1
|
Jafarbeglou F, Dunlop MJ. Red Light Responsive Cre Recombinase for Bacterial Optogenetics. ACS Synth Biol 2024; 13:3991-4001. [PMID: 39558834 DOI: 10.1021/acssynbio.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and induced full activation within 4 h of red light exposure. We characterized the system's sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. In coculture experiments with OptoCre-REDMAP and the blue light responsive OptoCre-VVD, we found that the systems responded orthogonally to red and blue light inputs. Direct comparisons between red and blue light induction with OptoCre-REDMAP and OptoCre-VVD demonstrated the superior penetration properties of red light. OptoCre-REDMAP's robust and selective response to red light makes it suitable for advanced synthetic biology applications, particularly those requiring precise multichromatic control.
Collapse
Affiliation(s)
- Fereshteh Jafarbeglou
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Sun Y, Zhang X, Hong W, Qin Y, Man Y, He M, Liu JW, Chen J. Site-specific bioorthogonal regulation of bone morphogenetic protein 2 expression for effective bone regeneration. J Control Release 2024; 374:577-589. [PMID: 39208933 DOI: 10.1016/j.jconrel.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Growth factor holds great promise for bone regeneration, and spatiotemporal control of their expressing through site-specific reactions is crucial but challenging for on-demand therapy. In this study, we present the development of a novel unnatural amino acids (UAAs)-triggered therapeutic switch (UATS) system, composed of an orthogonal aminoacyl-tRNA-synthase (aaRS)-tRNA pair and a bone morphogenetic protein 2 (BMP2) gene harboring premature stop codon, which enable in situ and on-demand initiation of the expression of BMP2. The resulting UATS system allowed specifically control of base expressing on the BMP2 mRNA that switched to the BMP2 protein with complete structure and function to facilitate bone regeneration. Our investigations showed that the UATS system exhibits remarkable attributes of rapid, sensitive, reversible, and sustained BMP2 expression both in vitro and in vivo settings. Moreover, the implantation of microencapsulated cells with UATS system is applied to a mouse femur defect model, demonstrating high effciency in controlled expressing of BMP2 protein and substantial repair of bone defect following oral administration of UAAs. Therefore, our findings underscore the great potential of UATS system for on-demand awakening of functional growth factor, thus offering promising prospects in the realm of regenerative medicine.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiuhua Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China
| | - Wanrong Hong
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China
| | - Yingfeng Qin
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China.
| | - Yunan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Jin-Wen Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences Guangxi Medical University, Nanning 530021, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Fischer AAM, Robertson HB, Kong D, Grimm MM, Grether J, Groth J, Baltes C, Fliegauf M, Lautenschläger F, Grimbacher B, Ye H, Helms V, Weber W. Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311834. [PMID: 38573961 DOI: 10.1002/smll.202311834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hanah B Robertson
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Merlin M Grimm
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Jakob Grether
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Biberach University of Applied Sciences, Karlstraße 6-11, 88400, Biberach an der Riß, Germany
| | - Johanna Groth
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Carsten Baltes
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- DZIF - German Center for Infection Research, Deutsches Zentrum für Infektionsforschung e.V., Inhoffenstr. 7, 38124, Braunschweig, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Campus D2 2, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
4
|
Colleselli K, Stierschneider A, Wiesner C. An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:12464. [PMID: 37569837 PMCID: PMC10419760 DOI: 10.3390/ijms241512464] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
5
|
Lu Q, Wang Z, Bai S, Wang Y, Liao C, Sun Y, Zhang Y, Li W, Mei Q. Hydrophobicity Regulation of Energy Acceptors Confined in Mesoporous Silica Enabled Reversible Activation of Optogenetics for Closed-Loop Glycemic Control. J Am Chem Soc 2023; 145:5941-5951. [PMID: 36867047 DOI: 10.1021/jacs.2c13762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Optogenetics-based synthetic biology holds great promise as a cell-based therapy strategy for many clinical incurable diseases; however, precise control over genetic expression strength and timing through disease state-related closed-loop regulation remains a challenge due to the lack of reversible probes to indicate real-time metabolite fluctuations. Here, based on a novel mechanism of analyte-induced hydrophobicity regulation of energy acceptors confined in mesoporous silica, we developed a smart hydrogel platform comprising glucose reversible responsive upconversion nanoprobes and optogenetic engineered cells, in which the upconverted blue light strength was adaptively tuned through blood glucose levels to control optogenetic expressions for insulin secretion. The intelligent hydrogel system enabled convenient maintenance of glycemic homeostasis through simple near-infrared illuminations without any additional glucose concentration monitoring, which efficiently avoided genetic overexpression-induced hypoglycemia. This proof-of-concept strategy efficiently combines diagnostics with optogenetics-based synthetic biology for mellitus therapy, opening up a new avenue for nano-optogenetics.
Collapse
Affiliation(s)
- Qi Lu
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zihe Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shumin Bai
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Cheng Liao
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei Li
- Department of Neurosurgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong 523560, China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.,Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
6
|
Stierschneider A, Neuditschko B, Colleselli K, Hundsberger H, Herzog F, Wiesner C. Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells 2023; 12:697. [PMID: 36899833 PMCID: PMC10000987 DOI: 10.3390/cells12050697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In endothelial cells (ECs), stimulation of Toll-like receptor 4 (TLR4) by the endotoxin lipopolysaccharide (LPS) induces the release of diverse pro-inflammatory mediators, beneficial in controlling bacterial infections. However, their systemic secretion is a main driver of sepsis and chronic inflammatory diseases. Since distinct and rapid induction of TLR4 signaling is difficult to achieve with LPS due to the specific and non-specific affinity to other surface molecules and receptors, we engineered new light-oxygen-voltage-sensing (LOV)-domain-based optogenetic endothelial cell lines (opto-TLR4-LOV LECs and opto-TLR4-LOV HUVECs) that allow fast, precise temporal, and reversible activation of TLR4 signaling pathways. Using quantitative mass-spectrometry, RT-qPCR, and Western blot analysis, we show that pro-inflammatory proteins were not only expressed differently, but also had a different time course when the cells were stimulated with light or LPS. Additional functional assays demonstrated that light induction promoted chemotaxis of THP-1 cells, disruption of the EC monolayer and transmigration. In contrast, ECs incorporating a truncated version of the TLR4 extracellular domain (opto-TLR4 ΔECD2-LOV LECs) revealed high basal activity with fast depletion of the cell signaling system upon illumination. We conclude that the established optogenetic cell lines are well suited to induce rapid and precise photoactivation of TLR4, allowing receptor-specific studies.
Collapse
Affiliation(s)
- Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
7
|
Mansouri M, Ray PG, Franko N, Xue S, Fussenegger M. Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells. Nucleic Acids Res 2022; 51:e1. [PMID: 36268868 PMCID: PMC9841418 DOI: 10.1093/nar/gkac916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
8
|
Mansouri M, Fussenegger M. Therapeutic cell engineering: designing programmable synthetic genetic circuits in mammalian cells. Protein Cell 2022; 13:476-489. [PMID: 34586617 PMCID: PMC9226217 DOI: 10.1007/s13238-021-00876-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Cell therapy approaches that employ engineered mammalian cells for on-demand production of therapeutic agents in the patient's body are moving beyond proof-of-concept in translational medicine. The therapeutic cells can be customized to sense user-defined signals, process them, and respond in a programmable and predictable way. In this paper, we introduce the available tools and strategies employed to design therapeutic cells. Then, various approaches to control cell behaviors, including open-loop and closed-loop systems, are discussed. We also highlight therapeutic applications of engineered cells for early diagnosis and treatment of various diseases in the clinic and in experimental disease models. Finally, we consider emerging technologies such as digital devices and their potential for incorporation into future cell-based therapies.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
9
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
10
|
Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nat Chem Biol 2022; 18:47-55. [PMID: 34782743 DOI: 10.1038/s41589-021-00899-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Inducer-triggered therapeutic protein expression from designer cells is a promising strategy for disease treatment. However, as most inducer systems harness transcriptional machineries, protein expression timeframes are unsuitable for many therapeutic applications. Here, we engineered a genetic code expansion-based therapeutic system, termed noncanonical amino acids (ncAAs)-triggered therapeutic switch (NATS), to achieve fast therapeutic protein expression in response to cognate ncAAs at the translational level. The NATS system showed response within 2 hours of triggering, whereas no signal was detected in a transcription-machinery-based system. Moreover, NATS system is compatible with transcriptional switches for multi-regulatory-layer control. Diabetic mice with microencapsulated cell implants harboring the NATS system could alleviate hyperglycemia within 90 min on oral delivery of ncAA. We also prepared ncAA-containing 'cookies' and achieved long-term glycemic control in diabetic mice implanted with NATS cells. Our proof-of-concept study demonstrates the use of NATS system for the design of next-generation cell-based therapies to achieve fast orally induced protein expression.
Collapse
|
11
|
Huang P, Zhao Z, Duan L. Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions. Neural Regen Res 2022; 17:25-30. [PMID: 34100422 PMCID: PMC8451544 DOI: 10.4103/1673-5374.314293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Liting Duan
- Department of Biomedical Engineering; Shun Hing Institute of Advanced Engineering (SHIAE), The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Wagner HJ, Mohsenin H, Weber W. Synthetic Biology-Empowered Hydrogels for Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:197-226. [PMID: 33582837 DOI: 10.1007/10_2020_158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic biology is strongly inspired by concepts of engineering science and aims at the design and generation of artificial biological systems in different fields of research such as diagnostics, analytics, biomedicine, or chemistry. To this aim, synthetic biology uses an engineering approach relying on a toolbox of molecular sensors and switches that endows cellular hosts with non-natural computing functions and circuits. Importantly, this concept is not only limited to cellular approaches. Synthetic biological building blocks have also conferred sensing and switching capability to otherwise inactive materials. This principle has attracted high interest for the development of biohybrid materials capable of sensing and responding to specific molecular stimuli, such as disease biomarkers, antibiotics, or heavy metals. Moreover, the interconnection of individual sense-and-respond materials to complex materials systems has enabled the processing of, for example, multiple inputs or the amplification of signals using feedback topologies. Such systems holding high potential for applications in the analytical and diagnostic sectors will be described in this chapter.
Collapse
Affiliation(s)
- Hanna J Wagner
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hasti Mohsenin
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Christie JM, Zurbriggen MD. Optogenetics in plants. THE NEW PHYTOLOGIST 2021; 229:3108-3115. [PMID: 33064858 DOI: 10.1111/nph.17008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatiotemporal and quantitative resolutions, in a reversible manner with minimal side-effects. Optogenetics has revolutionized the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straightforward, given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
14
|
Baumschlager A, Khammash M. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria. Adv Biol (Weinh) 2021; 5:e2000256. [PMID: 34028214 DOI: 10.1002/adbi.202000256] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light-control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
15
|
Affiliation(s)
- Uriel Urquiza-Garcia
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Schneider N, Chatelle CV, Ochoa-Fernandez R, Zurbriggen MD, Weber W. Green Light-Controlled Gene Switch for Mammalian and Plant Cells. Methods Mol Biol 2021; 2312:89-107. [PMID: 34228286 DOI: 10.1007/978-1-0716-1441-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.
Collapse
Affiliation(s)
- Nils Schneider
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Celonic AG, Basel, Switzerland
| | - Claire V Chatelle
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Schneider N, Wieland FG, Kong D, Fischer AAM, Hörner M, Timmer J, Ye H, Weber W. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. SCIENCE ADVANCES 2021; 7:7/1/eabd3568. [PMID: 33523844 PMCID: PMC7775772 DOI: 10.1126/sciadv.abd3568] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 05/10/2023]
Abstract
Light-inducible gene switches represent a key strategy for the precise manipulation of cellular events in fundamental and applied research. However, the performance of widely used gene switches is limited due to low tissue penetrance and possible phototoxicity of the light stimulus. To overcome these limitations, we engineer optogenetic synthetic transcription factors to undergo liquid-liquid phase separation in close spatial proximity to promoters. Phase separation of constitutive and optogenetic synthetic transcription factors was achieved by incorporation of intrinsically disordered regions. Supported by a quantitative mathematical model, we demonstrate that engineered transcription factor droplets form at target promoters and increase gene expression up to fivefold. This increase in performance was observed in multiple mammalian cells lines as well as in mice following in situ transfection. The results of this work suggest that the introduction of intrinsically disordered domains is a simple yet effective means to boost synthetic transcription factor activity.
Collapse
Affiliation(s)
- Nils Schneider
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Franz-Georg Wieland
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, Ernst-Zermelo-Str. 1, 79104 Freiburg, Germany
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 21a, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Huang Z, Li Z, Zhang X, Kang S, Dong R, Sun L, Fu X, Vaisar D, Watanabe K, Gu L. Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity. ACS Synth Biol 2020; 9:3322-3333. [PMID: 33179507 DOI: 10.1021/acssynbio.0c00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
Collapse
Affiliation(s)
- Zhimin Huang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Zengpeng Li
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, PR China
| | - Xiao Zhang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Shoukai Kang
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Runze Dong
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Li Sun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Xiaonan Fu
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Vaisar
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Kurumi Watanabe
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Liangcai Gu
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
VanArsdale E, Pitzer J, Payne GF, Bentley WE. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience 2020; 23:101545. [PMID: 33083771 PMCID: PMC7516135 DOI: 10.1016/j.isci.2020.101545] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cells often communicate by the secretion, transport, and perception of molecules. Information conveyed by molecules is encoded, transmitted, and decoded by cells within the context of the prevailing microenvironments. Conversely, in electronics, transmission reliability and message validation are predictable, robust, and less context dependent. In turn, many transformative advances have resulted by the formal consideration of information transfer. One way to explore this potential for biological systems is to create bio-device interfaces that facilitate bidirectional information transfer between biology and electronics. Redox reactions enable this linkage because reduction and oxidation mediate communication within biology and can be coupled with electronics. By manipulating redox reactions, one is able to combine the programmable features of electronics with the ability to interrogate and modulate biological function. In this review, we examine methods to electrochemically interrogate the various components of molecular communication using redox chemistry and to electronically control cell communication using redox electrogenetics.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall 8278 Paint Branch Drive, College Park, MD 20742, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, Room 5102, A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
20
|
Ochoa-Fernandez R, Abel NB, Wieland FG, Schlegel J, Koch LA, Miller JB, Engesser R, Giuriani G, Brandl SM, Timmer J, Weber W, Ott T, Simon R, Zurbriggen MD. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods 2020; 17:717-725. [PMID: 32601426 DOI: 10.1038/s41592-020-0868-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
Collapse
Affiliation(s)
- Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Nikolaj B Abel
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Jenia Schlegel
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - J Benjamin Miller
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Giovanni Giuriani
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,Univeersity of Glasgow, Glasgow, Scotland, UK
| | - Simon M Brandl
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rüdiger Simon
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany. .,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany. .,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
21
|
Huang P, Liu A, Song Y, Hope JM, Cui B, Duan L. Optical Activation of TrkB Signaling. J Mol Biol 2020; 432:3761-3770. [PMID: 32422149 DOI: 10.1016/j.jmb.2020.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.
| |
Collapse
|
22
|
Saxton MJ. Diffusion of DNA-Binding Species in the Nucleus: A Transient Anomalous Subdiffusion Model. Biophys J 2020; 118:2151-2167. [PMID: 32294478 PMCID: PMC7203007 DOI: 10.1016/j.bpj.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Single-particle tracking experiments have measured escape times of DNA-binding species diffusing in living cells: CRISPR-Cas9, TetR, and LacI. The observed distribution is a truncated power law. Working backward from the experimental results, the observed distribution appears inconsistent with a Gaussian distribution of binding energies. Working forward, the observed distribution leads to transient anomalous subdiffusion, in which diffusion is anomalous at short times and normal at long times, here only mildly anomalous. Monte Carlo simulations are used to characterize the time-dependent diffusion coefficient D(t) in terms of the anomalous exponent α, the crossover time tcross, and the limits D(0) and D(∞) and to relate these quantities to the escape time distribution. The simplest interpretations identify the escape time as the actual binding time to DNA or the period of one-dimensional diffusion on DNA in the standard model combining one-dimensional and three-dimensional search, but a more complicated interpretation may be required. The model has several implications for cell biophysics. 1) The initial anomalous regime represents the search of the DNA-binding species for its target DNA sequence. 2) Non-target DNA sites have a significant effect on search kinetics. False positives in bioinformatic searches of the genome are potentially rate-determining in vivo. For simple binding, the search would be speeded if false-positive sequences were eliminated from the genome. 3) Both binding and obstruction affect diffusion. Obstruction ought to be measured directly, using as the primary probe the DNA-binding species with the binding site inactivated and eGFP as a calibration standard among laboratories and cell types. 4) Overexpression of the DNA-binding species reduces anomalous subdiffusion because the deepest binding sites are occupied and unavailable. 5) The model provides a coarse-grained phenomenological description of diffusion of a DNA-binding species, useful in larger-scale modeling of kinetics, FCS, and FRAP.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California.
| |
Collapse
|
23
|
Woloschuk RM, Reed PMM, McDonald S, Uppalapati M, Woolley GA. Yeast Two-Hybrid Screening of Photoswitchable Protein-Protein Interaction Libraries. J Mol Biol 2020; 432:3113-3126. [PMID: 32198111 DOI: 10.1016/j.jmb.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
Although widely used in the detection and characterization of protein-protein interactions, Y2H screening has been under-used for the engineering of new optogenetic tools or the improvement of existing tools. Here we explore the feasibility of using Y2H selection and screening to evaluate libraries of photoswitchable protein-protein interactions. We targeted the interaction between circularly permuted photoactive yellow protein (cPYP) and its binding partner binder of PYP dark-state (BoPD) by mutating a set of four surface residues of cPYP that contribute to the binding interface. A library of ~10,000 variants was expressed in yeast together with BoPD in a Y2H format. An initial selection for the cPYP/BoPD interaction was performed using a range of concentrations of the cPYP chromophore. As expected, the majority (>90% of cPYP variants) no longer bound to BoPD. Replica plating was then used to evaluate the photoswitchability of the surviving clones. Photoswitchable cPYP variants with BoPD affinities equal to, or higher than, native cPYP were recovered in addition to variants with altered photocycles and binders that interacted with BoPD as apo-proteins. Y2H results reflected protein-protein interaction affinity, expression, photoswitchability, and chromophore uptake, and correlated well with results obtained both in vitro and in mammalian cells. Thus, by systematic variation of selection parameters, Y2H screens can be effectively used to generate new optogenetic tools for controlling protein-protein interactions for use in diverse settings.
Collapse
Affiliation(s)
- Ryan M Woloschuk
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Canada, M5S 3H6
| | - P Maximilian M Reed
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Canada, M5S 3H6
| | - Sherin McDonald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, Canada, S7N 5E5
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, Canada, S7N 5E5
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Canada, M5S 3H6.
| |
Collapse
|
24
|
Yousefi OS, Hörner M, Wess M, Idstein V, Weber W, Schamel WWA. Optogenetic Tuning of Ligand Binding to The Human T cell Receptor Using The opto-ligand-TCR System. Bio Protoc 2020; 10:e3540. [PMID: 33659514 PMCID: PMC7842703 DOI: 10.21769/bioprotoc.3540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/02/2022] Open
Abstract
T cells are one major cell type of the immune system that use their T cell antigen receptor (TCR) to bind and respond to foreign molecules derived from pathogens. The ligand-TCR interaction half-lives determine stimulation outcome. Until recently, scientists relied on mutating either the TCR or its ligands to investigate how varying TCR-ligand interaction durations impacted on T cell activation. Our newly created opto-ligand-TCR system allowed us to precisely and reversibly control ligand binding to the TCR by light illumination. This system uses phytochrome B (PhyB) tetramers as a light-regulated TCR ligand. PhyB can be photoconverted between a binding (ON) and non-binding (OFF) conformation by 660 nm and 740 nm light illumination, respectively. PhyB ON is able to bind to a synthetic TCR, generated by fusing the PhyB interacting factor (PIF) to the TCRβ chain. Switching PhyB to the OFF conformation disrupts this interaction. Sufficiently long binding of PhyB tetramers to the PIF-TCR led to T cell activation as measured by calcium influx. Here, we describe protocols for how to generate the tetrameric ligand for our opto-ligand-TCR system, how to measure ligand-TCR binding by flow cytometry and how to quantify T cell activation via calcium influx.
Collapse
Affiliation(s)
- O. Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Wess
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Idstein
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
25
|
Mansouri M, Lichtenstein S, Strittmatter T, Buchmann P, Fussenegger M. Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells. Methods Mol Biol 2020; 2173:189-199. [PMID: 32651919 DOI: 10.1007/978-1-0716-0755-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Samson Lichtenstein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Genetic circuitry for personalized human cell therapy. Curr Opin Biotechnol 2019; 59:31-38. [DOI: 10.1016/j.copbio.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
|
27
|
Mühlhäuser WWD, Weber W, Radziwill G. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling. ACS Synth Biol 2019; 8:1679-1684. [PMID: 31185174 DOI: 10.1021/acssynbio.9b00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.
Collapse
Affiliation(s)
- Wignand W. D. Mühlhäuser
- Faculty of Biology and Signalling research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - Wilfried Weber
- Faculty of Biology and Signalling research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - Gerald Radziwill
- Faculty of Biology and Signalling research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
28
|
Sweeney K, Moreno Morales N, Burmeister Z, Nimunkar AJ, McClean MN. Easy calibration of the Light Plate Apparatus for optogenetic experiments. MethodsX 2019; 6:1480-1488. [PMID: 31293905 PMCID: PMC6594922 DOI: 10.1016/j.mex.2019.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/11/2019] [Indexed: 11/16/2022] Open
Abstract
Optogenetic systems use genetically-encoded light-sensitive proteins to control and study cellular processes. As the number and quality of these systems grows, there is an increasing need for user-friendly and flexible hardware to provide programmed illumination to cultures of cells. One platform which satisfies this need for a variety of optogenetic systems and organisms is the Light Plate Apparatus (LPA), which delivers a controlled light dose to each well of a 24-well plate. Experimental reproducibility requires appropriate calibration to produce accurate light doses within individual wells of the LPA and between LPAs. In this study, we present an easy and accurate method for calibrating the LPA. In particular, we: •developed a 3D printed adaptor and MATLAB code to allow rapid measurement of irradiance produced by the LPA and subsequent calibration•provide appropriate code and methodology for generating a standard curve for each LPA•demonstrate the utility and accuracy of this method between users and LPAs.
Collapse
Affiliation(s)
| | | | | | | | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
29
|
Zi Z. Molecular Engineering of the TGF-β Signaling Pathway. J Mol Biol 2019; 431:2644-2654. [PMID: 31121181 DOI: 10.1016/j.jmb.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important growth factor that plays essential roles in regulating tissue development and homeostasis. Dysfunction of TGF-β signaling is a hallmark of many human diseases. Therefore, targeting TGF-β signaling presents broad therapeutic potential. Since the discovery of the TGF-β ligand, a collection of engineered signaling proteins have been developed to probe and manipulate TGF-β signaling responses. In this review, we highlight recent progress in the engineering of TGF-β signaling for different applications and discuss how molecular engineering approaches can advance our understanding of this important pathway. In addition, we provide a future outlook on the opportunities and challenges in the engineering of the TGF-β signaling pathway from a quantitative perspective.
Collapse
Affiliation(s)
- Zhike Zi
- Otto-Warburg Laboratory, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
30
|
Hasenjäger S, Trauth J, Hepp S, Goenrich J, Essen LO, Taxis C. Optogenetic Downregulation of Protein Levels with an Ultrasensitive Switch. ACS Synth Biol 2019; 8:1026-1036. [PMID: 30955324 DOI: 10.1021/acssynbio.8b00471] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, for example, for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes, and fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.
Collapse
Affiliation(s)
- Sophia Hasenjäger
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| | - Jonathan Trauth
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Sebastian Hepp
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Juri Goenrich
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| | - Lars-Oliver Essen
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Christof Taxis
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| |
Collapse
|
31
|
Mansouri M, Strittmatter T, Fussenegger M. Light-Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800952. [PMID: 30643713 PMCID: PMC6325585 DOI: 10.1002/advs.201800952] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Indexed: 05/12/2023]
Abstract
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology-inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light-controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non-neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light-sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light-controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH‐4058BaselSwitzerland
- Faculty of ScienceUniversity of BaselMattenstrasse 26CH‐4058BaselSwitzerland
| |
Collapse
|
32
|
Baaske J, Mühlhäuser WWD, Yousefi OS, Zanner S, Radziwill G, Hörner M, Schamel WWA, Weber W. Optogenetic control of integrin-matrix interaction. Commun Biol 2019; 2:15. [PMID: 30652127 PMCID: PMC6325061 DOI: 10.1038/s42003-018-0264-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022] Open
Abstract
Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix-OptoIntegrin system may serve as a blueprint for rendering matrix-receptor interactions amendable to precise control with light.
Collapse
Affiliation(s)
- Julia Baaske
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Wignand W. D. Mühlhäuser
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - O. Sascha Yousefi
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Zanner
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Gerald Radziwill
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| |
Collapse
|
33
|
Santos‐Moreno J, Schaerli Y. Using Synthetic Biology to Engineer Spatial Patterns. ACTA ACUST UNITED AC 2018; 3:e1800280. [DOI: 10.1002/adbi.201800280] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Santos‐Moreno
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| | - Yolanda Schaerli
- Department of Fundamental MicrobiologyUniversity of LausanneBiophore Building 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
35
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
36
|
Chatelle C, Ochoa-Fernandez R, Engesser R, Schneider N, Beyer HM, Jones AR, Timmer J, Zurbriggen MD, Weber W. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells. ACS Synth Biol 2018; 7:1349-1358. [PMID: 29634242 DOI: 10.1021/acssynbio.7b00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex R. Jones
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | | | | | | |
Collapse
|
37
|
Beyer HM, Engesser R, Hörner M, Koschmieder J, Beyer P, Timmer J, Zurbriggen MD, Weber W. Synthetic Biology Makes Polymer Materials Count. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800472. [PMID: 29603429 DOI: 10.1002/adma.201800472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi-input-processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology-derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse-counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research.
Collapse
Affiliation(s)
- Hannes M Beyer
- Faculty of Biology, SGBM - Spemann Graduate School of Biology and Medicine, BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79085, Freiburg, Germany
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, 79085, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, SGBM - Spemann Graduate School of Biology and Medicine, BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79085, Freiburg, Germany
| | - Julian Koschmieder
- Faculty of Biology, SGBM - Spemann Graduate School of Biology and Medicine, BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79085, Freiburg, Germany
| | - Peter Beyer
- Faculty of Biology, SGBM - Spemann Graduate School of Biology and Medicine, BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79085, Freiburg, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, 79085, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Wilfried Weber
- Faculty of Biology, SGBM - Spemann Graduate School of Biology and Medicine, BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79085, Freiburg, Germany
| |
Collapse
|
38
|
Schmelas C, Grimm D. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology. Biotechnol J 2018; 13:e1700432. [PMID: 29316283 DOI: 10.1002/biot.201700432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/28/2017] [Indexed: 02/06/2023]
Abstract
The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient, and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of 1) the gRNA as a scaffold for Cas9 assembly; 2) the rapamycin-controlled FKBP/FRB system; 3) the light-regulated Magnet system; or 4) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation.
Collapse
Affiliation(s)
- Carolin Schmelas
- Heidelberg University Hospital, Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| | - Dirk Grimm
- Heidelberg University Hospital, Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,BioQuant, University of Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner site Heidelberg, BioQuant BQ0030, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| |
Collapse
|
39
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Illuminating information transfer in signaling dynamics by optogenetics. Curr Opin Cell Biol 2017; 49:9-15. [DOI: 10.1016/j.ceb.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022]
|
41
|
Johnson MB, March AR, Morsut L. Engineering multicellular systems: using synthetic biology to control tissue self-organization. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:163-173. [PMID: 29308442 DOI: 10.1016/j.cobme.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marion B Johnson
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Alexander R March
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine University of Southern California Keck School of Medicine 1425 San Pablo Avenue, BCC-507, Los Angeles, 90033, USA
| |
Collapse
|
42
|
Edo Á, Espinosa-Parrilla JF. Soluble interleukin 23 receptor gene therapy with adeno-associated vectors for the treatment of multiple sclerosis. Neural Regen Res 2017; 12:1605-1606. [PMID: 29171419 PMCID: PMC5696835 DOI: 10.4103/1673-5374.217327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ángel Edo
- Gene Therapy for Central Nervous System Group, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Juan Francisco Espinosa-Parrilla
- Gene Therapy for Central Nervous System Group, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
43
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|