1
|
Zulkifli NA, Nor Azmi NJ, Yusop N, Mohamad S. Unveiling the cytotoxicity of Trichomonas tenax: Pathogenic mechanisms and implications for oral health. Microb Pathog 2025; 204:107578. [PMID: 40228755 DOI: 10.1016/j.micpath.2025.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Affiliation(s)
- Nurin Aqilah Zulkifli
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nurin Jazlina Nor Azmi
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Norhayati Yusop
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Tak EJ, Park OJ, Lee JS, Yoo YJ, Perinpanayagam H, Jeong YS, Lee JY, Bae JW, Kum KY, Han SH. Microbiota associated with caries and apical periodontitis: A next-generation sequencing study. Int Endod J 2025; 58:890-901. [PMID: 40069919 DOI: 10.1111/iej.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/23/2025] [Indexed: 05/11/2025]
Abstract
AIM This study investigated the correlation between microbiota of caries-free enamel and caries-affected dentine biofilms and that of root canals with primary apical periodontitis, by using an Illumina MiSeq platform. METHODOLOGY Biofilm from caries-free enamel surface (Biofilm-C) or caries-affected dentine (Biofilm-E) and root canal paper point samples (Canal) were collected from 31 teeth with primary apical periodontitis. Microbial composition was analysed by amplicon sequencing that targeted the V3-V4 region of 16S rRNA gene. Alpha and beta diversities of bacterial communities between sampling sites were compared using the Kruskal-Wallis test and pairwise permutational multivariate analysis of variance, respectively. Differentially abundant taxa identified using MaAsLin2 were adjusted for multiple comparisons using the Benjamini-Hochberg method. RESULTS Totals of 16 phyla, 130 genera and 314 species were identified. Distinct and shared bacterial communities were observed between biofilm and canal samples. No significant differences in alpha diversity were observed across all sampling sites. A total of 32 genera including Acinetobacter, [Eubacterium], Dialister, Erysipelotrichaceae UCG-006, Lawsonella, W5053, Phocaeicola, Mogibacterium, Pyramidobacter and Parvimonas were more abundant in Canal samples compared to both Biofilm-C and Biofilm-E. The genera Hallella, Lactobacillus, Shuttleworthella, Olsenella, Cryptobacterium, Alloprevotella, Phocaeicola, Limosilactobacillus, Selenomonadaceae and Anaeroglobus were increased significantly in Biofilm-E compared to Biofilm-C. Hallela multisaccharivorax, Olsenella uli, Lactobacilllus gasseri, Selenomonadaceae species and Scardovia inopinata exhibited higher abundance in both Biofilm-E and Canal, than Biofilm-C. These differences in bacterial composition among sampling sites, including the increased presence of specific taxa in caries-affected dentine and root canals, suggest that these microorganisms may contribute to the development of primary apical periodontitis. CONCLUSION Bacterial community structure differed significantly between biofilm and root canal samples, but showed no significant differences among biofilm samples based on dental caries status. However, some taxa were shared among caries-affected lesions, including dentine and root canals. H. multisaccharivorax, O. uli, L. gasseri, Selenomonadaceae species and S. inopinata exhibited higher abundance in caries-affected dentine and root canals with primary apical periodontitis, suggesting that specific bacteria in caries-affected dentine play a crucial role in the development of root canal infections and the pathogenesis of primary apical periodontitis.
Collapse
Affiliation(s)
- Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Sun Lee
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Jee Yoo
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hiran Perinpanayagam
- Division of Endodontics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Yun-Seok Jeong
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Kee-Yeon Kum
- Department of Conservative Dentistry, Dental Research Institute, Seoul National University Dental Hospital, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Campus G, Cagetti MG, Lehrkinder A, Alshabeeb A, Caimoni N, Lingström P. The Probiotic Effects of Lactobacillus brevis CD2 on Caries Related Variables of Dental Plaque Biofilm. Int Dent J 2025; 75:1662-1671. [PMID: 40147282 PMCID: PMC11985112 DOI: 10.1016/j.identj.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/28/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVES This study was based on the research question: "Does L. brevis CD2 have an effect on the acidogenicity of sugar-exposed bacteria? To solve this question, a multistep study was planned: first, an in vitro investigation aimed to assess the acid production of monoculture bacterial solutions; and second, an ex vivo experiment to evaluate the production or inhibition of acids from plaque samples. METHODS L. brevis CD2 and several control strains (Lactobacillus brevis CD2, Lactobacillus reuteri DSM 17938, Lactobacillus rhamnosus LB21, Lactobacillus plantarum 931, Streptococcus mutans Ingbritt) were tested with various sugars; pH changes were recorded at specific time points using a micro-pH electrode. Additionally, for the ex vivo phase, the same sugars were added to equal amounts of pooled plaque from 9 healthy subjects with bacterial suspensions, as well as a control solution, and pH was monitored for up to 90 minutes. For the ex vivo phase, 9 adults were randomised in a crossover design for 28 days. For the in vivo phase, 26 healthy subjects used 1/2 lozenges 3 times daily containing either L. brevis CD2 (active) or no probiotic bacteria (placebo). Plaque acidogenicity was assessed using the microtouch method after a 10 ml mouth rinse containing 10% sucrose for 1 minute (on day 0 and day 28). RESULTS L. brevis CD2 exhibited the highest ability to inhibit the fermentation of fructose, lactose, and sucrose compared to the control strains (P < .05). A significant reduction in plaque acidogenicity was observed in vivo from day 0 to day 28 in the test group (P < .05). CONCLUSIONS This study indicates that L. brevis CD2 mitgates the acidogenic attributes of plaque biofilm organisma in vitro, in vivo and ex vivo, suggesting its potential benefit as a caries preventive probiotic agent.
Collapse
Affiliation(s)
- Guglielmo Campus
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Maria Grazia Cagetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna Lehrkinder
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Alshabeeb
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicole Caimoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Asst Valle Olona, Dental Unit, Gallarate, Italy
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Alkharaan H. Infectious and Immunological Links Between Periodontitis and COVID-19: A Review. Med Sci Monit 2025; 31:e948069. [PMID: 40418682 PMCID: PMC12124155 DOI: 10.12659/msm.948069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/01/2025] [Indexed: 05/28/2025] Open
Abstract
Emerging evidence suggests a potential association between periodontitis and adverse outcomes in COVID-19. Both conditions share risk factors and exhibit similar immune dysregulation, including elevated pro-inflammatory cytokines, altered myeloid compartments, and T-cell dysfunction. SARS-CoV-2 uses angiotensin-converting enzyme type 2 and transmembrane protease serine 2 membrane proteins, highly expressed in the oral cavity, for cellular entry. Periodontitis may exacerbate COVID-19 through mechanisms such as oral microbe aspiration, increased viral receptor expression, and systemic inflammation. The shared immunopathogenesis, characterized by cytokine storms and perturbed immune profiles, suggests periodontitis can predispose patients to more severe COVID-19 outcomes. This article aims to review the associations between periodontitis and the severity of COVID-19 and the possible immune mechanisms involved.
Collapse
|
5
|
Torraco A, Di Nicolantonio S, Cardisciani M, Ortu E, Pietropaoli D, Altamura S, Del Pinto R. Meta-Analysis of 16S rRNA Sequencing Reveals Altered Fecal but Not Vaginal Microbial Composition and Function in Women with Endometriosis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:888. [PMID: 40428846 PMCID: PMC12112980 DOI: 10.3390/medicina61050888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Dysbiosis of the oral-gut axis is related to several extraintestinal inflammatory diseases, including endometriosis. This study aims to assess the microbial landscape and pathogenic potential of distinct biological niches during endometriosis. Materials and Methods: A microbiome meta-analysis was conducted on 182 metagenomic sequences (79 of fecal and 103 of vaginal origin) from women with and without endometriosis. Fecal and vaginal microbial diversity, differential abundance, and functional analysis based on disease status were assessed. Random forest, gradient boosting, and generalized linear modeling were used to predict endometriosis based on differentially enriched bacteria. Results: Only intestinal microbes displayed distinctive taxonomic and functional characteristics in women with endometriosis compared to control women. Taxonomic differences were quantified using the microbial endometriosis index (MEI), which effectively distinguished between individuals with and without the disease. The observed functional enrichment pointed to proinflammatory pathways previously related to endometriosis development. Conclusions: Dysbiosis in the oral-gut microbial community appears to play a prevalent role in endometriosis. Our findings pave the ground for future studies exploring the potential mechanistic involvement of the oral-gut axis in disease pathogenesis.
Collapse
Affiliation(s)
- Astrid Torraco
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| | - Sara Di Nicolantonio
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| | - Martina Cardisciani
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| | - Eleonora Ortu
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| | - Davide Pietropaoli
- Department of Physical and Chemical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Serena Altamura
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| | - Rita Del Pinto
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.T.); (S.D.N.); (M.C.); (E.O.)
| |
Collapse
|
6
|
Yekani M, Dastgir M, Fattahi S, Shahi S, Maleki Dizaj S, Memar MY. Microbiological and molecular aspects of periodontitis pathogenesis: an infection-induced inflammatory condition. Front Cell Infect Microbiol 2025; 15:1533658. [PMID: 40406516 PMCID: PMC12095233 DOI: 10.3389/fcimb.2025.1533658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Periodontitis (PD) is the most common oral infectious disease. The primary etiologic cause of the onset and development of PD is dental plaque, which consists of bacterial biofilm domiciled within a complex extracellular mass. In PD patients, there is a progressive breakdown of the periodontal ligament and the alveolar bone. In more advanced stages, tooth loss occurs. The progression of this chronic inflammatory disease involves interactions among numerous microbial pathogens particularly, bacteria, the host's immune factors, and various environmental factors. Due to persistent infection by periodonto-pathogenic bacteria, there is an impairment of both innate and acquired immunity, leading to tissue destruction. Chronic inflammation in PD may be associated with several systemic diseases, including cardiovascular conditions, respiratory issues, diabetes, neurological diseases, cancer, and adverse pregnancy outcomes. Antibiotic treatment is one of the effective strategies for treating PD cases, although the emergence of some resistant strains may limit the effectiveness some antibiotics. In this review study, we discussed the main bacteria in PD, the interaction with the immune response, the pathogenesis of bacteria in PD and antibiotic treatment. We also outlined the emergence of resistance to antibiotics among these pathogens.
Collapse
Affiliation(s)
- Mina Yekani
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Dastgir
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Fattahi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Malhotra S, Lijnse T, Cearbhaill EO, Brayden DJ. Devices to overcome the buccal mucosal barrier to administer therapeutic peptides. Adv Drug Deliv Rev 2025; 220:115572. [PMID: 40174726 DOI: 10.1016/j.addr.2025.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Peptide therapeutics are important in healthcare owing to their high target specificity, therapeutic efficacy, and relatively low side effect profile. Injections of these agents have improved thetreatment of chronic diseases including autoimmune, metabolic disorders, and cancer. However, their administration via injections can prove a barrier to patient acceptability of treatments. While oral delivery of these molecules is preferable, oral peptide formulations are associated with limited bioavailability due to degradation in the intestine and low epithelial permeability. Buccal administration of peptides is a potential alternative to injections and oral formulations. Similar to the oral route, the buccal route can promote better patient adherence to dosing regimens, along with the added advantages of not requiring restriction on food or drink consumption before and after administration, as well as avoidance of the liver first-pass metabolism. However, like oral, effective buccal absorption of peptides is still challenging due to the high epithelial permeability barrier. We present a multidisciplinary approach to understanding the buccal physiological barrier to macromolecule permeation and discuss how engineered devices may overcome it. Selected examples of buccal devices can facilitate fast and efficient macromolecule absorption through multiple mechanisms including physical disruption of epithelia, convection-based mass transfer, and a combination of physicochemical strategies. Importantly, minimally invasive devices can be self-applied and are associated with the maintenance of the barrier after exposure. We analysed the critical attributes that are required forthe clinical translation of buccal peptide administration devices. These include performance-driven device development, manufacturing features, patient acceptability, and commercial viability.
Collapse
Affiliation(s)
- Sahil Malhotra
- UCD School of Medicine, University College Dublin (UCD), -Belfield, Dublin 4, Ireland; Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Thomas Lijnse
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - Eoin O' Cearbhaill
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; School of Mechanical and Materials Engineering, UCD, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland
| | - David J Brayden
- Research Ireland-CÚRAM Centre for Medical Devices, UCD, Ireland; UCD School of Veterinary Medicine, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, UCD-Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Blanco R, Muñoz JP. Porphyromonas gingivalis and Human Cytomegalovirus Co-Infection: A Potential Link Between Periodontal Disease and Oral Cancer Development. Cancers (Basel) 2025; 17:1525. [PMID: 40361452 PMCID: PMC12071019 DOI: 10.3390/cancers17091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Periodontal disease (PD) is an inflammatory condition that can contribute to the development of oral cancer. Chronic inflammation from PD can lead to the release of inflammatory mediators and growth factors that promote tumorigenesis. Porphyromonas gingivalis (P. gingivalis) is one of several pathogens implicated in PD and its potential link to oral cancer. However, other viral infections, such as human cytomegalovirus (HCMV), can also contribute to chronic inflammation, creating a favorable environment for oral cancer development. OBJECTIVES The present literature review tries to investigate the possible influence of P. gingivalis and HCMV co-infection in fostering the development of oral cancer and chronic periodontitis. METHODS A comprehensive search was conducted in PubMed and Google Scholar, focusing on the relevance and significance of articles that examine the role of P. gingivalis and HCMV in periodontal disease and oral cancer. RESULTS The evidence suggests that P. gingivalis and HCMV may act synergistically to modulate host immunity, disrupt epithelial integrity, and interfere with key cellular pathways. These interactions may enhance tissue destruction and foster a microenvironment conducive to malignant transformation. However, most of these findings stem from in vitro models and small-scale clinical studies, limiting the generalizability and clinical relevance of current conclusions. CONCLUSIONS Although the proposed interaction between P. gingivalis and HCMV provides a compelling framework for understanding how microbial co-infections may influence oral cancer, the evidence remains preliminary and largely associative. To support these mechanistic hypotheses, future studies should give top priority to in vivo models, bigger patient cohorts, and longitudinal clinical studies.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
9
|
Matsuoka M, Soria SA, Pires JR, Sant'Ana ACP, Freire M. Natural and induced immune responses in oral cavity and saliva. BMC Immunol 2025; 26:34. [PMID: 40251519 PMCID: PMC12007159 DOI: 10.1186/s12865-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
This review comprehensively explores the intricate immune responses within the oral cavity, emphasizing the pivotal role of saliva in maintaining both oral and systemic health. Saliva, a complex biofluid, functions as a dynamic barrier against pathogens, housing diverse cellular components including epithelial cells, neutrophils, monocytes, dendritic cells, and lymphocytes, which collectively contribute to robust innate and adaptive immune responses. It acts as a physical and immunological barrier, providing the first line of defense against pathogens. The multifaceted protective mechanisms of salivary proteins, cytokines, and immunoglobulins, particularly secretory IgA (SIgA), are elucidated. We explore the natural and induced immune responses in saliva, focusing on its cellular and molecular composition. In addition to saliva, we highlight the significance of a serum-like fluid, the gingival crevicular fluid (GCF), in periodontal health and disease, and its potential as a diagnostic tool. Additionally, the review delves into the impact of diseases such as periodontitis, oral cancer, type 2 diabetes, and lupus on salivary immune responses, highlighting the potential of saliva as a non-invasive diagnostic tool for both oral and systemic conditions. We describe how oral tissue and the biofluid responds to diseases, including considerations to periodontal tissue health and in disease periodontitis. By examining the interplay between oral and systemic health through the oral-systemic axis, this review underscores the significance of salivary immune mechanisms in overall well-being and disease pathogenesis, emphasizing the importance of salivary mechanisms across the body.
Collapse
Affiliation(s)
- Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Salim Abraham Soria
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Julien Rodrigues Pires
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901, Brazil
| | | | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Du W, Hou R, Li X, Liu J, Yang T, Li J, Liu J, Wang X. Environmental particulate matter-one of the culprits in the development of caries. Front Public Health 2025; 13:1559384. [PMID: 40308923 PMCID: PMC12041023 DOI: 10.3389/fpubh.2025.1559384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
With the development of society, ecological and environmental problems have gradually become the focus of attention of countries around the world, among which environmental particulate matter poses a major harm to health. This article elucidates the association between environmental particulate matter and dental caries and provides new insights into the underlying mechanisms. In addition, this study emphasizes the role of oxidative stress in the occurrence and development of dental caries, and a new research pathway based on the interaction between oxidative stress and dental caries based on the Nrf2 pathway has become the focus of future research on the pathogenesis of dental caries. The relevant content of this review can provide a certain theoretical basis for the follow-up multidisciplinary joint research of researchers, and provide a certain reference for public health personnel and policymakers to formulate prevention strategies and public health interventions, carry out more accurate individualized treatment for high-risk groups, implement key prevention and treatment, and promote the overall improvement of effective prevention and treatment of caries. Ultimately, more attention must be paid to addressing the relationship between environmental particulate pollution and dental caries, with a focus on pollution control and reducing preventable environmental risks in order to protect oral health more broadly.
Collapse
Affiliation(s)
- Wenxin Du
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ruxia Hou
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xixi Li
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jiajia Liu
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Tingting Yang
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Junming Li
- School of Statistics, Shanxi University of Finance and Economics, Taiyuan, China
| | - Junyu Liu
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Wang
- Department of Pediatric and Preventive Dentistry, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| |
Collapse
|
11
|
Hashim NT, Babiker R, Padmanabhan V, Ahmed AT, Chaitanya NCSK, Mohammed R, Priya SP, Ahmed A, El Bahra S, Islam MS, Gismalla BG, Rahman MM. The Global Burden of Periodontal Disease: A Narrative Review on Unveiling Socioeconomic and Health Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:624. [PMID: 40283848 PMCID: PMC12027323 DOI: 10.3390/ijerph22040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Periodontal disease is a prevalent chronic inflammatory condition that impacts over a billion people worldwide, leading to substantial tooth loss, reduced quality of life, and heightened systemic health risks. This narrative review synthesizes current evidence regarding the global burden of periodontal disease, its established associations with systemic conditions including cardiovascular disease, diabetes, adverse pregnancy outcomes, respiratory infections, and neurodegenerative disorders, and its significant socioeconomic implications. The review focused on the following research question: What is the global burden of periodontal disease, and how do its systemic and socioeconomic implications necessitate integrated public health strategies? A structured search of the PubMed, Scopus, and WHO databases from 2000 to 2024 was conducted to identify relevant literature using key terms, including "periodontal disease", "global burden", "systemic inflammation", and "public health strategies". Out of 312 initially identified articles, 175 satisfied the inclusion criteria for the final synthesis. The findings underscore the significance of periodontal disease as a modifiable risk factor for various noncommunicable diseases, the influence of healthcare disparities on disease progression, and the critical necessity for integrated public health strategies to mitigate the global burden of periodontal disease and its consequences. The review concludes that coordinated policy reform, health system integration, and enhanced research efforts are crucial for mitigating the global burden of periodontal disease and advancing health equity.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Azza Tagelsir Ahmed
- Department of Pediatric Dentistry, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Department of Oral Pathology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 11115, Sudan;
| | - Shadi El Bahra
- Department of Prosthodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
12
|
Arishi RA, Cheema AS, Lai CT, Payne MS, Geddes DT, Stinson LF. Development of the breastfed infant oral microbiome over the first two years of life in the BLOSOM Cohort. Front Cell Infect Microbiol 2025; 15:1534750. [PMID: 40302925 PMCID: PMC12037575 DOI: 10.3389/fcimb.2025.1534750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Acquisition and development of the oral microbiome are dynamic processes that occur over early life. This study aimed to characterize the temporal development of the oral microbiome of predominantly breastfed infants during the first two years of life. Methods Infant oral samples (n=667) were collected at ten time points from the first week to year two of life from 84 infants. Bacterial DNA profiles were analyzed using full-length 16S rRNA gene sequencing. Results The oral microbiome was dominated by Streptococcus mitis, Gemella haemolysans, and Rothia mucilaginosa. Bacterial richness decreased from 1 to 2 months (P = 0.043) and increased from 12 to 24 months (P = 0.038). Shannon diversity increased from 1 week to 1 month and again from 6 to 9 months and 9 to 12 months (all P ≤ 0.04). The composition of the infant oral microbiome was associated with multiple factors, including early pacifier use, intrapartum antibiotic prophylaxis, maternal allergy, pre-pregnancy body mass index, siblings, delivery mode, maternal age, pets at home, and birth season (all P < 0.01). Introduction of solid foods was a significant milestone in oral microbiome development, triggering an increase in bacterial diversity (richness P = 0.0004; Shannon diversity P = 0.0007), a shift in the abundance of seven species, and a change in beta diversity (P = 0.001). Conclusion These findings underscore the importance of multiple factors, particularly the introduction of solid foods, in shaping the oral microbiome of breastfed infants during early life.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
- Ministry of Education, Riyadh, Saudi Arabia
| | - Ali S. Cheema
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Australian Breastfeeding + Lactation Research and Science Translation (ABREAST) Network, Perth, WA, Australia
- The University of Western Australia (UWA) Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| |
Collapse
|
13
|
Popovici IA, Orasanu CI, Cozaru GC, Ionescu AC, Kajanto L, Cimpineanu B, Chisoi A, Mitroi AN, Poinareanu I, Voda RI, Ursica OA, Pundiche MB. An Overview of the Etiopathogenic Mechanisms Involved in the Expression of the Oral Microbiota. Clin Pract 2025; 15:80. [PMID: 40310312 PMCID: PMC12026067 DOI: 10.3390/clinpract15040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: The diversity of the oral microbiota exerts its effects in maintaining dental and overall health. The unique genetic profile of each individual influences the composition of the oral microbiota, determining susceptibility to certain diseases. The aim is to observe its role by highlighting the pathogenic mechanisms involved in oral dysbiosis and identify genetic determinism's influence in maintaining balance. Methods: This study was designed as a narrative review of the oral microbiota, utilizing some of the principles and guidelines of systematic review to increase methodological rigor. We examined 121 articles such as reviews, meta-analyses, editorials, and observational studies, which met the inclusion and exclusion criteria. The inclusion criteria for studies were as follows: (1) studies that evaluated the impact of the microbiota in oral or/and systemic diseases; (2) studies that observed pathogenic mechanisms in the oral microbiota; (3) studies that evaluated the interaction of the microbiota with the immune system (4); studies that evaluated genetic implications in the microbiota. Results: Host genes regulate inflammatory and immunological reactions that play a role in microbiological balance. This explains the increased resistance of some to diseases, including gingivitis or periodontitis. Also, the implications of oral dysbiosis are reflected not only locally, but also generally, being associated with various systemic conditions. Conclusions: Understanding the pathogenic mechanisms and genetic determinants involved in oral dysbiosis may help create individualized therapies for preventing and managing oral and systemic disorders. A healthy lifestyle and adequate oral hygiene can facilitate a diverse and balanced microbiome, crucial for overall health.
Collapse
Affiliation(s)
- Ion Alexandru Popovici
- Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Cristian Ionut Orasanu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Georgeta-Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Anita-Cristina Ionescu
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania; (A.-C.I.); (L.K.)
| | - Lidia Kajanto
- Oncological Institute “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania; (A.-C.I.); (L.K.)
| | - Bogdan Cimpineanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Adrian Nelutu Mitroi
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- Railway Clinical Hospital, 900123 Constanta, Romania
| | - Ionut Poinareanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Raluca Ioana Voda
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania; (G.-C.C.); (A.C.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
| | - Oana Andreea Ursica
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| | - Mihaela Butcaru Pundiche
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (B.C.); (A.N.M.); (I.P.); (O.A.U.); (M.B.P.)
- “Sf. Apostol Andrei” County Emergency Clinical Hospital, 900591 Constanta, Romania
| |
Collapse
|
14
|
Zhao Z, Li J, Liu J, Zhang X, Qie Y, Sun Y, Liu N, Liu Q. Alcohol exposure alters the diversity and composition of oral microbiome. Front Cell Infect Microbiol 2025; 15:1561055. [PMID: 40260113 PMCID: PMC12009820 DOI: 10.3389/fcimb.2025.1561055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Alcohol exposure has been shown to have complex, and sometimes paradoxical, associations with various serious diseases. Currently, there is no knowledge about the effects of alcohol exposure on the dynamics of oral microbial communities. Objective The study aims to investigate the effects of chronic alcohol consumption on the diversity and composition dynamics of the rat oral microbiota using 16S rRNA gene amplicon sequencing. Methods In our study, there were 2 groups, including a control group (C group) and an alcohol group (A group), with 10 rats in every group. For ten weeks, rats in the A group were treated with alcohol intragastrically every day, whereas rats in the C group got water. After 10 weeks, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. Oral swabs were taken from both groups, and total DNA was extracted for high-throughput sequencing of the 16S rRNA gene. Results According to the results obtained from our study, significant differences were observed in the relative abundances of microbial communities. Alpha diversity measures were statistically significantly higher (P < 0.05) in the A group compared to the C group. At the genus level, alcohol exposure altered the relative abundance of several microbes, including increased relative abundance of unidentified_Chloroplast, Acinetobacter, Vibrio, Romboutsia, Pseudoalteromonas, Aeromonas, Ralstonia, Turicibacter, Shewanella, and Bacteroides. Conversely, Haemophilus and Streptococcus were significantly less abundant in the A group. Conclusion Alcohol exposure was associated with the diversity and composition of the oral microbiome. These findings contribute to our understanding of the potential role of oral bacteria in alcohol-related oral and systemic diseases, providing foundational work for future prevention and intervention studies.
Collapse
Affiliation(s)
- Zirui Zhao
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxin Li
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juan Liu
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao Zhang
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yusen Qie
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yutong Sun
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology/Hebei Technology Innovation Center of Oral Health, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms 2025; 13:814. [PMID: 40284650 PMCID: PMC12029813 DOI: 10.3390/microorganisms13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and neuronal loss, affecting millions worldwide. Emerging evidence highlights the oral microbiome-a complex ecosystem of bacteria, fungi, viruses, and protozoa as a significant factor in cognitive health. Dysbiosis of the oral microbiome contributes to systemic inflammation, disrupts the blood-brain barrier, and promotes neuroinflammation, processes increasingly implicated in the pathogenesis of AD. This review examines the mechanisms linking oral microbiome dysbiosis to cognitive decline through the oral-brain and oral-gut-brain axis. These interconnected pathways enable bidirectional communication between the oral cavity, gut, and brain via neural, immune, and endocrine signaling. Oral pathogens, such as Porphyromonas gingivalis, along with virulence factors, including lipopolysaccharides (LPS) and gingipains, contribute to neuroinflammation, while metabolic byproducts, such as short-chain fatty acids (SCFAs) and peptidoglycans, further exacerbate systemic immune activation. Additionally, this review explores the influence of external factors, including diet, pH balance, medication use, smoking, alcohol consumption, and oral hygiene, on oral microbial diversity and stability, highlighting their role in shaping cognitive outcomes. The dynamic interplay between the oral and gut microbiomes reinforces the importance of microbial homeostasis in preserving systemic and neurological health. The interventions, including probiotics, prebiotics, and dietary modifications, offer promising strategies to support cognitive function and reduce the risk of neurodegenerative diseases, such as AD, by maintaining a diverse microbiome. Future longitudinal research is needed to identify the long-term impact of oral microbiome dysbiosis on cognition.
Collapse
Affiliation(s)
- Noorul Ain Adil
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Christabel Omo-Erigbe
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Thitisakyothin P, Chanrat S, Srisatjaluk RL, Mitrakul K. Quantitative analysis of Streptococcus mutans, Bifidobacterium, and Scardovia Wiggsiae in occlusal biofilm and their association with Visible Occlusal Plaque Index (VOPI) and International Caries Detection and Assessment System (ICDAS). Eur Arch Paediatr Dent 2025; 26:271-281. [PMID: 39715970 PMCID: PMC11972192 DOI: 10.1007/s40368-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 12/25/2024]
Abstract
AIMS To quantitatively detect S. mutans, Bifidobacterium, and S. wiggsiae in occlusal biofilm from permanent first molars based on the Visible Occlusal Plaque Index (VOPI), and to analyse the association between their levels and the occlusal enamel caries occurrence following the diagnosis of the International Caries Detection and Assessment System (ICDAS). STUDY DESIGN One hundred twenty plaque samples were collected from children aged 6-8 years and divided into four groups (n = 30 each group) according to VOPI scores (0 = no visible plaque, 1 = thin plaque, 2 = thick plaque, and 3 = heavy plaque). Scores 0 and 1 were identified by running dental probe on the groove. Scores 2 and 3 were visually identified. ICDAS scores were recorded by scoring 0-3 (0 = sound tooth surface, 1 = opacity or discoloration of enamel after air drying, 2 = visual change in enamel when wet, and 3 = localised enamel breakdown). METHODS DNA was extracted from plaque samples and performed quantitative real-time PCR using SYBR green and specific primers for total bacteria including the 16S rRNA gene sequences conserved in all bacteria (BAC16S), S. mutans, Bifidobacterium, and S. wiggsiae. RESULTS Ages of the children were different amongst VOPI groups (p < 0.001). Levels of total bacteria (p < 0.001) and S. mutans (p = 0.026) increased when VOPI increased. The ratio of S. mutans to total bacteria (p = 0.015) and the ratio of Bifidobacterium to total bacteria (p < 0.001) decreased from VOPI 0 to VOPI 3. Significant differences in total bacteria (p < 0.001) and S. mutans (p = 0.018) were detected from VOPI 0 to VOPI 2. A difference in Bifidobacterium (p < 0.001) was detected from VOPI 0 to VOPI 1. CONCLUSION Quantities of total bacteria (p < 0.001), S. mutans (p = 0.02) and ICDAS scores (p < 0.001) and VOPI scores were positively correlated. Quantities of ratio of S. mutans to total bacteria (p = 0.003) and ratio of Bifidobacterium to total bacteria (p < 0.001) and VOPI scores and ICDAS scores (p < 0.001) were negatively correlated.
Collapse
Affiliation(s)
- P Thitisakyothin
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand
| | - S Chanrat
- Department of Pediatric Dentistry, College of Dental Medicine, Rangsit University, Pathum Thani, Thailand
| | - R L Srisatjaluk
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand
| | - K Mitrakul
- Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothee Street, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
17
|
Di Spirito F, Pisano M, Di Palo MP, De Benedetto G, Rizki I, Franci G, Amato M. Periodontal Status and Herpesiviridae, Bacteria, and Fungi in Gingivitis and Periodontitis of Systemically Compromised Pediatric Subjects: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:375. [PMID: 40150657 PMCID: PMC11941093 DOI: 10.3390/children12030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Gingivitis and periodontitis are microbially associated diseases, with some features characteristic of pediatric age and others linked to systemic diseases. While the role of periodontal pathogenic bacteria is well recognized, the contribution of fungi and viruses, particularly Herpesviridae, remains controversial. Studies in adults have highlighted the presence of Herpesviridae, but evidence in pediatric subjects, especially systemically compromised, is limited. This systematic review aimed to assess periodontal status (e.g., health, gingivitis, periodontitis, necrotizing gingivitis, and/or periodontitis) and the subgingival and/or salivary microbial (bacterial, viral, and fungal) profile in systemically compromised pediatric (≤18 years) subjects with gingivitis and/or periodontitis compared to clinical periodontal health. METHODS The review protocol was registered on PROSPERO (CRD42024597695) and followed the PRISMA statement. Data from eight studies were descriptively analyzed and qualitatively assessed through ROBINS-I and JBI tools. RESULTS CMV was frequently detected, particularly in necrotizing gingivitis (19.40%). EBV was found in necrotizing gingivitis (20.69%) and periodontitis (10.34%); HSV was mainly associated with gingivitis and necrotizing gingivitis. Bacteria species in periodontitis included Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium, and Campylobacter species. Candida albicans was detected in periodontitis, suggesting a fungal involvement in the disease's pathogenesis. Although the bacterial and fungal profile was not investigated, limited viral presence was noted in subjects with healthy periodontium, indicating a stable microbiome. CONCLUSIONS These findings underscore the dynamics of microbial interactions in the progression of periodontal disease in systemically compromised pediatric subjects.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.P.); (M.P.D.P.); (G.D.B.); (I.R.); (M.A.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Pardiñas López S, García-Caro ME, Vallejo JA, Aja-Macaya P, Conde-Pérez K, Nión-Cabeza P, Khouly I, Bou G, Cendal AIR, Díaz-Prado S, Poza M. Anti-inflammatory and antimicrobial efficacy of coconut oil for periodontal pathogens: a triple-blind randomized clinical trial. Clin Oral Investig 2025; 29:182. [PMID: 40085302 PMCID: PMC11909057 DOI: 10.1007/s00784-025-06267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES To evaluate the effect of coconut oil on the oral bacteriome and inflammatory response in patients with periodontitis by integrating next-generation sequencing analyses of pathogenic bacterial shifts and quantification of inflammatory markers, thereby assessing its potential as a natural adjunct to standard nonsurgical periodontal therapy. MATERIALS AND METHODS A triple-blind clinical trial was conducted with 30 participants diagnosed with periodontitis, randomized into 3 groups: (1) coconut oil, (2) chlorhexidine and (3) placebo. Saliva and gingival crevicular fluid (GCF) samples were collected before treatment, one month after treatment, and one month post-non-surgical periodontal therapy. Bacterial DNA was extracted, and the V3-V4 region of the 16 S rRNA gene was PCR-amplified and sequenced using Illumina MiSeq technologies. Inflammatory biomarkers, including Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were quantified from GCF samples. RESULTS Coconut oil treatment significantly reduced pathogenic bacterial families such as Spirochaetaceae and Tannerellaceae while promoting beneficial bacteria such as Streptococcaceae. At the genus and species levels, coconut oil reduced pathogens such as Tannerella forsythia and Treponema denticola along with increase in beneficial bacteria such as Streptococcus. The subgingival microbial dysbiosis index improved significantly in both coconut oil and chlorhexidine groups. Furthermore, the coconut oil demonstrated a reduction in IL-6 and TNF-α levels, indicating decreased local inflammation. CONCLUSIONS Coconut oil treatment significantly modulated the oral microbiome and reduced inflammatory markers in patients with periodontitis, suggesting its potential as a natural and effective adjunct in periodontal therapy. CLINICAL RELEVANCE This study highlights coconut oil's potential as a natural adjunct in periodontal therapy, effectively reducing pathogenic bacteria and inflammatory markers (IL-6, TNF-α). It offers a safe alternative to chlorhexidine, promoting microbiome balance and improved periodontal health.
Collapse
Affiliation(s)
- Simón Pardiñas López
- Periodontology and Oral Surgery, Clínica Médico Dental Pardiñas, Real 66, 3, A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain.
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA.
| | - Mónica E García-Caro
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Juan A Vallejo
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain.
| | - Pablo Aja-Macaya
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Kelly Conde-Pérez
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Paula Nión-Cabeza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ismael Khouly
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA
- Multidisciplinary Implant and Aesthetic Miami Institute (M.I.A.M.I.), Miami, FL, 33137, USA
| | - Germán Bou
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ana Isabel Rodríguez Cendal
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Silvia Díaz-Prado
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Margarita Poza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
- Grupo Microbioma y Salud, Facultad de Ciencias- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
19
|
Marcickiewicz J, Jamka M, Walkowiak J. A Potential Link Between Oral Microbiota and Female Reproductive Health. Microorganisms 2025; 13:619. [PMID: 40142512 PMCID: PMC11944636 DOI: 10.3390/microorganisms13030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oral cavity dysbiosis is associated with numerous inflammatory diseases, including diabetes, inflammatory bowel diseases, and periodontal disease. Changes in the oral microenvironment lead to bidirectional interactions between pathogens and individual host systems, which may induce systemic inflammation. There is increasing evidence linking the condition of the oral cavity with the most common causes of female infertility, such as polycystic ovary syndrome and endometriosis, as well as gestational complications, e.g., low birth weight, preterm delivery, and miscarriages. This review highlights the composition of the female oral microbiome in relation to infertility-related disorders, such as endometriosis and polycystic ovary syndrome, and provides a comprehensive overview of the current state of knowledge on the relationship between a dysbiotic oral microbiome, pregnancy, and its impact on the female reproductive tract.
Collapse
Affiliation(s)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (J.M.); (J.W.)
| | | |
Collapse
|
20
|
Mousa HRF, Abiko Y, Washio J, Sato S, Takahashi N. Candida albicans and NCAC species: acidogenic and fluoride-resistant oral inhabitants. J Oral Microbiol 2025; 17:2473938. [PMID: 40052107 PMCID: PMC11884091 DOI: 10.1080/20002297.2025.2473938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Objective Although Candida species are thought to contribute to dental caries, their acid production under anaerobic conditions and susceptibility to fluoride have not been thoroughly studied. We therefore investigated the growth, acid production, and effect of fluoride on Candida species. Methods Aerobic growth, acid production from glucose and its end-products under aerobic and anaerobic conditions, and enolase activity were measured in C. albicans and non-Candida-albicans-Candida (NCAC) species (C. tropicalis, C. parapsilosis, C. maltosa, and C. glabrata), and the effect of fluoride on these abilities was evaluated. Results All Candida species produced acids under aerobic and anaerobic conditions, and acetate and TCA cycle metabolites were detected. However, these organic acids only accounted for 1.9-57.6% of the acids produced. Up to 80 mM fluoride hardly inhibited growth and did not inhibit acid production except for C. glabrata, despite the low 50% inhibitory fluoride concentration of 0.19-0.34 mM for enolase. Conclusion Candida species produced acids under aerobic and anaerobic conditions, indicating their significant cariogenicity. Their growth and acid production were highly fluoride-resistant, whereas their enolase was fluoride-sensitive, suggesting mechanisms for maintaining low intracellular fluoride. The mechanisms underlying the fluoride resistance remain underexplored. Approaches other than fluoride may be needed to control Candida-associated caries.
Collapse
Affiliation(s)
- Haneen Raafat Fathi Mousa
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
21
|
Lee YH, Park HJ, Jeong SJ, Auh QS, Jung J, Lee GJ, Shin S, Hong JY. Oral microbiome profiles of gingivitis and periodontitis by next-generation sequencing among a group of hospital patients in Korea: A cross-sectional study. J Oral Biosci 2025; 67:100591. [PMID: 39581260 DOI: 10.1016/j.job.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVES The oral microbiome plays an important role in the development and progression of periodontal disease. The purpose of this study was to compare microbial profiles of oral cavities in good health, with gingivitis, and in a state of periodontitis, and to identify novel pathogens involved in periodontal diseases. METHODS One hundred and two participants, including 33 healthy controls, 41 patients with gingivitis, and 28 patients with periodontitis, were included in this cross-sectional study. Salivary oral microbiomes were investigated using 16S rRNA metagenomic sequencing, and the microbial profiles of each group were compared using age- and sex-adjusted general linear models. RESULTS The abundance of amplicon sequence variants and Chao1 diversity were significantly elevated in the gingivitis and periodontitis groups relative to healthy controls (p = 0.046). Based on linear discriminant analysis (LDA) scores (>2), Tenericutes, Mollicutes, Mycoplasmatales, Mycoplasmataceae, Mycoplasma, Bacteroidaceae, and Phocaeicola were significantly enriched in the gingivitis group, and Synergistetes, Synergistia, Synergistales, Synergistaceae, Fretibacterium, Sinanaerobacter, and Filifactor were enriched in the periodontitis group. The relative abundances of Fretibacterium fastidiosum, Sinanaerobacter chloroacetimidivorans, and Filifactor alocis (q = 0.008, all bacteria) were highest in the periodontitis group and lowest in the control group. The relative abundance of Treponema denticola was significantly elevated in the periodontitis group compared to the other two groups (q = 0.024). CONCLUSIONS Oral microbiomes differed between groups. T. denticola, F. fastidiosum, S. chloroacetimidivorans and F. alocis were significantly more abundant in the periodontitis group than in the control group. Additionally, the abundance of T. denticola and F. fastidiosum in the periodontitis group was significantly different from that in the gingivitis group.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, College of Dentistry, Kyung Hee University Dental Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Hae Jeong Park
- Department of Pharmacology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Su-Jin Jeong
- Kyung Hee University Medical Center, Medical Science Research Institute, Statistics Support Part, Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Q-Schick Auh
- Department of Orofacial Pain and Oral Medicine, College of Dentistry, Kyung Hee University Dental Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Junho Jung
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Kyung Hee University Dental Hospital, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Seungil Shin
- Department of Periodontology, College of Dentistry, Kyung Hee University Dental Hospital, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Ji-Youn Hong
- Department of Periodontology, College of Dentistry, Kyung Hee University Dental Hospital, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
22
|
Patel P, Patel B, Vyas SD, Patel MS, Hirani T, Haque M, Kumar S. A Narrative Review of Periodontal Vaccines: Hope or Hype? Cureus 2025; 17:e80636. [PMID: 40091902 PMCID: PMC11910667 DOI: 10.7759/cureus.80636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025] Open
Abstract
Globally, periodontal diseases, mainly driven by polymicrobial biofilms, are a widespread concern of social medicine due to their considerable incidence and tie-up to systemic disorders like diabetes, cardiovascular diseases, and complications during pregnancy. Traditional treatments focus on mechanical debridement and antimicrobial therapies, but these approaches have limitations, including recurrence and antibiotic resistance. Periodontal vaccines offer a promising alternative by targeting the immunological mechanisms underlying periodontal disease. This review explores the current state of periodontal vaccine development, highlighting key antigens, vaccine delivery systems, and preclinical and clinical advancements. Special emphasis is placed on antigen selection, host variability, immune tolerance, and future directions to overcome these barriers. This article highlights the advancements and challenges in periodontal vaccine research, offering insights into the capability of immunoprophylaxis as a groundbreaking way to manage periodontal diseases.
Collapse
Affiliation(s)
- Pratiksha Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Bhavin Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shruti D Vyas
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Maitri S Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Tanvi Hirani
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
23
|
Schwartz J, Capistrano K, Hussein H, Hafedi A, Shukla D, Naqvi A. Oral SARS-CoV-2 Infection and Risk for Long Covid. Rev Med Virol 2025; 35:e70029. [PMID: 40074704 PMCID: PMC11903386 DOI: 10.1002/rmv.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
SARS-CoV-2 is an oral pathogen that infects and replicates in mucosal and salivary epithelial cells, contributing to oral post-acute sequelae COVID-19 (PASC) and other oral and non-oral pathologies. While pre-existing inflammatory oral diseases provides a conducive environment for the virus, acute infection and persistence of SARS-CoV-2 can also results in oral microbiome dysbiosis that further worsens poor oral mucosal health. Indeed, oral PASC includes periodontal diseases, dysgeusia, xerostomia, pharyngitis, oral keratoses, and pulpitis suggesting significant bacterial contributions to SARS-CoV-2 and oral tissue tropism. Dysbiotic microbiome-induced inflammation can promote viral entry via angiotensin-converting enzyme receptor-2 (ACE2), serine transmembrane TMPRSS2 and possibly other non-canonical pathways. Additionally, metabolites derived from a dysbiotic microbiome can alter the physiological and biochemical pathways related to the metabolism of lipids, carbohydrates, and amino acids. This may promote a pro-inflammatory microenvironment, leading to immune exhaustion, loss of tolerance, and susceptibility to a variety of oral pathogens, causing acute and later chronic inflammation. Microbial release of mimics of host metallopeptidases related to furin, ADAM17 (A disintegrin and metalloproteinase 17), and glycoprotein metabolites can further aid viral attachment to T cell immunoglobulin-like (TIMs), enhancing viral entry while simultaneously depressing oral mucosal immune resistance and clearance. Membrane reorganization characterised by neuroproteins, such as neuropilins, also functionally assists with SARS-CoV-2 entry and extends the pathogenesis of PASC from the oral cavity to the brain, gut, or other non-oral tissues. Thus, poor oral health, characterised by disrupted oral microbiomes can promote viral tropism, weaken antiviral resistance, and heightens susceptibility to SARS-CoV-2 infection. This immune dysfunction also increases the risk of additional viral infections, exacerbating oral conditions like periodontal and endodontic diseases. These persistent oral health issues can contribute to systemic inflammation, creating bidirectional effects between oral and non-oral tissues, potentially leading to Post-Acute Sequelae of COVID-19 (PASC).
Collapse
Affiliation(s)
- Joel Schwartz
- Department of Oral Medicine and Diagnostic SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Heba Hussein
- Department of Oral MedicineFaculty of DentistryCairo UniversityCairoEgypt
| | - Avin Hafedi
- Department of PeriodonticsUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Deepak Shukla
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Ophthalmology and Visual SciencesUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar Naqvi
- Department of PeriodonticsUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
24
|
Anwar MA, Sayed GA, Hal DM, Hafeez MSAE, Shatat AAS, Salman A, Eisa NM, Ramadan A, El-Shiekh RA, Hatem S, Aly SH. Herbal remedies for oral and dental health: a comprehensive review of their multifaceted mechanisms including antimicrobial, anti-inflammatory, and antioxidant pathways. Inflammopharmacology 2025; 33:1085-1160. [PMID: 39907951 PMCID: PMC11914039 DOI: 10.1007/s10787-024-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025]
Abstract
Across diverse cultures, herbal remedies have been used to alleviate oral discomfort and maintain dental hygiene. This review presents studies on herbal remedies with remarkable antimicrobial, anti-inflammatory, antioxidant, anticancer, anticaries, analgesic, and healing properties. The manuscripts demonstrate the depth of scientific inquiry into herbal remedies used for the management of various oral and dental health conditions. These include gingivitis, oral ulcers, mucositis, periodontitis, oral pathogens, carcinoma, xerostomia, and dental caries. Researchers have investigated the phytochemical and pharmacological properties of plant-derived compounds and their extracts evaluated their interactions with oral pathogens and inflammatory processes. The convergence of traditional knowledge and rigorous scientific investigation offers a compelling narrative, fostering a deeper understanding of herbal remedies as viable alternatives to conventional dental interventions. This work has the potential to provide patients with access to gentle, yet effective solutions, and simultaneously offer dental health professionals the opportunity to enrich their knowledge, and ability to provide personalized, holistic care. This review highlights the symbiotic relationship between herbal medicine and scientific understanding, emphasizing the importance of disseminating this knowledge to benefit both practitioners and patients, enabling evidence-based decision-making in dental care. The exploration of herbal remedies offers a promising alternative, potentially mitigating some of these side effects while promoting oral health in a more natural and holistic manner.
Collapse
Affiliation(s)
- Mohamed A Anwar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Dina M Hal
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr , 11829, Egypt
| | - Abdel-Aziz S Shatat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Nehal M Eisa
- Clinical Research Department at Giza Health Affairs Directorate, MOHP, Giza, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt
| |
Collapse
|
25
|
Salem A. Revealing the viral culprits: the hidden role of the oral virome in head and neck cancers. Arch Microbiol 2025; 207:73. [PMID: 40095096 PMCID: PMC11914253 DOI: 10.1007/s00203-025-04270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 03/19/2025]
Abstract
The oral viral microbiome (or virome), encompassing a diverse community of viruses within the oral cavity, has emerged as a significant yet underexplored factor in head and neck cancers (HNCs). This review synthesizes recent evidence linking the oral virome to head and neck carcinogenesis, particularly oropharyngeal and nasopharyngeal carcinomas-the most common virus-associated subtypes of HNCs. Beyond pathogenesis, the diagnostic and therapeutic implications of the oral virome are explored, including non-invasive salivary detection of viral biomarkers for early cancer diagnosis, the development of targeted antiviral therapies, and preventive vaccination strategies-exemplified by the success of HPV vaccines in reducing the incidence of oropharyngeal cancers. Despite these advancements, challenges persist, including technical limitations, the need for longitudinal studies, and the integration of multi-omics approaches. A comprehensive understanding of the oral virome could revolutionize cancer diagnostics, therapeutics, and prevention. Moving forward, collaborative interdisciplinary efforts will be essential to fully leverage virome research for improving HNC outcomes.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, 00014, Finland.
- Head and Neck Oncobiome Group, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
26
|
Lasagna A, Cambieri P, Baldanti F, Andreoni M, Perrone F, Pedrazzoli P, Silvestris N. How Should We Manage the Impact of Antimicrobial Resistance in Patients With Cancer? An Oncological and Infectious Disease Specialist Point of View. JCO Oncol Pract 2025:OP2400935. [PMID: 39977722 DOI: 10.1200/op-24-00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Patients with solid tumors present a higher risk of infectious diseases with worse outcomes compared with immunocompetent patients. Prolonged treatment of prophylactic and empirically chosen antibiotics and health care-acquired infections can predispose patients with cancer to infections with antimicrobial-resistant (AMR) organisms. AMR is a global health priority and can affect patients with cancer. The outcome of patients with cancer worsens dramatically if multidrug-resistant (MDR) microorganisms cause infections. Moreover, the emergence of MDR organisms increases health care costs. Antimicrobial stewardship programs can be useful to monitor and improve the use of antibiotics in all oncological settings, including the palliative setting. Awareness of the magnitude of these issues is still low, so it is important to inform and educate oncologists. This narrative review aims to illustrate the main evidence on infections caused by AMR organisms in patients with cancer and the tools that oncologists should have to enhance their multidisciplinary management.
Collapse
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Cambieri
- Molecular Virology Unit, Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Department of Microbiology and Virology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, Infectious Disease Clinic, University of Rome Tor Vergata, Roma, Italy
| | - Francesco Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
27
|
González-Rascón A, Chávez-Cortéz EG, Hurtado-Camarena A, Serafín-Higuera N, Castillo-Uribe S, Martínez-Aguilar VM, Carrillo-Ávila BA, Pitones-Rubio V. Evaluating the Impact of Kefir Consumption on Dental Caries and Periodontal Disease: A Narrative Review. Dent J (Basel) 2025; 13:86. [PMID: 39996960 PMCID: PMC11854779 DOI: 10.3390/dj13020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Background/Objectives: Dental caries and periodontal diseases are the most common illnesses in the oral cavity and represent a public health concern globally. In recent decades, diverse studies showed that Kefir, a traditional beverage that can be milk- or water-based, contains a complex microbial community and has health benefits. The goal of this review was to update the current knowledge of kefir consumption and its impact on oral health. Methods: The search of a combination of keywords-kefir; dental caries; probiotics; microbiota; periodontal diseases; biofilm; and oral health-was conducted using PubMed, Google Scholar, and Web of Science databases for studies in human subjects. Discussion: The research suggests that kefir consumption may aid in decreasing counts of microorganisms typically associated with oral illness. Conclusions: Kefir has the potential to inhibit certain oral pathogens and reduce biofilm formation by promoting diversity within the oral microbiota, suggesting that kefir could be a promising adjuvant treatment for dental caries and periodontal diseases by improving oral health.
Collapse
Affiliation(s)
- Anna González-Rascón
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Elda Georgina Chávez-Cortéz
- Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (E.G.C.-C.); (V.M.M.-A.); (B.A.C.-Á.)
| | - Angélica Hurtado-Camarena
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | - Sandra Castillo-Uribe
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| | | | - Bertha Arelly Carrillo-Ávila
- Facultad de Odontología, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (E.G.C.-C.); (V.M.M.-A.); (B.A.C.-Á.)
| | - Viviana Pitones-Rubio
- Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali 21040, Mexico; (A.G.-R.); (A.H.-C.); (N.S.-H.); (S.C.-U.)
| |
Collapse
|
28
|
Li Z, Yang X, Zhang D, Shi X, Lei L, Zhou F, Li W, Xu T, Liu X, Wang S, Yang J, Wang X, Zhong Y, Yu L. Exploration of oral microbiota alteration and AI-driven non-invasive hyperspectral imaging for CAD prediction. BMC Cardiovasc Disord 2025; 25:102. [PMID: 39955509 PMCID: PMC11829377 DOI: 10.1186/s12872-025-04555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Oral microbiome dysbiosis is an important risk factor affecting the occurrence and progression of coronary artery disease (CAD). However, the dysbiosis on the tongue in patients with CAD is still unclear, and whether the oral alteration caused by these disorders can be identified by other tools for CAD diagnosis needs to be further explored. Hyperspectral imaging (HSI) is characterized as high spectral resolution, broad spectral range, and superior spatial resolution. Hyperspectral images contain high-dimensional data that generally require machine learning algorithms for feature identification and model construction. Therefore, this study aims to investigate the variation of tongue microbiota and the effectiveness of HSI models in CAD diagnosis. METHODS Between 2023 and 2024, we prospectively approached 276 patients with chest pain and exhibiting risk for CAD who underwent coronary artery angiography (CAG). And 190 patients were enrolled in this study. Tongue dorsum swabs were collected for subsequent 16sRNA sequencing and microbiome analysis. Tongue dorsum features were extracted from hyperspectral images. The HSI analysis incorporated a total of 4750 hyperspectral images from all patients. All images are divided into training set (N = 2555), internal test set (N = 1095) and external test set (N = 1095). A total of 31 models were constructed. 30 single machine learning algorithms were used to construct and test the CAD prediction models. Furthermore, the best performing fusion model was established. The efficacy of the model was evaluated employing several metrics, including area under the curve (AUC), decision curve analysis (DCA), calibration curve, accuracy (ACC), sensitivity (SE), specificity (SP), positive predictive value (PPV), negative predictive value (NPV) and F1 score. RESULTS The 16sRNA sequencing results indicated significant dysbiosis in the oral microbiota of patients with CAD, with decreased microbial abundance, network complexity and stability. The fusion model (GP-GB-SVM) demonstrated the highest performance, achieving an AUC of 0.92, ACC of 0.82, SE of 0.70, SP of 0.92, PPV of 0.88 and NPV of 0.79 in the internal test set and AUC of 0.86, ACC of 0.70, SE of 0.90, SP of 0.46, PPV of 0.60 and NPV of 0.90 in the external test set. CONCLUSION These findings not only emphasize the significant alteration of microbiome colonized on the tongue dorsum in CAD patients but also demonstrate the tongue features associated with microbiome dysbiosis can be identified in hyperspectral images. Thereby the integration of HSI and machine learning provides novel insights into non-invasive diagnosis of CAD.
Collapse
Affiliation(s)
- Zeyan Li
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Xiaomeng Yang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Dingming Zhang
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710000, P. R. China
| | - Xiaoyu Shi
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Lei Lei
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
- Medical Remote Sensing Information Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
| | - Wenjing Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
| | - Tianyou Xu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Xinyu Liu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Songyun Wang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
| | - Xinyu Wang
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China.
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China.
- Medical Remote Sensing Information Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yanfei Zhong
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (LIESMARS), Wuhan University, Wuhan, China.
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China.
- Medical Remote Sensing Information Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lilei Yu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China.
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
29
|
Zang T, Zhang Z, Liu W, Yin L, Zhao S, Liu B, Ma L, Li Z, Tang X. Structural and functional changes in the oral microbiome of patients with craniofacial microsomia. Sci Rep 2025; 15:5400. [PMID: 39948426 PMCID: PMC11825945 DOI: 10.1038/s41598-025-86537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Craniofacial microsomia (CFM) is the second most common congenital craniofacial deformity, presenting diverse clinical manifestations and treatments that may influence oral bacteria dysbiosis (OBD). However, research linking CFM to OBD is limited. Saliva samples were collected from 20 patients with CFM and 24 controls. We compared oral microflora and gene function using 16 S ribosomal RNA sequencing and metagenomics. We also evaluated the correlation between CFM clinical phenotypes and microbiota community structure. Patients with CFM demonstrated greater richness and evenness in their oral microflora. The dominant genera included several pathogenic species, such as Actinomyces, Fusobacterium, and Prevotella. Notably, the severity of CFM correlated positively with the abundance of Neisseria and Porphyromonas. Upregulated pathways were primarily linked to biotin and amino acid metabolism, such as Tryptophan metabolism and Lysine degradation, and further underscored the need for focused oral health interventions in this population. This study is the first to indicate that CFM patients exhibit unique oral bacterial dysbiosis, marked by a higher presence of opportunistic pathogens and increased pathways related to oral and systemic health. These findings highlight the importance of monitoring oral health in patients with CFM.
Collapse
Affiliation(s)
- Tianying Zang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Zhiyong Zhang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Wei Liu
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Lin Yin
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Shanbaga Zhao
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Bingyang Liu
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Lunkun Ma
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Zhifeng Li
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Xiaojun Tang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China.
| |
Collapse
|
30
|
Kavitha L, Kuzhalmozhi M, Vijayashree Priyadharsini J, Arun Kumar A, Umadevi KMR, Ranganathan K. Microbial signatures in head and neck squamous cell carcinoma: an in silico study. J Appl Oral Sci 2025; 33:e20240392. [PMID: 39907412 PMCID: PMC11816647 DOI: 10.1590/1678-7757-2024-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
OBJECTIVES The oral cavity harbors a plethora of bacterial species. Dysbiosis of oral and gut microbiota is associated with several oral and systemic pathologies, such as cancer, obesity, diabetes, atherosclerosis and gastrointestinal diseases. Imbalance in the oral-gut microbial axis has been associated with head and neck squamous cell carcinoma (HNSCC). This study aims to analyze the bacterial profile of HNSCC across various taxonomic units, investigate molecular patterns associated with prevalent bacterial phylum in HNSCC, and compare the bacterial profile in HNSCC and gastrointestinal (GI) carcinoma using computational analysis. METHODOLOGY The microbe-host transcriptomic, proteomic, and epigenetic analyses of HNSCC and GI carcinomas were performed using The Cancer Microbiome Atlas (TCMA) database. The differential expression of the host's mRNA transcripts and proteins associated with tumor microbiome were analyzed using The University of Alabama at Birmingham Cancer data analysis (UALCAN) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) websites. RESULTS A decrease in Actinobacteria and an enrichment of Flavobacteria at the class level, Neisseriales, Pasteurellales, and Campylobacterales at the order level, Pasteurellaceae, Flavobacteriaceae, Campylobacteraceae, and Peptoniphilaceae at the family level, and Hemophilus, Porphyromonas, and Leptotrichia at the genus level were observed in HNSCC compared to the normal mucosa. RICTOR protein, mRNA transcripts (HIST1H2BB, SCARNA11, TBC1D21 gene), and hsa-miR-200a-5p miRNA were significantly correlated with prevalent bacterial species in HNSCC. A major increase in Actinobacteria, Fusobacteria, and Spirochaetes was observed in HNSCC compared to GI carcinoma. CONCLUSION The oral-gut microbial dysbiosis, as reflected by the differential abundance of bacterial species in oral and GI carcinomas, suggests the implication of tumor microbiome and their genomic interactions with the host in carcinogenesis.
Collapse
Affiliation(s)
- Loganathan Kavitha
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| | | | | | | | - Krishna Mohan Rao Umadevi
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| | - Kannan Ranganathan
- The Tamil Nadu Dr. MGR Medical University, Ragas Dental College and Hospital, Department of Oral and Maxillofacial Pathology, Chennai, India
| |
Collapse
|
31
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2025; 60:101-120. [PMID: 39044454 PMCID: PMC11873684 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Anne George
- Department of Oral BiologyCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Salvador Nares
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
32
|
Altamura S, Lombardi F, Augello FR, Barone A, Giannoni M, Cinque B, Pietropaoli D. Levilactobacillus brevis CD2 as a multifaceted probiotic to preserve oral health: results of a double-blind, randomized, placebo-controlled trial in healthy adults. J Transl Med 2025; 23:128. [PMID: 39875908 PMCID: PMC11776208 DOI: 10.1186/s12967-024-06000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND A growing number of in vitro and in vivo studies suggest the application of probiotics as a natural approach to maintaining oral health. This double-blind, randomized controlled trial aimed to evaluate the efficacy of Levilactobacillus brevis CD2 (CNCM I-5566), a multifunctional probiotic frequently used in oral medicine, in preserving or improving several recognized oral health indicators. METHODS Thirty consenting healthy adults were randomized to receive four lozenges per day of L. brevis CD2 probiotic (n = 15) or placebo (n = 15) over four weeks. Clinical parameters (full-mouth bleeding on probing (BoP) and plaque index (PI) scores) were recorded. Unstimulated saliva was collected to measure salivation rate, pH, and buffer capacity. Salivary biomarkers were analyzed, including glucose, D-lactate, and secretory immunoglobulins A (sIgA). Clinical and salivary parameters were assessed at baseline, after four weeks of intervention, and two weeks post-intervention. Wilcoxon rank-sum test and robust regression analysis were used for statistical comparisons. The possible mediating effect of PI on BoP changes was assessed. RESULTS After four weeks, the probiotic group showed significant improvements in BoP and PI compared to baseline and placebo. The probiotic group had a higher salivation rate than baseline and placebo after four weeks of treatment and washout. While changes in salivary pH were not significant, buffering capacity increased in the probiotic group after four weeks of treatment and washout. Salivary glucose and D-lactate levels were lower in the probiotic group post-treatment and after washout. sIgA values increased and remained stable after washout in the probiotic group. No adverse effects were reported. CONCLUSIONS The treatment with L. brevis CD2 significantly improved clinical and salivary parameters, supporting its efficacy as a probiotic for oral health. TRIAL REGISTRATION ClinicalTrials.gov , NCT06457724; Registered 7 June 2024 - Retrospectively registered; https://clinicaltrials.gov/study/NCT06457724?viewType=Table&page=452&rank=4512#study-overview .
Collapse
Affiliation(s)
- Serena Altamura
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
- PhD School in Medicine and Public Health, University of L'Aquila, L'Aquila, Italy
- Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
| | - Antonella Barone
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
- Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy
| | - Mario Giannoni
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
- Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy
| | - Davide Pietropaoli
- Department of Life, Health & Environmental Sciences, University of L'Aquila, Building Rita Levi Montalcini, Coppito, L'Aquila, 67100, Italy.
- Center of Oral Diseases, Prevention and Translational Research - Dental Clinic, L'Aquila, Italy.
| |
Collapse
|
33
|
Liu R, Liu Y, Yi J, Fang Y, Guo Q, Cheng L, He J, Li M. Imbalance of oral microbiome homeostasis: the relationship between microbiota and the occurrence of dental caries. BMC Microbiol 2025; 25:46. [PMID: 39865249 PMCID: PMC11770982 DOI: 10.1186/s12866-025-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Streptococcus mutans is recognized as a key pathogen responsible for the development of dental caries. With the advancement of research on dental caries, the understanding of its pathogenic mechanism has gradually shifted from the theory of a single pathogenic bacterium to the theory of oral microecological imbalance. Acidogenic and aciduric microbial species are also recognized to participate in the initiation and progression of dental caries. This study is designed to elucidate the relationship between oral microbiome dysregulation and the initiation of dental caries. RESULTS 16 S rRNA gene sequencing of saliva and dental plaque from the Specific Pathogen Free Control group and the Specific Pathogen Free sucrose diet group revealed that a sucrose diet significantly influenced the composition of the oral microbiome. At the phylum level, the dominant microbial communities in both groups of mice were Firmicutes, Proteobacteria, Unclassified Bacteria, Actinobacteria, and Bacteroidetes. At the genus level, statistical analysis identified significant differences in the abundance of 18 genera between the two groups. The relative abundance of the Gemella genus was significantly increased in the SPF Sucrose group. The SPF Control group and the Germ-free Control group have no differential bacterial genera in the oral microbiome. Micro-CT examination of the mandibles revealed the development of dental caries in both the SPF Sucrose group and the Germ-free Sucrose group. CONCLUSIONS This study indicates that a dysbiotic microbial community can lead to the development of caries. Lays the foundation for further research into the etiology of dental caries.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yingshuang Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jialong Yi
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Yanke Fang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jinzhi He
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Amato M, Polizzi A, Viglianisi G, Leonforte F, Mascitti M, Isola G. Impact of Periodontitis and Oral Dysbiosis Metabolites in the Modulation of Accelerating Ageing and Human Senescence. Metabolites 2025; 15:35. [PMID: 39852378 PMCID: PMC11767177 DOI: 10.3390/metabo15010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Periodontitis, a chronic multifactorial inflammatory condition of the periodontium, is originated by a dysbiotic oral microbiota and is negatively correlated with several systemic diseases. The low-chronic burden of gingival inflammation not only exacerbates periodontitis but also predisposes individuals to a spectrum of age-related conditions, including cardiovascular diseases, neurodegenerative disorders, and metabolic dysfunction, especially related to ageing. In this regard, over the local periodontal treatment, lifestyle modifications and adjunctive therapies may offer synergistic benefits in ameliorating both oral and systemic health in ageing populations. Elucidating the intricate connections between periodontitis and senescence is important for understanding oral health's systemic implications for ageing and age-related diseases. Effective management strategies targeting the oral microbiota and senescent pathways may offer novel avenues for promoting healthy ageing and preventing age-related morbidities. This review will analyze the current literature about the intricate interplay between periodontitis, oral dysbiosis, and the processes of senescence, shedding light on their collective impact on the modulation and accelerated ageing and age-related diseases. Lastly, therapeutic strategies targeting periodontitis and oral dysbiosis to mitigate senescence and its associated morbidities will be discussed.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Francesco Leonforte
- Hygiene Unit, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95124 Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, 60121 Ancona, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
35
|
Leonov G, Varaeva Y, Livantsova E, Vasilyev A, Vladimirskaya O, Korotkova T, Nikityuk D, Starodubova A. Periodontal pathogens and obesity in the context of cardiovascular risks across age groups. FRONTIERS IN ORAL HEALTH 2025; 5:1488833. [PMID: 39850469 PMCID: PMC11754283 DOI: 10.3389/froh.2024.1488833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity among noncommunicable diseases. Over the past decade, there has been a notable increase in the prevalence of CVDs among young individuals. Obesity, a well-known risk factor for CVDs, is also associated with various comorbidities that may contribute to cardiovascular risk. The relationship between periodontal pathogens and CVD risk factors, including obesity, smoking, lipid metabolism disorders, and inflammatory markers, remains underexplored. Methods This study examined the relationship between six periodontal pathogens (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Treponema denticola, Tannerella forsythia, Prevotella intermedia, and Fusobacterium nucleatum) and CVD risk factors among 189 subjects stratified by age and body mass index (BMI). Body composition was assessed via bioimpedance analysis, and blood samples were analyzed for lipid profiles, glucose, and proinflammatory cytokines. Oral samples were collected for polymerase chain reaction (PCR) analysis to identify periodontal pathogens. Cardiovascular and diabetes risk scores were calculated using the SCORE and FINDRISC scales. Results The prevalence of periodontal pathogens in the population was 33.0% for P. gingivalis, 47.8% for P. intermedia, 63.4% for A. actinomycetemcomitans, 46.6% for T. forsythia, 46.6% for T. denticola, and 89.2% for F. nucleatum. Significant age- and BMI-related differences were observed in pathogen prevalence, particularly with P. gingivalis, P. intermedia, and T. denticola. Young obese individuals exhibited a higher prevalence of P. intermedia and T. forsythia. P. gingivalis was found to be associated with hypertension and dyslipidemia, while P. intermedia was linked to hypertension and obesity. T. denticola was associated with obesity, dyslipidemia and smoking, whereas T. forsythia was linked to dyslipidemia alone. Conclusions This study highlights the potential connection between periodontal pathogens and risk factors associated with cardiovascular disease, including smoking, elevated BMI, increased adipose tissue, hypertension, and dyslipidemia. Further research is required to determine the causal relationships between oral microbiome dysbiosis, obesity and, systemic diseases and to develop an effective strategy for preventing oral health-related CVD risk factors in young adults.
Collapse
Affiliation(s)
- Georgy Leonov
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Yurgita Varaeva
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Elena Livantsova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Andrey Vasilyev
- Department of Microbiology, Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olga Vladimirskaya
- Department of Microbiology, Central Research Institute of Dental and Maxillofacial Surgery, Moscow, Russia
| | - Tatyana Korotkova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Dmitry Nikityuk
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Antonina Starodubova
- Department of Cardiovascular Pathology and Diet Therapy, Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow, Russia
- Therapy Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
36
|
Muñoz-Grez CP, Vidal MA, Rojas TB, Ferrada LE, Zuñiga FA, Vera AA, Sanhueza SA, Quiroga RA, Cabrera CD, Antilef BE, Cartes RA, Acevedo MP, Fraga MA, Alarcón-Zapata PF, Hernández MA, Salas-Burgos AM, Tapia-Belmonte F, Yáñez ML, Riquelme EM, González WA, Rivera CA, Oñate AA, Lamperti LI, Nova-Lamperti E. Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression. Int J Oral Sci 2025; 17:1. [PMID: 39743544 PMCID: PMC11693762 DOI: 10.1038/s41368-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 01/04/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from Fusobacterium nucleatum (F. nucleatum) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that F. nucleatum modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that F. nucleatum and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, F. nucleatum promotes pro-tumoral mechanism in oral cancer.
Collapse
Affiliation(s)
- Camila Paz Muñoz-Grez
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Concepción, Chile
| | - Mabel Angélica Vidal
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
- Department of Computer Science, Universidad de Concepción, Concepción, Chile
| | | | | | - Felipe Andrés Zuñiga
- BIOTER Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Agustin Andrés Vera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Sergio Andrés Sanhueza
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Romina Andrea Quiroga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Camilo Daniel Cabrera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Barbara Evelyn Antilef
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Ricardo Andrés Cartes
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Milovan Paolo Acevedo
- BIOTER Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Marco Andrés Fraga
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Pedro Felipe Alarcón-Zapata
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | | | - Alexis Marcelo Salas-Burgos
- Cancer Molecular Dynamics Laboratory, Pharmacology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Tapia-Belmonte
- Cancer Molecular Dynamics Laboratory, Pharmacology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Milly Loreto Yáñez
- Anatomy Pathology Unit and Dental Service, Oral Pathology Department, Hospital Las Higueras, Talcahuano, Chile
| | - Erick Marcelo Riquelme
- Respiratory diseases Department, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Wilfredo Alejandro González
- Dentistry Faculty, Universidad de los Andes, Santiago, Chile
- Center for Research and Innovation in Biomedicine, Universidad de Los Andes, Santiago, Chile
| | - Cesar Andrés Rivera
- Oral Medicine and Pathology Research Group, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Angel Alejandro Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Liliana Ivonne Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
37
|
Sacramento IDS, Gomes-Filho IS, Cruz SSD, Trindade SC, Figueiredo ACMG, Machado PRL, Vianna MIP, Falcão MML, Hintz AM, de Lacerda JA, Matos BC, Seymour GJ, Scannapieco FA, Loomer PM, Passos-Soares JDS. The effect of antireaction medications on the association between periodontitis and leprosy reactions: An important methodological issue in periodontal medicine. J Periodontol 2025; 96:30-43. [PMID: 39031771 DOI: 10.1002/jper.23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The treatment of leprosy reactions (LRs) involves thalidomide, corticosteroids, and other immunomodulatory medications. This study evaluated the effect of these treatments on the association between periodontitis and LRs, as well as factors associated with LRs. METHODS This case-control study was conducted on 283 individuals followed at a leprosy outpatient clinic in Brazil. The case group was comprised of 158 individuals presenting type 1 or type 2 LRs, and the control group of 125 leprosy individuals without reactions. A complete oral examination was performed to diagnose periodontitis, the independent variable. Antireaction medication used was collected from medical records, and participants were classified according to the use of prednisone and/or thalidomide, time of use, or non-use of medication. Socioeconomic-demographic, clinical, and lifestyle covariables were collected by interview. Unconditional logistic regression analysis by subgroups evaluated the effect of antireaction medication on the association between periodontitis and LRs, estimating the odds ratio with a 95% confidence interval (OR; 95% CI). RESULTS A relationship between periodontitis and LRs was observed only in the subgroup using the association prednisone and thalidomide: ORadjusted = 0.32; 95% CI = 0.11-0.95. Conversely, more severe periodontal clinical parameters were observed in cases versus controls. Several socioeconomic, health conditions, and lifestyle factors were associated with the presence of LRs. CONCLUSIONS Although periodontal disease indicators were worse among the cases, the findings showed a negative relationship between periodontitis and LRs in individuals receiving associated prednisone and thalidomide. These medications appear to influence the inflammatory cascade between diseases, modifying and masking the manifestations of periodontitis.
Collapse
Affiliation(s)
| | | | - Simone Seixas da Cruz
- Department of Health, Feira de Santana State University, Feira de Santana, Bahia, Brazil
- Health Sciences Center, Federal University of Recôncavo of Bahia, Bahia, Brazil
| | - Soraya Castro Trindade
- Department of Health, Feira de Santana State University, Feira de Santana, Bahia, Brazil
| | | | | | | | | | | | | | - Bruno Costa Matos
- Department of Preventive Dentistry, Faculty of Dentistry, Federal University of Bahia, Salvador, Brazil
| | | | | | - Peter Michael Loomer
- School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Johelle de Santana Passos-Soares
- Department of Health, Feira de Santana State University, Feira de Santana, Bahia, Brazil
- Department of Preventive Dentistry, Faculty of Dentistry, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
38
|
He J, Cheng L. The Oral Microbiome: A Key Determinant of Oral Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:133-149. [PMID: 40111690 DOI: 10.1007/978-3-031-79146-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
As the second largest reservoir of human microbes, the oral cavity is colonized by millions of tiny creatures collectively named as oral microbiome. Species detected in human mouth are diverse, including bacteria, fungi, viruses, and protozoa. Active bidirectional interaction exists between the oral microbiome and the host. Stresses from hosts shape the composition, distribution pattern, and the community behaviors of the oral microbiome, while any changes occurring on the oral microbiome may disrupt its symbiosis relationship with the host and ultimately lead to oral and systemic diseases that jeopardize the host's health. In this chapter, the latest understanding about the role of oral microbiome in common oral diseases, including dental caries, periodontal disease, oral candidiasis, and hyposalivation, is discussed.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
39
|
Mattos MCO, Vivacqua A, Carneiro VMA, Grisi DC, Guimarães MDCM. Interaction of the Systemic Inflammatory State, Inflammatory Mediators, and the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:121-132. [PMID: 40111689 DOI: 10.1007/978-3-031-79146-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Humans are biological units that host numerous microbial symbionts and their genomes, which together form a superorganism or holobiont. Changes in the balance of the oral ecosystem can have consequences for both general and oral health, such as cavities, gingivitis, and periodontitis. Periodontitis is initiated by a synergistic and dysbiotic microbial community that causes local inflammation and destruction of the tooth's supporting tissues, potentially leading to systemic inflammation. This inflammation caused by periodontal disease has been associated with various systemic alterations, and the immune system is largely responsible for the body's exacerbated response, which can induce and exacerbate chronic conditions. Studies indicate that subgingival microorganisms found in periodontitis reach the bloodstream and are distributed throughout the body and, therefore, can be found in distant tissues and organs. Among all diseases associated with periodontal disease, diabetes mellitus presents the strongest and most elucidated link, and its bidirectional relationship has already been demonstrated. Chronic hyperglycemia favors the worsening of periodontal parameters, while the aggravation of periodontal parameters can promote an increase in glycemic indexes. Other systemic diseases have been related to periodontitis, such as Alzheimer's, chronic kidney disease, atherosclerosis, and respiratory diseases. The importance of periodontal control may suggest a reduction in the chances of developing chronic inflammatory diseases because these two alterations often share inflammatory pathways and, for this reason, may influence each other.
Collapse
|
40
|
Timmis K, Karahan ZC, Ramos JL, Koren O, Pérez‐Cobas AE, Steward K, de Lorenzo V, Caselli E, Douglas M, Schwab C, Rivero V, Giraldo R, Garmendia J, Turner RJ, Perlmutter J, Borrero de Acuña JM, Nikel PI, Bonnet J, Sessitsch A, Timmis JK, Pruzzo C, Prieto MA, Isazadeh S, Huang WE, Clarke G, Ercolini D, Häggblom M. Microbes Saving Lives and Reducing Suffering. Microb Biotechnol 2025; 18:e70068. [PMID: 39844583 PMCID: PMC11754571 DOI: 10.1111/1751-7915.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Kenneth Timmis
- Institute of MicrobiologyTechnical University BraunschweigBraunschweigGermany
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology and Ibn‐i Sina Hospital Central Microbiology LaboratoryAnkara University School of MedicineAnkaraTurkey
| | - Juan Luis Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del ZaidínGranadaSpain
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Ana Elena Pérez‐Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS)Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | | | - Victor de Lorenzo
- Department of Systems BiologyNational Centre of Biotechnology CSICMadridSpain
| | - Elisabetta Caselli
- Section of Microbiology, Department of Environmental and Prevention SciencesUniversity of FerraraFerraraItaly
| | - Margaret Douglas
- Usher InstituteUniversity of Edinburgh Medical School, and Public Health ScotlandEdinburghUK
| | - Clarissa Schwab
- Department of Biological and Chemical EngineeringAarhus UniversityAarhusDenmark
| | - Virginia Rivero
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Rafael Giraldo
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de Navarra, MutilvaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | | | | | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM/CNRSUniversity of MontpellierMontpellierFrance
| | - Angela Sessitsch
- Bioresources UnitAIT Austrian Institute of TechnologyViennaAustria
| | - James K. Timmis
- Department of Political ScienceUniversity of FreiburgFreiburgGermany
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije UniversiteitAmsterdamThe Netherlands
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV)University of GenoaGenovaItaly
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Center Margarita SalasSpanish National Research Council (CIB‐CSIC)MadridSpain
| | - Siavash Isazadeh
- Corporate Technical & PerformanceVeolia North AmericaParamusNew JerseyUSA
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry & Neurobehavioral SciencesUniversity College CorkCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly
| | - Max Häggblom
- Department of Biochemistry and Microbiology, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| |
Collapse
|
41
|
Molinsky RL, Johnson AJ, Marotz L, Roy S, Bohn B, Goh CE, Chen C, Paster B, Knight R, Genkinger J, Papapanou PN, Jacobs DR, Demmer RT. Association Between Dietary Patterns and Subgingival Microbiota: Results From the Oral Infections, Glucose Intolerance, and Insulin Resistance Study (ORIGINS). J Clin Periodontol 2025; 52:2-15. [PMID: 39394967 PMCID: PMC11671169 DOI: 10.1111/jcpe.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/02/2024] [Accepted: 08/20/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE To study the association between dietary patterns and subgingival microbiota. METHODS Participants (n = 651) who were enrolled in the Oral Infections, Glucose Intolerance, and Insulin Resistance Study (ORIGINS) with subgingival plaque sampling (n = 890 plaques) and a dietary assessment were included. 16S rRNA gene amplicon sequences of subgingival plaque from sites with either probing depth <4 or ≥4 mm were processed separately and used to obtain α-diversity metrics (Faith, Shannon, Simpson, Observed) and taxa ratios (Red Complex to Corynebacterium [RCLR], Treponema to Corynebacterium [TCLR], and Treponema to Neisseria [TNLR]). Food frequency questionnaires (FFQs) were processed to calculate Alternate Healthy Eating Index (AHEI) and A Priori Diet Quality Score (APDQS) scores. Mixed regression models examined the mean levels of microbial metrics across quartiles of diet quality. Means ± standard errors are reported along with p-values. RESULTS In multivariable models assessing the association between diet scores and α-diversity metrics, higher AHEI values were significantly associated with lower Faith (p-value = 0.01) and Observed (p-value = 0.04) diversity values; similar findings were observed for APDQS (p-value = 0.01, p-value = 0.04). In multivariable models assessing the association between diet scores (AHEI and APDQS) and taxa ratios (RCLR, TCLR and TNLR), as the AHEI quartile increased, all taxa ratios decreased significantly as follows: -1.06 ± 0.093 in Q1 to -1.34 ± 0.099 in Q4 (RCLR), -0.43 ± 0.077 in Q1 to -0.64 ± 0.083 in Q4 (TCLR) and -0.09 ± 0.083 in Q1 to -0.38 ± 0.089 in Q4 (TNLR), respectively. In contrast, as the APDQS quartiles increased, only TNLR decreased significantly from -0.08 ± 0.085 in Q1 to -0.34 ± 0.091 in Q4. CONCLUSION Diets rich in fruits, vegetables, whole grains and other nutritionally rich plant foods are associated with lower oral microbial diversity and favourable ratios of pathogenic to commensal microbiota.
Collapse
Affiliation(s)
- Rebecca L. Molinsky
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Abigail J. Johnson
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lisa Marotz
- Department of PediatricsUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Sumith Roy
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Charlene E. Goh
- Faculty of DentistryNational University of SingaporeSingapore
| | - Ching‐Yuan Chen
- Division of PeriodonticsSection of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia UniversityNew YorkNew YorkUSA
| | - Bruce Paster
- Department of MicrobiologyForsyth InstituteCambridgeMassachusettsUSA
| | - Rob Knight
- Department of Computer Science and EngineeringJacobs School of Engineering, University of California san DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Center for Microbiome InnovationUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeanine Genkinger
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Panos N. Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation SciencesColumbia UniversityNew YorkNew YorkUSA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, School of Public HealthUniversity of MinnesotaMinneapolisMinnesotaUSA
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo ClinicCollege of Medicine and ScienceRochesterMinnesotaUSA
| |
Collapse
|
42
|
Tang JWY, Hau CCF, Tong WM, Watt RM, Yiu CKY, Shum KKM. Alterations of oral microbiota in young children with autism: Unraveling potential biomarkers for early detection. J Dent 2025; 152:105486. [PMID: 39603332 DOI: 10.1016/j.jdent.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES This study investigated the oral microbiota in young children with autism spectrum disorder (ASD) to determine possible alterations in microbial composition and identify potential biomarkers for early detection. METHODS Dental plaque samples from 25 children with ASD (aged 3-6 years; M = 4.79, SD = 0.83) and 30 age- and sex-matched typically developing (TD) children were analyzed using 16S rRNA sequencing. RESULTS The results showed lower bacterial diversity in children with ASD compared to controls, with distinct microbial compositions in the ASD and TD groups. Six discriminatory species (Microbacterium flavescens, Leptotrichia sp. HMT-212, Prevotella jejuni, Capnocytophaga leadbetteri, Leptotrichia sp. HMT-392, and Porphyromonas sp. HMT-278) were identified in the oral microbiota of ASD children, while five discriminatory species (Fusobacterium nucleatum subsp. polymorphum, Schaalia sp. HMT-180, Leptotrichia sp. HMT-498, Actinomyces gerencseriae, and Campylobacter concisus) were identified in TD controls. A model generated by random forest and leave-one-out cross-validation achieved an accuracy of 0.813. Receiver operating characteristic analysis yielded a sensitivity of 0.778, a specificity of 0.857, and an AUC (area under curve) of 0.937 (95 % CI: 0.82 - 1.00) for differentiating children with and without ASD. CONCLUSION The present study has unveiled significant disparities in the oral microbial composition between ASD and TD children. SIGNIFICANCE These findings contribute to understanding the microbiome-brain connection in ASD and its implications for early detection and management. Further research is needed to validate these oral bacterial biomarkers and explore their mechanistic association with ASD pathophysiology.
Collapse
Affiliation(s)
| | | | - Wai-Man Tong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Rory Munro Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | | | - Kathy Kar-Man Shum
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
43
|
Di Spirito F, Pisano M, Caggiano M, De Benedetto G, Di Palo MP, Franci G, Amato M. Human Herpesviruses, Bacteria, and Fungi in Gingivitis and Periodontitis Pediatric Subjects: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2024; 12:39. [PMID: 39857870 PMCID: PMC11763593 DOI: 10.3390/children12010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
Objectives: This systematic review assesses and compares the presence and relative abundance of periodontal pathogens, human herpesviruses (HHVs), and fungi in subgingival and/or saliva samples from pediatric subjects (≤18 years of age) with periodontally healthy status and with gingivitis and/or periodontitis. Methods: The study protocol was conducted under the PRISMA statement and registered on PROSPERO (CRD42024593007). Data from seven studies were descriptively analyzed and qualitatively assessed through the ROBINS-1 and JBI tools. Results: Pediatric subjects with clinically healthy periodontium exhibited a balanced microbiome, with early colonizers (Streptococcus species) supporting biofilm development and late colonizers like Fusobacterium nucleatum, Treponema denticola (82.35%), and Porphyromonas gingivalis (29.7%) present at low levels, suggesting subclinical dysbiosis. Viruses such as HSV-I (100%), CMV (17.8%), and EBV-I (22.09%) coexisted in a likely latent state, maintained by effective immune responses. In pediatric periodontitis, biofilms were more diverse and pathogenic, with increased prevalence of A. actinomycetemcomitans (56.09%), P. gingivalis (55.4%), and T. forsythia (35.9%). Generalized periodontitis showed higher CMV (36.36%) and EBV-I (36.24%) prevalence than gingivitis (HSV-I 18.75%). Coinfections were frequent in periodontitis, suggesting bacterial-viral synergy in exacerbating inflammation and tissue destruction. Fungi, although not studied, may also contribute under specific conditions. Conclusions: These findings highlight the role of microbial interactions in periodontal health and disease progression.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (M.P.); (M.C.); (G.D.B.); (M.P.D.P.); (M.A.)
| | | | | | | | | | | | | |
Collapse
|
44
|
Cannavo A, Babajani N, Saeedian B, Ghondaghsaz E, Rengo S, Khalaji A, Behnoush AH. Anti-Porphyromonas gingivalis Antibody Levels in Patients With Stroke and Atrial Fibrillation: A Systematic Review and Meta-Analysis. Clin Exp Dent Res 2024; 10:e70041. [PMID: 39535348 PMCID: PMC11558155 DOI: 10.1002/cre2.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Atrial fibrillation (AF) and stroke are two highly related conditions, with periodontitis and periodontal pathogens, such as Porphyromonas gingivalis (Pg), appearing to be the most prominent common risk factors. In this study, we evaluated studies assessing Pg infection via serum/plasma anti-Pg antibodies in patients with AF and/or stroke. MATERIAL AND METHODS Online databases (PubMed, Scopus, Embase, and the Web of Science) were screened for studies showing the association between anti-Pg antibodies with stroke and/or AF. Relevant data were extracted, and a subsequent random-effects meta-analysis was performed to calculate the pooled odds ratio (OR) or standardized mean difference (SMD) and 95% confidence intervals (CIs) for Pg seropositivity or anti-Pg antibody levels in stroke patients compared to controls. RESULTS Sixteen studies were included in the systematic review. Based on the meta-analysis performed, there was no significant difference in Pg IgA and IgG levels between patients with stroke and controls (IgA: SMD 0.11, 95% CI -0.02 to 0.25, p = 0.1; IgG: SMD -0.12, 95% CI -1.24 to 0.99, p = 0.83). Similarly, no difference was observed between these groups in terms of Pg IgA and IgG seropositivity (IgA: OR 1.63, 95% CI 1.06-2.50, p = 0.026; IgG: OR 2.30, 95% CI 1.39-3.78, p < 0.001). Subsequently, we reviewed the results of six articles investigating serum or plasma IgG antibodies against Pg in patients with AF. Our results revealed a strict association between Pg infection and AF, with AF patients exhibiting either higher anti-Pg antibody levels or a higher prevalence of positive serum Pg antibodies. CONCLUSIONS Our study supports the clinical utility of Pg infection assessment in patients with periodontitis and those with AF and solicits more focused studies to corroborate its use in clinical settings to enhance overall outcomes, reduce the risk of complications like stroke, and help fine-tune personalized therapies.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Nastaran Babajani
- School of Medicine, Tehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Behrad Saeedian
- School of Medicine, Tehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | | | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical SciencesTehranIran
- Tehran Heart Center, Cardiovascular Diseases Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
45
|
Patridge E, Gorakshakar A, Molusky MM, Ogundijo O, Janevski A, Julian C, Hu L, Vuyisich M, Banavar G. Microbial functional pathways based on metatranscriptomic profiling enable effective saliva-based health assessments for precision wellness. Comput Struct Biotechnol J 2024; 23:834-842. [PMID: 38328005 PMCID: PMC10847690 DOI: 10.1016/j.csbj.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
It is increasingly recognized that an important step towards improving overall health is to accurately measure biomarkers of health from the molecular activities prevalent in the oral cavity. We present a general methodology for computationally quantifying the activity of microbial functional pathways using metatranscriptomic data. We describe their implementation as a collection of eight oral pathway scores using a large salivary sample dataset (n = 9350), and we evaluate score associations with oropharyngeal disease phenotypes within an unseen independent cohort (n = 14,129). Through this validation, we show that the relevant oral pathway scores are significantly worse in individuals with periodontal disease, acid reflux, and nicotine addiction, compared with controls. Given these associations, we make the case to use these oral pathway scores to provide molecular health insights from simple, non-invasive saliva samples, and as molecular endpoints for actionable interventions to address the associated conditions.
Collapse
Affiliation(s)
- Eric Patridge
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Anmol Gorakshakar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Oyetunji Ogundijo
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Angel Janevski
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Cristina Julian
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Lan Hu
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Guruduth Banavar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| |
Collapse
|
46
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress-A Consensus Paper From the Global Prebiotic Association. Adv Nutr 2024; 15:100329. [PMID: 39481540 PMCID: PMC11616045 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost 3 decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these 2 definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States; Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States.
| | | | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; ADM, Decatur, IL, United States
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; Global Prebiotic Association/Industry Transparency Center, Chicago, IL, United States
| |
Collapse
|
47
|
Gupta U, Dey P. The oral microbial odyssey influencing chronic metabolic disease. Arch Physiol Biochem 2024; 130:831-847. [PMID: 38145405 DOI: 10.1080/13813455.2023.2296346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Since the oral cavity is the gateway to the gut, oral microbes likely hold the potential to influence metabolic disease by affecting the gut microbiota. METHOD A thorough review of literature has been performed to link the alterations in oral microbiota with chronic metabolic disease by influencing the gut microbiota. RESULT A strong correlation exists between abnormalities in oral microbiota and several systemic disorders, such as cardiovascular disease, diabetes, and obesity, which likely initially manifest as oral diseases. Ensuring adequate oral hygiene practices and cultivating diverse oral microflora are crucial for the preservation of general well-being. Oral bacteria have the ability to establish and endure in the gastrointestinal tract, leading to the development of prolonged inflammation and activation of the immune system. Oral microbe-associated prophylactic strategies could be beneficial in mitigating metabolic diseases. CONCLUSION Oral microbiota can have a profound impact on the gut microbiota and influence the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
48
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024; 40:2122-2134. [PMID: 39424526 PMCID: PMC11637916 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
49
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Gu M, Ge J, Pan Q, Hu N, Hua F. Salivary microbiome variations in type 2 diabetes mellitus patients with different stages of periodontitis. BMC Oral Health 2024; 24:1424. [PMID: 39578857 PMCID: PMC11583423 DOI: 10.1186/s12903-024-05135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND To investigate the difference of salivary microbiome composition in type 2 diabetes mellitus with different stages of periodontitis. METHODS 105 patients diagnosed with T2DM were divided into four groups according to the Stage of periodontitis.The 16 S rDNA hypervariable regions V3-V4 were amplified by polymerase chain reaction (PCR) after saliva DNA was extracted. The library was constructed and Illumina sequencing was performed. The sequencing results were compared with the silva 138 database, and the salivary microbiome of the four groups of patients was studied by species composition analysis, species difference analysis, principal coordinate analysis, and correlation analysis. RESULTS There were significant differences in alpha diversity of salivary microbiome among the four groups, but no difference in Beta diversity. At the phylum level, there was one differential bacteria-Firmicutes, while at the genus level, there were 16 differential bacteria. Spearman's correlation analysis identified significant correlations between periodontal health indices (PLI, SBI, AL and PD) and the abundances of over 13 genera, including Streptococcus, Gemella and Capnocytophaga, etc. Additionally, the duration of diabetes exhibited a positive correlation with AL and PD. CONCLUSIONS There are differences in salivary microbial composition in patients with type 2 diabetes mellitus with different stages of periodontitis. There is a correlation between some saliva microbiota and periodontal inflammation.
Collapse
Affiliation(s)
- Min Gu
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou City, Jiangsu Province, 213003, China
| | - Junyi Ge
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou City, Jiangsu Province, 213003, China
| | - Qianjia Pan
- Department of Stomatology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou City, Jiangsu Province, 213003, China
| | - Nan Hu
- Department of Pharmacy, The Third Afffliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou City, Jiangsu Province, 213003, China.
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou City, Jiangsu Province, 213003, China.
| |
Collapse
|