1
|
Correa E, Rendón JP, Bedoya-Betancur V, Montoya J, Duque JM, Naranjo TW. Standardization of a Preclinical Colon Cancer Model in Male and Female BALB/c Mice: Macroscopic and Microscopic Characterization from Pre-Neoplastic to Tumoral Lesions. Biomedicines 2025; 13:939. [PMID: 40299505 PMCID: PMC12024726 DOI: 10.3390/biomedicines13040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objetives: This study standardized a chemically induced colorectal cancer (CRC) model using azoxymethane (AOM) and dextran sodium sulfate (DSS) in BALB/c mice, replicating the progression from preneoplastic lesions to adenocarcinoma observed in human colorectal carcinogenesis. Methods: The CCR-AOM/DSS model was standardized in male and female BALB/c mice. Two protocols were tested. Subsequently, the positive control group was established with nine evaluation points. Tumor progression was characterized histopathologically and corroborated by methylene blue staining and scanning electron microscopy. Results: Two cycles of 2% DSS combined with a single injection of AOM (10 mg/kg) were necessary to induce adenocarcinoma in 100% of the mice, with no significant sex-based differences in tumor development. Females showed earlier tumor susceptibility under certain protocols. Inflammatory processes played a critical role in tumorigenesis, with neutrophil infiltration and fibrosis observed. Conclusions: The findings align with previous reports, emphasizing the influence of DSS cycles, molecular weight, and mouse strain on model outcomes. This standardized model provides a reliable platform for the preclinical evaluation of novel preventive and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Elizabeth Correa
- Medical and Experimental Mycology Group, CIB-UPB-UdeA-UDES, Corporación para Investigaciones Biológicas, Carrera 72 A # 78B-141, Medellin 050034, Colombia; (E.C.); (J.P.R.); (V.B.-B.); (J.M.)
| | - Juan Pablo Rendón
- Medical and Experimental Mycology Group, CIB-UPB-UdeA-UDES, Corporación para Investigaciones Biológicas, Carrera 72 A # 78B-141, Medellin 050034, Colombia; (E.C.); (J.P.R.); (V.B.-B.); (J.M.)
| | - Vanesa Bedoya-Betancur
- Medical and Experimental Mycology Group, CIB-UPB-UdeA-UDES, Corporación para Investigaciones Biológicas, Carrera 72 A # 78B-141, Medellin 050034, Colombia; (E.C.); (J.P.R.); (V.B.-B.); (J.M.)
| | - Juliana Montoya
- Medical and Experimental Mycology Group, CIB-UPB-UdeA-UDES, Corporación para Investigaciones Biológicas, Carrera 72 A # 78B-141, Medellin 050034, Colombia; (E.C.); (J.P.R.); (V.B.-B.); (J.M.)
| | - Julian Muñoz Duque
- Pathobiology Research Group QUIRON, Faculty of Agricultural Sciences, Universidad de Antioquia, Calle 70 # 52-21, Medellin 050036, Colombia;
| | - Tonny W. Naranjo
- Medical and Experimental Mycology Group, CIB-UPB-UdeA-UDES, Corporación para Investigaciones Biológicas, Carrera 72 A # 78B-141, Medellin 050034, Colombia; (E.C.); (J.P.R.); (V.B.-B.); (J.M.)
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B 72 A-109, Medellin 050034, Colombia
| |
Collapse
|
2
|
de las Heras F, Mitchell CB, Murray WK, Clemons NJ, Phillips WA. Development of an in vivo syngeneic mouse transplant model of invasive intestinal adenocarcinoma driven by endogenous expression of Pik3caH1047R and Apc loss. PLoS One 2024; 19:e0308051. [PMID: 39093890 PMCID: PMC11296624 DOI: 10.1371/journal.pone.0308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Preclinical models that replicate patient tumours as closely as possible are crucial for translational cancer research. While in vitro cancer models have many advantages in assessing tumour response therapy, in vivo systems are essential to enable evaluation of the role of the tumour cell extrinsic factors, such as the tumour microenvironment and host immune system. The requirement for a functional immune system is particularly important given the current focus on immunotherapies. Therefore, we set out to generate an immunocompetent, transplantable model of colorectal cancer suitable for in vivo assessment of immune-based therapeutic approaches. Intestinal tumours from a genetically engineered mouse model, driven by expression of a Pik3ca mutation and loss of Apc, were transplanted into wild type C57BL/6 host mice and subsequently passaged to form a novel syngeneic transplant model of colorectal cancer. Our work confirms the potential to develop a panel of mouse syngeneic grafts, akin to human PDX panels, from different genetically engineered, or carcinogen-induced, mouse models. Such panels would allow the in vivo testing of new pharmaceutical and immunotherapeutic treatment approaches across a range of tumours with a variety of genetic driver mutations.
Collapse
Affiliation(s)
- Francesc de las Heras
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Camilla B. Mitchell
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - William K. Murray
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicholas J. Clemons
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Wayne A. Phillips
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Wang Z, Chen S, Guo Y, Zhang R, Zhang Q, Jiang X, Li M, Jiang Y, Ye L, Guo X, Li C, Zhang G, Li D, Chen L, Chen W. Intestinal carcinogenicity screening of environmental pollutants using organoid-based cell transformation assay. Arch Toxicol 2024; 98:1937-1951. [PMID: 38563870 DOI: 10.1007/s00204-024-03729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuzhi Guo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Qi Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xinhang Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Miao Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoyu Guo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuang Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Guangtong Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Kaczmarek K, Więckiewicz J, Que I, Gałuszka-Bulaga A, Chan A, Siedlar M, Baran J. Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0002. [PMID: 38299562 DOI: 10.2478/aite-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Więckiewicz
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Currently: Department of Radiology and Nuclear Medicine, Department of Molecular Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
5
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Yusuf A, Odeh OE, Alhassan SO, Atawodi SEO. Evaluation of the preventive potential of graded dietary inclusion of Hyphaene thebaica (Linn) fruit in rat model of colon carcinogenesis. J Food Biochem 2022; 46:e14446. [PMID: 36183199 DOI: 10.1111/jfbc.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The preventive effect of Hyphaene thebaica fruit in colon carcinogenesis was evaluated in Wistar rats at 0, 2.5, 5 and 10% inclusion rates for twelve weeks with concomitant 72-h intra-rectal N-methyl-N-nitrosourea (MNU) instillations. Indices of antioxidant status and carcinogenesis were analyzed using spectrophotometric, ELISA, histological and immunohistochemical techniques. The fruit protected against lipid peroxidation and level of early biomarkers of colon carcinogenesis, accompanied by decrease in some endogenous antioxidant enzymes functionality. It also prevented colon tissues against MNU-induced severe inflammations and damage to the mutL-homolog 1 (MLH1) gene. There was significant negative correlation between endogenous antioxidant enzyme activities and carcinoembryonic antigen (CEA) as well as lipid peroxidation, but relationship between total polyphenols and percentage expression of MLH1 proteins as well as endogenous antioxidant enzyme activities was positive. These results validate the folkloric use of H. thebaica fruit in the management of colorectal disorders. PRACTICAL APPLICATIONS: Hyphaene thebaica fruit which is widely consumed in northern Nigeria and other countries of sub-Saharan Africa is rich in fiber and antioxidant polyphenols. These two classes of compounds have demonstrated capacity to prevent colorectal cancer and cancer of other sites. Therefore, the validated protective Hyphaene thebaica fruit suggests that it can be processed for inclusion in beverages/diets as functional foods for prevention and management of colorectal disorders.
Collapse
Affiliation(s)
- Abdulrazaq Yusuf
- Biochemistry Department, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Ochai Emmanuel Odeh
- Biochemistry Department, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | | | | |
Collapse
|
7
|
Pergolizzi M, Bizzozero L, Maione F, Maldi E, Isella C, Macagno M, Mariella E, Bardelli A, Medico E, Marchiò C, Serini G, Di Nicolantonio F, Bussolino F, Arese M. The neuronal protein Neuroligin 1 promotes colorectal cancer progression by modulating the APC/β-catenin pathway. J Exp Clin Cancer Res 2022; 41:266. [PMID: 36056393 PMCID: PMC9438340 DOI: 10.1186/s13046-022-02465-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/β-catenin pathway. Methods After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. Results Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates β-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an “EMT phenotype” in CRC cell lines Conclusions In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02465-4.
Collapse
|
8
|
Vega PN, Nilsson A, Kumar MP, Niitsu H, Simmons AJ, Ro J, Wang J, Chen Z, Joughin BA, Li W, McKinley ET, Liu Q, Roland JT, Washington MK, Coffey RJ, Lauffenburger DA, Lau KS. Cancer-Associated Fibroblasts and Squamous Epithelial Cells Constitute a Unique Microenvironment in a Mouse Model of Inflammation-Induced Colon Cancer. Front Oncol 2022; 12:878920. [PMID: 35600339 PMCID: PMC9114773 DOI: 10.3389/fonc.2022.878920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.
Collapse
Affiliation(s)
- Paige N. Vega
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Avlant Nilsson
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Manu P. Kumar
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alan J. Simmons
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James Ro
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jiawei Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhengyi Chen
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Brian A. Joughin
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wei Li
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eliot T. McKinley
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert J. Coffey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas A. Lauffenburger
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ken S. Lau
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Pothuraju R, Pai P, Chaudhary S, Siddiqui JA, Cox JL, Kaur S, Rachagani S, Roy HK, Bouvet M, Batra SK. Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging (Albany NY) 2022; 14:2025-2046. [PMID: 35255004 PMCID: PMC8954958 DOI: 10.18632/aging.203935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022]
Abstract
Mucins are components of the mucus layer overlying the intestinal epithelial cells, which maintains physiological homeostasis. Altered mucin expression is associated with disease progression. Expression of MUC4 decreases in colorectal cancer (CRC); however, its functional role and implications in the intestinal pathology in CRC are not studied well. Therefore, we generated a genetically engineered Muc4 knockout (Muc4-/-) CRC mouse model by crossing with Muc4-/- and Apcflox/flox mice in the presence of colon-specific inducible Cre. We observed that deficiency of Muc4 results in an increased number of macroscopic tumors in the colon and rectal region and leads to poor survival. Further, the absence of Muc4 was associated with goblet cell dysfunction where the expression of intestinal homeostasis molecules (Muc2 and Fam3D) was downregulated. Next, we also observed that loss of Muc4 showed reduced thickness of mucus layer, leading to infiltration of bacteria, reduction in anti-microbial peptides, and upregulation of pro-inflammatory cytokines. Further, Apc gene mutation results in activation of the Wnt/β-catenin signaling pathway that corroborated with an increased nuclear accumulation of β-catenin and activation of its target genes: cyclin D1 and c-Myc in Muc4-/- mice was observed. We conclude that the presence of Muc4 is essential for intestinal homeostasis, reduces tumor burden, and improves overall survival.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Bouvet
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Rodriguez-Gonzalez JC, Hernández-Balmaseda I, Declerck K, Pérez-Novo C, Logie E, Theys C, Jakubek P, Quiñones-Maza OL, Dantas-Cassali G, Carlos Dos Reis D, Van Camp G, Lopes Paz MT, Rodeiro-Guerra I, Delgado-Hernández R, Vanden Berghe W. Antiproliferative, Antiangiogenic, and Antimetastatic Therapy Response by Mangiferin in a Syngeneic Immunocompetent Colorectal Cancer Mouse Model Involves Changes in Mitochondrial Energy Metabolism. Front Pharmacol 2021; 12:670167. [PMID: 34924998 PMCID: PMC8678272 DOI: 10.3389/fphar.2021.670167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid β-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid β-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ken Declerck
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudina Pérez-Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Claudia Theys
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| | - Patrycja Jakubek
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium.,Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | | | - Geovanni Dantas-Cassali
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Diego Carlos Dos Reis
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Miriam Teresa Lopes Paz
- Departamento de Farmacología, Instituto de Ciencias Biológicas (ICB), Universidad Federal de Minas Gerais (UFMG), Horizonte, Brazil
| | - Idania Rodeiro-Guerra
- Laboratorio de Farmacología, Instituto de Ciencias del Mar (ICIMAR), CITMA, La Habana, Cuba
| | - René Delgado-Hernández
- Centro de Estudios para las Investigaciones y Evaluaciones Biológicas (CEIEB), Instituto de Farmacia y Alimentos (IFAL), Universidad de La Habana, La Habana, Cuba.,Facultad de Ciencias Naturales y Agropecuarias, Universidat de Santander (UDES), Bucaramanga, Colombia
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Campus Drie Eiken, Antwerp, Belgium
| |
Collapse
|
11
|
Chang GR, Kuo CY, Tsai MY, Lin WL, Lin TC, Liao HJ, Chen CH, Wang YC. Anti-Cancer Effects of Zotarolimus Combined with 5-Fluorouracil Treatment in HCT-116 Colorectal Cancer-Bearing BALB/c Nude Mice. Molecules 2021; 26:molecules26154683. [PMID: 34361836 PMCID: PMC8347948 DOI: 10.3390/molecules26154683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023] Open
Abstract
Zotarolimus is a semi-synthetic derivative of rapamycin and an inhibitor of mammalian target of rapamycin (mTOR) signaling. Currently, zotarolimus is used to prolong the survival time of organ grafts, but it is also a novel immunosuppressive agent with potent anti-proliferative activity. Here, we examine the anti-tumor effect of zotarolimus, alone and in combination with 5-fluorouracil, on HCT-116 colorectal adenocarcinoma cells implanted in BALB/c nude mice. Compared with the control mice, mice treated with zotarolimus or zotarolimus combined with 5-FU showed retarded tumor growth; increased tumor apoptosis through the enhanced expression of cleaved caspase 3 and extracellular signal-regulated kinase (ERK) phosphorylation; reduced inflammation-related factors such as IL-1β, TNF-α, and cyclooxygenase-2 (COX-2) protein; and inhibited metastasis-related factors such as CD44, epidermal growth factor receptor (EGFR), transforming growth factor β (TGF-β), and vascular endothelial growth factor (VEGF). Notably, mice treated with a combination of zotarolimus and 5-FU showed significantly retarded tumor growth, reduced tumor size, and increased tumor inhibition compared with mice treated with 5-FU or zotarolimus alone, indicating a strong synergistic effect. This in vivo study confirms that zotarolimus or zotarolimus combined with 5-FU can be used to retard colorectal adenocarcinoma growth and inhibit tumorigenesis. Our results suggest that zotarolimus may increase the chemo-sensitization of tumor cells. Therefore, zotarolimus alone and zotarolimus combined with 5-FU may be potential anti-tumor agents in the treatment of human colon adenocarcinoma. Future research on zotarolimus may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian District, New Taipei 231405, Taiwan;
- Department of Nursing, Cardinal Tien College of Healthcare and Management, 112 Minzu Road, Sindian District, New Taipei 231038, Taiwan
| | - Ming-Yang Tsai
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua Dist, Tainan 71246, Taiwan;
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan;
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (T.-C.L.); (H.-J.L.)
| | - Chung-Hung Chen
- Division of Gastroenterology, Department of Internal Medicine, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
- Correspondence: (C.-H.C.); (Y.-C.W.); Tel.: +886-975-617357 (C.-H.C.); +886-2332-3456 (Y.-C.W.)
| |
Collapse
|
12
|
The Anti-Tumor Effect of Lactococcus lactis Bacteria-Secreting Human Soluble TRAIL Can Be Enhanced by Metformin Both In Vitro and In Vivo in a Mouse Model of Human Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13123004. [PMID: 34203951 PMCID: PMC8232584 DOI: 10.3390/cancers13123004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a major cause of morbidity and mortality in Europe, and accounts for over 10% of all cancer-related deaths worldwide. These indicate an urgent need for novel therapeutic options in CRC. Here, we analysed if genetically modified non-pathogenic Lactococcus lactis bacteria can be used for local delivery of human recombinant Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) and induction of tumor cells death in vitro and in vivo in CRC mouse model. We showed that modified L. lactis bacteria were able to secrete biologically active human soluble TRAIL (L. lactis(hsTRAIL+)), which selectively eliminated human CRC cells in vitro, and was further strengthened by metformin (MetF). Our results from in vitro studies were confirmed in vivo using subcutaneous NOD-SCID mouse model of human CRC. The data showed a significant reduction of the tumor growth by intratumor injection of L. lactis(hsTRAIL+) bacteria producing hsTRAIL. This effect could be further enhanced by oral administration of MetF. Abstract Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) induces apoptosis of many cancer cells, including CRC cells, being non-harmful for normal ones. However, recombinant form of human TRAIL failed in clinical trial when administered intravenously. To assess the importance of TRAIL in CRC patients, new form of TRAIL delivery would be required. Here we used genetically modified, non-pathogenic Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. Operating under the Nisin Controlled Gene Expression System (NICE), the modified bacteria (L. lactis(hsTRAIL+)) were able to induce cell death of HCT116 and SW480 human cancer cells and reduce the growth of HCT116-tumor spheres in vitro. This effect was cancer cell specific as the cells of normal colon epithelium (FHC cells) were not affected by hsTRAIL-producing bacteria. Metformin (MetF), 5-fluorouracil (5-FU) and irinotecan (CPT-11) enhanced the anti-tumor actions of hsTRAIL in vitro. In the NOD-SCID mouse model, treatment of subcutaneous HCT116-tumors with L. lactis(hsTRAIL+) bacteria given intratumorally, significantly reduced the tumor growth. This anti-tumor activity of hsTRAIL in vivo was further enhanced by oral administration of MetF. These findings indicate that L. lactis bacteria could be suitable for local delivery of biologically active human proteins. At the same time, we documented that anti-tumor activity of hsTRAIL in experimental therapy of CRC can be further enhanced by MetF given orally, opening a venue for alternative CRC-treatment strategies.
Collapse
|
13
|
Nascimento-Gonçalves E, Mendes BA, Silva-Reis R, Faustino-Rocha AI, Gama A, Oliveira PA. Animal Models of Colorectal Cancer: From Spontaneous to Genetically Engineered Models and Their Applications. Vet Sci 2021; 8:vetsci8040059. [PMID: 33916402 PMCID: PMC8067250 DOI: 10.3390/vetsci8040059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is one of the most common gastrointestinal malignancies in humans, affecting approximately 1.8 million people worldwide. This disease has a major social impact and high treatment costs. Animal models allow us to understand and follow the colon cancer progression; thus, in vivo studies are essential to improve and discover new ways of prevention and treatment. Dietary natural products have been under investigation for better and natural prevention, envisioning to show their potential. This manuscript intends to provide the readers a review of rodent colorectal cancer models available in the literature, highlighting their advantages and disadvantages, as well as their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Bruno A.L. Mendes
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Rita Silva-Reis
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
| | - Ana I. Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7000-812 Évora, Portugal
- Correspondence: (A.I.F.-R.); (P.A.O.)
| | - Adelina Gama
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (E.N.-G.); (B.A.L.M.); (R.S.-R.)
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (A.I.F.-R.); (P.A.O.)
| |
Collapse
|
14
|
Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar Drugs 2021; 19:md19020052. [PMID: 33499163 PMCID: PMC7912590 DOI: 10.3390/md19020052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480, and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50 values of, respectively, 175, 115, and 60 μg/mL. Furthermore, TTE significantly prevented basal and bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition, TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.
Collapse
|
15
|
Hu HT, Wang Z, Kim MJ, Jiang LS, Xu SJ, Jung J, Lee E, Park JH, Bakheet N, Yoon SH, Kim KY, Song HY, Chang S. The Establishment of a Fast and Safe Orthotopic Colon Cancer Model Using a Tissue Adhesive Technique. Cancer Res Treat 2020; 53:733-743. [PMID: 33321564 PMCID: PMC8291175 DOI: 10.4143/crt.2020.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose We aimed to develop a novel method for orthotopic colon cancer model, using tissue adhesive in place of conventional surgical method. Materials and Methods RFP HCT 116 cell line were used to establish the colon cancer model. Fresh tumor tissue harvested from a subcutaneous injection was grafted into twenty nude mice, divided into group A (suture method) and group B (tissue adhesive method). For the group A, we fixed the tissue on the serosa layer of proximal colon by 8-0 surgical suture. For the group B, tissue adhesive (10 μL) was used to fix the tumor. The mortality, tumor implantation success, tumor metastasis, primary tumor size, and operation time were compared between the two groups. Dissected tumor tissue was analyzed for the histology and immunohistochemistry. Also, we performed tumor marker analysis. Results We observed 30% increase in graft success and 20% decrease in mortality, by using tissue adhesive method, respectively. The median colon tumor size was significantly increased by 4 mm and operation time was shortened by 6.5 minutes. The H&E showed similar tumor structure between the two groups. The immunohistochemistry staining for cancer antigen 19-9, carcinoembryonic antigen, cytokeratin 20, and Ki-67 showed comparable intensities in both groups. Real-time quantitative reverse transcription analysis showed eight out of nine tumor markers are unchanged in the tissue adhesive group. Western blot indicated the tissue adhesive group expressed less p-JNK (apototic marker) and more p-MEK/p-p38 (proliferation marker) levels. Conclusion We concluded the tissue adhesive method is a quick and safe way to generate orthotopic, colon cancer model.
Collapse
Affiliation(s)
- Hong-Tao Hu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Wang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Myung Ji Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Lu-Shang Jiang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shi-Jun Xu
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Minimal-Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jaeyun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Hoon Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nader Bakheet
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Gastrointestinal Endoscopy and Liver Unit, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sung Hwan Yoon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Yung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ho-Young Song
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Establishment of an Endoscopy-Guided Minimally Invasive Orthotopic Mouse Model of Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12103007. [PMID: 33081354 PMCID: PMC7650778 DOI: 10.3390/cancers12103007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these limitations, this study aimed to evaluate the establishment of an endoscopy-guided minimally invasive model without laparotomy. Different concentrations of the murine CRC cell lines CT26 and MC38 were endoscopically injected into the colorectal wall of BALB/C and C57BL/6J mice, respectively. Consistent tumor growth with the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. Analysis of the learning curve demonstrated that this model is easy to learn and quick to establish. It enables intra-individual follow-up endoscopies, and features tumors to study mechanisms of metastasis and the interaction with the immune system. The application of specific cell lines and concentrations enables a controlled local tumor growth and metastatic formation within short observation periods. Abstract Open orthotopic mouse models of colorectal cancer have disadvantages such as the requirement for advanced surgical skills or the trauma caused by laparotomy. To overcome these drawbacks, this study aimed to evaluate the establishment of a minimally invasive model using murine colonoscopy. CT26 and MC38 CRC cells of different concentrations were injected into BALB/C and C57BL/6J mice, respectively. Follow-up endoscopies were performed to assign an endoscopic score to tumor growth. Gross autopsy, histologic and immuno-histochemical evaluation, and immune scoring were performed. To describe the learning curve of the procedures, a performance score was given. Local tumor growth with colorectal wall infiltration, luminal ulceration, the presence of tumor-infiltrating lymphocytes, lympho-vascular invasion, and early spontaneous lymph node, peritoneal, and hepatic metastases were observed. The tumors showed cytoplasmic immuno-staining for CK20. Compared to the MC38/C57BL/6J model, tumorigenicity and immunogenicity of the CT26/BALB/C model were higher. Tumor volume correlated with the endoscopic score. This endoscopy-guided orthotopic mouse model is easy to learn and quick to establish. It features early metastasis and enables the study of interactions with the immune system. When specific cell concentrations and cell lines are applied, controlled local tumor growth and metastasis can be achieved within short observation periods.
Collapse
|
17
|
Machado VF, Parra RS, Leite CA, Minto SB, Cunha TM, Cunha FDQ, Garcia SB, Feitosa MR, da Rocha JJR, Feres O. Experimental Model of Rectal Carcinogenesis Induced by N-Methyl-N-Nitrosoguanidine in Mice with Endoscopic Evaluation. Int J Med Sci 2020; 17:2505-2510. [PMID: 33029093 PMCID: PMC7532479 DOI: 10.7150/ijms.48231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Background and purpose: The discovery of chemical substances with carcinogenic properties has allowed the development of several experimental models of colorectal cancer (CRC). Classically, experimental models of CRC in mice have been evaluated through clinical or serial euthanasia. The present study aims to investigate the role of low endoscopy in the analysis of carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Methods: Thirty C57BL6 mice were divided into two groups: a control group with fifteen animals that underwent rectal instillation of saline solution on day 0 and a carcinogen group with fifteen animals that underwent a 100 mg/kg MNNG rectal instillation on day 0. In both groups, low endoscopies were performed on weeks 4 and 8. We used a validated endoscopic scoring system to evaluate the severity of colitis and colorectal tumor. Euthanasia was carried out at week 12. Results: We observed higher inflammation scores (p <0.001) and a higher number of tumors (p <0.05) in the MNNG group than the control group, both at weeks 4 and 8. A worsening of inflammation scores from the first to the second endoscopy was also noticeable in the MNNG group. There were no bowel perforations related to the procedure, and there was one death in the control group. Conclusion: Low endoscopy in experimental animals allows safe macroscopic evaluation of colorectal carcinogenesis without the need for euthanasia.
Collapse
Affiliation(s)
- Vanessa Foresto Machado
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Rogerio Serafim Parra
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Caio Abner Leite
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Stefania Bovo Minto
- Pathology and Legal Medicine Department, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Sergio Britto Garcia
- Pathology and Legal Medicine Department, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Marley Ribeiro Feitosa
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | - Omar Feres
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
18
|
Gama LA, Rocha Machado MP, Beckmann APS, Miranda JRDA, Corá LA, Américo MF. Gastrointestinal motility and morphology in mice: Strain-dependent differences. Neurogastroenterol Motil 2020; 32:e13824. [PMID: 32096330 DOI: 10.1111/nmo.13824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND BALB/c and C57BL/6 mice are widely used in biomedical research; however, the differences between strains are still underestimated. Our aims were to develop an experimental protocol to evaluate the duodenal contractility and gastrointestinal transit in mice using the Alternating Current Biosusceptometry (ACB) technique and to compare gastrointestinal motor function and morphology between BALB/c and C57BL/6 strains. METHODS Male mice were used in experiments (a) duodenal contractility: animals which had a magnetic marker surgically fixed in the duodenum to determine the frequency and amplitude of contractions and (b) gastrointestinal transit: animals which ingested a magnetically marked chow to calculate the Oro-Anal Transit Time (OATT) and the Fecal Pellet Elimination Rate (FPER). The animals were killed after the experiments for organ collection and morphometric analysis. KEY RESULTS BALB/c and C57BL/6 had two different duodenal frequencies (high and low) with similar amplitudes. After 10 hours of monitoring, BALB/c eliminated around 89% of the ingested marker and C57BL/6 eliminated 33%; OATT and FPER were slower for C57BL/6 compared with BALB/c. The OATT and amplitude of low frequency had a strong positive correlation in C57BL/6. For BALB/c, the gastric muscular layer was thicker compared to that measured for C57BL/6. CONCLUSIONS AND INFERENCES The experimental protocol to evaluate duodenal contractility and fecal magnetic pellets output using the ACB technique in mice was successfully established. BALB/c strains had higher duodenal frequencies and a shorter time to eliminate the ingested marker. Our results showed differences in both motor function and gastrointestinal morphology between BALB/c and C57BL/6 strains.
Collapse
Affiliation(s)
- Loyane Almeida Gama
- Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil
| | | | - Ana Paula Simões Beckmann
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, UFMT, Barra do Garças, Brazil
| | | | | | - Madileine Francely Américo
- Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, UFMT, Barra do Garças, Brazil
| |
Collapse
|
19
|
Li J, Wu H, Liu Y, Yang L. High fat diet induced obesity model using four strainsof mice: Kunming, C57BL/6, BALB/c and ICR. Exp Anim 2020; 69:326-335. [PMID: 32188837 PMCID: PMC7445062 DOI: 10.1538/expanim.19-0148] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High fat diet (HFD) treated mouse is widely used as experimental animal model for hyperlipidemia and hyperglycemia study. Many factors contribute to establish animal model that meant to simulate high fat and glucose diet induced phenotypes. In the present study, four strains of experiment mouse treated by HFD were used to explore the impact of mouse strain on lipid profile, glucose level, and major inflammation cytokines. HFD fed Kunming and ICR mouse gained significantly higher body weight than control which was not shown by C57BL/6 and BALB/c mouse. All four strains fed by HFD has heavier liver and adipose tissue than control ones. Obvious fat droplets and enlarged adipose cells were observed in obese mouse of four strains. Additionally, obese mouse showed typical response to glucose and insulin load in OGTT and ITT. Serum TC, LDL-c, and TC/HDL-c ratio, but not TG, increased in all four strains. Major inflammatory cytokines and insulin level showed little changes in obese mouse as well (P<0.05) The present study could provide basic information for diet induced obesity developed by four commonly used experimental mouse strains.
Collapse
Affiliation(s)
- Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yuting Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
20
|
Rayes RF, Vourtzoumis P, Bou Rjeily M, Seth R, Bourdeau F, Giannias B, Berube J, Huang YH, Rousseau S, Camilleri-Broet S, Blumberg RS, Beauchemin N, Najmeh S, Cools-Lartigue J, Spicer JD, Ferri LE. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 204:2285-2294. [PMID: 32169849 DOI: 10.4049/jimmunol.1900240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Phil Vourtzoumis
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Marianne Bou Rjeily
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Rashmi Seth
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Yu-Hwa Huang
- Department of Medicine, Harvard University, Boston, MA 02115
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; and
| | | | - Nicole Beauchemin
- Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Sara Najmeh
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
21
|
Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF. The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Animal Model Exp Med 2020; 3:1-8. [PMID: 32318654 PMCID: PMC7167241 DOI: 10.1002/ame2.12102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer is a worldwide health burden, with high incidence and mortality, especially in the advanced stages of the disease. Preclinical models are very important and valuable to discover and validate early and specific biomarkers as well as new therapeutic targets. In order to accomplish that, the animal models must replicate the clinical evolution of the disease in all of its phases. In this article, we review the existent mouse models, with their strengths and weaknesses in the replication of human cancer disease progression, with major focus on orthotopic models.
Collapse
Affiliation(s)
- Rui C. Oliveira
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Pathology DepartmentUniversity Hospital (CHUC)CoimbraPortugal
| | - Ana Margarida Abrantes
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| | - José Guilherme Tralhão
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
- Surgery A DepartmentFaculty of MedicineUniversity Hospital (CHUC)CoimbraPortugal
| | - Maria Filomena Botelho
- Biophysics UnitFaculty of MedicineUniversity of CoimbraCoimbraPortugal
- Centre of Investigation on Environment, Genetics and Oncobiology (CIMAGO)CoimbraPortugal
| |
Collapse
|
22
|
Kreikemeier-Bower C, Polepole P, Pinkerton K, Zhang L. A simple method for short-term maintenance of neonatal mice without foster mothers. J Biol Methods 2020; 7:e126. [PMID: 32201708 PMCID: PMC7081055 DOI: 10.14440/jbm.2020.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/22/2023] Open
Abstract
Mice are typically weaned from their mother between 21 and 28 days of age, or at 10 grams of body weight. However, some biochemical experiments need to be done before the weaning days, and the mother might cannibalize or ignore those manipulated pups. Here, we provide a detailed protocol for maintenance of neonatal mice without the presence of their mothers for biomedical research. The basic instinct of neonate mice to hide under covers is harnessed for their survival in a mother-free environment. When covers are soaked with milk and the only targets for hiding, the neonates would acquire their nutrients at least in an involuntary fashion. The protocol is simple and can be used for neonatal rodent studies for short periods of times, and assures the accuracy of the biomedical experiments if survival rate of neonates is critical.
Collapse
Affiliation(s)
| | - Pascal Polepole
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA
| | - Katherine Pinkerton
- Institution of Animal Care Program, University of Nebraska, Lincoln, NE 68583, USA
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
23
|
Rasti P, Wolf C, Dorez H, Sablong R, Moussata D, Samiei S, Rousseau D. Machine Learning-Based Classification of the Health State of Mice Colon in Cancer Study from Confocal Laser Endomicroscopy. Sci Rep 2019; 9:20010. [PMID: 31882817 PMCID: PMC6934609 DOI: 10.1038/s41598-019-56583-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023] Open
Abstract
In this article, we address the problem of the classification of the health state of the colon's wall of mice, possibly injured by cancer with machine learning approaches. This problem is essential for translational research on cancer and is a priori challenging since the amount of data is usually limited in all preclinical studies for practical and ethical reasons. Three states considered including cancer, health, and inflammatory on tissues. Fully automated machine learning-based methods are proposed, including deep learning, transfer learning, and shallow learning with SVM. These methods addressed different training strategies corresponding to clinical questions such as the automatic clinical state prediction on unseen data using a pre-trained model, or in an alternative setting, real-time estimation of the clinical state of individual tissue samples during the examination. Experimental results show the best performance of 99.93% correct recognition rate obtained for the second strategy as well as the performance of 98.49% which were achieved for the more difficult first case.
Collapse
Affiliation(s)
- Pejman Rasti
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France
| | - Christian Wolf
- INSA-Lyon, INRIA, LIRIS, CITI, CNRS, Villeurbanne, France
| | - Hugo Dorez
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Raphael Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Driffa Moussata
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, 69621, France
| | - Salma Samiei
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRA IRHS, Université d'Angers, Angers, 49000, France.
| |
Collapse
|
24
|
Kirsanov K, Fetisov T, Lesovaya EA, Maksimova V, Trukhanova L, Antoshina E, Gor'kova T, Morozova O, Safina A, Fleyshman D, Salimov R, Shipaeva E, Ivanov R, Leonov A, Purmal AA, Belitsky GA, Gudkov AV, Gurova KV, Yakubovskaya MG. Prevention of Colorectal Carcinogenesis by DNA-Binding Small-Molecule Curaxin CBL0137 Involves Suppression of Wnt Signaling. Cancer Prev Res (Phila) 2019; 13:53-64. [PMID: 31653646 DOI: 10.1158/1940-6207.capr-19-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Chemoprevention is considered a valid approach to reduce the incidence of colorectal cancer, one of the most common malignancies worldwide. Here, we investigated the tumor-preventive activity of curaxin CBL0137. This compound represents a new class of nonmutagenic DNA-binding small molecules that alter chromatin stability and inhibit the function of the histone chaperone FACT. Among downstream effects of CBL0137 treatment are activation of p53 and type I interferons and inhibition of NFκB, HSF1, and MYC. In addition, our data show that in both human and mouse colorectal cancer cells in vitro, CBL0137 inhibits the APC/WNT/β-catenin signaling pathway, which plays a key role in colon carcinogenesis. Using quantitative RT-PCR and microarray hybridization, we have demonstrated decreased expression of multiple components and downstream targets of the WNT pathway in colon cancer cells treated with CBL0137. At the same time, CBL0137 induced expression of WNT antagonists. Inhibition of WNT signaling activity by CBL0137 was also confirmed by luciferase reporter assay. Tumor-preventive activity of CBL0137 in vivo was tested in a murine model of colorectal carcinogenesis induced by 1,2-dimethylhydrazine (DMH), which is known to involve WNT pathway dysregulation. After DMH subcutaneous treatment, mice were administered CBL0137 in drinking water. Efficacy of CBL0137 in suppressing development of colorectal cancer in this model was evidenced by reduced incidence of adenocarcinomas and adenomas in both males and females and decrease in tumor multiplicity. These data support the prospective use of CBL0137 in chemoprevention of colorectal cancer as well as of other malignances associated with activated WNT signaling.
Collapse
Affiliation(s)
- Kirill Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
- RUDN University, Moscow, Russian Federation
| | - Timur Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Ekaterina A Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
- Ryazansky State Medical University, Ryazan, Russian Federation
| | - Varvara Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Lubov Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Elena Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Tatiana Gor'kova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Olga Morozova
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | | | | | | | | | | | | | | | - Gennady A Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | | | | | | |
Collapse
|
25
|
Magistri P, Battistelli C, Toietta G, Strippoli R, Sagnotta A, Forgione A, Di Benedetto F, Uccini S, Vittorioso P, D’Angelo F, Aurello P, Ramacciato G, Nigri G. In vivo Bioluminescence-Based Monitoring of Liver Metastases from Colorectal Cancer: An Experimental Model. J Microsc Ultrastruct 2019; 7:136-140. [PMID: 31548925 PMCID: PMC6753694 DOI: 10.4103/jmau.jmau_51_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In this study we aimed to develop a new in vivo bioluminescence-based tool to monitor and to quantify colon cancer (CC) liver metastasis development. METHODS HCT 116 cells were transducted with pLenti6/V5-DEST-fLuc for constitutive expression of firefly luciferase. Infection was monitored analyzing endogenous bioluminescence using the IVIS Lumina II In vivo Imaging System and a positive clone constitutively expressing luciferase (HCT 116-fLuc) was isolated. HCT 116-fLuc cells were left untreated or treated with 1 μM GDC-0449, a Hedgehog pharmacological inhibitor. Moreover, 1 x 106 HCT 116-fLuc cells were implanted via intra-splenic injection in nude mice. Bioluminescence was analyzed in these mice every 7 days for 5 weeks. After that, mice were sacrificed and bioluminescence was analyzed on explanted livers. RESULTS We found that in vitro bioluminescence signal was significantly reduced when HCT 116-fLuc cells were treated with GDC-0449. Regarding in vivo data, bioluminescence sources consistent with hepatic anatomical localization were detected after 21 days from HCT 116-fLuc intrasplenic injection and progressively increased until the sacrifice. The presence of liver metastasis was further confirmed by ex-vivo bioluminescence analysis of explanted livers. CONCLUSIONS Our in vitro results suggest that inhibition of Hedgehog pathway may hamper CC cell proliferation and impel for further studies. Regarding in vivo data, we set-up a strategy for liver metastasis visualization, that may allow follow-up and quantification of the entire metastatic process. This cost-effective technique would reduce experimental variability, as well as the number of sacrificed animals.
Collapse
Affiliation(s)
- Paolo Magistri
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnology and Hematology, Molecular Genetics Section, Sapienza University of Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic and Technological Innovation – Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Raffaele Strippoli
- Department of Cellular Biotechnology and Hematology, Molecular Genetics Section, Sapienza University of Rome, Italy
| | - Andrea Sagnotta
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonello Forgione
- Advanced International Mini-invasive Surgery (AIMS) Academy, Ospedale Niguarda Ca’ Granda, Milan, Italy
| | - Fabrizio Di Benedetto
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Uccini
- Department of Pathology, Sapienza University of Rome, Rome, Italy
| | - Paola Vittorioso
- Pasteur Institute Fondazione Cenci Bolognetti, Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University of Rome, Rome, Italy
| | - Francesco D’Angelo
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Aurello
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Ramacciato
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Nigri
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Evans JP, Winiarski BK, Sutton PA, Ressel L, Duckworth CA, Pritchard DM, Palmer DH, Goldring CE, Kitteringham NR. Development of an orthotopic syngeneic murine model of colorectal cancer for use in translational research. Lab Anim 2019; 53:598-609. [PMID: 30760081 PMCID: PMC6900214 DOI: 10.1177/0023677219826165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Improving outcomes in colorectal cancer requires more accurate in vivo modelling of the disease in humans, allowing more reliable pre-clinical assessment of potential therapies. Novel imaging techniques are necessary to improve the longitudinal assessment of disease burden in these models, reducing the number of animals required for translational studies. This report describes the development of an immune-competent syngeneic orthotopic murine model of colorectal cancer, utilising caecal implantation of CT26 cells stably transfected with the luciferase gene into immune-competent BALB/c mice, allowing serial bioluminescent imaging of cancer progression. Luminescence in the stably transfected CT26 cell line, after pre-conditioning in the flank of a BALB/c mouse, accurately reflected cell viability and resulted in primary caecal tumours in five of eight (63%) mice in the initial pilot study following caecal injection. Luminescent signal continued to increase throughout the study period with one mouse (20%) developing a liver metastasis. Histopathological assessment confirmed tumours to be consistent with a poorly differentiated adenocarcinoma. We have now performed this technique in 68 immune-competent BALB/c mice. There have been no complications from the procedure or peri-operative deaths, with primary tumours developing in 44 (65%) mice and liver metastases in nine (20%) of these. This technique provides an accurate model of colorectal cancer with tumours developing in the correct microenvironment and metastasising to the liver with a similar frequency to that seen in patients presenting with colorectal cancer, with serial bioluminescent reducing the murine numbers required in studies by removing the need for cull for assessment of disease burden.
Collapse
Affiliation(s)
- Jonathan P Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | | | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology, University of Liverpool, UK
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, University of Liverpool, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK.,Clatterbridge Cancer Centre, Liverpool, UK
| | | | - Neil R Kitteringham
- Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| |
Collapse
|
27
|
Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong JH, Yook S. Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol Pharm 2019; 16:1184-1199. [PMID: 30698975 DOI: 10.1021/acs.molpharmaceut.8b01157] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. The prognosis and overall survival of CRC are known to be significantly correlated with the overexpression of PD-L1. Since combination therapies can significantly improve therapeutic efficacy, we constructed doxorubicin (DOX) conjugated and anti-PD-L1 targeting gold nanoparticles (PD-L1-AuNP-DOX) for the targeted chemo-photothermal therapy of CRC. DOX and anti-PD-L1 antibody were conjugated to the α-terminal end group of lipoic acid polyethylene glycol N-hydroxysuccinimide (LA-PEG-NHS) using an amide linkage, and PD-L1-AuNP-DOX was constructed by linking LA-PEG-DOX, LA-PEG-PD-L1, and a short PEG chain on the surface of AuNP using thiol-Au covalent bonds. Physicochemical characterizations and biological studies of PD-L1-AuNP-DOX were performed in the presence of near-infrared (NIR) irradiation (biologic studies were conducted using cellular uptake, apoptosis, and cell cycle assays in CT-26 cells). PD-L1-AuNP-DOX (40.0 ± 3.1 nm) was successfully constructed and facilitated the efficient intracellular uptake of DOX as evidenced by pronounced apoptotic effects (66.0%) in CT-26 cells. PD-L1-AuNP-DOX treatment plus NIR irradiation significantly and synergistically suppressed the in vitro proliferation of CT-26 cells by increasing apoptosis and cell cycle arrest. The study demonstrates that PD-L1-AuNP-DOX in combination with synergistic targeted chemo-photothermal therapy has a considerable potential for the treatment of localized CRC.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Asmita Banstola
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Alireza Vatanara
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Sooyeon Lee
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Simmyung Yook
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| |
Collapse
|
28
|
Sasaki N, Clevers H. Studying cellular heterogeneity and drug sensitivity in colorectal cancer using organoid technology. Curr Opin Genet Dev 2018; 52:117-122. [PMID: 30261425 DOI: 10.1016/j.gde.2018.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Intra-tumor heterogeneity (genotypic and functional diversity among cancer cells within the same tumor) represents one of the key challenges in cancer medicine. As heterogeneity of cancer cells constitutes an important parameter in the development of therapy resistance, an accurate assessment of intra-tumor heterogeneity is essential for the prediction of drug resistance and development of effective treatment. In this review, we evaluate primary patient derived-tumor organoid technology as a new tool for colorectal cancer research and treatment. Furthermore, we discuss organoid use to understand intra-tumor heterogeneity, both in terms of mutational diversification and of diversification in drug sensitivity. Finally, we address the exciting recent results that show that tumor organoid technology is highly predictive for drug response in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Nobuo Sasaki
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Oncode Institute, University Medical Centre Utrecht, Upsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Oncode Institute, University Medical Centre Utrecht, Upsalalaan 8, 3584CT Utrecht, The Netherlands; Princess Máxima Center for Pediatric Oncology, 3584CT Utrecht, The Netherlands.
| |
Collapse
|
29
|
Chang CW, Liu CY, Lee HC, Huang YH, Li LH, Chiau JSC, Wang TE, Chu CH, Shih SC, Tsai TH, Chen YJ. Lactobacillus casei Variety rhamnosus Probiotic Preventively Attenuates 5-Fluorouracil/Oxaliplatin-Induced Intestinal Injury in a Syngeneic Colorectal Cancer Model. Front Microbiol 2018; 9:983. [PMID: 29867884 PMCID: PMC5962742 DOI: 10.3389/fmicb.2018.00983] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Adjuvant 5-fluorouracil (5-FU)-based chemotherapy, including FOLFOX (5-FU, leucovorin, and oxaliplatin), is recommended for colorectal cancer. However, intestinal mucositis remains a common adverse effect for which no effective preventive strategies are available. To develop a convenient and novel way to alleviate mucositis, we investigated the effect of Lactobacillus casei variety rhamnosus (Lcr35) on FOLFOX-induced mucosal injury. BALB/c mice subcutaneously injected with syngeneic CT26 colorectal adenocarcinoma cells were orally administered Lcr35 daily before, during, and after 5-day injection of FOLFOX regimen, for 14 days. The following methods were used: diarrhea score for toxicity, ELISA for cytokine production, histopathology for intestinal injury, immunohistochemistry for apoptosis/proliferation and regulatory proteins, RT-PCR for cytokine mRNA expression, and DNA sequencing for fecal gut microbiota. FOLFOX administration to colorectal cancer-bearing mice significantly inhibited tumor growth and the accompanying marked diarrhea and intestinal injury histologically characterized by the shortening of villi and destruction of intestinal crypts. Preventive administration of Lcr35 dose-dependently reduced the severity of diarrhea and intestinal mucositis without affecting the anti-tumor effect of FOLFOX. The numbers of apoptotic, NF-κB-, and BAX-activated cells increased after FOLFOX, and these responses were mitigated by Lcr35. TNF-α and IL-6 upregulation by FOLFOX treatment was attenuated by Lcr35. The fecal gut microbiota composition of Firmicutes and Bacteroidetes disturbed by FOLFOX was significantly reversed by Lcr35 toward a preferential profile. In conclusion, the oral probiotic Lcr35 prevented FOLFOX-induced intestinal mucositis in colorectal cancer-bearing mice. The putative mechanism might involve modulation of gut microbiota and proinflammatory responses with suppression of intrinsic apoptosis in intestinal injury.
Collapse
Affiliation(s)
- Ching-Wei Chang
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Hung-Chang Lee
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan.,MacKay Children's Hospital, Taipei, Taiwan
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hui Li
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | | | - Tsang-En Wang
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Cheng-Hsin Chu
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Shou-Chuan Shih
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Abstract
Growing knowledge of inherited colorectal cancer syndromes has led to better surveillance and better care of this subset of patients. The most well-known entities, including Lynch syndrome and familial adenomatous polyposis, are continually being studied and with the advent of more sophisticated genetic testing, additional genetic discoveries have been made in the field of inherited cancer. This article will summarize many of the updates to both the familiar and perhaps less familiar syndromes that can lead to inherited or early-onset colorectal cancer.
Collapse
Affiliation(s)
- Molly M Ford
- Division of Colon and Rectal Surgery, Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
In vivo bioluminescence-based monitoring of liver metastases from colorectal cancer: An experimental model. J Microsc Ultrastruct 2017. [DOI: 10.1016/j.jmau.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Establishment of human metastatic colorectal cancer model in rabbit liver: A pilot study. PLoS One 2017; 12:e0177212. [PMID: 28475639 PMCID: PMC5419650 DOI: 10.1371/journal.pone.0177212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Rationale and objectives To develop a human metastatic colorectal cancer (mCRC) model in a rabbit liver. Materials and methods Immunosuppression in 4 adult New Zealand White rabbits weighing 3.5 to 4.5 kg was induced with daily subcutaneous injection of 15 mg/kg Cyclosporine A (CsA). On day 3 open mini-laparotomy was performed and 0.2 ml (1.8x105 cells) suspension of HCT-116 and HT-29 human CRC cells were injected into the left and right medial lobe respectively. On day 10 the CsA dose was reduced to 10 mg/kg daily maintenance dose. Rabbits were weighed weekly, closely monitored for CsA side effects (weight loss, gingival hyperplasia and gut modification). Rabbits were sacrificed 5, 6, 7, and 8 weeks after cells injection. Liver tumors were collected for histopathology and immunohistochemical analysis. Results HT-29 Tumor growth was observed in 3 rabbits (75%). Tumors measured 3, 4 and 6 mm after 5, 6 and 8 weeks respectively. Microscopically, tumors contained hyperchromatic, pleomorphic cells that stained for monoclonal carcinoembryonic antigen (CEA), polyclonal CEA, cytokeratin 20, vascular markers (CD31, CD34), and vascular endothelial growth factor (VEGF) by immunohistochemistry, supporting involvement by the poorly differentiated HT-29 colorectal cancer cell line. No gross tumor growth or microscopic viability was observed from HCT-116 cell injection. CsA extra-hepatic manifestations included minimal gum hyperplasia and decrease in gut motility in 3 rabbits (75%), which was treated with Azithromycin 15 mg/kg and Cisapride 0.5 mg/kg every 12 hours, respectively. Conclusion We successfully developed a human metastatic colon cancer model in immunosuppressed rabbit liver using HT-29 cells.
Collapse
|
33
|
Oshima G, Stack ME, Wightman SC, Bryan D, Poli E, Xue L, Skowron KB, Uppal A, Pitroda SP, Huang X, Posner MC, Hellman S, Weichselbaum RR, Khodarev NN. Advanced Animal Model of Colorectal Metastasis in Liver: Imaging Techniques and Properties of Metastatic Clones. J Vis Exp 2016. [PMID: 27929457 DOI: 10.3791/54657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Patients with a limited number of hepatic metastases and slow rates of progression can be successfully treated with local treatment approaches1,2. However, little is known about the heterogeneity of liver metastases, and animal models capable of evaluating the development of individual metastatic colonies are needed. Here, we present an advanced model of hepatic metastases that provides the ability to quantitatively visualize the development of individual tumor clones in the liver and estimate their growth kinetics and colonization efficiency. We generated a panel of monoclonal derivatives of HCT116 human colorectal cancer cells stably labeled with luciferase and tdTomato and possessing different growth properties. With a splenic injection followed by a splenectomy, the majority of these clones are able to generate hepatic metastases, but with different frequencies of colonization and varying growth rates. Using the In Vivo Imaging System (IVIS), it is possible to visualize and quantify metastasis development with in vivo luminescent and ex vivo fluorescent imaging. In addition, Diffuse Luminescent Imaging Tomography (DLIT) provides a 3D distribution of liver metastases in vivo. Ex vivo fluorescent imaging of harvested livers provides quantitative measurements of individual hepatic metastatic colonies, allowing for the evaluation of the frequency of liver colonization and the growth kinetics of metastases. Since the model is similar to clinically observed liver metastases, it can serve as a modality for detecting genes associated with liver metastasis and for testing potential ablative or adjuvant treatments for liver metastatic disease.
Collapse
Affiliation(s)
- Go Oshima
- Department of Surgery, The University of Chicago; Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | | | | | - Darren Bryan
- Department of Surgery, The University of Chicago
| | | | - Lai Xue
- Department of Surgery, The University of Chicago
| | | | | | - Sean P Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | | | - Samuel Hellman
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago;
| |
Collapse
|
34
|
Tommelein J, Gremonprez F, Verset L, De Vlieghere E, Wagemans G, Gespach C, Boterberg T, Demetter P, Ceelen W, Bracke M, De Wever O. Age and cellular context influence rectal prolapse formation in mice with caecal wall colorectal cancer xenografts. Oncotarget 2016; 7:75603-75615. [PMID: 27689329 PMCID: PMC5342764 DOI: 10.18632/oncotarget.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022] Open
Abstract
In patients with rectal prolapse is the prevalence of colorectal cancer increased, suggesting that a colorectal tumor may induce rectal prolapse. Establishment of tumor xenografts in immunodeficient mice after orthotopic inoculations of human colorectal cancer cells into the caecal wall is a widely used approach for the study of human colorectal cancer progression and preclinical evaluation of therapeutics. Remarkably, 70% of young mice carrying a COLO320DM caecal tumor showed symptoms of intussusception of the large bowel associated with intestinal lumen obstruction and rectal prolapse. The quantity of the COLO320DM bioluminescent signal of the first three weeks post-inoculation predicts prolapse in young mice. Rectal prolapse was not observed in adult mice carrying a COLO320DM caecal tumor or young mice carrying a HT29 caecal tumor. In contrast to HT29 tumors, which showed local invasion and metastasis, COLO320DM tumors demonstrated a non-invasive tumor with pushing borders without presence of metastasis. In conclusion, rectal prolapse can be linked to a non-invasive, space-occupying COLO320DM tumor in the gastrointestinal tract of young immunodeficient mice. These data reveal a model that can clarify the association of patients showing rectal prolapse with colorectal cancer.
Collapse
Affiliation(s)
- Joke Tommelein
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Félix Gremonprez
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Glenn Wagemans
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Christian Gespach
- Institut National de la Santé et de la Recherche Médicale, INSERM, Department of Molecular and Clinical Oncology, Université Paris VI Pierre et Marie Curie, Paris, France
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Surgery, Ghent University Hospital, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
35
|
In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone. Int J Mol Sci 2016; 17:ijms17091405. [PMID: 27571063 PMCID: PMC5037685 DOI: 10.3390/ijms17091405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022] Open
Abstract
Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.
Collapse
|
36
|
Gao JJ, Li W, Ju Q, Zhou LP, Zhao XH. Effect of serum starvation on secretion of exosomes in colorectal cancer HCT116 cells. Shijie Huaren Xiaohua Zazhi 2016; 24:566-572. [DOI: 10.11569/wcjd.v24.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of serum starvation on secretion of exosomes, to find a more conducive way to get more exosomes.
METHODS: Fetal bovine serum (FBS)-free medium and medium containing exosome-depleted FBS were used to culture HCT116 cells. Ultracentrifugation was used to extract exosomes, and ordinary optical microscope was used to observe the physiological state of the cells. Exosome markers were detected by Western blot. Exosomes were observed by transmission electron microscopy and counted with Nanosight.
RESULTS: Ordinary optical microscopy showed that cells cultured in medium containing exosome-depleted FBS grew in good state, and there was no obvious cell death compared with those cultured in FBS-free condition.Transmission electron microscopy showed that the exosomes secreted by cells had a diameter of 40-100 nm and were protected by a lipid bilayer. Western blot analysis showed that the exosomes were positive for CD63 and heat shock protein 70 in two kinds of culture conditions. The quantity of exosomes secreted by cells cultured in medium containing exosome-depleted FBS was about 6 times more than that by cells cultured in FBS-free medium.
CONCLUSION: Exosomes secreted by HCT116 cells cultured in medium containing exosome-depleted FBS have no obvious differences from those by HCT116 cells cultured in FBS-free medium. However, the cells grow better and more exosomes can be obtained when cultured in medium containing exosome-depleted FBS.
Collapse
|
37
|
Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 2015; 310:H466-77. [PMID: 26718971 DOI: 10.1152/ajpheart.00720.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/29/2015] [Indexed: 02/08/2023]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. In addition to a loss of skeletal muscle mass and function, many patients with cancer cachexia also experience cardiac atrophy, remodeling, and dysfunction, which in the field of cancer cachexia is described as cardiac cachexia. The cardiac alterations may be due to underlying heart disease, the cancer itself, or problems initiated by the cancer treatment and, unfortunately, remains largely underappreciated by clinicians and basic scientists. Despite recent major advances in the treatment of cancer, little progress has been made in the treatment of cardiac cachexia in cancer, and much of this is due to lack of information regarding the mechanisms. This review focuses on the cardiac atrophy associated with cancer cachexia, describing some of the known mechanisms and discussing the current and future therapeutic strategies to treat this condition. Above all else, improved awareness of the condition and an increased focus on identification of mechanisms and therapeutic targets will facilitate the eventual development of an effective treatment for cardiac atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Kate T Murphy
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|