1
|
Marinaro JA, Goldstein M. Non-hormonal Contraception: Current and Emerging Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:245-272. [PMID: 40301260 DOI: 10.1007/978-3-031-82990-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
There is a global need for effective, reversible contraception. While female hormonal options meet these criteria and are widely used, they are associated with side effects and may be contraindicated for women with certain pre-existing medical conditions. To meet the needs of women who cannot take or cannot tolerate these medications, several non-hormonal options are currently available, including copper intrauterine devices (IUDs), spermicides, and a new vaginal pH modulator (VPM). Several other options are currently in development, including vaginal rings, gels, and vaginally administered anti-sperm antibodies. For men, there are currently no contraceptive options available aside from condoms and vasectomy; however, several non-hormonal contraceptives targeting various aspects of sperm production and/or sperm function are currently under investigation. In this narrative review, we will discuss both the non-hormonal contraceptive methods currently available for women, as well as emerging non-hormonal medications, compounds, and devices for both genders.
Collapse
Affiliation(s)
- Jessica A Marinaro
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Center for Male Reproductive Medicine & Microsurgery, Weill Cornell Medicine, New York, NY, USA
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Center for Male Reproductive Medicine & Microsurgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Substitution Effects on the Mechanism of Light-Induced 2,5-Diaryltetrazole-Naphthoquinone 1,3-Dipolar Cycloaddition: A Theoretical Study. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Hau RK, Tash JS, Georg GI, Wright SH, Cherrington NJ. Physiological Characterization of the Transporter-Mediated Uptake of the Reversible Male Contraceptive H2-Gamendazole Across the Blood-Testis Barrier. J Pharmacol Exp Ther 2022; 382:299-312. [PMID: 35779861 PMCID: PMC9426764 DOI: 10.1124/jpet.122.001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
The blood-testis barrier (BTB) is formed by a tight network of Sertoli cells (SCs) to limit the movement of reproductive toxicants from the blood into the male genital tract. Transporters expressed at the basal membranes of SCs also influence the disposition of drugs across the BTB. The reversible, nonhormonal contraceptive, H2-gamendazole (H2-GMZ), is an indazole carboxylic acid analog that accumulates over 10 times more in the testes compared with other organs. However, the mechanism(s) by which H2-GMZ circumvents the BTB are unknown. This study describes the physiologic characteristics of the carrier-mediated process(es) that permit H2-GMZ and other analogs to penetrate SCs. Uptake studies were performed using an immortalized human SC line (hT-SerC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Uptake of H2-GMZ and four analogs followed Michaelis-Menten transport kinetics (one analog exhibited poor penetration). H2-GMZ uptake was strongly inhibited by indomethacin, diclofenac, MK-571, and several analogs. Moreover, H2-GMZ uptake was stimulated by an acidic extracellular pH, reduced at basic pHs, and independent of extracellular Na+, K+, or Cl- levels, which are intrinsic characteristics of OATP-mediated transport. Therefore, the characteristics of H2-GMZ transport suggest that one or more OATPs may be involved. However, endogenous transporter expression in wild-type Chinese hamster ovary (CHO), Madin-Darby canine kidney (MDCK), and human embryonic kidney-293 (HEK-293) cells limited the utility of heterologous transporter expression to identify a specific OATP transporter. Altogether, characterization of the transporters involved in the flux of H2-GMZ provides insight into the selectivity of drug disposition across the human BTB to understand and overcome the pharmacokinetic and pharmacodynamic difficulties presented by this barrier. SIGNIFICANCE STATEMENT: Despite major advancements in female contraceptives, male alternatives, including vasectomy, condom usage, and physical withdrawal, are antiquated and the widespread availability of nonhormonal, reversible chemical contraceptives is nonexistent. Indazole carboxylic acid analogs such as H2-GMZ are promising new reversible, antispermatogenic drugs that are highly effective in rodents. This study characterizes the carrier-mediated processes that permit H2-GMZ and other drugs to enter Sertoli cells and the observations made here will guide the development of drugs that effectively circumvent the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Joseph S Tash
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Gunda I Georg
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Department of Physiology, College of Medicine (S.H.W.), The University of Arizona, Tucson, Arizona; Department of Molecular and Integrative Physiology, KU School of Medicine, The University of Kansas Medical Center, Kansas City, Kansas (J.S.T.); Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, The University of Minnesota, Minneapolis, Minnesota (G.I.G.)
| |
Collapse
|
4
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Wang L, Bu T, Wu X, Gao S, Li X, De Jesus AB, Wong CKC, Chen H, Chung NPY, Sun F, Cheng CY. Cell-Cell Interaction-Mediated Signaling in the Testis Induces Reproductive Dysfunction—Lesson from the Toxicant/Pharmaceutical Models. Cells 2022; 11:cells11040591. [PMID: 35203242 PMCID: PMC8869896 DOI: 10.3390/cells11040591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Emerging evidence has shown that cell-cell interactions between testicular cells, in particular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis. The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplasmic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the seminiferous epithelium. These ultrastructures are present in both rodent and human testes, but the majority of studies found in the literature were done in rodent testes. As such, our discussion herein, unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus, manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance, using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and their mutants), including the use of specific activator(s) of the involved signaling proteins against pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these recent findings, highlighting the direction for future investigations by bringing the laboratory-based research through a translation path to clinical investigations.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Xinyao Li
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | | | - Chris K. C. Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China;
| | - Hao Chen
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
| | - Nancy P. Y. Chung
- Department of Genetic Medicine, Cornell Medical College, New York, NY 10065, USA;
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Correspondence: (F.S.); (C.Y.C.)
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; (L.W.); (T.B.); (X.W.); (S.G.)
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong 226001, China; (X.L.); (H.C.)
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (F.S.); (C.Y.C.)
| |
Collapse
|
6
|
Wu S, Li L, Wu X, Wong CKC, Sun F, Cheng CY. AKAP9 supports spermatogenesis through its effects on microtubule and actin cytoskeletons in the rat testis. FASEB J 2021; 35:e21925. [PMID: 34569663 DOI: 10.1096/fj.202100960r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
In mammalian testes, extensive remodeling of the microtubule (MT) and actin cytoskeletons takes place in Sertoli cells across the seminiferous epithelium to support spermatogenesis. However, the mechanism(s) involving regulatory and signaling proteins remains poorly understood. Herein, A-kinase anchoring protein 9 (AKAP9, a member of the AKAP multivalent scaffold protein family) was shown to be one of these crucial regulatory proteins in the rat testis. Earlier studies have shown that AKAP9 serves as a signaling platform by recruiting multiple signaling and regulatory proteins to create a large protein complex that binds to the Golgi and centrosome to facilitate the assembly of the MT-nucleating γ-tubulin ring complex to initiate MT polymerization. We further expanded our earlier studies based on a Sertoli cell-specific AKAP9 knockout mouse model to probe the function of AKAP9 by using the techniques of immunofluorescence analysis, RNA interference (RNAi), and biochemical assays on an in vitro primary Sertoli cell culture model, and an adjudin-based animal model. AKAP9 robustly expressed across the seminiferous epithelium in adult rat testes, colocalizing with MT-based tracks, and laid perpendicular across the seminiferous epithelium, and prominently expressed at the Sertoli-spermatid cell-cell anchoring junction (called apical ectoplasmic specialization [ES]) and at the Sertoli cell-cell interface (called basal ES, which together with tight junction [TJ] created the blood-testis barrier [BTB]) stage specifically. AKAP9 knockdown in Sertoli cells by RNAi was found to perturb the TJ-permeability barrier through disruptive changes in the distribution of BTB-associated proteins at the Sertoli cell cortical zone, mediated by a considerable loss of ability to induce both MT polymerization and actin filament bundling. A considerable decline in AKAP9 expression and a disruptive distribution of AKAP9 across the seminiferous tubules was also noted during adjudin-induced germ cell (GC) exfoliation in this animal model, illustrating AKAP9 is essential to maintain the homeostasis of cytoskeletons to maintain Sertoli and GC adhesion in the testis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
7
|
Chen H, Jiang Y, Mruk DD, Cheng CY. Spermiation: Insights from Studies on the Adjudin Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:241-254. [PMID: 34453740 DOI: 10.1007/978-3-030-77779-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is comprised of a series of cellular events that lead to the generation of haploid sperm. These events include self-renewal of spermatogonial stem cells (SSC), proliferation of spermatogonia by mitosis, differentiation of spermatogonia and spermatocytes, generation of haploid spermatids via meiosis I/II, and spermiogenesis. Spermiogenesis consists of a series of morphological events in which spermatids are being transported across the apical compartment of the seminiferous epithelium while maturing into spermatozoa, which include condensation of the genetic materials, biogenesis of acrosome, packaging of the mitocondria into the mid-piece, and elongation of the sperm tail. However, the biology of spermiation remains poorly understood. In this review, we provide in-depth analysis based on the use of bioinformatics tools and an animal model that mimics spermiation through treatment of adult rats with adjudin, a non-hormonal male contraceptive known to induce extensive germ cell exfoliation across the seminiferous epithelium, but nost notably elongating/elongated spermatids. These analyses have shed insightful information regaridng the biology of spermiation.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Yu Jiang
- College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
9
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
10
|
Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. Endocrinology 2021; 162:5936120. [PMID: 33094326 PMCID: PMC8244566 DOI: 10.1210/endocr/bqaa196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a nonhormonal male contraceptive, since it effectively induces reversible male infertility without perturbing the serum concentrations of follicle stimulating hormone (FSH), testosterone, and inhibin B based on studies in rats and rabbits. Adjudin was shown to exert its effects preferentially by perturbing the testis-specific actin-rich adherens junction (AJ) at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES), thereby effectively inducing spermatid exfoliation. Adjudin did not perturb germ cell development nor germ cell function. Also, it had no effects on Sertoli cell-cell AJ called basal ectoplasmic specialization (basal ES), which, together with tight junction constitute the blood-testis barrier (BTB), unless an acute dose of adjudin was used. Adjudin also did not perturb the population of spermatogonial stem cells nor Sertoli cells in the testis. However, the downstream signaling protein(s) utilized by adjudin to induce transient male infertility remains unexplored. Herein, using adult rats treated with adjudin and monitored changes in the phenotypes across the seminiferous epithelium between 6 and 96 h in parallel with the steady-state protein levels of an array of signaling and cytoskeletal regulatory proteins, recently shown to be involved in apical ES, basal ES and BTB function. It was shown that adjudin exerts its contraceptive effects through changes in microtubule associated proteins (MAPs) and signaling proteins mTORC1/rpS6 and p-FAK-Y407. These findings are important to not only study adjudin-mediated male infertility but also the biology of spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
11
|
Gao S, Wu X, Wang L, Bu T, Perrotta A, Guaglianone G, Silvestrini B, Sun F, Cheng CY. Signaling Proteins That Regulate Spermatogenesis Are the Emerging Target of Toxicant-Induced Male Reproductive Dysfunction. Front Endocrinol (Lausanne) 2021; 12:800327. [PMID: 35002976 PMCID: PMC8739942 DOI: 10.3389/fendo.2021.800327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
There is emerging evidence that environmental toxicants, in particular endocrine disrupting chemicals (EDCs) such as cadmium and perfluorooctanesulfonate (PFOS), induce Sertoli cell and testis injury, thereby perturbing spermatogenesis in humans, rodents and also widelife. Recent studies have shown that cadmium (e.g., cadmium chloride, CdCl2) and PFOS exert their disruptive effects through putative signaling proteins and signaling cascade similar to other pharmaceuticals, such as the non-hormonal male contraceptive drug adjudin. More important, these signaling proteins were also shown to be involved in modulating testis function based on studies in rodents. Collectively, these findings suggest that toxicants are using similar mechanisms that used to support spermatogenesis under physiological conditions to perturb Sertoli and testis function. These observations are physiologically significant, since a manipulation on the expression of these signaling proteins can possibly be used to manage the toxicant-induced male reproductive dysfunction. In this review, we highlight some of these findings and critically evaluate the possibility of using this approach to manage toxicant-induced defects in spermatrogenesis based on recent studies in animal models.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Guaglianone
- Department of Hospital Pharmacy, “Azienda Sanitaria Locale (ASL) Roma 4”, Civitavecchia, Italy
| | - Bruno Silvestrini
- Institute of Pharmacology and Pharmacognosy, Sapienza University of Rome, Rome, Italy
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| | - C. Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
- *Correspondence: C. Yan Cheng, ; Fei Sun,
| |
Collapse
|
12
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Hau RK, Miller SR, Wright SH, Cherrington NJ. Generation of a hTERT-Immortalized Human Sertoli Cell Model to Study Transporter Dynamics at the Blood-Testis Barrier. Pharmaceutics 2020; 12:pharmaceutics12111005. [PMID: 33105674 PMCID: PMC7690448 DOI: 10.3390/pharmaceutics12111005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-testis barrier (BTB) formed by adjacent Sertoli cells (SCs) limits the entry of many chemicals into seminiferous tubules. Differences in rodent and human substrate-transporter selectivity or kinetics can misrepresent conclusions drawn using rodent in vitro models. Therefore, human in vitro models are preferable when studying transporter dynamics at the BTB. This study describes a hTERT-immortalized human SC line (hT-SerC) with significantly increased replication capacity and minor phenotypic alterations compared to primary human SCs. Notably, hT-SerCs retained similar morphology and minimal changes to mRNA expression of several common SC genes, including AR and FSHR. The mRNA expression of most xenobiotic transporters was within the 2-fold difference threshold in RT-qPCR analysis with some exceptions (OAT3, OCT3, OCTN1, OATP3A1, OATP4A1, ENT1, and ENT2). Functional analysis of the equilibrative nucleoside transporters (ENTs) revealed that primary human SCs and hT-SerCs predominantly express ENT1 with minimal ENT2 expression at the plasma membrane. ENT1-mediated uptake of [3H] uridine was linear over 10 min and inhibited by NBMPR with an IC50 value of 1.35 ± 0.37 nM. These results demonstrate that hT-SerCs can functionally model elements of transport across the human BTB, potentially leading to identification of other transport pathways for xenobiotics, and will guide drug discovery efforts in developing effective BTB-permeable compounds.
Collapse
Affiliation(s)
- Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Siennah R. Miller
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85719, USA
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85719, USA; (R.K.H.); (S.R.M.)
- Correspondence: (S.H.W.); (N.J.C.); Tel.: +1-(520)-626-4253 (S.H.W.); +1-(520)-626-0219 (N.J.C.)
| |
Collapse
|
14
|
Modulating the Blood–Testis Barrier Towards Increasing Drug Delivery. Trends Pharmacol Sci 2020; 41:690-700. [DOI: 10.1016/j.tips.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
|
15
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
Wu S, Yan M, Li L, Mao B, Wong CKC, Ge R, Lian Q, Cheng CY. mTORC1/rpS6 and spermatogenic function in the testis-insights from the adjudin model. Reprod Toxicol 2019; 89:54-66. [PMID: 31278979 PMCID: PMC6825331 DOI: 10.1016/j.reprotox.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
mTORC1/rpS6 signaling complex promoted Sertoli blood-testis barrier (BTB) remodeling by perturbing Sertoli cell-cell adhesion site known as the basal ectoplasmic specialization (ES). mTORC1/rpS6 complex also promoted disruption of spermatid adhesion at the Sertoli-spermatid interface called the apical ES. Herein, we performed analyses using the adjudin (a non-hormonal male contraceptive drug under development) model, wherein adjudin was known to perturb apical and basal ES function when used at high dose. Through direct administration of adjudin to the testis, adjudin at doses that failed to perturb BTB integrity per se, overexpression of an rpS6 phosphomimetic (i.e., constitutively active) mutant (i.e., p-rpS6-MT) that modified BTB function considerably potentiated adjudin efficacy. This led to disorderly spatial expression of proteins necessary to maintain the proper cytoskeletal organization of F-actin and microtubules (MTs) across the seminiferous epithelium, leading to germ cell exfoliation and aspermatogenesis. These findings yielded important insights regarding the role of mTORC1/rpS6 signaling complex in regulating BTB homeostasis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Ming Yan
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Baiping Mao
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, United States.
| |
Collapse
|
17
|
Abstract
Unplanned pregnancies are an ongoing global burden, posing health and economic risks for women, children, and families. Advances in male contraception have been historically stymied by concerning failure rates, problematic side effects, and perceived market limitations. However, increased interest in reliable and reversible options for male contraception have resulted in resurgent efforts to introduce novel contraceptives for men. Hormonal male contraception relies on exogenous androgens and progestogens that suppress gonadotropin production, thereby suppressing testicular testosterone and sperm production. In many men, effective suppression of spermatogenesis can be achieved by androgen-progestin combination therapy. Small-scale contraceptive efficacy studies in couples have demonstrated effectiveness and reversibility with male hormonal methods, but side effects related to mood, sexual desire and cholesterol remain concerning. A number of novel androgens have reached clinical testing as potential contraceptive agents; many of these have both androgenic and progestogenic action in a single, modified steroid, thereby holding promise as single-agent contraceptives. Currently, these novel steroids hold promise as both a "male pill" and long-acting injections. Among non-hormonal methods, studies of reversible vaso-occlusive methods (polymers that block transport of sperm through the vas deferens) are ongoing, but reliable reversibility and long-term safety in men have not been established. Proteins involved in sperm maturation and motility are attractive targets, but to date both specificity and biologic redundancy have been challenges for drug development. In this review, we aim to summarize landmark studies on male contraception, highlight the most recent advances and future development in this important field of public health and medicine.
Collapse
|
18
|
Mao BP, Li L, Yan M, Ge R, Lian Q, Cheng CY. Regulation of BTB dynamics in spermatogenesis - insights from the adjudin toxicant model. Toxicol Sci 2019; 172:75-88. [PMID: 31397872 PMCID: PMC6813747 DOI: 10.1093/toxsci/kfz180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
During spermatogenesis, cell organelles and germ cells, most notably haploid spermatids, are transported across the seminiferous epithelium so that fully developed spermatids line-up at the edge of the tubule lumen to undergo spermiation at stage VIII of the cycle. Studies have suggested that the microtubule (MT)-based cytoskeleton is necessary to support these cellular events. However, the regulatory molecule(s) and underlying mechanism(s) remain poorly understood. Herein, we sought to better understand this event by using an adjudin-based animal model. Adult rats were treated with adjudin at low-dose (10 mg/kg b.w.) which by itself had no notable effects on spermatogenesis. Rats were also treated with low-dose adjudin combined with overexpression of two endogenously produced blood-testis barrier (BTB) modifiers, namely rpS6 [ribosomal protein S6, the downstream signaling protein of mammalian target of rapamycin complex 1 (mTORC1)] and F5-peptide (a biological active peptide released from laminin-γ3 chain at the Sertoli-spermatid interface) versus the two BTB modifiers alone. Overexpression of these two BTB modifiers in the testis was shown to enhance delivery of adjudin to the testis, effectively inducing disruptive changes in MT cytoskeletons, causing truncation of MT conferred tracks that led to their collapse across the epithelium. The net result was massive germ cell exfoliation in the tubules, disrupting germ cell transport and cell adhesion across the seminiferous epithelium that led to aspermatogenesis. These changes were the result of disruptive spatial expression of several MT-based regulatory proteins. In summary, MT cytoskeleton supported by the network of MT regulatory proteins is crucial to maintain spermatogenesis.
Collapse
Affiliation(s)
- Bai-Ping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York
| | - Ming Yan
- The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York
| |
Collapse
|
19
|
Mao B, Li L, Yan M, Wong CKC, Silvestrini B, Li C, Ge R, Lian Q, Cheng CY. F5-Peptide and mTORC1/rpS6 Effectively Enhance BTB Transport Function in the Testis-Lesson From the Adjudin Model. Endocrinology 2019; 160:1832-1853. [PMID: 31157869 PMCID: PMC6637795 DOI: 10.1210/en.2019-00308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
During spermatogenesis, the blood-testis barrier (BTB) undergoes cyclic remodeling that is crucial to support the transport of preleptotene spermatocytes across the immunological barrier at stage VIII to IX of the epithelial cycle. Studies have shown that this timely remodeling of the BTB is supported by several endogenously produced barrier modifiers across the seminiferous epithelium, which include the F5-peptide and the ribosomal protein S6 [rpS6; a downstream signaling molecule of the mammalian target of rapamycin complex 1 (mTORC1)] signaling protein. Herein, F5-peptide and a quadruple phosphomimetic (and constitutively active) mutant of rpS6 [i.e., phosphorylated (p-)rpS6-MT] that are capable of inducing reversible immunological barrier remodeling, by making the barrier "leaky" transiently, were used for their overexpression in the testis to induce BTB opening. We sought to examine whether this facilitated the crossing of the nonhormonal male contraceptive adjudin at the BTB when administered by oral gavage, thereby effectively improving its BTB transport to induce germ cell adhesion and aspermatogenesis. Indeed, it was shown that combined overexpression of F5-peptide and p-rpS6-MT and a low dose of adjudin, which by itself had no noticeable effects on spermatogenesis, was capable of perturbing the organization of actin- and microtubule (MT)-based cytoskeletons through changes in the spatial expression of actin- and MT-binding/regulatory proteins to the corresponding cytoskeleton. These findings thus illustrate the possibility of delivering drugs to any target organ behind a blood-tissue barrier by modifying the tight junction permeability barrier using endogenously produced barrier modifiers based on findings from this adjudin animal model.
Collapse
Affiliation(s)
- Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | - Chao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Correspondence: C. Yan Cheng, PhD, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065. E-mail:
| |
Collapse
|
20
|
Yan M, Li L, Mao B, Li H, Li SYT, Mruk D, Silvestrini B, Lian Q, Ge R, Cheng CY. mTORC1/rpS6 signaling complex modifies BTB transport function: an in vivo study using the adjudin model. Am J Physiol Endocrinol Metab 2019; 317:E121-E138. [PMID: 31112404 PMCID: PMC6689739 DOI: 10.1152/ajpendo.00553.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Studies have shown that the mTORC1/rpS6 signaling cascade regulates Sertoli cell blood-testis barrier (BTB) dynamics. For instance, specific inhibition of mTORC1 by treating Sertoli cells with rapamycin promotes the Sertoli cell barrier, making it "tighter." However, activation of mTORC1 by overexpressing a full-length rpS6 cDNA clone (i.e., rpS6-WT, wild type) in Sertoli cells promotes BTB remodeling, making the barrier "leaky." Also, there is an increase in rpS6 and p-rpS6 (phosphorylated and activated rpS6) expression at the BTB in testes at stages VIII-IX of the epithelial cycle, and it coincides with BTB remodeling to support the transport of preleptotene spermatocytes across the barrier, illustrating that rpS6 is a BTB-modifying signaling protein. Herein, we used a constitutively active, quadruple phosphomimetic mutant of rpS6, namely p-rpS6-MT of p-rpS6-S235E/S236E/S240E/S244E, wherein Ser (S) was converted to Glu (E) at amino acid residues 235, 236, 240, and 244 from the NH2 terminus by site-directed mutagenesis, for its overexpression in rat testes in vivo using the Polyplus in vivo jet-PEI transfection reagent with high transfection efficiency. Overexpression of this p-rpS6-MT was capable of inducing BTB remodeling, making the barrier "leaky." This thus promoted the entry of the nonhormonal male contraceptive adjudin into the adluminal compartment in the seminiferous epithelium to induce germ cell exfoliation. Combined overexpression of p-rpS6-MT with a male contraceptive (e.g., adjudin) potentiated the drug bioavailability by modifying the BTB. This approach thus lowers intrinsic drug toxicity due to a reduced drug dose, further characterizing the biology of BTB transport function.
Collapse
Affiliation(s)
- Ming Yan
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Baiping Mao
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Huitao Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Stephen Y T Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Dolores Mruk
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | | | - Qingquan Lian
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - Renshan Ge
- Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang , China
| | - C Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
21
|
Wang X, Zeng Q, Li Z, Yang X, Xia W, Chen Z. Adjudin synergizes with paclitaxel and inhibits cell growth and metastasis by regulating the sirtuin 3-Forkhead box O3a axis in human small-cell lung cancer. Thorac Cancer 2019; 10:642-658. [PMID: 30779316 PMCID: PMC6449276 DOI: 10.1111/1759-7714.12976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background Small‐cell lung cancer (SCLC), a malignant tumor, is usually widely metastatic when diagnosed. The lack of important therapeutic clinical advances makes it difficult to treat. Previous studies showed that Adjudin had anticancer effects in many other human cancers, and it was synergetic with cisplatin in non‐small cell lung cancer. However, the mechanism on SCLC was unclear. Methods We investigated the potential mechanism and effect of Adjudin on SCLC both in vitro and in vivo. Results An SCLC xenograft model showed that Adjudin inhibited tumor growth and was significantly synergetic with paclitaxel (in vitro as well). Cell Counting Kit‐8 assays, flow cytometric analysis and western blotting showed that Adjudin effectively suppressed SCLC cell proliferation by inducing S phase arrest and caspase‐dependent apoptosis. Moreover, Transwell and scratch assays showed that Adjudin also effectively inhibited migration and invasion. Furthermore, Adjudin activated the sirtuin 3 (SIRT3)–Forkhead box O3a (FOXO3a) pathway. Downregulating SIRT3 or FOXO3a significantly attenuated Adjudin‐induced anticancer effects. Furthermore, higher expression of SIRT3 and FOXO3a were positively correlated, and both were associated with longer survival in lung cancer patients. Conclusion Overall, the present study is the first to show that Adjudin synergizes with paclitaxel and inhibits cell growth and metastasis by regulating the SIRT3–FOXO3a axis in SCLC; thus, Adjudin has great potential to be an anticancer agent.
Collapse
Affiliation(s)
- Xue Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyu Zeng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
F5-peptide enhances the efficacy of the non-hormonal male contraceptive adjudin. Contraception 2019; 99:350-356. [PMID: 30763581 DOI: 10.1016/j.contraception.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The bioavailability of the non-hormonal male contraceptive adjudin is low in rats due to the blood-testis barrier (BTB). This study was designed to examine if F5-peptide, an endogenously produced reversible BTB modifier, could enhance the bioavailability of adjudin to affect spermatogenesis and provide a contraceptive effect in rats while reducing systemic toxicity. STUDY DESIGN We overexpressed F5-peptide in adult male rats (n=10 rats; with 3 or 4 rats for each of the three different experiments noted in the three regimens) by intratesticular injection of a mammalian expression vector pCI-neo (pCI-neo/F5-peptide) vs. empty vector alone (pCI-neo/Ctrl) to be followed by treatment with adjudin by oral gavage at a dose of 10 or 20 mg/kg. The status of spermatogenesis was assessed by histological analysis and dual-labeled immunofluorescence analysis on Day 16. To assess fertility, we allowed treated males (n=3-4 rats) to mate with mature female rats (n=3-4) individually, and assessed the number of pups on Days 23, 36 and 82 to assess fertility and reversibility. RESULTS All 4 treated rats overexpressed with F5-peptide and low-dose adjudin were infertile by Day 36, and half of these rats were fertile by Day 82, illustrating reversibility. However, overexpression of F5-peptide alone (or low-dose adjudin alone) had no effects on fertility in n=3 rats. These findings were consistent with the histology data that illustrated the BTB modifier F5-peptide promoted the action of adjudin to induce germ cell exfoliation, mediated by changes in cytoskeletal organization of F-actin and microtubules across the epithelium, thereby reducing the systemic toxicity of adjudin. CONCLUSION In this proof-of-concept study, it was shown that overexpression of the F5-peptide prior to administration of adjudin to rats at a low (and ineffective dose by itself) was found to induce reversible male infertility. IMPLICATIONS Overexpression of F5-peptide, an endogenously produced biomolecule in the testis known to induce BTB remodeling, enhanced the contraceptive effect of adjudin in rats, supporting proof of concept studies of BTB disrupters in men.
Collapse
|
23
|
Mao BP, Li L, Yan M, Lian Q, Ge R, Cheng CY. Environmental toxicants and cell polarity in the testis. Reprod Toxicol 2018; 81:253-258. [DOI: 10.1016/j.reprotox.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
|
24
|
Frankiewicz M, Połom W, Matuszewski M. Can the evolution of male contraception lead to a revolution? Review of the current state of knowledge. Cent European J Urol 2018; 71:108-113. [PMID: 29732216 PMCID: PMC5926633 DOI: 10.5173/ceju.2017.1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction Great advances in medical research concerning methods of contraception have been achieved in recent years, however, more than 25% of couples worldwide still rely on condoms - a method with poor efficacy. Even though there is a spectrum of 11 different contraceptive methods for women, there are only 4 commonly used by men (condoms, periodic abstinence, withdrawal and vasectomy). In this review, advances and present, state-of-the-art, both hormonal and non-hormonal male contraceptive methods will be presented and evaluated. Potential novel targets that warrant greater research will be highlighted. Material and methods A comprehensive literature search without a time limit was performed using the Medline database on May 2017. The terms 'male contraception' in conjunction with 'reversible inhibition of sperm under guidance' (RISUG), 'hormonal', 'non-hormonal', 'vasectomy' or 'testosterone' were used. The articles were limited to those published in English, Polish or French. Results There are various contraceptives currently available to regulate male fertility. Vasectomy is still the most effective permanent form of male contraceptive with a failure rate lower than 1%. Reversible, non hormonal methods of male contraception, like reversible inhibition of sperm under guidance, are very promising and close to being introduced into the market. In regards to hormonal contraception research, the use of testosterone injections has been widely studied yet they often harbor undesirable side effects and require further development. Conclusions Despite continuous efforts worldwide, it seems that another several years of research is needed to provide safe, effective and affordable male contraceptives which will allow both men and women to participate fully in family planning.
Collapse
Affiliation(s)
| | - Wojciech Połom
- Department of Urology Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
25
|
Li L, Tang EI, Chen H, Lian Q, Ge R, Silvestrini B, Cheng CY. Sperm Release at Spermiation Is Regulated by Changes in the Organization of Actin- and Microtubule-Based Cytoskeletons at the Apical Ectoplasmic Specialization-A Study Using the Adjudin Model. Endocrinology 2017; 158:4300-4316. [PMID: 29040437 PMCID: PMC5711386 DOI: 10.1210/en.2017-00660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The mechanism that regulates sperm release at spermiation is unknown. Herein, we used an animal model wherein rats were treated with adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide, via oral gavage to induce premature release of elongating/elongated spermatids, followed by round spermatids and spermatocytes. Spermatid release mimicking spermiation occurred within 6 to 12 hours following adjudin treatment and, by 96 hours, virtually all tubules were devoid of elongating/elongated spermatids. Using this model, we tracked the organization of F-actin and microtubules (MTs) by immunofluorescence microscopy, and the association of actin or MT regulatory proteins that either promote or demolish cytoskeletal integrity through changes in the organization of actin microfilaments or MTs by coimmunoprecipitation. Adjudin treatment induced an increase in the association of (1) epidermal growth factor receptor pathway substrate 8 (an actin barbed-end capping and bundling protein) or formin 1 (an actin nucleator) with actin and (2) end-binding protein 1 (an MT stabilizing protein) with MT shortly after adjudin exposure (at 6 hours), in an attempt to maintain spermatid adhesion to the Sertoli cell at the apical ectoplasmic specialization (ES). However, this was followed by a considerable decline of their steady-state protein levels, replacing with an increase in association of (1) actin-related protein 3 (a branched actin nucleator that converts actin filaments into a branched/unbundled network) with actin and (2) MT affinity-regulating kinase 4 (an MT destabilizing protein kinase) with MTs by 12 hours after adjudin treatment. These latter changes thus promoted actin and MT disorganization, leading to apical ES disruption and the release of elongating/elongated spermatids, mimicking spermiation. In summary, spermiation is a cytoskeletal-dependent event, involving regulatory proteins that modify cytoskeletal organization.
Collapse
Affiliation(s)
- Linxi Li
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Elizabeth I. Tang
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| | - Haiqi Chen
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| | - Qingquan Lian
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Renshan Ge
- 2Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | | | - C. Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
26
|
Li L, Gao Y, Chen H, Jesus T, Tang E, Li N, Lian Q, Ge RS, Cheng CY. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons. F1000Res 2017; 6:1565. [PMID: 28928959 PMCID: PMC5580414 DOI: 10.12688/f1000research.11421.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/13/2023] Open
Abstract
In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP) is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2) in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19) interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin) at the actin-rich apical ectoplasmic specialization (ES) since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin), tight junction (occludin-ZO-1 and claudin 11-ZO-1), and gap junction (connexin 43-plakophilin-2) and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2). In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both) and these polarity (or PCP) protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.
Collapse
Affiliation(s)
- Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA.,The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Tito Jesus
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Elizabeth Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| | - Qingquan Lian
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, New York, USA
| |
Collapse
|
27
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
28
|
Cheng YH, Xia W, Wong EWP, Xie QR, Shao J, Liu T, Quan Y, Zhang T, Yang X, Geng K, Silvestrini B, Cheng CY. Adjudin--A Male Contraceptive with Other Biological Activities. ACTA ACUST UNITED AC 2016; 9:63-73. [PMID: 26510796 DOI: 10.2174/1872214809666151029113043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. OBJECTIVE Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. METHODS Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. RESULTS Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. CONCLUSION Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chuen-Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065, United States of America.
| |
Collapse
|
29
|
Tang EI, Lee WM, Cheng CY. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis. Endocrinology 2016; 157:1644-59. [PMID: 26894662 PMCID: PMC4816739 DOI: 10.1210/en.2015-1962] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr(407), known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), The University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (E.I.T., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Li N, Cheng CY. Mammalian target of rapamycin complex (mTOR) pathway modulates blood-testis barrier (BTB) function through F-actin organization and gap junction. Histol Histopathol 2016; 31:961-8. [PMID: 26957088 DOI: 10.14670/hh-11-753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
mTOR (mammalian target of rapamycin) is one of the most important signaling molecules in mammalian cells which regulates an array of cellular events, ranging from cell metabolism to cell proliferation. Based on the association of mTOR with the core component proteins, such as Raptor or Rictor, mTOR can become the mTORC1 (mammalian target of rapamycin complex 1) or mTORC2, respectively. Studies have shown that during the epithelial cycle of spermatogenesis, mTORC1 promotes remodeling and restructuring of the blood-testis barrier (BTB) in vitro and in vivo, making the Sertoli cell tight junction (TJ)-permeability barrier "leaky"; whereas mTORC2 promotes BTB integrity, making the Sertoli cell TJ-barrier "tighter". These contrasting effects, coupled with the spatiotemporal expression of the core signaling proteins at the BTB that confer the respective functions of mTORC1 vs. mTORC2 thus provide a unique mechanism to modulate BTB dynamics, allowing or disallowing the transport of biomolecules and also preleptotene spermatocytes across the immunological barrier. More importantly, studies have shown that these changes to BTB dynamics conferred by mTORC1 and mTORC2 are mediated by changes in the organization of the actin microfilament networks at the BTB, and involve gap junction (GJ) intercellular communication. Since GJ has recently been shown to be crucial to reboot spermatogenesis and meiosis following toxicant-induced aspermatogenesis, these findings thus provide new insightful information regarding the integration of mTOR and GJ to regulate spermatogenesis.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA. or
| |
Collapse
|
31
|
Chen H, Mruk DD, Xia W, Bonanomi M, Silvestrini B, Cheng CY. Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin. Curr Med Chem 2016; 23:701-13. [PMID: 26758796 PMCID: PMC4845722 DOI: 10.2174/0929867323666160112122724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/18/2014] [Accepted: 01/11/2016] [Indexed: 12/15/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuen-Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA..
| |
Collapse
|
32
|
Li N, Mruk DD, Mok KW, Li MWM, Wong CKC, Lee WM, Han D, Silvestrini B, Cheng CY. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J 2015; 30:1436-52. [PMID: 26678449 DOI: 10.1096/fj.15-276527] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 11/11/2022]
Abstract
Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.-Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption.
Collapse
Affiliation(s)
- Nan Li
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Dolores D Mruk
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Ka-Wai Mok
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Michelle W M Li
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Chris K C Wong
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Will M Lee
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Daishu Han
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - Bruno Silvestrini
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| | - C Yan Cheng
- *The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Biological Sciences, University of Hong Kong, Hong Kong, China; Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; and S.B.M. Srl Pharmaceuticals, Rome, Italy
| |
Collapse
|
33
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
34
|
O'Rand MG, Silva EJR, Hamil KG. Non-hormonal male contraception: A review and development of an Eppin based contraceptive. Pharmacol Ther 2015; 157:105-11. [PMID: 26593445 DOI: 10.1016/j.pharmthera.2015.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing a non-hormonal male contraceptive requires identifying and characterizing an appropriate target and demonstrating its essential role in reproduction. Here we review the development of male contraceptive targets and the current therapeutic agents under consideration. In addition, the development of EPPIN as a target for contraception is reviewed. EPPIN is a well characterized surface protein on human spermatozoa that has an essential function in primate reproduction. EPPIN is discussed as an example of target development, testing in non-human primates, and the search for small organic compounds that mimic contraceptive antibodies; binding EPPIN and blocking sperm motility. Although many hurdles remain before the success of a non-hormonal male contraceptive, continued persistence should yield a marketable product.
Collapse
Affiliation(s)
- Michael G O'Rand
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Eppin Pharma Inc., Chapel Hill, NC, 27514, United States.
| | - Erick J R Silva
- Department of Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | | |
Collapse
|
35
|
Cheng YH, Jenardhanan P, Mathur PP, Qian X, Xia W, Silvestrini B, Cheng CY. Interaction of oligomeric breast cancer resistant protein (BCRP) with adjudin: a male contraceptive with anti-cancer activity. Curr Mol Pharmacol 2015; 7:147-53. [PMID: 25620224 DOI: 10.2174/1874467208666150126154049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein foun d in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB. As such, the testis is equipped with two levels of defense against xenobiotics or drugs, preventing these harmful substances from entering the adluminal compartment to perturb meiosis and post-meiotic spermatid development: one at the level of the BTB conferred by P-gp and MRP1 and one at the tunica propria conferred by BCRP. The presence of drug transporters at the tunica propria as well as at the Sertoli cell BTB thus poses significant obstacles in developing non-hormonal contraceptives if these drugs (e.g., adjudin) exert their effects in germ cells behind the BTB, such as in the adluminal (apical) compartment of the seminiferous epithelium. Herein, we summarize recent findings pertinent to adjudin, a non-hormonal male contraceptive, and molecular interactions of adjudin with BCRP so that this information can be helpful to devise delivery strategies to evade BCRP in the tunica propria to improve its bioavailability in the testis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuen Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA.
| |
Collapse
|
36
|
Dasari P, Reddy AV, Bhoomireddy R, ChVSL K, Bethi M. Development and Validation of Stability Indicating RP-HPLC Method for the Determination of Impurity Profile in Gamendazole: Experimental Male Oral Contraceptive. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2015.1042977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Purnachand Dasari
- Research & Development Centre, Suven Life Sciences Limited, Hyderabad, India
| | - Arava Veera Reddy
- Research & Development Centre, Suven Life Sciences Limited, Hyderabad, India
| | | | - Kameswarrao ChVSL
- Research & Development Centre, Suven Life Sciences Limited, Hyderabad, India
| | | |
Collapse
|
37
|
Cheng CY. Toxicants target cell junctions in the testis: Insights from the indazole-carboxylic acid model. SPERMATOGENESIS 2015; 4:e981485. [PMID: 26413399 PMCID: PMC4581065 DOI: 10.4161/21565562.2014.981485] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
There are numerous types of junctions in the seminiferous epithelium which are integrated with, and critically dependent on the Sertoli cell cytoskeleton. These include the basal tight junctions between Sertoli cells that form the main component of the blood–testis barrier, the basal ectoplasmic specializations (basal ES) and basal tubulobulbar complexes (basal TBC) between Sertoli cells; as well as apical ES and apical TBC between Sertoli cells and the developing spermatids that orchestrate spermiogenesis and spermiation. These junctions, namely TJ, ES, and TBC interact with actin microfilament-based cytoskeleton, which together with the desmosomal junctions that interact with the intermediate filament-based cytoskeleton plus the highly polarized microtubule-based cytoskeleton are working in concert to move spermatocytes and spermatids between the basal and luminal aspect of the seminiferous epithelium. In short, these various junctions are structurally complexed with the actin- and microtubule-based cytoskeleton or intermediate filaments of the Sertoli cell. Studies have shown toxicants (e.g., cadmium, bisphenol A (BPA), perfluorooctanesulfonate (PFOS), phthalates, and glycerol), and some male contraceptives under development (e.g., adjudin, gamendazole), exert their effects, at least in part, by targeting cell junctions in the testis. The disruption of Sertoli–Sertoli cell and Sertoli–germ cell junctions, results in the loss of germ cells from the seminiferous epithelium. Adjudin, a potential male contraceptive under investigation in our laboratory, produces loss of spermatids from the seminiferous tubules through disruption of the Sertoli cell spermatid junctions and disruption of the Sertoli cell cytoskeleton. The molecular and structural changes associated with adjudin administration are described, to provide an example of the profile of changes caused by disturbance of Sertoli-germ cell and also Sertoli cell-cell junctions.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council ; New York, NY USA
| |
Collapse
|
38
|
Gungor-Ordueri NE, Celik-Ozenci C, Cheng CY. Fascin 1 is an actin filament-bundling protein that regulates ectoplasmic specialization dynamics in the rat testis. Am J Physiol Endocrinol Metab 2014; 307:E738-53. [PMID: 25159326 PMCID: PMC4216949 DOI: 10.1152/ajpendo.00113.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the testis, spermatids are polarized cells, with their heads pointing toward the basement membrane during maturation. This polarity is crucial to pack the maximal number of spermatids in the seminiferous epithelium so that millions of sperms can be produced daily. A loss of spermatid polarity is detected after rodents are exposed to toxicants (e.g., cadmium) or nonhormonal male contraceptives (e.g., adjudin), which is associated with a disruption on the expression and/or localization of polarity proteins. In the rat testis, fascin 1, an actin-bundling protein found in mammalian cells, was expressed by Sertoli and germ cells. Fascin 1 was a component of the ectoplasmic specialization (ES), a testis-specific anchoring junction known to confer spermatid adhesion and polarity. Its expression in the seminiferous epithelium was stage specific. Fascin 1 was localized to the basal ES at the Sertoli cell-cell interface of the blood-testis barrier in all stages of the epithelial cycle, except it diminished considerably at late stage VIII. Fascin 1 was highly expressed at the apical ES at stage VII-early stage VIII and restricted to the step 19 spermatids. Its knockdown by RNAi that silenced fascin 1 by ~70% in Sertoli cells cultured in vitro was found to perturb the tight junction-permeability barrier via a disruption of F-actin organization. Knockdown of fascin 1 in vivo by ~60-70% induced defects in spermatid polarity, which was mediated by a mislocalization and/or downregulation of actin-bundling proteins Eps8 and palladin, thereby impeding F-actin organization and disrupting spermatid polarity. In summary, these findings provide insightful information on spermatid polarity regulation.
Collapse
Affiliation(s)
- N Ece Gungor-Ordueri
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| |
Collapse
|
39
|
Li MW, Xiao X, Mruk DD, Lam YL, Lee WM, Lui WY, Bonanomi M, Silvestrini B, Cheng CY. Actin-binding protein drebrin E is involved in junction dynamics during spermatogenesis. SPERMATOGENESIS 2014; 1:123-136. [PMID: 22319661 DOI: 10.4161/spmg.1.2.16393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The actin-based cytoskeleton plays a critical role in the seminiferous epithelium during spermatogenesis by conferring cell shape, adhesion, structural support and cell polarity to both Sertoli and developing germ cells, which are essential for spermatogonial stem cell renewal, maintenance of the stem cell niche, cell cycle progression, mitosis, meiosis, spermiogenesis and spermiation. However, few functional studies are found in the literature, which explore the functional significance of actin dynamics in these events. This by and large is due to a lack of information on the proteins that regulate actin dynamics. Herein, we report drebrin E is an integrated component of the apical ectoplasmic specialization (apical ES) and the basal ES at the blood-testis barrier (BTB) in the seminiferous epithelium of the adult rat testis. Using immunohistochemistry and dual-labeled immunofluorescence analysis, drebrin E was found to display a stage-specific localization at the apical ES, as well as at the basal ES at the BTB during the seminiferous epithelial cycle of spermatogenesis. Drebrin E was first detected in stage V tubules at the basal ES with the highest expression at the BTB at stages V and VI, but it diminished considerably by stages VII and VIII and was almost non-detectable until stage IV. At the apical ES, drebrin E was also first detected at stage V, surrounding the entire head of the elongating spermatid, but by stage VI its localization had "shifted" to localize most intensely and almost exclusively to the concave side of the spermatid head. In stage VII tubules, drebrin E co-localized with actin, as well as with two other actin regulatory proteins Eps8 (epidermal growth factor receptor pathway substrate 8, an actin capping and bundling protein) and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to regulate actin nucleation and branching). The localization of drebrin E at the apical ES was compromised following treatment of rats with adjudin, which is known to exert its destructive effects primarily at the apical ES by inducing premature loss of elongating/elongated spermatids from the epithelium, mimicking "spermiation." Instead of being restricted to the concave side of spermatid heads, drebrin E was found to be mis-localized in the seminiferous epithelium of adjudin-treated rats; it was also present on the convex side of elongating spermatids, but these cells were mis-oriented so that their heads no longer pointed toward the basement membrane. The expression of drebrin E by Sertoli cells was also found to be modulated by TGFβ3 and TNFα. Since Arp3, but not Eps8, was found to bind drebrin E; and cytokines were also shown to affect the cellular distribution of drebrin E and enhance the interaction between drebrin E and Arp3, these findings illustrate that cytokines may regulate BTB dynamics during the epithelial cycle by recruiting drebrin E and Arp3 to the BTB microenvironment to induce changes in the configuration of actin filament bundles at the basal ES. In summary, these findings illustrate drebrin E is working in concert with Arp3 to regulate actin filament bundles at both the apical and the basal ES in the testis, conferring adhesion and cell polarity at both sites during spermatogenesis.
Collapse
Affiliation(s)
- Michelle Wm Li
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Xiang Xiao
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Dolores D Mruk
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Yee-Ling Lam
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - Will M Lee
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | - Wing-Yee Lui
- School of Biological Sciences; The University of Hong Kong; Hong Kong, China
| | | | | | - C Yan Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
| |
Collapse
|
40
|
Qian X, Mruk DD, Cheng YH, Cheng CY. RAI14 (retinoic acid induced protein 14) is an F-actin regulator: Lesson from the testis. SPERMATOGENESIS 2014; 3:e24824. [PMID: 23885305 PMCID: PMC3710223 DOI: 10.4161/spmg.24824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York NY USA ; Department of Anatomy, Histology and Embryology; School of Basic Medicine; Peking Union Medical College; Beijing, China
| | | | | | | |
Collapse
|
41
|
Baptissart M, Vega A, Martinot E, Volle DH. Male fertility: Is spermiogenesis the critical step for answering biomedical issues? SPERMATOGENESIS 2014; 3:e24114. [PMID: 23885302 PMCID: PMC3710220 DOI: 10.4161/spmg.24114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 12/22/2022]
Abstract
Regarding male fertility, biomedical issues have opposite goals to treat infertility or develop contraceptive drugs. Recently, the identification of the molecular mechanisms involved in germ cell differentiation suggest that spermiogenesis has to be put at the crossroad to reach these goals. Concerning fertility issues, citizens in our modern world are schizophrenic. On one side, couples have the possibility to control conception; and on the other side, more and more couples suffer from the misfortune of being infertile. These two societal problems lead to intensive research and conflicting government policies. However, these opposing goals rely on a better understanding of germ cell differentiation.
Collapse
Affiliation(s)
- Marine Baptissart
- Inserm U 1103; Génétique Reproduction et Développement (GReD); F-63177 AUBIERE, France ; Clermont Université; Université Blaise Pascal; GReD, BP 10448; F-63000 CLERMONT-FERRAND, France ; CNRS; UMR 6293; GReD; F-63177 AUBIERE, France ; Centre de Recherche en Nutrition Humaine d'Auvergne; F-63000 CLERMONT-FERRAND, France
| | | | | | | |
Collapse
|
42
|
Tang EI, Xiao X, Mruk DD, Qian XJ, Mok KW, Jenardhanan P, Lee WM, Mathur PP, Cheng CY. Microtubule affinity-regulating kinase 4 (MARK4) is a component of the ectoplasmic specialization in the rat testis. SPERMATOGENESIS 2014; 2:117-126. [PMID: 22670221 PMCID: PMC3364792 DOI: 10.4161/spmg.20724] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the seminiferous epithelial cycle of spermatogenesis, the ectoplasmic specialization (ES, a testis-specific adherens junction, AJ, type) maintains the polarity of elongating/elongated spermatids and confers adhesion to Sertoli cells in the seminiferous epithelium, and known as the apical ES. On the other hand, the ES is also found at the Sertoli-Sertoli cell interface at the blood-testis barrier (BTB) known as basal ES, which together with the tight junction (TJ), maintains Sertoli cell polarity and adhesion, creating a functional barrier that limits paracellular transport of substances across the BTB. However, the apical and basal ES are segregated and restricted to the adluminal compartment and the BTB, respectively. During the transit of preleptotene spermatocytes across the BTB and the release of sperm at spermiation at stage VIII of the seminiferous epithelial cycle, both the apical and basal ES undergo extensive restructuring to facilitate cell movement at these sites. The regulation of these events, in particular their coordination, remains unclear. Studies in other epithelia have shown that the tubulin cytoskeleton is intimately related to cell movement, and MARK [microtubule-associated protein (MAP)/microtubule affinity-regulating kinase] family kinases are crucial regulators of tubulin cytoskeleton stability. Herein MARK4, the predominant member of the MARK protein family in the testis, was shown to be expressed by both Sertoli and germ cells. MARK4 was also detected at the apical and basal ES, displaying highly restrictive spatiotemporal expression at these sites, as well as co-localizing with markers of the apical and basal ES. The expression of MARK4 was found to be stage-specific during the epithelial cycle, structurally associating with α-tubulin and the desmosomal adaptor plakophilin-2, but not with actin-based BTB proteins occludin, β-catenin and Eps8 (epidermal growth factor receptor pathway substrate 8, an actin bundling and barbed end capping protein). More importantly, it was shown that the expression of MARK4 tightly associated with the integrity of the apical ES because a diminished expression of MARK4 associated with apical ES disruption that led to the detachment of elongating/elongated spermatids from the epithelium. These findings thus illustrate that the integrity of apical ES, an actin-based and testis-specific AJ, is dependent not only on the actin filament network, but also on the tubulin-based cytoskeleton.
Collapse
|
43
|
Mruk DD, Cheng CY. Testin and actin are key molecular targets of adjudin, an anti-spermatogenic agent, in the testis. SPERMATOGENESIS 2014; 1:137-146. [PMID: 22319662 DOI: 10.4161/spmg.1.2.16449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
Abstract
Earlier studies have shown adjudin to cause aspermatogenesis by depleting virtually all germ cells from the seminiferous epithelium, leading to transient infertility; spermatogenesis and fertility were re-established several weeks later after germ cell proliferation and differentiation were reinitiated by spermatogonia. While adjudin is known to exert its initial effects at the apical ectoplasmic specialization (a testis-specific atypical anchoring junction), thereby perturbing spermatid adhesion, its molecular target(s) at this site is not known. Herein, we report the production of a specific antibody against adjudin after this compound was conjugated to an adjuvant (i.e., keyhole limpet hemocyanin) to maximize immune response in rabbits. This antibody was utilized for co-immunoprecipitation by using an affinity resin to pull-down the binding partners of adjudin. Using this approach coupled with mass spectrometry and immunoblotting, we show testin (a protein largely restricted to the apical ES in the adult testis) and actin-myosin to be molecular targets of adjudin. These findings provide a platform for future functional studies, not only to better understand the molecular mechanism behind adjudin-induced germ cell loss from the seminiferous epithelium, but also to understand the molecular basis of spermiation.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | |
Collapse
|
44
|
Veerareddy A, Surendrareddy G, Dubey PK. Total Syntheses of AF-2785 and Gamendazole—Experimental Male Oral Contraceptives. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2012.696306] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Arava Veerareddy
- a Research and Development Centre, Suven Life Sciences Ltd. , Hyderabad , India
| | | | - P. K. Dubey
- b Department of Chemistry , J.N.T. University , Hyderabad , India
| |
Collapse
|
45
|
Abstract
In mammalian testes, the blood-testis barrier (BTB), created by specialized junctions between Sertoli cells near the basement membrane of the seminiferous epithelium, provides an indispensable immune-privileged microenvironment for spermatid development. However, the BTB must experience restructuring during the epithelial cycle to facilitate the transit of preleptotene spermatocytes upon the testosterone-induced new TJ fibrils forming behind these cells, which is intimately related to the extensive dynamics of junction protein complexes between Sertoli cells. As key regulators of protein traffic, Rab GTPases participate in delivery of proteins between distinct cellular sites and cross talk with proteins that constitute tight junction and adherens junction. Using primarily cultured Sertoli cells in vitro with an established tight junction permeability barrier that mimics the BTB in vivo, RAB13 was shown to decrease during the testosterone-induced TJ integrity enhancement, accompanied with an increment in protein kinase A (PKA) activity. Furthermore, knockdown of Rab13 was found to resemble the effect of testosterone on Sertoli cell TJ permeability by reinforcing filamentous actin and occludin distribution at the cell-cell interface and promoting the direct interaction between ZO-1 and occludin. Interestingly, the effects of testosterone and Rab13 knockdown on Sertoli cell epithelium were revealed to be antagonized by PKA activity inhibition. In summary, RAB13 serves as a regulatory component in the assembly and restructuring of the TJ fibrils between adjacent Sertoli cells.
Collapse
Affiliation(s)
- Wenhui Su
- Department of Biochemistry and Molecular Biology, Basic Medical College.
| | | |
Collapse
|
46
|
Qian X, Cheng YH, Mruk DD, Cheng CY. Breast cancer resistance protein (Bcrp) and the testis--an unexpected turn of events. Asian J Androl 2013; 15:455-60. [PMID: 23665760 DOI: 10.1038/aja.2013.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/06/2013] [Accepted: 03/06/2013] [Indexed: 01/28/2023] Open
Abstract
Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs, to organic anions, antibiotics, phytoestrogens (e.g., genistein, daidzein, coumestrol), xenoestrogens and steroids (e.g., dehydroepiandrosterone sulfate). Bcrp is an integral membrane protein in cancer and normal cells within multiple organs (e.g., brain, placenta, intestine and testis) that maintains cellular homeostasis by extruding drugs and harmful substances from the inside of cells. In the brain, Bcrp is a major component of the blood-brain barrier located on endothelial cells near tight junctions (TJs). However, Bcrp is absent at the Sertoli cell blood-testis barrier (BTB); instead, it is localized almost exclusively to the endothelial TJ in microvessels in the interstitium and the peritubular myoid cells in the tunica propria. Recent studies have shown that Bcrp is also expressed stage specifically and spatiotemporally by Sertoli and germ cells in the seminiferous epithelium of rat testes, limited only to a testis-specific cell adhesion ultrastructure known as the apical ectoplasmic specialisation (ES) in stage VI-early VIII tubules. These findings suggest that Bcrp is equipped by late spermatids and Sertoli cells to protect late-stage spermatids completing spermiogenesis. Furthermore, Bcrp was found to be associated with F (filamentous)-actin and several actin regulatory proteins at the apical ES and might be involved in the organisation of actin filaments at the apical ES in stage VII-VIII tubules. These findings will be carefully evaluated in this brief review.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | |
Collapse
|
47
|
Wan HT, Mruk DD, Wong CKC, Cheng CY. The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility. Trends Mol Med 2013; 19:396-405. [PMID: 23643465 DOI: 10.1016/j.molmed.2013.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 02/06/2023]
Abstract
Testes are sensitive to toxicants, such as cadmium and phthalates, which disrupt a local functional axis in the seminiferous epithelium known as the 'apical ectoplasmic specialization (apical ES)-blood-testis barrier (BTB)-basement membrane (BM)'. Following exposure, toxicants contact the basement membrane and activate the Sertoli cell, which perturbs its signaling function. Thus, toxicants can modulate signaling and/or cellular events at the apical ES-BTB-BM axis, perturbing spermatogenesis without entering the epithelium. Toxicants also enter the epithelium via drug transporters to potentiate their damaging effects, and downregulation of efflux transporters by toxicants impedes BTB function such that toxicants remain in the epithelium and efficiently disrupt spermatogenesis. These findings support a novel model of toxicant-induced disruption of spermatogenesis that could be interfered with using small molecules.
Collapse
Affiliation(s)
- Hin-Ting Wan
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | | | | | | |
Collapse
|
48
|
Qian X, Mruk DD, Wong EWP, Lie PPY, Cheng CY. Palladin is a regulator of actin filament bundles at the ectoplasmic specialization in adult rat testes. Endocrinology 2013; 154:1907-20. [PMID: 23546604 PMCID: PMC3628023 DOI: 10.1210/en.2012-2269] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In rat testes, the ectoplasmic specialization (ES) at the Sertoli-Sertoli and Sertoli-spermatid interface known as the basal ES at the blood-testis barrier and the apical ES in the adluminal compartment, respectively, is a testis-specific adherens junction. The remarkable ultrastructural feature of the ES is the actin filament bundles that sandwiched in between the cisternae of endoplasmic reticulum and apposing plasma membranes. Although these actin filament bundles undergo extensive reorganization to switch between their bundled and debundled state to facilitate blood-testis barrier restructuring and spermatid adhesion/transport, the regulatory molecules underlying these events remain unknown. Herein we report findings of an actin filament cross-linking/bundling protein palladin, which displayed restrictive spatiotemporal expression at the apical and the basal ES during the epithelial cycle. Palladin structurally interacted and colocalized with Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein) and Arp3 (actin related protein 3, which together with Arp2 form the Arp2/3 complex to induce branched actin nucleation, converting bundled actin filaments to an unbundled/branched network), illustrating its role in regulating actin filament bundle dynamics at the ES. A knockdown of palladin in Sertoli cells in vitro with an established tight junction (TJ)-permeability barrier was found to disrupt the TJ function, which was associated with a disorganization of actin filaments that affected protein distribution at the TJ. Its knockdown in vivo also perturbed F-actin organization that led to a loss of spermatid polarity and adhesion, causing defects in spermatid transport and spermiation. In summary, palladin is an actin filament regulator at the ES.
Collapse
Affiliation(s)
- Xiaojing Qian
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
49
|
Qian X, Mruk DD, Wong EWP, Cheng CY. Breast cancer resistance protein regulates apical ectoplasmic specialization dynamics stage specifically in the rat testis. Am J Physiol Endocrinol Metab 2013; 304:E757-69. [PMID: 23403943 PMCID: PMC3625752 DOI: 10.1152/ajpendo.00645.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug transporters determine the bioavailability of drugs in the testis behind the blood-testis barrier (BTB). Thus, they are crucial for male contraceptive development if these drugs (e.g., adjudin) exert their effects behind the BTB. Herein breast cancer resistance protein (Bcrp), an efflux drug transporter, was found to be expressed by both Sertoli and germ cells. Interestingly, Bcrp was not a component of the Sertoli cell BTB. Instead, it was highly expressed by peritubular myoid cells at the tunica propria and also endothelial cells of the microvessels in the interstitium at all stages of the epithelial cycle. Unexpectedly, Bcrp was found to be expressed at the Sertoli-step 18-19 spermatid interface but limited to stage VI-early VIII tubules, and an integrated component of the apical ectoplasmic specialization (apical ES). Apparently, Bcrp is being used by late-stage spermatids to safeguard their completion of spermiogenesis by preventing harmful drugs to enter these cells while they transform to spermatozoa. Also, the association of Bcrp with actin, Eps8 (epidermal growth factor receptor pathway substrate 8, an actin barbed end capping and bundling protein), and Arp3 (actin-related protein 3, a component of the Arp2/3 complex known to induce branched actin polymerization) at the apical ES suggest that Bcrp may be involved in regulating the organization of actin filament bundles at the site. Indeed, a knockdown of Bcrp by RNAi in the testis perturbed the apical ES function, disrupting spermatid polarity and adhesion. In summary, Bcrp is a regulator of the F-actin-rich apical ES in the testis.
Collapse
Affiliation(s)
- Xiaojing Qian
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
- 2Department of Anatomy, Histology and Embryology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dolores D. Mruk
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - Elissa W. P. Wong
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| | - C. Yan Cheng
- 1The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York;
| |
Collapse
|
50
|
Qian X, Cheng YH, Jenardhanan P, Mruk DD, Mathur PP, Xia W, Silvestrini B, Cheng CY. Adjudin disrupts spermatogenesis by targeting drug transporters: Lesson from the breast cancer resistance protein (BCRP). SPERMATOGENESIS 2013; 3:e24993. [PMID: 23885306 PMCID: PMC3710224 DOI: 10.4161/spmg.24993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/27/2022]
Abstract
For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research, Population Council; New York, NY USA
- Department of Anatomy, Histology and Embryology; School of Basic Medicine; Peking Union Medical College; Beijing, China
| | - Yan-ho Cheng
- Richmond University Medical Center; Staten Island, NY USA
| | - Pranitha Jenardhanan
- Center for Bioinformatics, School of Life Sciences; Pondicherry University; Pondicherry, India
| | - Dolores D. Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research, Population Council; New York, NY USA
| | - Premendu P. Mathur
- Center for Bioinformatics, School of Life Sciences; Pondicherry University; Pondicherry, India
- KIIT University; Bhubaneshwar, Odisha, India
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute; Shanghai Jiao Tong University; Shanghai, China
| | - Bruno Silvestrini
- Clinical Stem Cell Center; Renji Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research, Population Council; New York, NY USA
| |
Collapse
|