1
|
Lee S, Sun Y, Fan S, Rahim N, Xian Y, Shakhawat MK, Chavarria KA, Vedrin M, Guikema S, Sela L, Kumpel E, Lanzarini-Lopes M, Shen Y, Kirisits MJ, Raskin L, Potgieter S, Dowdell KS, Szczuka A. Moving Beyond the Silos of Opportunistic Pathogen and Disinfection Byproduct Research to Improve Drinking Water System Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40313230 DOI: 10.1021/acs.est.4c12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Drinking water opportunistic pathogens (OPs) and disinfection byproducts (DBPs) both pose risks to public health, and their variable occurrence from source to tap complicates efforts to control them simultaneously. Management of OPs and DBPs is further hindered by the historical division between microbial and chemical research. This review brings together the current knowledge regarding OPs and DBPs, identifies factors that influence the occurrence of both, and highlights areas where research is needed to better understand their health risks. First, we examine the current understanding of how OPs and DBPs are jointly influenced by physicochemical parameters, source water characteristics, treatment processes including disinfection, and distribution system properties. Temperature, for example, can affect OP and DBP occurrence, where higher temperatures can promote the growth of some OPs, such as Legionella pneumophila, but temperature's effect on DBPs is species-dependent. Methods for quantifying the risks associated with OPs (quantitative microbial risk assessment) and DBPs (chemical risk assessment) are compared, finding that the numerous assumptions and data gaps associated with each method limit comparability across contaminant types. We highlight the urgent need to fill existing data gaps and develop a more unified risk framework so as to move toward holistic assessment of microbial and chemical risks. This review provides suggestions for future research, highlighting ways that researchers might utilize established practices in OP or DBP studies to further our understanding of the other. For example, analysis of source water organic matter composition, which has advanced our understanding of DBP formation, could be utilized to elucidate how source water characteristics influence OPs. This review bridges the gap between the OP and DBP disciplines, arguing that collaboration between the two is needed to address the pressing challenges facing water systems today.
Collapse
Affiliation(s)
- Soojung Lee
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Sun
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Shi Fan
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Nowrina Rahim
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuhao Xian
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mohammad Kiron Shakhawat
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Karina A Chavarria
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Matthew Vedrin
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Seth Guikema
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Industrial and Operations Engineering, Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lina Sela
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Emily Kumpel
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Mariana Lanzarini-Lopes
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Yun Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States
| | - Mary Jo Kirisits
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah Potgieter
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katherine S Dowdell
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Matthews MC, Cooke DM, Kerr TJ, Loxton AG, Warren RM, Ghielmetti G, Streicher EM, Witte CS, Miller MA, Goosen WJ. Evidence of Mycobacterium bovis DNA in shared water sources at livestock-wildlife-human interfaces in KwaZulu-Natal, South Africa. Front Vet Sci 2025; 12:1483162. [PMID: 40093619 PMCID: PMC11907651 DOI: 10.3389/fvets.2025.1483162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) including Mycobacterium bovis (M. bovis), which primarily affects animal hosts; however, it is also capable of causing zoonotic infections in humans. Direct contact with infected animals or their products is the primary mode of transmission. However, recent research suggests that M. bovis can be shed into the environment, potentially playing an under-recognized role in the pathogen' spread. Further investigation into indirect transmission of M. bovis, employing a One Health approach, is necessary to evaluate its epidemiological significance. However, current methods are not optimized for identifying M. bovis in complex environmental samples. Nevertheless, in a recent study, a combination of molecular techniques, including next-generation sequencing (NGS), was able to detect M. bovis DNA in the environment to investigate epidemiological questions. The aim of this study was, therefore, to apply a combination of culture-independent methods, such as targeted NGS (tNGS), to detect pathogenic mycobacteria, including M. bovis, in water sources located in a rural area of KwaZulu-Natal (KZN), South Africa. This area was selected based on the high burden of MTBC in human and animal populations. Water samples from 63 sites were screened for MTBC DNA by extracting DNA and performing hsp65 PCR amplification, followed by Sanger amplicon sequencing (SAS). Sequences were compared to the National Centre for Biotechnology Information (NCBI) database for genus or species-level identification. Samples confirmed to contain mycobacterial DNA underwent multiple PCRs (hsp65, rpoB, and MAC hsp65) and sequencing with Oxford Nanopore Technologies (ONT) tNGS. The ONT tNGS consensus sequences were compared to a curated in-house database to identify mycobacteria to genus, species, or species complex (e.g., MTBC) level for each sample site. Additional screening for MTBC DNA was performed using the GeneXpert® MTB/RIF Ultra (GXU) qPCR assay. Based on GXU, hsp65 SAS, and ONT tNGS results, MTBC DNA was present in 12 of the 63 sites. The presence of M. bovis DNA was confirmed at 4 of the 12 sites using downstream polymerase chain reaction (PCR)-based methods. However, further studies are required to determine if environmental M. bovis is viable. These results support further investigation into the role that shared water sources may play in TB epidemiology.
Collapse
Affiliation(s)
- Megan C Matthews
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Deborah M Cooke
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J Kerr
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G Loxton
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Giovanni Ghielmetti
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Elizabeth M Streicher
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carmel S Witte
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Rathod SN, Weber RT, Salim AA, Tanna SD, Stosor V, Malczynski M, O'Boye A, Hoke K, Landon J, McCarthy S, Qi C, Angarone MP, Ison MG, Williams JL, Zembower TR, Bolon MK. Mycobacteroides abscessus outbreak and mitigation in a cardiothoracic transplant population: the problem with tap water. J Hosp Infect 2025; 155:150-157. [PMID: 39515477 DOI: 10.1016/j.jhin.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hospital outbreaks caused by Mycobacteroides abscessus complex are a major cause for concern in vulnerable patients such as the cardiothoracic transplant population. AIM To describe the outbreak investigation and mitigation steps undertaken to address an increase in healthcare-associated M. abscessus complex cases in an inpatient cardiothoracic transplant population. METHODS We extracted clinical characteristics from patients with M. abscessus pre-outbreak (March 2018 to December 2020) and during the outbreak (January 2021 to June 2022) from the electronic medical record. A multi-disciplinary team conducted the outbreak investigation and devised a mitigation strategy to implement at our institution. FINDINGS The baseline incidence of healthcare-associated M. abscessus was 0.11 cases per 10,000 patient-days; this increased to 0.24 cases per 10,000 patient-days during the outbreak. There were 1/9 (11%) cardiothoracic transplant patients in the pre-outbreak group compared with 7/12 (58%) during the outbreak, and respiratory specimen types compromised 6/9 (67%) of M. abscessus results in the pre-outbreak group compared with 10/12 (83%) during the outbreak. Among the clinical care activities involving water, a variety of water sources were utilized, including filtered and tap water. The incidence of healthcare-associated M. abscessus subsequently decreased to 0.06 cases per 10,000 patient-days after implementing an outbreak-mitigation strategy of sterile water precautions. CONCLUSIONS Robust educational efforts from a multi-disciplinary team on eliminating exposure to tap water were effective measures to reduce healthcare-associated M. abscessus incidence at our institution. Non-tuberculous mycobacteria infection surveillance, targeted education, and water mitigation strategies may be beneficial preventative strategies for other lung transplant centres facing similar issues.
Collapse
Affiliation(s)
- S N Rathod
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA.
| | - R T Weber
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA
| | - A A Salim
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial HealthCare, Chicago, IL, USA
| | - S D Tanna
- Division of Infectious Disease, Department of Medicine, Inova Fairfax Medical Center, Falls Church, VA, USA
| | - V Stosor
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M Malczynski
- Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A O'Boye
- Department of Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Hoke
- Cardiac Intensive Care Unit, Northwestern Medicine Central DuPage Hospital, Chicago, IL, USA
| | - J Landon
- Pulmonary Medicine, Northwestern Memorial Hospital, Chicago, IL, USA
| | - S McCarthy
- Cardiac, Vascular, and Thoracic Stepdown, Northwestern Memorial Hospital, Chicago, IL, USA
| | - C Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M P Angarone
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M G Ison
- Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH, Rockville, MD, USA
| | - J L Williams
- Division of Infectious Diseases, Corewell Health Medical Group, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - T R Zembower
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Clinical Microbiology Laboratory, Northwestern Memorial Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M K Bolon
- Department of Healthcare Epidemiology and Infection Prevention, Northwestern Memorial Hospital, Chicago, IL, USA; Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Pitell S, Spencer-Williams I, Huffman D, Moncure P, Millstone J, Stout J, Gilbertson L, Haig SJ. Not the Silver Bullet: Uncovering the Unexpected Limited Impacts of Silver-Containing Showerheads on the Drinking Water Microbiome. ACS ES&T WATER 2024; 4:5364-5376. [PMID: 39698548 PMCID: PMC11650587 DOI: 10.1021/acsestwater.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
The incidence of waterborne disease outbreaks in the United States attributed to drinking water-associated pathogens that can cause infections in the immunocompromised DWPIs (e.g., Legionella pneumophila, nontuberculous mycobacteria (NTM), and Pseudomonas aeruginosa, among others) appears to be increasing. An emerging technology adopted to reduce DWPIs are point-of-use devices, such as showerheads that contain silver, a known antimicrobial material. In this study, we evaluate the effect of silver-containing showerheads on DWPI density and the broader microbiome in shower water under real-use conditions in a full-scale shower system, considering three different silver-modified showerhead designs: (i) silver mesh within the showerhead, (ii) silver-coated copper mesh in the head and hose, and (iii) silver-embedded polymer composite compared to conventional plastic and metal showerheads. We found no significant difference in targeted DWPI transcriptional activity in collected water across silver and nonsilver shower head designs. Yet, the presence of silver and how it was incorporated in the showerhead influenced the metal concentrations, microbial rare taxa, and microbiome functionality. Microbial dynamics were also influenced by the showerhead age (i.e., time after installation). The results of this study provide valuable information for consumers and building managers to consider when choosing a showerhead meant to reduce microorganisms in shower water.
Collapse
Affiliation(s)
- Sarah Pitell
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Isaiah Spencer-Williams
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Daniel Huffman
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Paige Moncure
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jill Millstone
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department
of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Janet Stout
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Special
Pathogens Laboratory, Pittsburgh, Pennsylvania 15219, United States
| | - Leanne Gilbertson
- Department
of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sarah-Jane Haig
- Department
of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
5
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
6
|
Gomez-Alvarez V, Ryu H, McNeely M, Muhlen C, Williams D, Lytle D, Boczek L. Vertical stratification of the water microbiome in an electric water heater tank: implications for premise plumbing opportunistic pathogens. JOURNAL OF WATER AND HEALTH 2024; 22:2346-2357. [PMID: 39733360 DOI: 10.2166/wh.2024.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/10/2024] [Indexed: 12/31/2024]
Abstract
Hot water systems are the most frequent environment associated with the prevalence and growth of opportunistic premise plumbing pathogens (OPPPs). Previous studies identified water heaters as a source of waterborne diseases and concluded that design variables may contribute to their prevalence. A multifaceted approach was used to investigate the vertical stratification of the microbiome and selected OPPPs in an electric water heater tank connected to a home plumbing system simulator. Results show that the microbiome is highly diverse with evidence of temperature stratification and temporal structuring influenced by the partial drainage of the tank. Representatives of the Mycobacterium spp. were the most prevalent taxa, followed by Legionella spp., and a relatively low prevalence of free-living amoeba Vermamoeba vermiformis. Higher concentrations of Legionella pneumophila at the bottom of the tank indicated the potential growth and protection of this opportunistic pathogen at this location. Overall, partial drainage of the water tank (60% of the tank capacity) did not significantly mitigate the microbiome and selected OPPPs. The outcome of this study sheds light on the role of vertical stratification on water quality and demonstrates the resilience of the microbial community residing in an electric water heater tank and the implications for public health.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA E-mail:
| | - Hodon Ryu
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Morgan McNeely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Christy Muhlen
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Daniel Williams
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Darren Lytle
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Laura Boczek
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| |
Collapse
|
7
|
Meena DS, Kumar D, Bohra GK, Midha N, Garg MK. Nontuberculous Mycobacterial Infective Endocarditis: A Systematic Review of Clinical Characteristics and Outcomes. Open Forum Infect Dis 2024; 11:ofae688. [PMID: 39660020 PMCID: PMC11629984 DOI: 10.1093/ofid/ofae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Background Infective endocarditis (IE) due to nontuberculous mycobacteria (NTM) is a rare infection, and several outbreaks have been reported in the last 2 decades. However, the clinical spectrum is still poorly understood. This systematic review aimed to evaluate the clinical characteristics and outcomes in NTM IE. Methods We searched the major electronic databases (PubMed, Scopus, and Google Scholar) with appropriate keywords to December 2023. We included studies based on predefined diagnostic criteria, and relevant data were collected on clinical presentation and treatment outcomes. The study was registered with PROSPERO (CRD42023492577). Results A total of 97 studies were reviewed, encompassing 167 patients with NTM IE. The earliest cases were reported in 1975, involving M chelonae and M fortuitum. M chimaera was the most prevalent species (38.9%), though rapidly growing NTM (RGM) were more common than slow-growing NTM (SGM; 59.3% vs 40.7%). Disseminated NTM infection occurred in 84% of cases, with bone marrow infiltration and osteomyelitis as frequent manifestations. Prosthetic valves were the main risk factor, present in 63.5% of cases. In native valve IE, nearly all cases (n = 27, 96%) were attributed to RGM. The overall mortality rate was 44.9%, with conservative management without surgery associated with poorer outcomes (66.7% vs 30.6%). Mortality was comparable between SGM and RGM IE, although relapses were more common in SGM IE (17.6% vs 1.9%). Conclusions This review highlights the changing epidemiology of NTM IE with the emergence of RGM IE. Disseminated infections in the setting of prosthetic valves warrant NTM evaluation. The high mortality rate necessitates the role of early surgery.
Collapse
Affiliation(s)
- Durga Shankar Meena
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Deepak Kumar
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Midha
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
8
|
García-Ruza M, Blanco J, Campusano K, Silva D, Claro F, de Waard JH. Managing Complicated Nontuberculous Mycobacteria Infections in Plastic Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6254. [PMID: 39449711 PMCID: PMC11500787 DOI: 10.1097/gox.0000000000006254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
Nontuberculous mycobacteria (NTM) infections after cosmetic surgery have become an increasing concern. These infections are often initially misdiagnosed and treated with standard antibiotic regimens, which fail to resolve the underlying infection, leading to prolonged patient suffering. In this case study, we describe a chronic wound infection caused by Mycobacterium abscessus subsp. bolletii after a muscle-repair abdominoplasty. This case illustrates the diagnostic and therapeutic challenges plastic surgeons face in successfully treating such infections. Initial obstacles included the isolation of co-contaminating bacteria that masked the NTM infection, the use of antibiotics ineffective against the specific NTM species, and the failure to identify the infection source. In this instance, contaminated skin marker ink used to mark the rectus muscle, combined with a nonabsorbable (permanent) suture for muscle repair, led to the development of a biofilm that acted as a persistent reservoir for the infection, resistant to antibiotic treatments. Complete resolution was achieved only after evaluation by a plastic surgeon experienced in treating NTM infections and the subsequent removal of the permanent suture. The delayed suture removal contributed to a 15-month recovery period. This case underscores the importance of early recognition of NTM infections after cosmetic procedures. By sharing this case, we aim to raise awareness of NTM infections and help prevent future cases of misdiagnosis and prolonged antibiotic treatments. Key points regarding the diagnosis, sources of infection, and treatment options for NTM infections are highlighted in this article using "text boxes" to emphasize the most important information and provide concise summaries of critical insights.
Collapse
Affiliation(s)
- Miriam García-Ruza
- From the Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery. Hospital Vargas de Caracas, San José, Caracas, Venezuela
| | - Juan Blanco
- From the Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery. Hospital Vargas de Caracas, San José, Caracas, Venezuela
| | - Katherine Campusano
- From the Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery. Hospital Vargas de Caracas, San José, Caracas, Venezuela
| | - Douglas Silva
- Departamento de Tuberculosis y Micobacteriosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit, Hospital Vargas de Caracas, San José, Caracas, Venezuela
| | - Franklin Claro
- Departamento de Tuberculosis y Micobacteriosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit, Hospital Vargas de Caracas, San José, Caracas, Venezuela
| | - Jacobus H. de Waard
- From the Department of Plastic, Reconstructive, Aesthetic, and Maxillofacial Surgery. Hospital Vargas de Caracas, San José, Caracas, Venezuela
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
9
|
Whapham CA, Walker JT. Too much ado about data: continuous remote monitoring of water temperatures, circulation and throughput can assist in the reduction of hospital-associated waterborne infections. J Hosp Infect 2024; 152:47-55. [PMID: 38960042 DOI: 10.1016/j.jhin.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND National and international guidance provides advice on maintenance and management of water systems in healthcare buildings; however, healthcare-associated waterborne infections (HAWIs) are increasing. AIM To identify parameters critical to water quality in healthcare buildings and to assess whether remote sensor monitoring can deliver safe water systems, thus reducing HAWIs. METHODS A narrative review was performed using the following search terms: (1) consistent water temperature AND waterborne pathogen control OR nosocomial infection; (2) water throughput AND waterborne pathogen control OR nosocomial infection; (3) remote monitoring of in-premises water systems AND continuous surveillance for temperature OR throughput OR flow OR use. Databases employed were PubMed, CDSR (Clinical Study Data Request) and DARE (Database of Abstracts of Reviews of Effects) from January 2013 to March 2024. FINDINGS Single ensuite-patient rooms, expansion of handwash basins, widespread glove use, alcohol gel and wipes have increased water system stagnancy resulting in amplification of waterborne pathogens and transmission risk of legionella, pseudomonas, and non-tuberculous mycobacteria. Manual monitoring does not represent temperatures across large complex water systems. This review deems that multiple-point continuous remote sensor monitoring is effective at identifying redundant and low use outlets, hydraulic imbalance and inconsistent temperature delivery across in-premises water systems. CONCLUSION As remote monitoring becomes more common there will be greater recognition of failures in temperature control, hydraulics, and balancing in water systems, and there remains much to learn as we adopt this developing technology within our hospitals.
Collapse
Affiliation(s)
- C A Whapham
- Independent Water Hygiene Consultant, Ludlow, UK.
| | - J T Walker
- Independent Microbiology Consultant, Walker on Water, Salisbury, UK
| |
Collapse
|
10
|
Liu Y, Murphy K, Fernandes N, Moore RET, Pennisi I, Williams R, Rehkämper M, Larrouy-Maumus G. Transition metal homoeostasis is key to metabolism and drug tolerance of Mycobacterium abscessus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:25. [PMID: 39359892 PMCID: PMC11442307 DOI: 10.1038/s44259-024-00042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is one of the major challenges humans are facing this century. Understanding the mechanisms behind the rise of AMR is therefore crucial to tackling this global threat. The presence of transition metals is one of the growth-limiting factors for both environmental and pathogenic bacteria, and the mechanisms that bacteria use to adapt to and survive under transition metal toxicity resemble those correlated with the rise of AMR. A deeper understanding of transition metal toxicity and its potential as an antimicrobial agent will expand our knowledge of AMR and assist the development of therapeutic strategies. In this study, we investigate the antimicrobial effect of two transition metal ions, namely cobalt (Co2+) and nickel (Ni2+), on the non-tuberculous environmental mycobacterium and the opportunistic human pathogen Mycobacterium abscessus. The minimum inhibitory concentrations of Co2+ and Ni2+ on M. abscessus were first quantified and their impact on the bacterial intracellular metallome was investigated. A multi-omics strategy that combines transcriptomics, bioenergetics, metabolomics, and phenotypic assays was designed to further investigate the mechanisms behind the effects of transition metals. We show that transition metals induced growth defect and changes in transcriptome and carbon metabolism in M. abscessus, while the induction of the glyoxylate shunt and the WhiB7 regulon in response to metal stresses could be the key response that led to higher AMR levels. Meanwhile, transition metal treatment alters the bacterial response to clinically relevant antibiotics and enhances the uptake of clarithromycin into bacterial cells, leading to increased efficacy. This work provides insights into the tolerance mechanisms of M. abscessus to transition metal toxicity and demonstrates the possibility of using transition metals to adjuvant the efficacy of currently using antimicrobials against M. abscessus infections.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Katy Murphy
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Ivana Pennisi
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Williams
- Imperial BRC Genomics Faculty, Imperial College London, London, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London, UK
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
11
|
Dowdell KS, Potgieter SC, Olsen K, Lee S, Vedrin M, Caverly LJ, LiPuma JJ, Raskin L. Source-to-tap investigation of the occurrence of nontuberculous mycobacteria in a full-scale chloraminated drinking water system. Appl Environ Microbiol 2024; 90:e0060924. [PMID: 39109876 PMCID: PMC11409651 DOI: 10.1128/aem.00609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (107 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium, were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.
Collapse
Affiliation(s)
- Katherine S. Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah C. Potgieter
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kirk Olsen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Soojung Lee
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Vedrin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Castro-Morales O, Soria-Herrera RJ, Cornejo-Estudillo G, Avila-Trejo AM, Valencia-Trujillo D, Zanella-Vargas MG, Vázquez-Barrios ME, Rangel-Vargas E, Castro-Rosas J, García-Reyes RL, Rivera-Gutiérrez S, Campos-Peña V, Cerna-Cortés JF. Presence of Indicator Bacteria and Occurrence of Potentially Pathogenic Nontuberculous Mycobacteria Species in Packaged Ice Cubes in Central Mexico. J Food Prot 2024; 87:100318. [PMID: 38876364 DOI: 10.1016/j.jfp.2024.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to determine the bacteriological quality and presence of diarrheagenic Escherichia coli pathotypes (DEP) and nontuberculous mycobacteria (NTM) species in 85 packaged ice samples from 12 different states of central Mexico. Three samples had a pH of 9.8 and therefore fell outside of the acceptable range for pH. All samples were positive for aerobic-mesophilic bacteria, with limits ranging from 1 to 3.47 log CFU/mL. In total, 35, 11, and 3 ice samples were positive for total coliforms (TC), fecal coliforms (FC), and E. coli, respectively. In the samples, the TC concentration ranged from <1.1 to >23 MPN/100 mL and from <1.1 to 23 MPN/100 mL for FC and E. coli. In total, 38 (44.7%) ice samples were outside of Mexico's official guidelines. None of the 12 E. coli strains isolated from the three ice samples belonged to DEP. NTM were recovered from 20 ice samples and included M. neoaurum (n = 7), M. porcinum (n = 2), M. flavescens (n = 2), M. fortuitum (n = 1), M. abscessus (n = 1), M. senegalense (n = 1), M. conceptionense (n = 1), and M. sp. (n = 1). In the remaining four samples, two NTM were isolated simultaneously. Thus, we recommend that producers should evaluate the microbiological quality of purified water used as a raw material as well as that of the final product, the ice should be packed in thick bags to avoid stretching and tearing during transportation or storage to prevent environmental contamination of ice, personnel involved in the production, and handling of ice should be trained in relative hygiene matters and how ice-machines should be cleaned and disinfected and the implementation of hazard analysis and critical control points must be applied throughout the chain of production. Finally, regular inspection by the authorities is also of great importance. These recommendations can be applied in different countries with low microbiological quality packaged ice.
Collapse
Affiliation(s)
- Oscar Castro-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - Amanda Marineth Avila-Trejo
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaria de la Defensa Nacional, Ciudad de México 11200, Mexico
| | - Daniel Valencia-Trujillo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaria de la Defensa Nacional, Ciudad de México 11200, Mexico
| | | | | | - Esmeralda Rangel-Vargas
- Área de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo 42184, Mexico
| | - Javier Castro-Rosas
- Área de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo 42184, Mexico
| | - Rocío Liliana García-Reyes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México 14269, Mexico
| | - Jorge Francisco Cerna-Cortés
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
13
|
Seenivasagham V, K C BK, Chandy JP, Kastl G, Blackall LL, Rittmann B, Sathasivan A. Heterotrophic bacteria isolated from a chloraminated system accelerate chloramine decay. CHEMOSPHERE 2024; 359:142341. [PMID: 38754485 DOI: 10.1016/j.chemosphere.2024.142341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
This work comprehensively demonstrates the ability of heterotrophic bacteria, isolated from a chloraminated system, to decay chloramine. This study non-selectively isolated 62 cultures of heterotrophic bacteria from a water sample (0.002 mg-N/L nitrite and 1.42 mg/L total chlorine) collected from a laboratory-scale reactor system; most of the isolates (93.3%) were Mycobacterium sp. Three species of Mycobacterium and one species of Micrococcus were inoculated to a basal inorganic medium with initial concentrations of acetate (from 0 to 24 mg-C/L) and 1.5 mg/L chloramine. Bacterial growth coincided with declines in the concentrations of chloramine, acetate, and ammonium. Detailed experiments with one of the Mycobacterium sp. isolates suggest that the common mechanism of chloramine loss is auto-decomposition likely mediated by chloramine-decaying proteins. The ability of the isolates to grow and decay chloramine underscores the important role of heterotrophic bacteria in the stability of chloramine in water-distribution systems. Existing strategies based on controlling nitrification should be augmented to include minimizing heterotrophic bacteria.
Collapse
Affiliation(s)
- Vimala Seenivasagham
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Bal Krishna K C
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Joseph P Chandy
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - George Kastl
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, VIC, 3010, Australia
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287, USA
| | - Arumugam Sathasivan
- School of Engineering, Design and Built Environment Western Sydney University, NSW, 2747, Australia.
| |
Collapse
|
14
|
Zhang L, Lin TY, Liu WT, Ling F. Toward Characterizing Environmental Sources of Non-tuberculous Mycobacteria (NTM) at the Species Level: A Tutorial Review of NTM Phylogeny and Phylogenetic Classification. ACS ENVIRONMENTAL AU 2024; 4:127-141. [PMID: 38765059 PMCID: PMC11100324 DOI: 10.1021/acsenvironau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024]
Abstract
Nontuberculous mycobacteria (NTM) are any mycobacteria that do not cause tuberculosis or leprosy. While the majority of NTM are harmless and some of them are considered probiotic, a growing number of people are being diagnosed with NTM infections. Therefore, their detection in the environment is of interest to clinicians, environmental microbiologists, and water quality researchers alike. This review provides a tutorial on the foundational approaches for taxonomic classifications, with a focus on the phylogenetic relationships among NTM revealed by the 16S rRNA gene, rpoB gene, and hsp65 gene, and by genome-based approaches. Recent updates on the Mycobacterium genus taxonomy are also provided. A synthesis on the habitats of 189 mycobacterial species in a genome-based taxonomy framework was performed, with attention paid to environmental sources (e.g., drinking water, aquatic environments, and soil). The 16S rRNA gene-based classification accuracy for various regions was evaluated (V3, V3-V4, V3-V5, V4, V4-V5, and V1-V9), revealing overall excellent genus-level classification (up to 100% accuracy) yet only modest performance (up to 63.5% accuracy) at the species level. Future research quantifying NTM species in water systems, determining the effects of water treatment and plumbing conditions on their variations, developing high throughput species-level characterization tools for use in the environment, and incorporating the characterization of functions in a phylogenetic framework will likely fill critical knowledge gaps. We believe this tutorial will be useful for researchers new to the field of molecular or genome-based taxonomic profiling of environmental microbiomes. Experts may also find this review useful in terms of the selected key findings of the past 30 years, recent updates on phylogenomic analyses, as well as a synthesis of the ecology of NTM in a phylogenetic framework.
Collapse
Affiliation(s)
- Lin Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tzu-Yu Lin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
16
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
17
|
Ren A, Yao M, Fang J, Dai Z, Li X, van der Meer W, Medema G, Rose JB, Liu G. Bacterial communities of planktonic bacteria and mature biofilm in service lines and premise plumbing of a Megacity: Composition, Diversity, and influencing factors. ENVIRONMENT INTERNATIONAL 2024; 185:108538. [PMID: 38422875 DOI: 10.1016/j.envint.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).
Collapse
Affiliation(s)
- Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Walter van der Meer
- Science and Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands; Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands
| | - Gertjan Medema
- Oasen Drinkwater, PO Box 122, 2800 AC, Gouda, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Zhao B, Liu R, Li Y, Xu H, Li X, Gu J, Zhang X, Wang Y, Wang Y. Changes of putative pathogenic species within the water bacterial community in large-scale drinking water treatment and distribution systems. WATER RESEARCH 2024; 249:120947. [PMID: 38043356 DOI: 10.1016/j.watres.2023.120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Although the management of microbes in drinking water is of paramount importance for public health, there remain challenges in comprehensively examining pathogenic bacteria in the water supply system at the species level. In this study, high-throughput sequencing of nearly full-length 16S rRNA genes was performed to investigate the changes of the water bacterial community in three large-scale drinking water treatment plants (DWTPs) and their corresponding distribution systems during winter and summer. Our findings revealed significant differences in the bacterial community structure between winter and summer water samples for each DWTP and its distribution management area (DMA). In the groundwater-fed DWTP, selective enrichment of mycobacterial species was observed in both seasons, and the subsequent DMA also exhibited strong selection for specific mycobacterial species. In one of the surface water-fed DWTPs, certain Legionella species present in the source water in winter were selectively enriched in the bacterial community after pre-oxidation, although they were susceptible to the subsequent purification steps. A variety of putative pathogenic species (n = 83) were identified based on our pathogen identification pipeline, with the dominant species representing opportunistic pathogens commonly found in water supply systems. While pathogen removal primarily occurred during the purification processes of DWTPs, especially for surface water-fed plants, the relative abundance of pathogenic bacteria in the DMA water flora was lower than that in the DWTP effluent flora, indicating a diminished competitiveness of pathogens within the DMA ecosystem.
Collapse
Affiliation(s)
- Bei Zhao
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China; Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou, Shandong, PR China.
| | - Yuxian Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Hao Xu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiangyi Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Junnong Gu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiaolan Zhang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Yue Wang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China
| | - Yansong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
19
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
20
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
21
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
22
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
23
|
Gomez-Alvarez V, Ryu H, Tang M, McNeely M, Muhlen C, Urbanic M, Williams D, Lytle D, Boczek L. Assessing residential activity in a home plumbing system simulator: monitoring the occurrence and relationship of major opportunistic pathogens and phagocytic amoebas. Front Microbiol 2023; 14:1260460. [PMID: 37915853 PMCID: PMC10616306 DOI: 10.3389/fmicb.2023.1260460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Opportunistic premise plumbing pathogens (OPPPs) have been detected in buildings' plumbing systems causing waterborne disease outbreaks in the United States. In this study, we monitored the occurrence of OPPPs along with free-living amoeba (FLA) and investigated the effects of residential activities in a simulated home plumbing system (HPS). Water samples were collected from various locations in the HPS and analyzed for three major OPPPs: Legionella pneumophila, nontuberculous mycobacterial species (e.g., Mycobacterium avium, M. intracellulare, and M. abscessus), and Pseudomonas aeruginosa along with two groups of amoebas (Acanthamoeba and Vermamoeba vermiformis). A metagenomic approach was also used to further characterize the microbial communities. Results show that the microbial community is highly diverse with evidence of spatial and temporal structuring influenced by environmental conditions. L. pneumophila was the most prevalent pathogen (86% of samples), followed by M. intracellulare (66%) and P. aeruginosa (21%). Interestingly, M. avium and M. abscessus were not detected in any samples. The data revealed a relatively low prevalence of Acanthamoeba spp. (4%), while V. vermiformis was widely detected (81%) across all the sampling locations within the HPS. Locations with a high concentration of L. pneumophila and M. intracellulare coincided with the highest detection of V. vermiformis, suggesting the potential growth of both populations within FLA and additional protection in drinking water. After a period of stagnation lasting at least 2-weeks, the concentrations of OPPPs and amoeba immediately increased and then decreased gradually back to the baseline. Furthermore, monitoring the microbial population after drainage of the hot water tank and partial drainage of the entire HPS demonstrated no significant mitigation of the selected OPPPs. This study demonstrates that these organisms can adjust to their environment during such events and may survive in biofilms and/or grow within FLA, protecting them from stressors in the supplied water.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Hodon Ryu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Min Tang
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Morgan McNeely
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Christy Muhlen
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Megan Urbanic
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Daniel Williams
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Darren Lytle
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Laura Boczek
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
24
|
Yao M, Zhang Y, Dai Z, Ren A, Fang J, Li X, van der Meer W, Medema G, Rose JB, Liu G. Building water quality deterioration during water supply restoration after interruption: Influences of premise plumbing configuration. WATER RESEARCH 2023; 241:120149. [PMID: 37270942 DOI: 10.1016/j.watres.2023.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.e., laboratory and toilet plumbing. Water quality deteriorations induced by premise plumbing under regular and interrupted water supply were investigated. The results showed that most of the water quality parameters did not vary under regular supply, except Zn, which was significantly increased by laboratory plumbing (78.2 to 260.7 µg/l). For the bacterial community, the Chao1 index was significantly increased by both plumbing types to a similar level (52 to 104). Laboratory plumbing significantly changed the bacterial community, but toilet plumbing did not. Remarkably, water supply interruption/restoration led to serious water quality deterioration in both plumbing types but resulted in different changes. Physiochemically, discoloration was observed only in laboratory plumbing, along with sharp increases in Mn and Zn. Microbiologically, the increase in ATP was sharper in toilet plumbing than in laboratory plumbing. Some opportunistic pathogen-containing genera, e.g., Legionella spp. and Pseudomonas spp., were present in both plumbing types but only in disturbed samples. This study highlighted the esthetic, chemical, and microbiological risks associated with premise plumbing, for which system configuration plays an important role. Attention should be given to optimizing premise plumbing design for managing building water quality.
Collapse
Affiliation(s)
- Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft, GA 2600, the Netherlands
| | - Yue Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Membrane Science and Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500AE, the Netherlands
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Walter van der Meer
- Membrane Science and Technology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500AE, the Netherlands; Oasen Drinkwater, PO BOX 122, Gouda, AC 2800, the Netherlands
| | - Gertjan Medema
- Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, Delft, GA 2600, the Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, Nieuwegein 3430 BB, the Netherlands; Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, United States of America
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, United States of America
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Miko S, Collier SA, Burns-Lynch CE, Andújar AA, Benedict KM, Haston JC, Hough CO, Cope JR. (Mis)perception and Use of Unsterile Water in Home Medical Devices, PN View 360+ Survey, United States, August 2021 1. Emerg Infect Dis 2023; 29:397-401. [PMID: 36692441 PMCID: PMC9881759 DOI: 10.3201/eid2902.221205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tap water is not sterile, and its use in home medical devices can result in infections from waterborne pathogens. However, many participants in a recent survey in the United States said tap water could safely be used for home medical devices. These results can inform communication materials to reduce the high consequence of infections.
Collapse
|
26
|
Marshall JE, Gebert MJ, Lipner EM, Salfinger M, Falkinham Iii JO, Prevots DR, Mercaldo RA. Methods of isolation and identification of nontuberculous mycobacteria from environmental samples: A scoping review. Tuberculosis (Edinb) 2023; 138:102291. [PMID: 36521261 DOI: 10.1016/j.tube.2022.102291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment. Some species of NTM are pathogenic and cause lung disease in susceptible persons. Epidemiologic studies of environmental NTM infection risk rely on both culture-dependent and culture-independent techniques for NTM isolation and identification. In this review, we summarized current methods used to isolate and identify NTM from the environment. We searched PubMed, Embase, Scopus, Web of Science: Core Collection, and Global Health (CAB Direct) for peer-reviewed studies from the last 12 years. We identified 1685 unique citations and 110 studies met our inclusion and exclusion criteria. Approximately half (55%) of the studies identified in this review used a combination of culture-independent and culture-dependent methods. The most common environmental substrate analyzed was water (n = 90). Identification of current, common methods for the isolation and identification of NTM from environmental samples may contribute to the development of standard methodological practices in the future. The choice of isolation method is based on the research question, environment, and species. A summary of common methods may contribute to the development of standard practices for isolation and identification of NTM from environmental samples, which may lead to more robust and comparable results.
Collapse
Affiliation(s)
- Julia E Marshall
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.
| | - Ettie M Lipner
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Max Salfinger
- College of Public Health & Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | | | - D Rebecca Prevots
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Rachel A Mercaldo
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| |
Collapse
|
27
|
Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, Ali MZ, Patterson J, Creissen E, Rampacci E, Cooper SK, Podell BK, Gonzalez-Juarrero M, Obregon-Henao A, Henao-Tamayo M. Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Rep 2022; 41:111783. [PMID: 36516760 DOI: 10.1016/j.celrep.2022.111783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Rhythm Dadhwal
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Malik Zohaib Ali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Johnathan Patterson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
28
|
Shen Y, Haig SJ, Prussin AJ, LiPuma JJ, Marr LC, Raskin L. Shower water contributes viable nontuberculous mycobacteria to indoor air. PNAS NEXUS 2022; 1:pgac145. [PMID: 36712351 PMCID: PMC9802317 DOI: 10.1093/pnasnexus/pgac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Nontuberculous mycobacteria (NTM) are frequently present in municipal drinking water and building plumbing, and some are believed to cause respiratory tract infections through inhalation of NTM-containing aerosols generated during showering. However, the present understanding of NTM transfer from water to air is insufficient to develop NTM risk mitigation strategies. This study aimed to characterize the contribution of shower water to the abundance of viable NTM in indoor air. Shower water and indoor air samples were collected, and 16S rRNA and rpoB genes were sequenced. The sequencing results showed that running the shower impacted the bacterial community structure and NTM species composition in indoor air by transferring certain bacteria from water to air. A mass balance model combined with NTM quantification results revealed that on average 1/132 and 1/254 of NTM cells in water were transferred to air during 1 hour of showering using a rain and massage showerhead, respectively. A large fraction of the bacteria transferred from water to air were membrane-damaged, i.e. they had compromised membranes based on analysis by live/dead staining and flow cytometry. However, the damaged NTM in air were recoverable as shown by growth in a culture medium mimicking the respiratory secretions of people with cystic fibrosis, implying a potential infection risk by NTM introduced to indoor air during shower running. Among the recovered NTM, Mycobacterium mucogenicum was the dominant species as determined by rpoB gene sequencing. Overall, this study lays the groundwork for future pathogen risk management and public health protection in the built environment.
Collapse
Affiliation(s)
| | | | - Aaron J Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, Blacksburg, VA 24061, USA
| | | |
Collapse
|
29
|
Bruno A, Agostinetto G, Fumagalli S, Ghisleni G, Sandionigi A. It’s a Long Way to the Tap: Microbiome and DNA-Based Omics at the Core of Drinking Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137940. [PMID: 35805598 PMCID: PMC9266242 DOI: 10.3390/ijerph19137940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Microbial communities interact with us and affect our health in ways that are only beginning to be understood. Microorganisms have been detected in every ecosystem on Earth, as well as in any built environment that has been investigated. Drinking water sources, drinking water treatment plants and distribution systems provide peculiar microbial ecological niches, dismantling the belief of the “biological simplicity” of drinking water. Nevertheless, drinking water microbiomes are understudied compared to other microbiomes. Recent DNA sequencing and meta-omics advancements allow a deeper understanding of drinking water microbiota. Thus, moving beyond the limits of day-to-day testing for specific pathogenic microbes, new approaches aim at predicting microbiome changes driven by disturbances at the macro-scale and overtime. This will foster an effective and proactive management of water sources, improving the drinking water supply system and the monitoring activities to lower public health risk. Here, we want to give a new angle on drinking water microbiome research. Starting from a selection of 231 scientific publications on this topic, we emphasize the value of biodiversity in drinking water ecosystems and how it can be related with industrialization. We then discuss how microbiome research can support sustainable drinking water management, encouraging collaborations across sectors and involving the society through responsible research and innovation.
Collapse
Affiliation(s)
- Antonia Bruno
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
- Correspondence:
| | - Giulia Agostinetto
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
| | - Sara Fumagalli
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
| | - Giulia Ghisleni
- Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126 Milan, Italy; (G.A.); (S.F.); (G.G.)
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France
| | | |
Collapse
|
30
|
Abstract
Nontuberculous mycobacterial (NTM) pulmonary infections in people with cystic fibrosis (CF) are associated with significant morbidity and mortality and are increasing in prevalence. Host risk factors for NTM infection in CF are largely unknown. We hypothesize that the airway microbiota represents a host risk factor for NTM infection. In this study, 69 sputum samples were collected from 59 people with CF; 42 samples from 32 subjects with NTM infection (14 samples collected before incident NTM infection and 28 samples collected following incident NTM infection) were compared to 27 samples from 27 subjects without NTM infection. Sputum samples were analyzed with 16S rRNA gene sequencing and metabolomics. A supervised classification and correlation analysis framework (sparse partial least-squares discriminant analysis [sPLS-DA]) was used to identify correlations between the microbial and metabolomic profiles of the NTM cases compared to the NTM-negative controls. Several metabolites significantly differed in the NTM cases compared to controls, including decreased levels of tryptophan-associated and branched-chain amino acid metabolites, while compounds involved in phospholipid metabolism displayed increased levels. When the metabolome and microbiome data were integrated by sPLS-DA, the models and component ordinations showed separation between the NTM and control samples. While this study could not determine if the observed differences in sputum metabolites between the cohorts reflect metabolic changes that occurred as a result of the NTM infection or metabolic features that contributed to NTM acquisition, it is hypothesis generating for future work to investigate host and bacterial community factors that may contribute to NTM infection risk in CF. IMPORTANCE Host risk factors for nontuberculous mycobacterial (NTM) infection in people with cystic fibrosis (CF) are largely unclear. The goal of this study was to help identify potential host and bacterial community risk factors for NTM infection in people with CF, using microbiome and metabolome data from CF sputum samples. The data obtained in this study identified several metabolic profile differences in sputum associated with NTM infection in CF, including 2-methylcitrate/homocitrate and selected ceramides. These findings represent potential risk factors and therapeutic targets for preventing and/or treating NTM infections in people with CF.
Collapse
|
31
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Verstraete W, Yanuka‐Golub K, Driesen N, De Vrieze J. Engineering microbial technologies for environmental sustainability: choices to make. Microb Biotechnol 2022; 15:215-227. [PMID: 34875143 PMCID: PMC8719809 DOI: 10.1111/1751-7915.13986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/27/2022] Open
Abstract
Microbial technologies have provided solutions to key challenges in our daily lives for over a century. In the debate about the ongoing climate change and the need for planetary sustainability, microbial ecology and microbial technologies are rarely considered. Nonetheless, they can bring forward vital solutions to decrease and even prevent long-term effects of climate change. The key to the success of microbial technologies is an effective, target-oriented microbiome management. Here, we highlight how microbial technologies can play a key role in both natural, i.e. soils and aquatic ecosystems, and semi-natural or even entirely human-made, engineered ecosystems, e.g. (waste) water treatment and bodily systems. First, we set forward fundamental guidelines for effective soil microbial resource management, especially with respect to nutrient loss and greenhouse gas abatement. Next, we focus on closing the water circle, integrating resource recovery. We also address the essential interaction of the human and animal host with their respective microbiomes. Finally, we set forward some key future potentials, such as microbial protein and the need to overcome microphobia for microbial products and services. Overall, we conclude that by relying on the wisdom of the past, we can tackle the challenges of our current era through microbial technologies.
Collapse
Affiliation(s)
- Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
- Avecom NVIndustrieweg 122PWondelgem9032Belgium
| | - Keren Yanuka‐Golub
- The Institute of Applied ResearchThe Galilee SocietyP.O. Box 437Shefa‐AmrIsrael
| | | | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
| |
Collapse
|
33
|
Davidson RM, Hasan NA, Epperson LE, Benoit JB, Kammlade SM, Levin AR, Calado de Moura V, Hunkins J, Weakly N, Beagle S, Sagel SD, Martiniano SL, Salfinger M, Daley CL, Nick JA, Strong M. Population Genomics of Mycobacterium abscessus from U.S. Cystic Fibrosis Care Centers. Ann Am Thorac Soc 2021; 18:1960-1969. [PMID: 33856965 PMCID: PMC8641822 DOI: 10.1513/annalsats.202009-1214oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale:Mycobacterium abscessus is a significant threat to individuals with cystic fibrosis (CF) because of innate drug resistance and potential transmission between patients. Recent studies described global dominant circulating clones of M. abscessus, but detailed genomic surveys have not yet been described for the United States. Objectives: We examined the genetic diversity of respiratory M. abscessus isolates from U.S. patients with CF and evaluated the potential for transmission events within CF Care Centers. Methods: Whole-genome sequencing was performed on 558 M. abscessus isolates from 266 patients with CF attending 48 CF Care Centers in 28 U.S. states as part of a nationwide surveillance program. U.S. isolates were also compared with 64 isolate genomes from 13 previous studies to evaluate the prevalence of recently described dominant circulating clones. Results: More than half of study patients with CF and M. abscessus had isolates within four dominant clones; two clones of M. abscessus subspecies (subsp.) abscessus (MAB) and two clones of M. abscessus subsp. massiliense (MMAS). Acquired drug resistance mutations for aminoglycosides and macrolides were rare in the isolate population, and they were not significantly enriched in dominant clones compared with unclustered isolates. For a subset of 55 patients, there was no relationship between dominant clones and diagnosis of active lung disease (P = 1.0). Twenty-nine clusters of genetically similar MAB isolates and eight clusters of genetically similar MMAS isolates were identified. Overall, 28 of 204 (14%) patients with MAB and 15 of 64 (23%) patients with MMAS had genetically isolates similar to those of at least one other patient at the same CF Care Center. Genetically similar isolates were also found between 60 of 204 (29%) patients with MAB and 19 of 64 (30%) patients with MMAS from different geographic locations. Conclusions: Our study reveals the predominant genotypes of M. abscessus and frequency of shared strains between patients in U.S. CF Care Centers. Integrated epidemiological and environmental studies would help to explain the widespread presence of dominant clones in the United States, including the potential for broad distribution in the environment. Single site studies using systematic, evidence-based approaches will be needed to establish the contributions of health care-associated transmission versus shared environmental exposures.
Collapse
Affiliation(s)
| | | | | | | | | | - Adrah R. Levin
- Department of Medicine, National Jewish Health, Denver, Colorado
| | | | | | | | | | - Scott D. Sagel
- Department of Pediatrics, Children’s Hospital Colorado–School of Medicine, University of Colorado, Aurora, Colorado; and
| | - Stacey L. Martiniano
- Department of Pediatrics, Children’s Hospital Colorado–School of Medicine, University of Colorado, Aurora, Colorado; and
| | - Max Salfinger
- College of Public Health and
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charles L. Daley
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | - Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| | | |
Collapse
|
34
|
Evaluation of a new culture medium for isolation of nontuberculous mycobacteria from environmental water samples. PLoS One 2021; 16:e0247166. [PMID: 33657154 PMCID: PMC7928522 DOI: 10.1371/journal.pone.0247166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are waterborne pathogens commonly found in building water systems where they are a primary concern to vulnerable patient populations and can cause severe disease. The recovery of NTM from environmental samples can be a laborious undertaking and current pre-treatment methods and selective media lack sensitivity. We explored the use of the highly selective Rapidly Growing Mycobacteria (RGM) medium for culturing NTM from environmental water samples compared to existing methods. In total, 223 environmental water samples, including potable and non-potable water, were cultured for NTM using three culture media. In addition to direct culture on RGM medium, each sample was cultured on Middlebrook 7H10 medium and Mitchison 7H11 medium after pre-treatment with 0.2M KCl-HCl. Additionally, 33 distinct species of NTM were inoculated onto RGM medium and 7H10 medium in parallel to directly compare their growth. The use of RGM medium alone without pre-treatment provided a sensitivity (91%) comparable to that offered by culture on both 7H10 and 7H11 with acid pretreatment (combined sensitivity; 86%) with significantly less overgrowth and interference from other organisms on RGM medium. The average concentration of NTM observed on RGM medium alone was comparable to or greater than the NTM concentration on either medium alone or combined. Thirty-three species were examined in parallel and all tested strains of 27 of these species successfully grew on RGM medium, including 19 of 21 from the CDC’s healthcare-associated infections species list. RGM medium was successful at recovering environmental NTM without a pre-treatment, greatly reducing labor and materials required to process samples. Simplification of culture processing for environmental NTM will allow for a better assessment of their presence in building water systems and the potential for reduced exposure of susceptible populations.
Collapse
|
35
|
Differential In Vitro Activities of Individual Drugs and Bedaquiline-Rifabutin Combinations against Actively Multiplying and Nutrient-Starved Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:AAC.02179-20. [PMID: 33168614 DOI: 10.1128/aac.02179-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Current treatment options for lung disease caused by Mycobacterium abscessus complex infections have limited effectiveness. To maximize the use of existing antibacterials and to help inform regimen design for treatment, we assessed the in vitro bactericidal activity of single drugs against actively multiplying and net nonreplicating M. abscessus populations in nutrient-rich and nutrient-starvation conditions, respectively. As single drugs, bedaquiline and rifabutin exerted bactericidal activity only against nutrient-starved and actively growing M. abscessus, respectively. However, when combined, both bedaquiline and rifabutin were able to specifically contribute bactericidal activity at relatively low, clinically relevant concentrations against both replicating and nonreplicating bacterial populations. The addition of a third drug, amikacin, further enhanced the bactericidal activity of the bedaquiline-rifabutin combination against nutrient-starved M. abscessus Overall, these in vitro data suggest that bedaquiline-rifabutin may be a potent backbone combination to support novel treatment regimens for M. abscessus infections. This rich data set of differential time- and concentration-dependent activity of drugs, alone and together, against M. abscessus also highlights several issues affecting interpretation and translation of in vitro findings.
Collapse
|
36
|
Abstract
Mycobacteriophage phiT46-1 is a newly isolated Mycobacterium phage that was isolated by spontaneous release from Mycobacterium abscessus strain Taiwan-46 and infects M. abscessus strain BWH-C. Phage phiT46-1 is unrelated to previously described mycobacteriophages, has a 52,849-bp genome, and includes a polymorphic toxin-immunity cassette associated with type VII secretion systems. Mycobacteriophage phiT46-1 is a newly isolated Mycobacterium phage that was isolated by spontaneous release from Mycobacterium abscessus strain Taiwan-46 and infects M. abscessus strain BWH-C. Phage phiT46-1 is unrelated to previously described mycobacteriophages, has a 52,849-bp genome, and includes a polymorphic toxin-immunity cassette associated with type VII secretion systems.
Collapse
|
37
|
Delghandi MR, Waldner K, El-Matbouli M, Menanteau-Ledouble S. Identification Mycobacterium spp. in the Natural Water of Two Austrian Rivers. Microorganisms 2020; 8:E1305. [PMID: 32867056 PMCID: PMC7563569 DOI: 10.3390/microorganisms8091305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria constitute a subgroup among the Mycobacterium genus, a genus of Gram-positive bacteria that includes numerous pathogenic bacteria. In the present study, Mycobacterium spp. were detected in natural water samples from two Austrian rivers (Kamp and Wulka) using three different primers and PCR procedures for the identification of the 16S rRNA and hsp65 genes. Water samples were collected from the Kamp (45 samples) and Wulka (25 samples) in the summer and winter of 2018 and 2019. Molecular evidence showed a high prevalence of Mycobacterium sp. in these rivers with prevalence rates estimated at approximately 94.3% across all rivers. The present study represents the first survey into the prevalence of Mycobacterium sp. in natural water in Austria. Because nontuberculous mycobacteria have known pathogenic potential, including zoonotic, these findings may have implications for health management and public health.
Collapse
Affiliation(s)
| | | | | | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (M.R.D.); (K.W.); (M.E.-M.)
| |
Collapse
|
38
|
De Vrieze J, De Mulder T, Matassa S, Zhou J, Angenent LT, Boon N, Verstraete W. Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microb Biotechnol 2020; 13:829-843. [PMID: 32311222 PMCID: PMC7264747 DOI: 10.1111/1751-7915.13575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pure (single) cultures of microorganisms and mixed microbial communities (microbiomes) have been important for centuries in providing renewable energy, clean water and food products to human society and will continue to play a crucial role to pursue the Sustainable Development Goals. To use microorganisms effectively, microbial engineered processes require adequate control. Microbial communities are shaped by manageable deterministic processes, but also by stochastic processes, which can promote unforeseeable variations and adaptations. Here, we highlight the impact of stochasticity in single culture and microbiome engineering. First, we discuss the concepts and mechanisms of stochasticity in relation to microbial ecology of single cultures and microbiomes. Second, we discuss the consequences of stochasticity in relation to process performance and human health, which are reflected in key disadvantages and important opportunities. Third, we propose a suitable decision tool to deal with stochasticity in which monitoring of stochasticity and setting the boundaries of stochasticity by regulators are central aspects. Stochasticity may give rise to some risks, such as the presence of pathogens in microbiomes. We argue here that by taking the necessary precautions and through clever monitoring and interpretation, these risks can be mitigated.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | | | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Largus T Angenent
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
- Avecom NV, Industrieweg 122P, Wondelgem, 9032, Belgium
| |
Collapse
|
39
|
Nontuberculous Mycobacteria Infection: Source and Treatment. CURRENT PULMONOLOGY REPORTS 2019. [DOI: 10.1007/s13665-019-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|