb Cortex 2023; 33:9691-9708. [PMID: 37455478 PMCID: PMC10472499 DOI: 10.1093/cercor/bhad232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University - Cajal Institute, 28029 Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
35
|
Wang D, Shapiro KL, Hanslmayr S. Altering stimulus timing via fast rhythmic sensory stimulation induces STDP-like recall performance in human episodic memory. Curr Biol 2023; 33:3279-3288.e7. [PMID: 37463586 DOI: 10.1016/j.cub.2023.06.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed "spike-timing-dependent plasticity" (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior.
Collapse
Affiliation(s)
- Danying Wang
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kimron L Shapiro
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Simon Hanslmayr
- School for Psychology and Neuroscience and Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
36
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
37
|
Kim MH, Radaelli C, Thomsen ER, Monet D, Chartrand T, Jorstad NL, Mahoney JT, Taormina MJ, Long B, Baker K, Bakken TE, Campagnola L, Casper T, Clark M, Dee N, D'Orazi F, Gamlin C, Kalmbach BE, Kebede S, Lee BR, Ng L, Trinh J, Cobbs C, Gwinn RP, Keene CD, Ko AL, Ojemann JG, Silbergeld DL, Sorensen SA, Berg J, Smith KA, Nicovich PR, Jarsky T, Zeng H, Ting JT, Levi BP, Lein E. Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex. eLife 2023; 12:e81863. [PMID: 37249212 PMCID: PMC10332811 DOI: 10.7554/elife.81863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.
Collapse
Affiliation(s)
- Mean-Hwan Kim
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Deja Monet
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | | - Brian Long
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | - Tamara Casper
- Allen Institute for Brain ScienceSeattleUnited States
| | - Michael Clark
- Allen Institute for Brain ScienceSeattleUnited States
| | - Nick Dee
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Clare Gamlin
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian E Kalmbach
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Sara Kebede
- Allen Institute for Brain ScienceSeattleUnited States
| | - Brian R Lee
- Allen Institute for Brain ScienceSeattleUnited States
| | - Lindsay Ng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jessica Trinh
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - C Dirk Keene
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Andrew L Ko
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | - Daniel L Silbergeld
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| | | | - Jim Berg
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Tim Jarsky
- Allen Institute for Brain ScienceSeattleUnited States
| | - Hongkui Zeng
- Allen Institute for Brain ScienceSeattleUnited States
| | - Jonathan T Ting
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Physiology & Biophysics, School of Medicine, University of WashingtonSeattleUnited States
| | - Boaz P Levi
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
- Department of Laboratory Medicine & Pathology, School of Medicine, University of WashingtonSeattleUnited States
- Department of Neurological Surgery, School of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
38
|
Li J, Jian Y, Liu R, Zhao X, Mao J, Wei W, Jiang C, Zhang L, Wang Y, Zhou P. Choline and Fish Oil Can Improve Memory of Mice through Increasing Brain DHA Level. Foods 2023; 12:foods12091799. [PMID: 37174337 PMCID: PMC10178732 DOI: 10.3390/foods12091799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Docosahexaenoic acid (DHA) is highly enriched in the brain, and is essential for normal brain development and function. However, evidence suggests that currently used supplements, such as fish oil, do not significantly increase brain DHA levels. Therefore, this study aimed to investigate whether combined fish oil and choline supplementation could affect the type and enrich the content of DHA in the brain. The results revealed that the combined intake of fish oil and choline upregulated the expression of key transporters and receptors, including MFSD2A, FATP1, and FABP5, which increased the uptake of DHA in the brain. Additionally, this supplementation improved the synthesis and release of acetylcholine in the brain, which, in turn, enhanced the learning and memory abilities of mice. These findings suggest that the combined intake of fish oil and choline improves the bioavailability of DHA in the brain.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yaqiong Jian
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Ruonan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Xianfeng Zhao
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Jiangyi Mao
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Chenyu Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| | - Yi Wang
- Danone Open Science Research Center for Life-Transforming Nutrition, Shanghai 200135, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214126, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China
| |
Collapse
|
39
|
Liang X, Shi L, Wang M, Zhang L, Gong Z, Luo S, Wang X, Zhang Q, Zhang X. Folic acid ameliorates synaptic impairment following cerebral ischemia/reperfusion injury via inhibiting excessive activation of NMDA receptors. J Nutr Biochem 2023; 112:109209. [PMID: 36370927 DOI: 10.1016/j.jnutbio.2022.109209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Folic acid, a water-soluble B-vitamin, has been demonstrated to decrease the risk of first stroke and improve its poor prognosis. However, the molecular mechanisms responsible for the beneficial effect of folic acid on recovery from ischemic insult remain largely unknown. Excessive activation of the N-methyl-d-aspartate receptors (NMDARs) has been shown to trigger synaptic dysfunction and excitotoxic neuronal death in ischemic brains. Here, we hypothesized that the effects of folic acid on cognitive impairment may involve the changes in synapse loss and NMDAR expression and function following cerebral ischemia/reperfusion injury. The ischemic stroke models were established by middle cerebral artery occlusion/reperfusion (MCAO/R) and by oxygen-glucose deprivation and reperfusion (OGD/R)-treated primary neurons. The results showed that folic acid supplemented diets (8.0 mg/kg for 28 days) improved cognitive performances of rats after MCAO/R. Folic acid also caused a reduction in the number of neuronal death, an increase in the number of synapses and the expressions of synapse-related proteins including SNAP25, Syn, GAP-43 and PSD95, and a decrease in p-CAMKII expression in ischemic brains. Similar changes in synaptic functions were observed in folic acid (32 µM)-treated OGD/R neurons. Furthermore, NMDA treatment reduced folic acid-induced upregulations of synapse-associated proteins and Ca2+ influx, whereas downregulations of NMDARs by NR1 or both NR2A and NR2B siRNA further enhanced the expressions of synapse-related proteins raised by folic acid in OGD/R neurons. Our findings suggest that folic acid improves cognitive dysfunctions and ameliorates ischemic brain injury by strengthening synaptic functions via the NMDARs.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Linran Shi
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Meng Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Liwen Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Center Hospital, School of Medicine, Nankai University, Tianjin, Heping District, P R China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Qiang Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, Heping District, P R China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, TianjinHeping District, P R China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, Heping District, P R China.
| |
Collapse
|
40
|
TREM2 and Microglia Contribute to the Synaptic Plasticity: from Physiology to Pathology. Mol Neurobiol 2023; 60:512-523. [PMID: 36318443 DOI: 10.1007/s12035-022-03100-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Synapses are bridges for information transmission in the central nervous system (CNS), and synaptic plasticity is fundamental for the normal function of synapses, contributing substantially to learning and memory. Numerous studies have proven that microglia can participate in the occurrence and progression of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), by regulating synaptic plasticity. In this review, we summarize the main characteristics of synapses and synaptic plasticity under physiological and pathological conditions. We elaborate the origin and development of microglia and the two well-known microglial signaling pathways that regulate synaptic plasticity. We also highlight the unique role of triggering receptor expressed on myeloid cells 2 (TREM2) in microglia-mediated regulation of synaptic plasticity and its relationship with AD. Finally, we propose four possible ways in which TREM2 is involved in regulating synaptic plasticity. This review will help researchers understand how NDDs develop from the perspective of synaptic plasticity.
Collapse
|
41
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
42
|
Xue CY, Gao T, Mao E, Kou ZZ, Dong L, Gao F. Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance. ASN Neuro 2023; 15:17590914231206657. [PMID: 37908089 PMCID: PMC10621302 DOI: 10.1177/17590914231206657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 11/02/2023] Open
Abstract
It is well known that the hippocampus is a vital brain region playing a key role in both episodic and spatial memory. Insulin receptors (InsRs) are densely distributed in the hippocampus and are important for its function. However, the effects of InsRs on the function of the specific hippocampal cell types remain elusive. In this study, hippocampal InsRs knockout mice had impaired episodic and spatial memory. GABAergic neurons and glutamatergic neurons in the hippocampus are involved in the balance between excitatory and inhibitory (E/I) states and participate in the processes of episodic and spatial memory. InsRs are located mainly at excitatory neurons in the hippocampus, whereas 8.5% of InsRs are glutamic acid decarboxylase 2 (GAD2)::Ai9-positive (GABAergic) neurons. Next, we constructed a transgenic mouse system in which InsR expression was deleted from GABAergic (glutamate decarboxylase 2::InsRfl/fl, GAD2Cre::InsRfl/fl) or glutamatergic neurons (vesicular glutamate transporter 2::InsRfl/fl,Vglut2Cre::InsRfl/fl). Our results showed that in comparison to the InsRfl/fl mice, both episodic and spatial memory were lower in GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl. In addition, both GAD2Cre::InsRfl/fl and Vglut2Cre::InsRfl/fl were associated with more anxiety and lower glucose tolerance. These findings reveal that hippocampal InsRs might be crucial for episodic and spatial memory through E/I balance hippocampal regulation.
Collapse
Affiliation(s)
- Cai-Yan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tian Gao
- Division of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - E Mao
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
43
|
Wingrove J, de Hoog E, Spencer GE. Disruptions in network plasticity precede deficits in memory following inhibition of retinoid signaling. J Neurophysiol 2023; 129:41-55. [PMID: 36448682 DOI: 10.1152/jn.00270.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for vertebrate cognition and hippocampal plasticity, but few studies have examined its role in invertebrate learning and memory, and its actions in the invertebrate central nervous system are currently unknown. Using the mollusc Lymnaea stagnalis, we examined operant conditioning of the respiratory behavior, controlled by a well-defined central pattern generator (CPG), and used citral to inhibit retinoic acid signaling. Both citral- and vehicle-treated animals showed normal learning, but citral-treated animals failed to exhibit long-term memory at 24 h. Cohorts of citral- or vehicle-treated animals were dissected into semi-intact preparations, either 1 h after training, or after the memory test 24 h later. Simultaneous electrophysiological recordings from the CPG pacemaker cell (right pedal dorsal 1; RPeD1) and an identified motorneuron (VI) were made while monitoring respiratory activity (pneumostome opening). Activity of the CPG pneumostome opener interneuron (input 3 interneuron; IP3) was also monitored indirectly. Vehicle-treated conditioned preparations showed significant changes in network parameters immediately after learning, such as reduced motorneuron bursting activity (from IP3 input), delayed pneumostome opening, and decoupling of coincident IP3 input within the network. However, citral-treated preparations failed to exhibit these network changes and more closely resembled naïve preparations. Importantly, these citral-induced differences were manifested immediately after training and before any overt changes in the behavioral response (memory impairment). These studies shed light on where and when retinoid signaling might affect a central pattern-generating network to promote memory formation during conditioning of a homeostatic behavior.NEW & NOTEWORTHY We provide novel evidence for how conditioning-induced changes in a CPG network are disrupted when retinoid signaling is inhibited. Inhibition of retinoic acid signaling prevents long-term memory formation following operant conditioning, but has no effect on learning. Simultaneous electrophysiological and behavioral analyses indicate network changes immediately following learning, but these changes are prevented with inhibition of retinoid signaling, before any overt changes in behavior. These data suggest sites for retinoid actions during memory formation.
Collapse
Affiliation(s)
- Joel Wingrove
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Eric de Hoog
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
44
|
Hu Z, Ondrejcak T, Yu P, Zhang Y, Yang Y, Klyubin I, Kennelly SP, Rowan MJ, Hu NW. Do tau-synaptic long-term depression interactions in the hippocampus play a pivotal role in the progression of Alzheimer's disease? Neural Regen Res 2022; 18:1213-1219. [PMID: 36453396 PMCID: PMC9838152 DOI: 10.4103/1673-5374.360166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cognitive decline in Alzheimer's disease correlates with the extent of tau pathology, in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus. Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-β or long-term depression, a form of synaptic weakening involved in learning and memory, share similar mechanisms. Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging. Conversely, certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau, in particular, phosphorylation at residue Ser396. Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau (hyper)phosphorylation. We first summarize experimental evidence regarding tau-long-term depression interactions, followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer's disease. Finally, we conclude with some thoughts and perspectives on future research about these interactions.
Collapse
Affiliation(s)
- Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland,Department of Medical Gerontology, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland,Correspondence to: Neng-Wei Hu, .
| |
Collapse
|
45
|
Gansel KS. Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding. Front Integr Neurosci 2022; 16:900715. [PMID: 36262373 PMCID: PMC9574343 DOI: 10.3389/fnint.2022.900715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Synchronization of neuronal discharges on the millisecond scale has long been recognized as a prevalent and functionally important attribute of neural activity. In this article, I review classical concepts and corresponding evidence of the mechanisms that govern the synchronization of distributed discharges in cortical networks and relate those mechanisms to their possible roles in coding and cognitive functions. To accommodate the need for a selective, directed synchronization of cells, I propose that synchronous firing of distributed neurons is a natural consequence of spike-timing-dependent plasticity (STDP) that associates cells repetitively receiving temporally coherent input: the “synchrony through synaptic plasticity” hypothesis. Neurons that are excited by a repeated sequence of synaptic inputs may learn to selectively respond to the onset of this sequence through synaptic plasticity. Multiple neurons receiving coherent input could thus actively synchronize their firing by learning to selectively respond at corresponding temporal positions. The hypothesis makes several predictions: first, the position of the cells in the network, as well as the source of their input signals, would be irrelevant as long as their input signals arrive simultaneously; second, repeating discharge patterns should get compressed until all or some part of the signals are synchronized; and third, this compression should be accompanied by a sparsening of signals. In this way, selective groups of cells could emerge that would respond to some recurring event with synchronous firing. Such a learned response pattern could further be modulated by synchronous network oscillations that provide a dynamic, flexible context for the synaptic integration of distributed signals. I conclude by suggesting experimental approaches to further test this new hypothesis.
Collapse
|
46
|
Spike-train level supervised learning algorithm based on bidirectional modification for liquid state machines. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Insight into the Effects of High-Altitude Hypoxic Exposure on Learning and Memory. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4163188. [PMID: 36160703 PMCID: PMC9492407 DOI: 10.1155/2022/4163188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.
Collapse
|
48
|
Chauhan K, Khaledi-Nasab A, Neiman AB, Tass PA. Dynamics of phase oscillator networks with synaptic weight and structural plasticity. Sci Rep 2022; 12:15003. [PMID: 36056151 PMCID: PMC9440105 DOI: 10.1038/s41598-022-19417-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
We study the dynamics of Kuramoto oscillator networks with two distinct adaptation processes, one varying the coupling strengths and the other altering the network structure. Such systems model certain networks of oscillatory neurons where the neuronal dynamics, synaptic weights, and network structure interact with and shape each other. We model synaptic weight adaptation with spike-timing-dependent plasticity (STDP) that runs on a longer time scale than neuronal spiking. Structural changes that include addition and elimination of contacts occur at yet a longer time scale than the weight adaptations. First, we study the steady-state dynamics of Kuramoto networks that are bistable and can settle in synchronized or desynchronized states. To compare the impact of adding structural plasticity, we contrast the network with only STDP to one with a combination of STDP and structural plasticity. We show that the inclusion of structural plasticity optimizes the synchronized state of a network by allowing for synchronization with fewer links than a network with STDP alone. With non-identical units in the network, the addition of structural plasticity leads to the emergence of correlations between the oscillators' natural frequencies and node degrees. In the desynchronized regime, the structural plasticity decreases the number of contacts, leading to a sparse network. In this way, adding structural plasticity strengthens both synchronized and desynchronized states of a network. Second, we use desynchronizing coordinated reset stimulation and synchronizing periodic stimulation to induce desynchronized and synchronized states, respectively. Our findings indicate that a network with a combination of STDP and structural plasticity may require stronger and longer stimulation to switch between the states than a network with STDP only.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
| | - Ali Khaledi-Nasab
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Alexander B Neiman
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, 45701, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
50
|
Zhang Y, Yang Y, Hu Z, Zhu M, Qin S, Yu P, Li B, Xu J, Ondrejcak T, Klyubin I, Rowan MJ, Hu NW. Long-Term Depression-Inducing Low Frequency Stimulation Enhances p-Tau181 and p-Tau217 in an Age-Dependent Manner in Live Rats. J Alzheimers Dis 2022; 89:335-350. [PMID: 35871344 PMCID: PMC9484260 DOI: 10.3233/jad-220351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cognitive decline in Alzheimer’s disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood. Objective: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus. Methods: In vivo electrophysiology was performed in urethane anesthetized young adult and aged male rats. Low frequency electrical stimulation (LFS) was used to induce LTD at CA3 to CA1 synapses. The expression level of p-Tau and total tau was measured in dorsal hippocampus using immunofluorescent staining and/or western blotting. Results: We found that LFS enhanced p-Tau181 and p-Tau217 in an age-dependent manner in the hippocampus of live rats. In contrast, phosphorylation at residues Thr231, Ser202/Thr205, and Ser396 appeared less sensitive to LFS. Pharmacological antagonism of either N-methyl-D-aspartate or metabotropic glutamate 5 receptors inhibited the elevation of both p-Tau181 and p-Tau217. Targeting the integrated stress response, which increases with aging, using a small molecule inhibitor ISRIB, prevented the enhancement of p-Tau by LFS in aged rats. Conclusion: Together, our data provide a novel in vivo means to uncover brain plasticity-related cellular and molecular processes of tau phosphorylation at key sites in health and aging.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Manyi Zhu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangying Qin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jitian Xu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|