1
|
Tonelli C, Deschênes A, Gaeth V, Jensen A, Vithlani N, Yao MA, Zhao Z, Park Y, Tuveson DA. Ductal pancreatic cancer interception by FGFR2 abrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618726. [PMID: 39463990 PMCID: PMC11507947 DOI: 10.1101/2024.10.16.618726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Activating KRAS mutations are a key feature of pancreatic ductal adenocarcinoma (PDA) and drive tumor initiation and progression. However, mutant KRAS by itself is weakly oncogenic. The pathways that cooperate with mutant KRAS to induce tumorigenesis are less-defined. Analyzing organoids and murine and human pancreatic specimens, we found that the receptor tyrosine kinase FGFR2 was progressively up-regulated in mutant KRAS-driven metaplasia, pre-neoplasia and Classical PDA. Using genetic mouse models, we showed that FGFR2 supported mutant KRAS-driven transformation of acinar cells by promoting proliferation and MAPK pathway activation. FGFR2 abrogation significantly delayed tumor formation and extended the survival of these mice. Furthermore, we discovered that FGFR2 collaborated with EGFR and dual blockade of these receptor signaling pathways significantly reduced mutant KRAS-induced pre-neoplastic lesion formation. Together, our data have uncovered a pivotal role for FGFR2 in the early phases of pancreatic tumorigenesis, paving the way for future therapeutic applications of FGFR2 inhibitors for pancreatic cancer interception. STATEMENT OF SIGNIFICANCE Mutant KRAS-expressing pancreatic intraepithelial neoplasias (PanINs), the precursor lesions of PDA, are prevalent in the average healthy adult but rarely advance to invasive carcinoma. Here, we discovered that FGFR2 promoted PDA progression by amplifying mutant KRAS signaling and that inactivation of FGFR2 intercepted disease progression.
Collapse
|
2
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
3
|
Patel P, Wang JY, Mineroff J, Jagdeo J. The potential cutaneous benefits of Carthamus tinctorius oleosomes. Arch Dermatol Res 2023; 316:26. [PMID: 38060028 DOI: 10.1007/s00403-023-02750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 12/08/2023]
Abstract
Safflower (Carthamus tinctorius) oleosomes are unique organelles that house triglycerides and fatty acids and demonstrate a natural resilience to environmental stresses. There is recent growing interest in safflower oleosomes due to their potential applications in dermatology, especially as a carrier technology to improve drug penetration through the skin. This paper explores various aspects of safflower oleosomes, including their production, safety, absorption, and applications in photoprotection and epidermal remodeling. Oleosomes have shown encouraging results in targeted drug delivery in in vitro and in vivo animal models; however, human clinical research is required to determine their efficacy and safety in dermatology. Oleosomes are comprise a novel biotechnology that has the potential to transform sustainable and natural treatments in dermatology by utilizing their unique structure. Safflower oleosomes are stable lipid molecules that can deliver small and large molecules with high efficacy. This review will examine the current research findings and prospective future applications of oleosomes.
Collapse
Affiliation(s)
- Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Jennifer Y Wang
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jessica Mineroff
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA
| | - Jared Jagdeo
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn Campus, Brooklyn, NY, USA.
- Department of Dermatology, SUNY Downstate Medical Center, State University of New York, Downstate Health Sciences University, 450 Clarkson Avenue, 8th floor, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Xu S, Zhu Y, Wang P, Qi S, Shu B. Derazantinib Inhibits the Bioactivity of Keloid Fibroblasts via FGFR Signaling. Biomedicines 2023; 11:3220. [PMID: 38137441 PMCID: PMC10741236 DOI: 10.3390/biomedicines11123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.
Collapse
Affiliation(s)
- Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Yongkang Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Shaohai Qi
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Bin Shu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| |
Collapse
|
5
|
Takaya K, Aramaki-Hattori N, Sakai S, Okabe K, Asou T, Kishi K. Fibroblast Growth Factor 7 Suppresses Fibrosis and Promotes Epithelialization during Wound Healing in Mouse Fetuses. Int J Mol Sci 2022; 23:ijms23137087. [PMID: 35806092 PMCID: PMC9266578 DOI: 10.3390/ijms23137087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Adult mammalian wounds leave visible scars, whereas skin wounds in developing mouse fetuses are scarless until a certain point in development when complete regeneration occurs, including the structure of the dermis and skin appendages. Analysis of the molecular mechanisms at this transition will provide clues for achieving scarless wound healing. The fibroblast growth factor (FGF) family is a key regulator of inflammation and fibrosis during wound healing. We aimed to determine the expression and role of FGF family members in fetal wound healing. ICR mouse fetuses were surgically wounded at embryonic day 13 (E13), E15, and E17. Expression of FGF family members and FGF receptor (FGFR) in tissue samples from these fetuses was evaluated using in situ hybridization and reverse transcription-quantitative polymerase chain reaction. Fgfr1 was downregulated in E15 and E17 wounds, and its ligand Fgf7 was upregulated in E13 and downregulated in E15 and E17. Recombinant FGF7 administration in E15 wounds suppressed fibrosis and promoted epithelialization at the wound site. Therefore, the expression level of Fgf7 may correlate with scar formation in late mouse embryos, and external administration of FGF7 may represent a therapeutic option to suppress fibrosis and reduce scarring.
Collapse
Affiliation(s)
- Kento Takaya
- Correspondence: ; Tel.: +81-3-5363-3814; Fax: +81-3-3352-1054
| | | | | | | | | | | |
Collapse
|
6
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Hang R, Zhao Y, Zhang Y, Yao R, Yao X, Sun Y, Huang D, Hang R. The role of nanopores constructed on micropitted titanium surface on immune responses of macrophages and the potential mechanisms. J Mater Chem B 2022; 10:7732-7743. [DOI: 10.1039/d2tb01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Delayed transition of pro-inflammatory M1 to pro-healing M2 of macrophages (MΦs) on implant surface is one of the most important reasons accounting for poor osseointegration. The present work proposes to...
Collapse
|
8
|
Bock FJ, Sedov E, Koren E, Koessinger AL, Cloix C, Zerbst D, Athineos D, Anand J, Campbell KJ, Blyth K, Fuchs Y, Tait SWG. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat Commun 2021; 12:6572. [PMID: 34772930 PMCID: PMC8590049 DOI: 10.1038/s41467-021-26613-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna L Koessinger
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
9
|
Park G, Moon BC, Oh DS, Kim YU, Park MK. Enhanced Nrf2 up-regulation by extracellular basic pH in a human skin equivalent system. J Cell Mol Med 2021; 25:3646-3653. [PMID: 33728720 PMCID: PMC8034446 DOI: 10.1111/jcmm.16472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular basic pH regulates cellular processes in wounds, and consequently influenced wound healing. Oxidative defence system modulation in the skin helps heal wounds, inhibits skin ageing and improves the skin condition. Moreover, the role of keratinocyte growth factor (KGF) and nuclear factor erythroid 2‐related factor 2 (Nrf2) in antioxidant systems has been reported in various skin models. However, the effects of extracellular basic pH on wound‐ or skin ageing‐related skin damage have not been examined. Thus, we investigated the antioxidant systems affected by extracellular basic pH in a 3D human skin equivalent system (3HSE). Extracellular basic pH decreased KGF expression and enhanced the oxidative defence system, and thus activated Nrf2 in the 3HSE. Additionally, extracellular basic pH and KGF treatment up‐regulated Nrf2 activation and its regulation of the oxidative defence system in the 3HSE. This indicates that Nrf2 up‐regulation is enhanced by reactive oxygen species production, rather than KGF, and by extracellular basic pH of the skin. The inhibition of skin damage through pH imbalance and KGF regulation suggests that the development of pH‐regulating or pH‐maintaining materials may provide effective therapeutic strategies for maintaining a healthy skin.
Collapse
Affiliation(s)
- Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Korea
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si, Korea
| | - Dal-Seok Oh
- The Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| | - Moon-Ki Park
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
10
|
Ahn HN, Kang HS, Park SJ, Park MH, Chun W, Cho E. Safety and efficacy of basic fibroblast growth factors for deep second-degree burn patients. Burns 2020; 46:1857-1866. [PMID: 33054995 DOI: 10.1016/j.burns.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Burn injuries are common afflictions; however, conservative wound care frequently leads to poor treatment compliance and physical disability in deep burn patients. Therefore, regenerative biologic materials, which are more effective for tissue repair, are required, particularly for deep second-degree burns. A novel spray formulation of basic fibroblast growth factors (bFGF) was produced by synthesizing fibroblast growth factor proteins. In this post-marketing surveillance (PMS) study, we assessed the safety and efficacy of bFGF and indirectly compared this formulation with cultured epidermal autografts (CEAs) for treating deep second-degree burns. MATERIALS AND METHODS A total of 3173 patients treated at 15 hospitals were used for PMS of bFGF in South Korea for six years. In total, 1630 patients with deep second-degree burns were selected for assessing adverse events (AEs) of bFGF treatments. Efficacy was evaluated according to time periods until re-epithelialization, and clinical usefulness of bFGF was indirectly compared with that of CEAs. RESULTS AEs occurred in 37 patients (2.3%) and included application site pain (1.7%) and contact dermatitis (0.6%). All AEs were mild and were evaluated as probably unrelated with bFGF. The average time for re-epithelialization was 8 days; this time span was significantly longer after major burns (9.7 days) than after minor (7.8 days) or moderate burns (7.9 days). Most treated burn wounds (99.8%) were assessed as improved. The indirect comparison included 534 patients using the same inclusion criteria for CEA patients (n = 35). The bFGF treatment demonstrated superior efficacy compared to CEAs by significantly reducing the average day to application (5.4 vs. 8.8 days) and re-epithelialization time (7.1 vs. 13.7 days). CONCLUSION Our study demonstrated that bFGF is a compelling regenerative therapy with competitive clinical efficacy and safety for deep second-degree burns and reduced treatment time, which is expected to reduce medical costs, particularly for deep second-degree burn patients.
Collapse
Affiliation(s)
- Hye-Na Ahn
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Hee-Sung Kang
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Su-Jung Park
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Mi-Hee Park
- Daewoong Pharmaceutical Company HQ, Seoul, 06170, Republic of Korea
| | - Wook Chun
- Department of Burn Surgery, Burn Center, Hangang Sacred Heart Hospital, Hallym University Medical Center, Seoul, 07247, Republic of Korea
| | - Eun Cho
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea; College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
11
|
Dorry SJ, Ansbro BO, Ornitz DM, Mutlu GM, Guzy RD. FGFR2 Is Required for AEC2 Homeostasis and Survival after Bleomycin-induced Lung Injury. Am J Respir Cell Mol Biol 2020; 62:608-621. [PMID: 31860803 PMCID: PMC7193788 DOI: 10.1165/rcmb.2019-0079oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Alveolar epithelial cell (AEC) injury is central to the pathogenesis of pulmonary fibrosis. Epithelial FGF (fibroblast growth factor) signaling is essential for recovery from hyperoxia- and influenza-induced lung injury, and treatment with FGFs is protective in experimental lung injury. The cell types involved in the protective effect of FGFs are not known. We hypothesized that FGF signaling in type II AECs (AEC2s) is critical in bleomycin-induced lung injury and fibrosis. To test this hypothesis, we generated mice with tamoxifen-inducible deletion of FGFR1-3 (fibroblast growth factor receptors 1, 2, and 3) in surfactant protein C-positive (SPC+) AEC2s (SPC triple conditional knockout [SPC-TCKO]). In the absence of injury, SPC-TCKO mice had fewer AEC2s, decreased Sftpc (surfactant protein C gene) expression, increased alveolar diameter, and increased collagen deposition. After intratracheal bleomycin administration, SPC-TCKO mice had increased mortality, lung edema, and BAL total protein, and flow cytometry and immunofluorescence revealed a loss of AEC2s. To reduce mortality of SPC-TCKO mice to less than 50%, a 25-fold dose reduction of bleomycin was required. Surviving bleomycin-injured SPC-TCKO mice had increased collagen deposition, fibrosis, and ACTA2 expression and decreased epithelial gene expression. Inducible inactivation of individual Fgfr2 or Fgfr3 revealed that Fgfr2, but not Fgfr3, was responsible for the increased mortality and lung injury after bleomycin administration. In conclusion, AEC2-specific FGFR2 is critical for survival in response to bleomycin-induced lung injury. These data also suggest that a population of SPC+ AEC2s require FGFR2 signaling for maintenance in the adult lung. Preventing epithelial FGFR inhibition and/or activating FGFRs in alveolar epithelium may therefore represent a novel approach to treating lung injury and reducing fibrosis.
Collapse
Affiliation(s)
- Samuel J. Dorry
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Brandon O. Ansbro
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - David M. Ornitz
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Robert D. Guzy
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois; and
| |
Collapse
|
12
|
Dou Y, Lee A, Zhu L, Morton J, Ladiges W. The potential of GHK as an anti-aging peptide. AGING PATHOBIOLOGY AND THERAPEUTICS 2020; 2:58-61. [PMID: 35083444 PMCID: PMC8789089 DOI: 10.31491/apt.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GHK (glycyl-L-histidyl-L-lysine) is a naturally occurring peptide found in human serum with levels averaging 200 ng/ml at age 20 but declining to an average of 80 ng/ml by age 60. The molecule has a very high affinity for copper and forms the chelate GHK-Cu. The peptide as well as its Cu (II) chelate have anti-inflammatory and tissue remodeling properties. GHK-Cu has been shown to promote skin remodeling, wound healing and regeneration, and has prominent antioxidant and anti-inflammatory effects in in vitro and in vivo studies. In addition, preliminary observations suggest GHK can partially reverse cognitive impairment in aging mice by targeting anti-inflammatory and epigenetic pathways. The evidence as presented provides the rationale to further investigate this naturally occurring peptide in preclinical and clinical aging studies.
Collapse
Affiliation(s)
- Yan Dou
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Amanda Lee
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Lida Zhu
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - John Morton
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Sangaphunchai P, Todd I, Fairclough LC. Extracellular vesicles and asthma: A review of the literature. Clin Exp Allergy 2020; 50:291-307. [PMID: 31925972 DOI: 10.1111/cea.13562] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic, recurrent and incurable allergy-related respiratory disease characterized by inflammation, bronchial hyperresponsiveness and narrowing of the airways. Extracellular vesicles (EVs) are a universal feature of cellular function and can be detected in different bodily fluids. Recent evidence has shown the possibility of using EVs in understanding the pathogenesis of asthma, including their potential as diagnostic and therapeutic tools. Studies have reported that EVs released from key cells involved in asthma can induce priming and activation of other asthma-associated cells. A literature review was conducted on all current research regarding the role and function of EVs in the pathogenesis of asthma via the PRISMA statement method. An electronic search was performed using EMBASE and PubMed through to November 2018. The EMBASE search returned 76 papers, while the PubMed search returned 211 papers. Following duplicate removal, titles and abstracts were screened for eligibility with a total of 34 studies included in the final qualitative analysis. The review found evidence of association between the presence of EVs and physiological changes characteristic of asthma, suggesting that EVs are involved in the pathogenesis, with the weight of evidence presently favouring deleterious effects of EVs in asthma. Numerous studies highlighted differences in exosomal contents between EVs of healthy and asthmatic individuals, which could be employed as potential diagnostic markers. In some circumstances, EVs were also found to be suppressive to disease, but more often promote inflammation and airway remodelling. In conclusion, EVs hold immense potential in understanding the pathophysiology of asthma, and as diagnostic and therapeutic markers. While more research is needed for definitive conclusions and their application in medical practice, the literature presented in this review should encourage further research and discovery within the field of EVs and asthma.
Collapse
Affiliation(s)
| | - Ian Todd
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| | - Lucy C Fairclough
- School of Life Sciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Li L, Shang L, Gao J, Liu C, Xia F, Xu M, Qi K, Zeng L, Pan B, Xu K. Janus kinase inhibitor ruxolitinib blocks thymic regeneration after acute thymus injury. Biochem Pharmacol 2020; 171:113712. [DOI: 10.1016/j.bcp.2019.113712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
|
15
|
Feng Y, Sun ZL, Liu SY, Wu JJ, Zhao BH, Lv GZ, Du Y, Yu S, Yang ML, Yuan FL, Zhou XJ. Direct and Indirect Roles of Macrophages in Hypertrophic Scar Formation. Front Physiol 2019; 10:1101. [PMID: 31555142 PMCID: PMC6724447 DOI: 10.3389/fphys.2019.01101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic scars are pathological scars that result from abnormal responses to trauma, and could cause serious functional and cosmetic disability. To date, no optimal treatment method has been established. A variety of cell types are involved in hypertrophic scar formation after wound healing, but the underlying molecular mechanisms and cellular origins of hypertrophic scars are not fully understood. Macrophages are major effector cells in the immune response after tissue injury that orchestrates the process of wound healing. Depending on the local microenvironment, macrophages undergo marked phenotypic and functional changes at different stages during scar pathogenesis. This review intends to summarize the direct and indirect roles of macrophages during hypertrophic scar formation. The in vivo depletion of macrophages or blocking their signaling reduces scar formation in experimental models, thereby establishing macrophages as positive regulatory cells in the skin scar formation. In the future, a significant amount of attention should be given to molecular and cellular mechanisms that cause the phenotypic switch of wound macrophages, which may provide novel therapeutic targets for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Feng
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Department of Pharmacy, Medical College, Yangzhou University, Yangzhou, China
| | - Zi-Li Sun
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Bin-Hong Zhao
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Guo-Zhong Lv
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yong Du
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Shun Yu
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Ming-Lie Yang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China.,Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Feng-Lai Yuan
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| | - Xiao-Jin Zhou
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, China
| |
Collapse
|
16
|
Herold C, Engeli S, Beckmann B, Vogt PM, Rennekampff HO. Adipokine concentrations in lipoaspirates may have a role in wound healing. Indian J Plast Surg 2019; 50:56-63. [PMID: 28615811 PMCID: PMC5469237 DOI: 10.4103/ijps.ijps_103_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In addition to its use as a volume filler, fat grafting may have a potential role in wound healing based on the concentration of growth factors in the lipoaspirate. In this study, we compare the quantitative and qualitative concentration of the various growth factors and adipokines using the Shippert or the Coleman techniques to prepare the lipoaspirate. METHODS We measured leptin, adiponectin and the growth factors, i.e., acidic fibroblast growth factor (aFGF), basic FGF (bFGF), keratinocyte growth factor (KGF), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) by ELISA in solid and liquid fractions obtained with both techniques in human fat obtained with Coleman technique and Shippert technique. RESULTS All of these peptides, except BMP-2, were detected in relevant quantities in the solid fraction. The Coleman but not the Shippert technique resulted in statistically higher adiponectin concentrations in the solid tissue fraction. The other four growth factors occurred in significantly higher concentrations in the solid fractions compared to the liquid fractions, independent of the processing technique. CONCLUSION In summary, we demonstrated that KGF, aFGF, bFGF and VEGF, as well as leptin and adiponectin, are contained in fat suspensions obtained by liposuction and in the supernatant. Only the concentration of adiponectin was in the range reported to contribute to wound healing.
Collapse
Affiliation(s)
- Christian Herold
- Department of Plastic and Aesthetic Surgery, Hand Surgery, Sana Klinikum Hameln Pyrmont, Hameln, Germany
| | - Stefan Engeli
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
17
|
Wu Y, Li K, Zhang Y, Dong J, Yu M, Tian W. [Research progress in adipose tissue promoted wound healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:756-761. [PMID: 31198006 PMCID: PMC8355768 DOI: 10.7507/1002-1892.201811095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/18/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To summarize recent progress in adipose tissue acting as a more efficient and ideal therapy to facilitate wound repair and evaluate the therapeutic values of adipose tissue. METHODS The related literature about adipose tissue for wound healing in recent years was reviewed and analyzed. RESULTS Enormous studies focus on the capacity of adipose tissue to accelerate wound healing including cellular components, extracellular matrix, and paracrine signaling have been investigated. CONCLUSION Adipose tissue has generated great interest in recent years because of unique advantages such as abundant and accessible source, thriven potential to enhance the regeneration and repair of damaged tissue. However, there is still a need to explore the mechanism that adipose tissue regulates cellular function and tissue regeneration in order to facilitate clinical application of adipose tissue in wound healing.
Collapse
Affiliation(s)
- Yue Wu
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha Hunan, 410006, P.R.China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha Hunan, 410006, P.R.China
| | - Yan Zhang
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jia Dong
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
18
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
20
|
Haj‐Salem I, Plante S, Gounni AS, Rouabhia M, Chakir J. Fibroblast-derived exosomes promote epithelial cell proliferation through TGF-β2 signalling pathway in severe asthma. Allergy 2018. [PMID: 28649804 DOI: 10.1111/all.13234] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bronchial fibroblasts play a key role in airway remodelling in asthma. They regulate epithelial cell functions such as proliferation through growth factors, cytokines, chemokines and exosomes. The role of exosomes in the communication between epithelial cells and fibroblasts by vehiculing these mediators in asthma remains to be determined. OBJECTIVE To evaluate the role of exosomes released by bronchial fibroblasts on epithelial cell proliferation in severe asthma. METHODS Exosomes were obtained from culture media of primary bronchial fibroblasts and characterized using Western blot, electron microscopy and flow cytometry. Uptake profile of fluorescent-labelled exosomes in epithelial cells was assessed by flow cytometry. Exosome cytokine content was analysed by Cytokine Arrays. Bronchial epithelial cell proliferation was evaluated by BrdU incorporation test. Exosome biogenesis/release was blocked using sphingomyelinase inhibitor. Plasmid transfection was used to modulate transforming growth factor beta 2 (TGF-β2) gene expression. RESULTS We showed that bronchial fibroblasts secreted exosomes, which were internalized by bronchial epithelial cells. Exosomes of severe asthmatic subjects' fibroblasts showed a lower level of TGF-β2 and significantly increased the epithelial cell proliferation of both healthy and severe asthmatic subjects compared to healthy controls' exosomes. Overexpression of TGF-β2 in severe asthmatics' fibroblasts induced enhanced TGF-β2 in exosomes leading to a reduced proliferation of epithelial cells, whereas knockdown of TGF-β2 enhanced epithelial cell proliferation. CONCLUSION Our study shows that exosomes are involved in fine-tuning intercellular communication in asthma. Exosomes of severe eosinophilic asthmatics' fibroblasts can contribute to airway remodelling, at least in part, by modulating epithelial cell proliferation observed in severe asthma.
Collapse
Affiliation(s)
- I. Haj‐Salem
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| | - S. Plante
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| | - A. S. Gounni
- Rady Faculty of Health SciencesDepartment of Immunology Max Rady College of Medicine University of Manitoba Winnipeg MB Canada
| | - M. Rouabhia
- Faculty of dentistry Oral Ecology Research Group Laval University Quebec QC Canada
| | - J. Chakir
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| |
Collapse
|
21
|
Hoseini SJ, Ghazavi H, Forouzanfar F, Mashkani B, Ghorbani A, Mahdipour E, Ghasemi F, Sadeghnia HR, Ghayour-Mobarhan M. Fibroblast Growth Factor 1-Transfected Adipose-Derived Mesenchymal Stem Cells Promote Angiogenic Proliferation. DNA Cell Biol 2017; 36:401-412. [PMID: 28281780 PMCID: PMC5421621 DOI: 10.1089/dna.2016.3546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/28/2017] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to investigate, for the first time, the effects of using adipose-derived mesenchymal stem cells (AD-MSCs) transfected with an episomal plasmid encoding fibroblast growth factor 1 (FGF1) (AD-MSCsFGF1), in providing the microenvironment required for angiogenic proliferation. The isolated rat AD-MSCs were positive for mesenchymal (CD29 and CD90) and negative for hematopoietic (CD34 and CD45) surface markers. Adipogenic and osteogenic differentiation of the AD-MSCs also occurred in the proper culture media. The presence of FGF1 in the conditioned medium from the AD-MSCsFGF1 was confirmed by Western blotting. G418 and PCR were used for selection of transfected cells and confirmation of the presence of FGF1 mRNA, respectively. Treatment with the AD-MSCFGF1-conditioned medium significantly increased the NIH-3T3 cell proliferation and human umbilical vein endothelial cell (HUVEC) tube formation compared to conditioned medium from nontransfected AD-MSCs (p < 0.001). In conclusion, the AD-MSCsFGF1 efficiently secreted functional FGF1, which promoted angiogenic proliferation. Using AD-MSCsFGF1 may provide a useful strategy in cell therapy, which can merge the beneficial effects of stem cells with the positive biological effects of FGF1 in various disorders, especially tissue defects, neurodegenerative, cardiovascular and diabetes endocrine pathologies, which remain to be tested in preclinical and clinical studies.
Collapse
Affiliation(s)
- Seyed Javad Hoseini
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Wang X, Liu B, Xu Q, Sun H, Shi M, Wang D, Guo M, Yu J, Zhao C, Feng B. GHK-Cu-liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis. Wound Repair Regen 2017; 25:270-278. [DOI: 10.1111/wrr.12520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Xinying Wang
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Baoquan Liu
- Key Laboratory of Biotechnology and Bioresources Utilization; (Dalian Minzu University), Ministry of Education; Dalian China
| | - Qiang Xu
- Faculty of Chemical, Environmental and Biological Science and Technology; Dalian University of Technology; Dalian China
| | - Haiyang Sun
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Meijun Shi
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Dan Wang
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Meihua Guo
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Jiawen Yu
- Department of Biotechnology; Dalian Medical University; Dalian China
| | - Chunhui Zhao
- College of Life Sciences; Liaoning Normal University; Dalian China
| | - Bin Feng
- Department of Biotechnology; Dalian Medical University; Dalian China
| |
Collapse
|
23
|
Razzak MA, Hossain MS, Radzi ZB, Yahya NAB, Czernuszka J, Rahman MT. Cellular and Molecular Responses to Mechanical Expansion of Tissue. Front Physiol 2016; 7:540. [PMID: 27899897 PMCID: PMC5111402 DOI: 10.3389/fphys.2016.00540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
The increased use of tissue expander in the past decades and its potential market values in near future give enough reasons to sum up the consequences of tissue expansion. Furthermore, the patients have the right to know underlying mechanisms of adaptation of inserted biomimetic, its bioinspired materials and probable complications. The mechanical strains during tissue expansion are related to several biological phenomena. Tissue remodeling during the expansion is highly regulated and depends on the signal transduction. Any alteration may lead to tumor formation, necrosis and/or apoptosis. In this review, stretch induced cell proliferation, apoptosis, the roles of growth factors, stretch induced ion channels, and roles of second messengers are organized. It is expected that readers from any background can understand and make a decision about tissue expansion.
Collapse
Affiliation(s)
- Muhammad Abdur Razzak
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Md Sanower Hossain
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Zamri Bin Radzi
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Noor Azlin B Yahya
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Jan Czernuszka
- Department of Materials, University of Oxford Oxford, UK
| | - Mohammad T Rahman
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Khandelwal AR, Rong X, Moore-Medlin T, Ekshyyan O, Abreo F, Gu X, Nathan CAO. Photopreventive Effect and Mechanism of AZD4547 and Curcumin C3 Complex on UVB-Induced Epidermal Hyperplasia. Cancer Prev Res (Phila) 2016; 9:296-304. [PMID: 26862088 DOI: 10.1158/1940-6207.capr-15-0366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Abstract
Aggressive cutaneous squamous cell carcinoma (cSCC) of the skin is the second most common type of skin cancer in the United States due to high exposure to ultraviolet B (UVB) radiation. In our previous studies, Curcumin C3 complex (C3), a standardized preparation of three curcumonoids, delayed UVB-induced tumor incidence and inhibited multiplicity. Exposure to UVB activates mTOR and FGFR signaling that play a key role in skin tumorigenesis. The purpose of this study was to investigate the efficacy of C3 complex to afford protection against acute UVB-induced hyperproliferation by targeting the mTOR and FGFR signaling pathways. Pretreatment with C3 complex significantly inhibited UVB-induced FGF-2 induction, FGF-2-induced cell proliferation, progression and colony formation, mTORC1 and mTORC2 activation, and FGFR2 phosphorylation in the promotion-sensitive JB6 cells epithelial cells. Further, FGFR was critical for UVB-induced mTOR activation, suggesting an important role of FGFR2 in UVB-induced mTOR signaling. SKH-1 mice pretreated with C3 (15 mg/kg/b.w.) for 2 weeks followed by a single exposure to UVB (180 mj/cm(2)) significantly attenuated UVB-induced mTORC1, mTORC2, and FGFR2 activation. To further assess the role of FGFR in UVB-induced hyperproliferation, SKH-1 mice were pretreated with AZD4547 (5 mg/kg/b.w.); a selective pan-FGFR kinase inhibitor followed by single exposure to UVB (180 mj/cm(2)). AZD4547 significantly inhibited UVB-induced mTORC1 and mTORC2 activation, epidermal hyperplasia and hyperproliferation. Our studies underscore the importance of FGFR signaling in UVB-induced acute skin changes and the role of FGFR/mTOR signaling in mediating the effects of C3 complex in the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xiaohua Rong
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Tara Moore-Medlin
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Oleksandr Ekshyyan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana
| | - Fleurette Abreo
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, LSU-Health Shreveport, Shreveport, Louisiana
| | - Cherie-Ann O Nathan
- Department of Otolaryngology-Head and Neck Surgery, LSU-Health Shreveport, Shreveport, Louisiana. Department of Surgery, Overton Brooks Veterans Medical Center, Shreveport, Louisiana.
| |
Collapse
|
25
|
Huang J, Yang J, Guan L, Yi S, Du L, Tian H, Guo Y, Zhai F, Lu Z, Li H, Li X, Jiang C. Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds. Protein Expr Purif 2015; 138:7-12. [PMID: 26384708 DOI: 10.1016/j.pep.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 10 (FGF10) is a member of the FGF superfamily. It exhibits diverse biological functions, and is extensively used for fundamental research and clinical applications involving hair growth, tissue repair, and burn wounds. Oil bodies, obtained from oil seeds, have been exploited for a variety of biotechnology applications. The use of oil bodies reduces purification steps and costs associated with the production of heterogonous proteins. Here, recombinant human FGF10 (rhFGF10) was expressed in safflower (Carthamus tinctorius L.) seeds using oilbody-oleosin technology. A plant expression vector, pOTBar-oleosin-rhFGF10, was constructed and introduced into safflower using Agrobacterium tumefaciens transformation, and mature safflower plants were obtained by grafting. Oleosin-rhFGF10 was successfully transformed and expressed in safflower seeds and inherited to the T3 generation. Moreover, MTT assays demonstrated that oil bodies expressed oleosin-FGF10 had a dose-dependent effect on cellular proliferation. In conclusion, this may provide a method of producing oleosin-rhFGF10, and help us meet the increasing pharmacological demands for the protein.
Collapse
Affiliation(s)
- Jian Huang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jing Yang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shanyong Yi
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Linna Du
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China
| | - Yongxin Guo
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Feng Zhai
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Zhen Lu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haiyan Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaokun Li
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| | - Chao Jiang
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China; School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
26
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
27
|
Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. Am J Respir Cell Mol Biol 2015; 52:116-28. [PMID: 24988442 DOI: 10.1165/rcmb.2014-0184oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2(-/-)) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2(-/-) mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2(-/-) mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2(-/-) mice similarly have deficient recovery of club cell secretory protein(+) bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo.
Collapse
Affiliation(s)
- Robert D Guzy
- Departments of 1 Internal Medicine, Division of Pulmonary and Critical Care Medicine
| | | | | | | | | |
Collapse
|
28
|
Best J, Manka P, Syn WK, Dollé L, van Grunsven LA, Canbay A. Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 2015; 4:48-58. [PMID: 25713804 DOI: 10.3978/j.issn.2304-3881.2015.01.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Collapse
Affiliation(s)
- Jan Best
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Paul Manka
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Wing-Kin Syn
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Laurent Dollé
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Leo A van Grunsven
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Ali Canbay
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| |
Collapse
|
29
|
Efficient Keratinocyte Differentiation Strictly Depends on JNK-Induced Soluble Factors in Fibroblasts. J Invest Dermatol 2014; 134:1332-1341. [DOI: 10.1038/jid.2013.535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/21/2022]
|
30
|
Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology 2014; 59:1617-26. [PMID: 24115180 DOI: 10.1002/hep.26753] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/11/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED The liver is renowned for its strong, robust regenerative capacity, employing different modes of regeneration according to type and extent of injury. The process of compensatory hypertrophy of the liver upon partial hepatectomy has been standing as a classical model for studying organ regeneration in mammals and a subject of exhaustive analyses. Meanwhile, in view of the physiological relevance for many of the human liver pathologies induced upon toxic insults or hepatitis, other injury models have recently drawn increasing attention. In those damaged livers where hepatocyte proliferation is compromised, adult liver stem/progenitor cells (LPCs) are activated and differentiate to hepatocytes and cholangiocytes, leading to functional recovery of the organ. Here, we summarize and discuss recent findings on the mechanisms underlying the regeneration process of the liver. Whereas the primary focus of this article is on those related to LPC-mediated regeneration, we also introduce topics on compensatory hypertrophy, where application of new technologies and molecular genetics approaches in mice has gained a paradigm shift. Identification of various markers for LPC populations has expedited their characterization and enabled us to examine their differentiation potential in vivo using genetic lineage-tracing approaches. Comprehensive studies regarding intercellular signaling pathways and their modes of action have succeeded in elucidating novel frameworks for the LPC-niche interaction functioning in the regenerating liver. CONCLUSION Advancing our understanding of the cellular and molecular mechanisms for liver regeneration should provide a basis for developing therapeutic strategies to treat patients with liver disease.
Collapse
Affiliation(s)
- Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
31
|
Joseph LB, Heck DE, Cervelli JA, Composto GM, Babin MC, Casillas RP, Sinko PJ, Gerecke DR, Laskin DL, Laskin JD. Structural changes in hair follicles and sebaceous glands of hairless mice following exposure to sulfur mustard. Exp Mol Pathol 2014; 96:316-27. [PMID: 24662110 DOI: 10.1016/j.yexmp.2014.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 01/08/2023]
Abstract
Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3-7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States.
| | - Diane E Heck
- Environmental Health Science, New York Medical College, Valhalla, NY, United States
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States
| | | | | | - Patrick J Sinko
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, United States
| | - Jeffrey D Laskin
- Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
32
|
Radioprotection of normal tissue cells. Strahlenther Onkol 2014; 190:745-52. [DOI: 10.1007/s00066-014-0637-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022]
|
33
|
Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J 2014; 28:2492-503. [PMID: 24571920 DOI: 10.1096/fj.13-243576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| | - Amna Sajjad
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Government College University Faisalabad, Faisalabad, Pakistan
| | - Denys Pogoryelov
- Membrane Transport Machineries Group, Cluster of Excellence Frankfurt-Macromolecular Complexes, Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Chinmoy Patra
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Department of Pulmonary Pharmacotherapy, Justus Liebig University Giessen, Giessen, Germany; and
| | - Felix B Engel
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Laestander C, Engström W. Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 2014; 47:3-11. [PMID: 24354576 PMCID: PMC6495704 DOI: 10.1111/cpr.12084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1-5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.
Collapse
Affiliation(s)
- C. Laestander
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| | - W. Engström
- Department of Biomedical Sciences and Veterinary Public HealthFaculty of Veterinary MedicineSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
35
|
Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, Takikawa Y, Miyajima A. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27:169-81. [PMID: 23322300 DOI: 10.1101/gad.204776.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1(+) mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Hinako M Takase
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 2012; 23:963-70. [DOI: 10.1016/j.semcdb.2012.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/27/2012] [Indexed: 01/22/2023]
|
38
|
Wang KH, Wu YPG, Lo WC. An Ideal Preparation for Dermal Regeneration: Skin Renewal Growth Factors, the Growth Factor Composites from Porcine Platelets. Rejuvenation Res 2012; 15:613-23. [DOI: 10.1089/rej.2012.1345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kuo-Hsien Wang
- Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan, R.O.C
- Department of Dermatology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yo-Ping Greg Wu
- Department of Chemical and Materials Engineering, National Ilan University, Ilan, Taiwan
| | - Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Meyer M, Müller AK, Yang J, Moik D, Ponzio G, Ornitz DM, Grose R, Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. J Cell Sci 2012; 125:5690-701. [PMID: 22992463 DOI: 10.1242/jcs.108167] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Efficient wound repair is essential for the maintenance of the integrity of the skin. The repair process is controlled by a variety of growth factors and cytokines, and their abnormal expression or activity can cause healing disorders. Here, we show that wound repair is severely delayed in mice lacking fibroblast growth factor receptors (FGFR) 1 and 2 in keratinocytes. As the underlying mechanism, we identified impaired wound contraction and a delay in re-epithelialization that resulted from impaired keratinocyte migration at the wound edge. Scratch wounding and transwell assays demonstrated that FGFR1/2-deficient keratinocytes had a reduced migration velocity and impaired directional persistence owing to inefficient formation and turnover of focal adhesions. Underlying this defect, we identified a significant reduction in the expression of major focal adhesion components in the absence of FGFR signaling, resulting in a general migratory deficiency. These results identify FGFs as key regulators of keratinocyte migration in wounded skin.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kiwanuka E, Junker J, Eriksson E. Harnessing growth factors to influence wound healing. Clin Plast Surg 2012; 39:239-48. [PMID: 22732373 DOI: 10.1016/j.cps.2012.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cutaneous wound healing is a dynamic process with the ultimate goal of restoring skin integrity. On injury to the skin, inflammatory cells, endothelial cells, fibroblasts, and keratinocytes undergo changes in gene expression and phenotype, leading to cell proliferation, migration, and differentiation. Cytokines and growth factors play an essential role in initiating and directing the phases of wound healing. These signaling peptides are produced by a variety of cells and lead to a concerted effort to restore the skin barrier function.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M, Jabs EW. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest 2012; 122:2153-64. [PMID: 22585574 DOI: 10.1172/jci62644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
Beare-Stevenson cutis gyrata syndrome (BSS) is a human genetic disorder characterized by skin and skull abnormalities. BSS is caused by mutations in the FGF receptor 2 (FGFR2), but the molecular mechanisms that induce skin and skull abnormalities are unclear. We developed a mouse model of BSS harboring a FGFR2 Y394C mutation and identified p38 MAPK as an important signaling pathway mediating these abnormalities. Fgfr2+/Y394C mice exhibited epidermal hyperplasia and premature closure of cranial sutures (craniosynostosis) due to abnormal cell proliferation and differentiation. We found ligand-independent phosphorylation of FGFR2 and activation of p38 signaling in mutant skin and calvarial tissues. Treating Fgfr2+/Y394C mice with a p38 kinase inhibitor attenuated skin abnormalities by reversing cell proliferation and differentiation to near normal levels. This study reveals the pleiotropic effects of the FGFR2 Y394C mutation evidenced by cutis gyrata, acanthosis nigricans, and craniosynostosis and provides a useful model for investigating the molecular mechanisms of skin and skull development. The demonstration of a pathogenic role for p38 activation may lead to the development of therapeutic strategies for BSS and related conditions, such as acanthosis nigricans or craniosynostosis.
Collapse
Affiliation(s)
- Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/429890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Effective differentiation of mesenchymal stem cells (MSCs) is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.
Collapse
|
43
|
Meyer M, Müller AK, Yang J, Ŝulcová J, Werner S. The role of chronic inflammation in cutaneous fibrosis: fibroblast growth factor receptor deficiency in keratinocytes as an example. J Investig Dermatol Symp Proc 2011; 15:48-52. [PMID: 22076327 DOI: 10.1038/jidsymp.2011.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fibrosis is associated with a variety of skin diseases and causes severe aesthetic and functional impairments. Functional studies in rodents, together with clinical observations, strongly suggest a crucial role of chronic injury and inflammation in the pathogenesis of fibrotic diseases. The phenotype of mice lacking fibroblast growth factor (FGF) receptors 1 and 2 in keratinocytes supports this concept. In these mice, a defect in keratinocytes alone initiated an inflammatory response, which in turn caused keratinocyte hyperproliferation and dermal fibrosis. As the mechanism underlying this phenotype, we identified a loss of FGF-induced expression of claudins and occludin, which caused abnormalities in tight junctions with concomitant deficits in epidermal barrier function. This resulted in severe transepidermal water loss and skin dryness. In turn, activation of keratinocytes and epidermal γδ T cells occurred, which produced IL-1 family member 8 and S100A8 and S100A9. These cytokines attracted immune cells and activated fibroblasts, resulting in a double paracrine loop through production of keratinocyte mitogens by dermal cells. In addition, a profibrotic response was induced in fibroblasts. Our results highlight the importance of an intact epidermal barrier for the prevention of inflammation and fibrosis and the role of chronic inflammation in the pathogenesis of fibrotic diseases.
Collapse
Affiliation(s)
- Michael Meyer
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Weinbaum JS, Tranquillo RT, Mecham RP. The matrix-binding domain of microfibril-associated glycoprotein-1 targets active connective tissue growth factor to a fibroblast-produced extracellular matrix. Macromol Biosci 2011; 10:1338-44. [PMID: 20799254 DOI: 10.1002/mabi.201000121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is advantageous to use biomaterials in tissue engineering that stimulate extracellular matrix (ECM) production by the cellular component. Connective tissue growth factor (CTGF) stimulates type I collagen (COL1A1) transcription, but is functionally limited as a free molecule. Using a matrix-binding domain (MBD) from microfibril-associated glycoprotein-1, the fusion protein MBD-CTGF was targeted to the ECM and tested for COL1A1 transcriptional activation. MBD-CTGF produced by the ECM-synthesizing fibroblasts, or provided exogenously, localized to the elastic fiber ECM. MBD-CTGF, but not CTGF alone, led to a two-fold enhancement of COL1A1 expression. This study introduces a targeting technology that can be used to elevate collagen transcription in engineered tissues and thereby improve tissue mechanics.
Collapse
Affiliation(s)
- Justin S Weinbaum
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
45
|
Lactose Induction Increases Production of Recombinant Keratinocyte Growth Factor-2 in Escherichia coli. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9249-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
Foronjy R, Imai K, Shiomi T, Mercer B, Sklepkiewicz P, Thankachen J, Bodine P, D'Armiento J. The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:598-607. [PMID: 20595636 PMCID: PMC2913334 DOI: 10.2353/ajpath.2010.090803] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 11/20/2022]
Abstract
Developmentally expressed genes are believed to play a central role in tissue repair after injury; however, in lung disease their role has not been established. This study demonstrates that SFRP1, an inhibitor of Wnt signaling normally expressed during lung embryogenesis, is induced in the lungs of emphysema patients and in two murine models of the disease. SFRP1 was found to be essential for alveolar formation as Sfrp1(-/-) mice exhibited aberrant Wnt signaling, mesenchymal proliferation, and impaired alveoli formation. In contrast, SFRP1 activated ERK and up-regulated MMP1 and MMP9 without altering TIMP1 production when expressed in human lung epithelial cells. These findings demonstrate that SFRP1 promotes normal alveolar formation in lung development, although its expression in the adult up-regulates proteins that can cause tissue destruction. Thus, SFRP1 induction during tissue injury is unlikely to contribute to the repair response but rather is a participatory factor in the pathogenesis of emphysema and tissue destruction.
Collapse
Affiliation(s)
- Robert Foronjy
- Department of Medicine, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang J, Meyer M, Müller AK, Böhm F, Grose R, Dauwalder T, Verrey F, Kopf M, Partanen J, Bloch W, Ornitz DM, Werner S. Fibroblast growth factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. ACTA ACUST UNITED AC 2010; 188:935-52. [PMID: 20308431 PMCID: PMC2845079 DOI: 10.1083/jcb.200910126] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of FGFRs results in skin abnormalities due to activation of keratinocytes and epidermal T cells. Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Biology, Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pines A, Backendorf C. Matched cultures of keratinocytes and fibroblasts derived from normal and NER-deficient mouse models. Methods Mol Biol 2010; 585:45-57. [PMID: 19907995 DOI: 10.1007/978-1-60761-380-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The uppermost layer of our skin, the epidermis, is formed largely of keratinocytes which constitute the skin's major barrier function and the first line of defence against environmental physical, chemical and biological agents. The subsequent layer, the dermis, which is mainly formed by fibroblasts, has a more supportive function, containing large amounts of collagen, blood vessels and nerve endings and is less directly affected by external insults. Hence it is likely that keratinocytes and fibroblasts have evolved different strategies to cope with the dangers of the environment. Mouse models with various genetic backgrounds in genome care-taking systems, such as DNA repair processes, are well suited to study differences between these two cell types and their implications for cancer and aging. In this chapter we describe a simple procedure to establish long-term keratinocyte and fibroblast cultures from, respectively, the epidermis and dermis of normal or NER-deficient newborn mice. The importance of the external O(2) pressure during the establishment and maintenance of these matched cultures is discussed.
Collapse
Affiliation(s)
- Alex Pines
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, The Netherlands
| | | |
Collapse
|
50
|
Hagiwara A, Nakayama F, Motomura K, Asada M, Suzuki M, Imamura T, Akashi M. Comparison of Expression Profiles of Several Fibroblast Growth Factor Receptors in the Mouse Jejunum: Suggestive Evidence for a Differential Radioprotective Effect among Major FGF Family Members and the Potency of FGF1. Radiat Res 2009; 172:58-65. [DOI: 10.1667/rr1570.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|