1
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
2
|
Ziogas DC, Foteinou D, Theocharopoulos C, Martinos A, Petsiou DP, Anastasopoulou A, Gogas H. State-of-the-art in Metastatic Uveal Melanoma Treatment: A 2025 Update : How to treat Metastatic Uveal Melanoma in 2025. Curr Oncol Rep 2025:10.1007/s11912-025-01684-0. [PMID: 40380030 DOI: 10.1007/s11912-025-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE OF REVIEW Uveal melanoma (UM) is the most common intraocular malignancy in adults, representing a rare but aggressive melanoma subtype with a distinct molecular landscape, unique metastatic behavior and limited therapeutic options in the metastatic setting. This review provides an in-depth analysis of the latest evidence on the evolving treatment landscape of metastatic UM. RECENT FINDINGS For liver-only metastatic disease, locoregional therapies provide significant benefit compared to systemic therapies. The recent approval of tebentafusp-tebn, a bispecific gp100 peptide-HLA-directed CD3 T-cell engager, marks a pivotal advancement for HLA-A*02:01-positive patients with unresectable/metastatic UM, demonstrating a clinically significant survival benefit. Several clinical studies are currently active, examining emerging locoregional and systemic treatments for metastatic UM, with promising early data. Despite effective local disease control through radiotherapy and enucleation, approximately 50% of patients develop metastatic disease, predominantly in the liver, with a median survival of less than one year. The approval of tebentafusp represents a landmark achievement in UM treatment, while promising experimental combinations have demonstrated clinical utility in late phase clinical trials, offering hope for further improvement in patient survival.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Dimitra Foteinou
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Theocharopoulos
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Martinos
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dioni-Pinelopi Petsiou
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Lee D, Ahn J, Choi J. PathNetDRP: a novel biomarker discovery framework using pathway and protein-protein interaction networks for immune checkpoint inhibitor response prediction. BMC Bioinformatics 2025; 26:119. [PMID: 40325361 PMCID: PMC12051301 DOI: 10.1186/s12859-025-06125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Predicting immune checkpoint inhibitor (ICI) response remains a significant challenge in cancer immunotherapy. Many existing approaches rely on differential gene expression analysis or predefined immune signatures, which may fail to capture the complex regulatory mechanisms underlying immune response. Network-based models attempt to integrate biological interactions, but they often lack a quantitative framework to assess how individual genes contribute within pathways, limiting the specificity and interpretability of biomarkers. Given these limitations, we developed PathNetDRP, a framework that integrates biological pathways, protein-protein interaction networks, and machine learning to identify functionally relevant biomarkers for ICI response prediction. RESULTS We introduce PathNetDRP, a novel biomarker discovery approach that applies the PageRank algorithm to prioritize ICI-associated genes, maps them to relevant biological pathways, and calculates PathNetGene scores to quantify their contribution to immune response. Unlike conventional methods that focus solely on gene expression differences, PathNetDRP systematically incorporates biological context to improve biomarker selection. Validation across multiple independent cancer cohorts showed that PathNetDRP achieved strong predictive performance, with cross-validation the area under the receiver operating characteristic curves increasing from 0.780 to 0.940. Interestingly, PathNetDRP did not merely improve predictive accuracy; it also provided insights into key immune-related pathways, reinforcing its potential for identifying clinically relevant biomarkers. CONCLUSION The biomarkers identified by PathNetDRP demonstrated robust predictive performance across cross-validation and independent validation datasets, suggesting their potential utility in clinical applications. Furthermore, enrichment analysis highlighted key immune-related pathways, providing a deeper understanding of their role in ICI response regulation. While these findings underscore the promise of PathNetDRP, future work will explore the integration of additional predictive features, such as tumor mutational burden and microsatellite instability, to further refine its applicability.
Collapse
Affiliation(s)
- Dohee Lee
- Department of Computer Science and Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Jonghwan Choi
- Division of Software, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
4
|
Chen L, Liao W, Huang J, Ding Q, Wu J, Zhang Q, Ding Y, Li D, Li J, Wen X, Zhang X. Natural Killer Cell Activation Signature Identifies Cyclin B1/CDK1 as a Druggable Target to Overcome Natural Killer Cell Dysfunction and Tumor Invasiveness in Melanoma. Pharmaceuticals (Basel) 2025; 18:666. [PMID: 40430484 PMCID: PMC12114673 DOI: 10.3390/ph18050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in immune surveillance against melanoma, yet they frequently exhibit dysfunction in the tumor microenvironment. This study aims to establish an NK cell activation-related prognostic signature and identify potential druggable targets to overcome NK cell dysfunction. Methods: A prognostic signature was developed using the TCGA-SKCM cohort and validated across independent datasets. NK cell activation and cytotoxicity were evaluated in melanoma-NK-92MI co-culture systems via flow cytometry. Mechanistic studies employed Western blotting, co-immunoprecipitation, ELISA, and qRT-PCR. Single-cell RNA-seq data were used to analyze cell-cell communication. Results: A four-gene NK cell activation signature was identified and validated for prognostic significance across five independent melanoma datasets. Among the identified genes, cyclin B1 (CCNB1) emerged as a novel therapeutic target for overcoming NK cell resistance. In vivo, pharmacological inhibition of the CCNB1/Cyclin-dependent kinase 1 (CDK1) complex with RO-3306 significantly suppressed melanoma growth by enhancing NK cell infiltration and IFN-γ production. In vitro, CCNB1 knockdown in melanoma cells augmented NK-92MI activation, as evidenced by increased expression of CD69, CD107a, IFN-γ, and NKG2D, thereby improving NK cell-mediated cytotoxicity. Mechanistically, in melanoma cells, the CCNB1/CDK1 complex phosphorylates STAT3, activating the IL-6/STAT3 positive feedback loop, which upregulates PD-L1 and enables resistance to NK cell-mediated cytotoxicity. Beyond its role in immune evasion, CCNB1 also promoted melanoma invasiveness by inducing epithelial-mesenchymal transition (EMT) through the TGF-β-SMAD2/3 signaling. Conclusions: This study establishes CCNB1/CDK1 as a novel immunotherapeutic target and uncovers a new role for CDK1 inhibitors in enhancing NK cell function and suppressing melanoma progression.
Collapse
Affiliation(s)
- Linbin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wanqian Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
| | - Qiuyue Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junwan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya Ding
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dandan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingjing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xizhi Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (L.C.); (W.L.); (J.H.); (Q.D.); (J.W.); (Q.Z.); (Y.D.); (D.L.); (J.L.)
- Department of Biological Therapy Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
5
|
Chen Q, Feng G, Shen Y, Li X, Pei Q, Wang H, Tian L, Cao Y, Wu J, Yang H, Mu L. An Anionic Cathelicidin Exerts Antimelanoma Effects in Mice by Promoting Pyroptosis. J Med Chem 2025; 68:8618-8633. [PMID: 40207383 DOI: 10.1021/acs.jmedchem.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
While cationic antimicrobial peptides (AMPs) are extensively studied for antitumor effects, anionic AMPs remain underexplored. Notably, no amphibian-derived anionic cathelicidins with antitumor activity have been reported. This study identifies Boma-CATH, a novel anionic cathelicidin (net charge-3) from Bombina maxima skin, which suppresses melanoma growth in mice and triggers pyroptosis-like morphological changes in A375 cells via the NLRP3/Caspase-1/GSDMD pathway. Further investigation revealed that ROS played a crucial role in promoting pyroptosis, as NAC (ROS scavenger) and Ac-YVAD-cmk (Caspase-1 inhibitor) reversed cell death and reduced LDH/IL-1β release in vitro and in vivo. GSDMD knockdown further validated its role. Additionally, Boma-CATH inhibited A375 cell proliferation, migration, and invasion, demonstrating dual antitumor mechanisms: pyroptosis induction and metastasis suppression. Importantly, Boma-CATH caused no adverse effects in mice, highlighting its therapeutic safety. These findings position Boma-CATH as a promising melanoma treatment and expand the mechanistic understanding of anionic AMPs in oncology.
Collapse
Affiliation(s)
- Qian Chen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yan Shen
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiang Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiqi Pei
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hanying Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Li Tian
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuanyuan Cao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Claus LM, Kostan HE, Hicks ME, Avritscher R, Davies MA. Case Report: Durable remission after abscopal effect following transcatheter hepatic arterial embolization in a patient with mucosal melanoma refractory to immunotherapy. Front Immunol 2025; 16:1565355. [PMID: 40276508 PMCID: PMC12018465 DOI: 10.3389/fimmu.2025.1565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Mucosal melanoma, a rare subtype of melanoma affecting mucosal surfaces, presents significant challenges in diagnosis and treatment, particularly due to its low programmed death-ligand 1 (PD-L1) expression and reduced response to immune checkpoint inhibitors (ICIs). This case report describes a 58-year-old woman with metastatic nasal mucosal melanoma initially resistant to neoadjuvant ipilimumab and nivolumab. After undergoing hepatic transcatheter arterial embolization, she experienced an unexpected abscopal effect, where distant metastases showed near-complete resolution despite prior lack of response to immunotherapy. The patient's disease initially progressed despite two cycles of ICI treatment, and further immunotherapy with nivolumab and relatimab did not improve her condition. Subsequently, after bland embolization of a dominant hepatic mass, the patient received re-challenged combination immunotherapy with ipilimumab and nivolumab, leading to significant regression in metastatic sites including the liver, lungs, lymph nodes, and bones. This response contrasts with prior reports and highlights a potential mechanism by which embolization therapies may alter the immune microenvironment and enhance the efficacy of immunotherapy. The abscopal effect observed following local hepatic embolization may be attributed to tumor-induced immune activation, which is further amplified by ICI treatment. This case underscores the potential for integrating local embolization with immunotherapy to overcome resistance in metastatic melanoma, particularly in mucosal subtypes. Further research is necessary to elucidate the immune mechanisms underlying these responses and to optimize treatment strategies for melanoma patients.
Collapse
Affiliation(s)
- Lynsey M. Claus
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hannah E. Kostan
- Department of Interventional Radiology, Baylor College of Medicine, Houston, TX, United States
| | - Marshall E. Hicks
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Acar C, Yüksel HÇ, Şahin G, Açar FP, Çelebi G, Gunenc D, Karaca B. C-reactive protein kinetics as prognostic biomarkers in advanced melanoma treated with immune checkpoint inhibitors. Melanoma Res 2025:00008390-990000000-00203. [PMID: 40202929 DOI: 10.1097/cmr.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
C-reactive protein (CRP) kinetics has emerged as a potential biomarker for predicting treatment response and survival in various tumors treated with immune checkpoint inhibitors (ICIs). However, data on CRP kinetics in melanoma are limited. This study evaluates the relationship between CRP kinetic groups and progression-free survival (PFS) and overall survival (OS) in 104 advanced melanoma patients treated with ICIs from 2015 to 2023. Patients were classified into four CRP kinetic groups: CRP flare responders, defined as patients whose CRP at least doubles within 1 month and then falls below baseline by 3 months; CRP responders, whose CRP decreases by ≥30% from baseline within 3 months without doubling; all-normal CRP, whose CRP remains below the upper limit of normal throughout the first 3 months; and CRP nonresponders, who do not meet these criteria. Amongst patients, 64.4% received anti-programmed death-1 monotherapy and 35.6% received the nivolumab-ipilimumab combination. Median PFS was 4.80 months in CRP nonresponders, 10.90 months in CRP responders, 8.83 months in CRP flare responders and 33.57 months in all-normal CRP patients (P < 0.001). Similarly, median OS was 11.9 months in CRP nonresponders, 38.1 months in CRP responders, 21.5 months in CRP flare responders and 54.5 months in all-normal CRP patients (P < 0.001). Multivariate analysis confirmed CRP kinetic groups as an independent predictor of PFS, OS and objective response. CRP kinetic classification is a simple prognostic tool for advanced melanoma patients treated with ICIs and is associated with improved survival outcomes, underscoring the clinical value of CRP monitoring.
Collapse
Affiliation(s)
- Caner Acar
- Division of Medical Oncology, Departmant of Internal Medicine
| | | | - Gökhan Şahin
- Division of Medical Oncology, Departmant of Internal Medicine
| | | | - Gülçin Çelebi
- Departmant of İnternal Medicine, Ege University Medical Faculty, Izmir, Turkey
| | - Damla Gunenc
- Division of Medical Oncology, Departmant of Internal Medicine
| | - Burçak Karaca
- Division of Medical Oncology, Departmant of Internal Medicine
| |
Collapse
|
8
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
9
|
Liang Y, Maeda O, Nishida K, Chretien B, Ando Y. Genomic profiles of patients with skin melanoma in the era of immune checkpoint inhibitors. Cancer Sci 2025; 116:1107-1114. [PMID: 39888082 PMCID: PMC11967263 DOI: 10.1111/cas.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 02/01/2025] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) for treating melanoma has dramatically improved patient prognosis. The genomic profiles of patients receiving ICI therapy would provide valuable information for disease management and treatment. We investigated the genomic profiles of patients with melanoma who had received ICI therapy and explored associations with clinical features and outcomes via a large-scale nationwide database in Japan (the C-CAT database). We identified 339 patients eligible for this study. The most frequent genetic mutations were found in the BRAF (27%), TERT (24%), and NRAS (19%) genes, and the most common copy number variations (CNVs) were in the CDKN2A (36%), CDKN2B (26%), and MTAP (19%) genes. Associations with high tumor mutational burden (TMB-high) status were significant for TERT (p < 0.001), NF1 (p < 0.001), ROS1 (p = 0.015), POLE (p = 0.045), and POLD1 (p = 0.008) mutations, along with older age (≥65 years, p = 0.036). Patients with multiple metastases (two or more) were more likely to have NOTCH3 mutations (p = 0.017) and be younger than 65 years (p = 0.024). In particular, as well as younger age, patients with brain metastases were more likely to harbor BRAF mutations (p < 0.001), while those with liver metastases were more likely to harbor NOTCH3 mutations (p < 0.001) but not CDKN2B CNVs (p = 0.041). Patients with NRAS mutations were less likely to respond to ICI therapy (p = 0.014) and exhibited shorter overall survival (p = 0.006). In this population, the frequency of BRAF mutations was lower than that in fair-skinned populations, but the associations between genomic profiles, clinical features, and outcomes were similar to those previously reported in fair-skinned populations.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Osamu Maeda
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| | - Kazuki Nishida
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Basile Chretien
- Department of Advanced MedicineNagoya University HospitalNagoyaJapan
| | - Yuichi Ando
- Department of Clinical Oncology and ChemotherapyNagoya University HospitalNagoyaJapan
| |
Collapse
|
10
|
Palli E, Lavigne M, Verginis P, Alissafi T, Anastasopoulou A, Lyrarakis G, Kirkwood JM, Gogas H, Ziogas DC. Transcriptomic signatures in peripheral CD4 +T-lymphocytes may reflect melanoma staging and immunotherapy responsiveness prior to ICI initiation. Front Immunol 2025; 16:1529707. [PMID: 40226614 PMCID: PMC11986426 DOI: 10.3389/fimmu.2025.1529707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background and purpose Promoting adaptive immunity with ICIs has drastically improved melanoma prognosis, but not for all patients. Some cases relapse in the first few months, while others keep durable benefit, even after immunotherapy discontinuation. To identify cellular/molecular signatures in peripheral blood that could differentiate advanced from metastatic melanoma and predict dynamics for primary/secondary immune escape, we examined 100 consecutive patients with stage III/IV melanoma scheduled to start ICIs. Materials and methods At melanoma diagnosis, a multiparameter flow cytometric analysis and purification scheme using standard conjugated antibodies were performed for all individuals prior to ICI initiation. In each stage(III/IV) according to their RFS/PFS, we retrospectively selected the cases with the clearest clinical outcomes and focused our analysis on the extreme responders(n=7) and non-responders(n=7) to characterize the transcriptomes of circulating CD4+T-cells by bulk RNA-seq, Differential Expression Analysis(DEA)and Gene Ontology(GO)enrichment analysis. Based on our selected patient cohort, we examined for differentially expressed genes(DEGs)and key-pathways that appear preferentially activated in stage III vs. IV melanoma, and in long vs. short immunotherapy responders. Results Although circulating immune-cells did not numerically differ in both sets of analysis(staging and ICI responsiveness), DEA and GO data showed that patients could be clustered separately, identifying 189vs.92 DEGs in stage IV/III and 101vs.47 DEGs in early progressors/long responders. These DEGs were functionally implicated in distinct pathways. For metastatic cases: inflammatory response(logp-value=-9.2:ADGRE5/2,CYBA,GRN,HMOX1,IRF5,ITGAM), adaptive immunity(logp-value=-7.7:CD1C,CD74,CYBB,NCF2,CTSA,S100A8/9,BCL3,FCER1G), T-cell activation(logp-value=-6.3:BCL3,CD1C,CD74,FCER1G,FGL2)and lipid metabolism/catabolism(logp-value=-2.5/-2.6:ARF3,GPX1,MVD,OCRL,PCCB,CTSA,PNPLA2,NAGLU,GBA2,ABHD4); while in early-progressors to ICIs: immune effector processing(logp-value=-13.7:BCL6,FGR,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NKG7,SLC11A1,TYROBP,SPON2,HAVCR2),PD-1(logp-value=-10.2:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5)and IFN signaling(logp-value=-8.5: HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NCAM1,IFITM3),positive regulation of T-cell activation(logp-value=-7.7:BCL6,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,SASH3,HAVCR2)and CD28 co-stimulation(logp-value=-10.3:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5), supporting an immune-mediated behavior. Conclusions Specific pathways and marker genes in the peripheral CD4+T-cells may predetermine melanoma staging and immunotherapy resistance.
Collapse
Affiliation(s)
- Eleni Palli
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Matthieu Lavigne
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Panagiotis Verginis
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Themis Alissafi
- Laboratory of Biology, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Georgios Lyrarakis
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - John M. Kirkwood
- Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| |
Collapse
|
11
|
Zhou Y, Tao Q, Luo C, Chen J, Chen G, Sun J. Epacadostat Overcomes Cetuximab Resistance in Colorectal Cancer by Targeting IDO-Mediated Tryptophan Metabolism. Cancer Sci 2025. [PMID: 40103010 DOI: 10.1111/cas.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Primary or acquired mutations in RAS/RAF genes resulting in cetuximab resistance have limited its clinical application in colorectal cancer (CRC) patients. The mechanism of this resistance remains unclear. RNA sequencing from cetuximab-sensitive and -resistant specimens revealed an activation of the tryptophan pathway and elevation of IDO1 and IDO2 in cetuximab-resistant CRC patients. In vitro, in vivo, and clinical specimens confirmed the upregulation of IDO1and IDO2 and the Kyn/Trp after cetuximab treatment. Additionally, the IDO inhibitor, epacadostat, could effectively inhibit the migration and proliferation of cetuximab-resistant CRC cells while promoting apoptosis. Compared to epacadostat monotherapy, the combination of cetuximab and epacadostat showed a stronger synergistic anti-tumor effect. Furthermore, in vivo experiments confirmed that combination therapy effectively suppressed tumor growth. Mechanistically, KEGG pathway analysis revealed the activation of the IFN-γ pathway in cetuximab-resistant CRC tissues. Luciferase reporter assays confirmed the transcriptional activity of IDO1 following cetuximab treatment. Silencing IFN-γ then suppressed the upregulation induced by cetuximab. Moreover, we observed that the combination reduced the concentration of the tryptophan metabolite kynurenine, promoted the infiltration of CD8+ T lymphocytes, and enhanced the polarization of M1 macrophages within the tumor microenvironment, thereby exerting potent anti-tumor immune effects. Overall, our results confirm the remarkable therapeutic efficacy of combining cetuximab with epacadostat in cetuximab-resistant CRC. Our findings may provide a novel target for overcoming cetuximab resistance in CRC.
Collapse
Affiliation(s)
- Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiongyan Tao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chubin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jinsong Chen
- Department of Clinical Medicine, Shaoguan University, Shaoguan, Guangdong, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Xu J, Jin M, Mu Z, Li Z, Qi R, Han X, Jiang H. Inhibiting melanoma tumor growth: the role of oxidative stress-associated LINC02132 and COPDA1 long non-coding RNAs. Front Immunol 2025; 16:1558292. [PMID: 40092985 PMCID: PMC11906686 DOI: 10.3389/fimmu.2025.1558292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Cutaneous melanoma is a type of malignant tumor that is challenging to predict and is readily stimulated by various factors. Oxidative stress can induce damage and alterations in melanocytes, subsequently triggering immune responses. Given that oxidative stress is a prevalent tumor stimulus, we aimed to enhance melanoma prediction by identifying lncRNA signatures associated with oxidative stress. Methods We screened for oxidative stress-related lncRNAs that could improve melanoma patient prognosis using the TCGA and GTEx databases. Utilizing differentially expressed oxidative stress-related lncRNAs (DE-OSlncRNAs), we constructed a Lasso regression model. The accuracy of the model was validated using univariate and multivariate regression, Kaplan-Meier (K-M) curves, and ROC curves. Subsequently, we conducted immune infiltration analysis, immune checkpoint differential analysis, IC50 pharmaceutical analysis, and gene set enrichment analysis. Investigating the effects of the target gene on melanoma using fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), Edu assay, wound healing assay, transwell assay, flow cytometry, and reactive oxygen species (ROS) detection. Results Thirteen lncRNAs were identified as significant prognostic factors. Four oxidative stress-related lncRNAs (COPDA1, LINC02132, LINC02812, and MIR205HG) were further validated by fluorescence in situ hybridization (FISH), with results consistent with our data analysis. LINC02132 and COPDA1 can influence the proliferation, invasion, migration, and apoptosis of melanoma. Conclusion Our findings suggest that upregulation of the LINC02132 or COPDA1 genes elevates intracellular reactive oxygen species (ROS) levels in melanoma cells, suppresses tumor cell proliferation, migration, and invasion, and promotes apoptosis. These results suggest a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- JingWen Xu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - MingZhu Jin
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ZhenZhen Mu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - ZhengXiu Li
- Department of Dermatology & Key Lab of Dermatology, Ministry of Education and Public Health, National Joint Engineering Research Center for Theranostics of Immunology Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - RuiQun Qi
- Department of Dermatology & Key Lab of Dermatology, Ministry of Education and Public Health, National Joint Engineering Research Center for Theranostics of Immunology Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - XiuPing Han
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - HangHang Jiang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
14
|
Liu YJ, Liu Q, Li JQ, Ye QW, Yin SY, Liu C, Liu SL, Zou X, Ji J. Comprehensive Breslow thickness (BT)-based analysis to identify biological mechanisms associated with melanoma pathogenesis. Int Immunopharmacol 2025; 147:114065. [PMID: 39809103 DOI: 10.1016/j.intimp.2025.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Breslow thickness (BT), a parameter measuring the depth of invasion of abnormally proliferating melanocytes, is a key indicator of melanoma severity and prognosis. However, the mechanisms underlying the increase in BT remain elusive. Utilizing data from The Cancer Genome Atlas (TCGA) human skin cutaneous melanoma (SKCM), we identified a set of BT-related molecules and analyzed their expression and genomic heterogeneity across pan-cancerous and normal tissues. Through consensus clustering, we identified two distinct BT phenotypes in melanoma, which exhibited significant differences in clinical, genomic, and immune infiltration characteristics. High BT molecular expression was associated with reduced CD8+ T cell infiltration and poor immunotherapy response, potentially mediated by the Macrophage Migration Inhibitory Factor (MIF) signaling pathway. In vitro experiments confirmed that BT molecules, including TRIM29, SERPINB5, and RAB25, promoted melanoma development through distinct mechanisms. Notably, fibroblast-derived TRIM29 and B-cell-derived RAB25 interacted with SPP1+ monocytes/macrophages via different pathways. Our findings suggest that genomic variations leading to imbalanced expression of BT molecules across cancers contribute to increased BT, which is closely linked to an immunosuppressive microenvironment. The involvement of multiple cell types and complex intercellular interactions underscores the importance of evaluating dynamic cellular crosstalk in the tumor microenvironment to better understand BT increases and develop more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qing Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Jia-Qi Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Sheng-Yan Yin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing, Jiangsu 210029, China
| | - Cong Liu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Jin Ji
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
15
|
Mori K, Numakura K, Matsushita Y, Kojima T, Osawa T, Sazuka T, Hatakeyama S, Goto K, Yamana K, Kandori S, Kimura T, Nishiyama N, Bando Y, Fujita K, Ueda K, Tanaka H, Tomida R, Kurahashi T, Kitamura H, Miyake H, Habuchi T. Primary resistance to nivolumab plus ipilimumab therapy affects second-line treatment outcomes in patients with metastatic renal cell carcinoma. Cancer Sci 2025; 116:444-452. [PMID: 39550694 PMCID: PMC11786309 DOI: 10.1111/cas.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 11/18/2024] Open
Abstract
Nivolumab plus ipilimumab (NIVO+IPI) has a long-term response rate of 30% for patients with metastatic renal cell carcinoma (mRCC). However, 20% of patients develop primary resistant disease (PRD) to NIVO+IPI and show poor survival outcomes. In this study, we aimed to evaluate the effect of PRD as a second-line treatment in patients with mRCC. The data used in this multi-institutional, retrospective cohort were collected between August 2015 and January 2023. In total, 189 patients with mRCC were treated with NIVO+IPI and then with a vascular endothelial growth factor receptor-tyrosine kinase inhibitor. Associations between PRD and progression-free survival of second-line treatment (PFS), progression-free survival 2 (PFS2), and overall survival (OS) were analyzed. The median age at NIVO+IPI initiation was 67 years in the male-dominant population (n = 140, 74.1%), and most patients had clear cell histology (n = 140, 74.1%). PRD was recorded in 42 (22.2%) of 189 patients during NIVO+IPI therapy. Patients who experienced PRD showed poor PFS (hazard ratio [HR], 1.788; 95% confidence interval [CI], 1.176-2.718; p = 0.007), PFS2 (HR, 4.127; 95% CI, 2.649-6.431; p < 0.001), and OS (HR, 3.330; 95% CI, 2.040-5.437; p < 0.001). Before starting second-line therapy, patients with PRD tended to have a poor performance status compared with non-PRD patients and a higher IMDC risk. Second-line drug therapy was not associated with treatment outcomes in patients with PRD. PRD in patients with mRCC receiving NIVO+IPI as first-line treatment was associated with poor clinical course, even with second-line therapy.
Collapse
Affiliation(s)
- Kanami Mori
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Kazuyuki Numakura
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| | - Yuto Matsushita
- Department of UrologyHamamatsu University School of MedicineHamamatsuJapan
| | | | - Takahiro Osawa
- Department of Renal and Genitourinary SurgeryHokkaido UniversitySapporoJapan
| | - Tomokazu Sazuka
- Department of Urology, Graduate School of Medicine and School of MedicineChiba UniversityChibaJapan
| | - Shingo Hatakeyama
- Department of UrologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical ScienceHiroshima UniversityHiroshimaJapan
| | - Kazutoshi Yamana
- Department of Urology and Molecular OncologyNiigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Shuya Kandori
- Department of UrologyInstitute of Medicine, University of TsukubaTsukubaJapan
| | - Takahiro Kimura
- Department of UrologyJikei University School of MedicineTokyoJapan
| | - Naotaka Nishiyama
- Department of Urology, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Yukari Bando
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Kazutoshi Fujita
- Department of UrologyKindai University Faculty of MedicineOsaka‐sayamaJapan
| | - Kosuke Ueda
- Department of UrologyKurume University School of MedicineKurumeJapan
| | - Hajime Tanaka
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Ryotaro Tomida
- Department of UrologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | | | - Hiroshi Kitamura
- Department of Urology, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Hideaki Miyake
- Department of UrologyKobe University Graduate School of MedicineKobeJapan
| | - Tomonori Habuchi
- Department of UrologyAkita University Graduate School of MedicineAkitaJapan
| |
Collapse
|
16
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
17
|
Kang S, Mansurov A, Kurtanich T, Chun HR, Slezak AJ, Volpatti LR, Chang K, Wang T, Alpar AT, Refvik KC, Hansen OI, Borjas GJ, Berg BTK, Shim HN, Hultgren KT, Gomes S, Wang Y, Solanki A, Ishihara J, Swartz MA, Hubbell JA. Engineered GM-CSF polarizes protumorigenic tumor-associated macrophages to an antitumorigenic phenotype and potently synergizes with IL-12 immunotherapy. J Immunother Cancer 2024; 12:e009541. [PMID: 39794939 PMCID: PMC11667343 DOI: 10.1136/jitc-2024-009541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/18/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy. METHODS Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12). We evaluated tumor responses at the levels of outcome, cellular responses, and cytokine responses in both the tumors and the tumor-draining lymph nodes. We further investigated the potentiation of DC response to IL-12 by GM-CSF stimulation ex vivo. RESULTS Engineered GM-CSF restored an antitumorigenic tumor myeloid microenvironment otherwise suppressed by TAMs, while engineered IL-12 provided effector signals to T cells, thereby boosting both tumor-resident antitumor macrophage and CD8+ T cell populations. Furthermore, engineered GM-CSF potentiated DC response to IL-12, upregulating DC expression of IL-12 receptor and enhancing their expression of proinflammatory cytokines and chemokines on IL-12 exposure. This resulted in remarkable synergistic efficacy in multiple solid tumor models treated with the dual cytokine combination. The combination therapy also improved the efficacy of CPI in a CPI-resistant genetically-engineered melanoma model and exhibited synergistic antitumor efficacy in a pulmonary metastasis model. CONCLUSION Our strategy provides a rational design for combination immunotherapy targeting both myeloid and lymphoid compartments through complementary mechanisms.
Collapse
Affiliation(s)
- Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Trevin Kurtanich
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Hye Rin Chun
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
| | - Anna J Slezak
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Lisa R Volpatti
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Kevin Chang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Thomas Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Kirsten C Refvik
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - O Isabella Hansen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Gustavo J Borjas
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Brendan T K Berg
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Kevin T Hultgren
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Yue Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
| | - Ani Solanki
- Animal Resource Center, The University of Chicago, Chicago, Illinois, USA
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| |
Collapse
|
18
|
Zhang D, Zhao J, Zhang Y, Jiang H, Liu D. Revisiting immune checkpoint inhibitors: new strategies to enhance efficacy and reduce toxicity. Front Immunol 2024; 15:1490129. [PMID: 39720720 PMCID: PMC11666542 DOI: 10.3389/fimmu.2024.1490129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Dianying Zhang
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huai’an, China
- Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Dan Liu
- Medical Education Department, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, China
| |
Collapse
|
19
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Zhang J, Wang L, Guo H, Kong S, Li W, He Q, Ding L, Yang B. The role of Tim-3 blockade in the tumor immune microenvironment beyond T cells. Pharmacol Res 2024; 209:107458. [PMID: 39396768 DOI: 10.1016/j.phrs.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Numerous preclinical studies have demonstrated the inhibitory function of T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) on T cells as an inhibitory receptor, leading to the clinical development of anti-Tim-3 blocking antibodies. However, recent studies have shown that Tim-3 is expressed not only on T cells but also on multiple cell types in the tumor microenvironment (TME), including dendritic cells (DCs), natural killer (NK) cells, macrophages, and tumor cells. Therefore, Tim-3 blockade in the immune microenvironment not only affect the function of T cells but also influence the functions of other cells. For example, Tim-3 blockade can enhance the ability of DCs to regulate innate and adaptive immunity. The role of Tim-3 blockade in NK cells function is controversial, as it can enhance the antitumor function of NK cells under certain conditions while having the opposite effect in other situations. Additionally, Tim-3 blockade can promote the reversal of macrophage polarization from the M2 phenotype to the M1 phenotype. Furthermore, Tim-3 blockade can inhibit tumor development by suppressing the proliferation and metastasis of tumor cells. In summary, increasing evidence has shown that Tim-3 in other cell types also plays a critical role in the efficacy of anti-Tim-3 therapy. Understanding the function of anti-Tim-3 therapy in non-T cells can help elucidate the diverse responses observed in clinical patients, leading to better development of relevant therapeutic strategies. This review aims to discuss the role of Tim-3 in the TME and emphasize the impact of Tim-3 blockade in the tumor immune microenvironment beyond T cells.
Collapse
Affiliation(s)
- Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
21
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
22
|
Lyrarakis G, Liontos M, Anastasopoulou A, Bouros S, Gkoufa A, Diamantopoulos P, Gogas H, Ziogas DC. Immunotherapy after progression to double immunotherapy: pembrolizumab and lenvatinib versus conventional chemotherapy for patients with metastatic melanoma after failure of PD-1/CTLA-4 inhibition. Front Oncol 2024; 14:1420879. [PMID: 39435288 PMCID: PMC11491429 DOI: 10.3389/fonc.2024.1420879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background Programmed cell death 1 receptor (PD-1) inhibition as monotherapy followed by Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) inhibition in case of progression or as upfront double co-inhibition has drastically improved the survival outcomes of metastatic melanoma. Still, many patients develop primary or acquired resistance to both agents, relapse soon, and survive less. For these patients, the therapeutic options are very limited, and for many years, conventional chemotherapy (CC) was the standard of care. Recently, the phase II LEAP-004 trial supported that pembrolizumab/lenvatinib could potentially overcome anti-PD-1/anti-CTLA-4 immunotherapy refractoriness. Materials and methods In the absence of any prospective comparative study and to evaluate in a real-world context the clinical benefit of re-administering a PD-1 inhibitor (pembrolizumab 200 mg i.v. every 3 weeks, Q3W) with a multi-kinase inhibitor (lenvatinib, but at a reduced dose 10 mg p.o. daily due to its known toxicity) in this frail population of unmet need, we conducted here a retrospective comparison of LEAP-004-proposed combination with CC (carboplatin 4 AUC and dacarbazine 850 mg/m2 i.v. Q3W) in melanoma patients who relapsed to both checkpoint inhibitors, either in combinatorial or in sequential setting, between July 2022 and January 2024. Baseline demographics, disease characteristics, and treatment outcomes (objective response rate (ORR), progression-free survival (PFS), and overall survival (OS)) were recorded. Survival analyses were performed using the Kaplan-Meier method. All patients were also considered for safety analysis. Results A total of 84 patients were included in the effectiveness and safety analysis (pembrolizumab/lenvatinib, n=39 and CC, n=45). The median age was 67 (45-87) years and 64 (34-87) years, and men were 33.3% and 46.7%, respectively. The distribution of their metastatic sites was comparable, including 12.8% and 20% with brain involvement. Most patients had a good PS<2 (69.9% and 56.5%), increased lactate dehydrogenase (LDH) (71.8% and 84.4%), BRAF-wild status (82.1% and 84.8%), and received ≥2 previous systemic therapies (61.5% and 53.3%). The median follow-up was 18 months. The ORR was 23.1% and 11.1% (p<0.0001), the median PFS was 4.8 months and 3.8 months [HR (95%CI), 0.57 (0.36-0.92); p=0.017], and the median OS was 14.2 months and 7.8 months [HR (95%CI), 0.39 (0.22-0.69), p=0.0009] in pembrolizumab/lenvatinib and CC arms, respectively. Grade 3-5 treatment-related adverse events were documented in 48.7% (pembrolizumab/lenvatinib) and 75.6% (CC) of patients (p=0.034), which led to treatment discontinuation in 10.3% and 17.8% of cases, respectively. Conclusions This is the first comparative study in patients with metastatic melanoma refractory to PD-1/CTLA-4 inhibition and showed significantly longer outcomes in cases treated with pembrolizumab/lenvatinib versus CC.
Collapse
Affiliation(s)
- Georgios Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Michael Liontos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Spyridon Bouros
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Aikaterini Gkoufa
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Panagiotis Diamantopoulos
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Dimitrios C. Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| |
Collapse
|
23
|
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes? Int J Mol Sci 2024; 25:10120. [PMID: 39337605 PMCID: PMC11432671 DOI: 10.3390/ijms251810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enhancing anti-tumour immune responses, demonstrating significant efficacy in various malignancies, including melanoma. However, over 50% of patients experience limited or no response to ICI therapy. Resistance to ICIs is influenced by a complex interplay of tumour intrinsic and extrinsic factors. This review summarizes current ICIs for melanoma and the factors involved in resistance to the treatment. We also discuss emerging evidence that the microbiota can impact ICI treatment outcomes by modulating tumour biology and anti-tumour immune function. Furthermore, microbiota profiles may offer a non-invasive method for predicting ICI response. Therefore, future research into microbiota manipulation could provide cost-effective strategies to enhance ICI efficacy and improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kevin Ly
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Yih Jian Sung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Antony Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Benfield AH, Vernen F, Young RSE, Nadal-Bufí F, Lamb H, Hammerlindl H, Craik DJ, Schaider H, Lawrence N, Blanksby SJ, Henriques ST. Cyclic tachyplesin I kills proliferative, non-proliferative and drug-resistant melanoma cells without inducing resistance. Pharmacol Res 2024; 207:107298. [PMID: 39032840 DOI: 10.1016/j.phrs.2024.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Acquired drug resistance is the major cause for disease recurrence in cancer patients, and this is particularly true for patients with metastatic melanoma that carry a BRAF V600E mutation. To address this problem, we investigated cyclic membrane-active peptides as an alternative therapeutic modality to kill drug-tolerant and resistant melanoma cells to avoid acquired drug resistance. We selected two stable cyclic peptides (cTI and cGm), previously shown to have anti-melanoma properties, and compared them with dabrafenib, a drug used to treat cancer patients with the BRAF V600E mutation. The peptides act via a fast membrane-permeabilizing mechanism and kill metastatic melanoma cells that are sensitive, tolerant, or resistant to dabrafenib. Melanoma cells do not become resistant to long-term treatment with cTI, nor do they evolve their lipid membrane composition, as measured by lipidomic and proteomic studies. In vivo studies in mice demonstrated that the combination treatment of cTI and dabrafenib resulted in fewer metastases and improved overall survival. Such cyclic membrane-active peptides are thus well suited as templates to design new anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Felicitas Vernen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Reuben S E Young
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ferran Nadal-Bufí
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Henry Lamb
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia; Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
25
|
Yang P, Jiang Y, Chen R, Yang J, Liu M, Huang X, Xu G, Hao R. Prognostic and immune infiltration implications of SIGLEC9 in SKCM. Diagn Pathol 2024; 19:112. [PMID: 39153970 PMCID: PMC11330613 DOI: 10.1186/s13000-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The occurrence and progression of skin cutaneous melanoma (SKCM) is strongly associated with immune cells infiltrating the tumor microenvironment (TME). This study examined the expression, prognosis, and immune relevance of SIGLEC9 in SKCM using multiple online databases. Analysis of the GEPIA2 and Ualcan databases revealed that SIGLEC9 is highly expressed in SKCM, and patients with high SIGLEC9 expression had improved overall survival (OS). Furthermore, the mutation rate of SIGLEC9 in SKCM patients was found to be 5.41%, the highest observed. The expression of SIGLEC9 was positively correlated with macrophages, neutrophils and B cells, CD8 + T cells, CD4 + T cells, and dendritic cells, according to TIMER. Based on TCGA-SKCM data, we verified that high SIGLEC9 expression is closely associated with a good prognosis for SKCM patients, including overall survival, progression-free interval, and disease-specific survival. This positive prognosis could be due to the infiltration of immune cells into the TME. Additionally, our analysis of single-cell transcriptome data revealed that SIGLEC9 not only played a role in the normal skin immune microenvironment, but is also highly expressed in immune cell subpopulations of SKCM patients, regulating the immune response to tumors. Our findings suggest that the close association between SIGLEC9 and SKCM prognosis is primarily mediated by its effect on the tumor immune microenvironment.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Rong Chen
- Department of Clinical Laboratory, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Junhan Yang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Mengting Liu
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Xieping Huang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Ganglin Xu
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China.
| | - Rui Hao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| |
Collapse
|
26
|
Limonta P, Chiaramonte R, Casati L. Unveiling the Dynamic Interplay between Cancer Stem Cells and the Tumor Microenvironment in Melanoma: Implications for Novel Therapeutic Strategies. Cancers (Basel) 2024; 16:2861. [PMID: 39199632 PMCID: PMC11352669 DOI: 10.3390/cancers16162861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Cutaneous melanoma still represents a significant health burden worldwide, being responsible for the majority of skin cancer deaths. Key advances in therapeutic strategies have significantly improved patient outcomes; however, most patients experience drug resistance and tumor relapse. Cancer stem cells (CSCs) are a small subpopulation of cells in different tumors, including melanoma, endowed with distinctive capacities of self-renewal and differentiation into bulk tumor cells. Melanoma CSCs are characterized by the expression of specific biomarkers and intracellular pathways; moreover, they play a pivotal role in tumor onset, progression and drug resistance. In recent years, great efforts have been made to dissect the molecular mechanisms underlying the protumor activities of melanoma CSCs to provide the basis for novel CSC-targeted therapies. Herein, we highlight the intricate crosstalk between melanoma CSCs and bystander cells in the tumor microenvironment (TME), including immune cells, endothelial cells and cancer-associated fibroblasts (CAFs), and its role in melanoma progression. Specifically, we discuss the peculiar capacities of melanoma CSCs to escape the host immune surveillance, to recruit immunosuppressive cells and to educate immune cells toward an immunosuppressive and protumor phenotype. We also address currently investigated CSC-targeted strategies that could pave the way for new promising therapeutic approaches for melanoma care.
Collapse
Affiliation(s)
- Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy;
| |
Collapse
|
27
|
Levati L, Tabolacci C, Facchiano A, Facchiano F, Alvino E, Antonini Cappellini GC, Scala E, Bonmassar L, Caporali S, Lacal PM, Bresin A, De Galitiis F, Russo G, D'Atri S. Circulating interleukin-8 and osteopontin are promising biomarkers of clinical outcomes in advanced melanoma patients treated with targeted therapy. J Exp Clin Cancer Res 2024; 43:226. [PMID: 39143551 PMCID: PMC11325673 DOI: 10.1186/s13046-024-03151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circulating cytokines can represent non-invasive biomarkers to improve prediction of clinical outcomes of cancer patients. Here, plasma levels of IL-8, CCL4, osteopontin, LIF and BDNF were determined at baseline (T0), after 2 months of therapy (T2) and, when feasible, at progression (TP), in 70 melanoma patients treated with BRAF and MEK inhibitors. The association of baseline cytokine levels with clinical response, progression-free survival (PFS) and overall survival (OS) was evaluated. METHODS Cytokine concentrations were measured using the xMAP technology. Their ability to discriminate between responding (Rs) and non-responding (NRs) patients was assessed by Receiver Operating Characteristics analysis. PFS and OS were estimated with the Kaplan-Meier method. The Cox proportional hazard model was used in the univariate and multivariate analyses to estimate crude and adjusted hazard ratios with 95% confidence intervals. RESULTS CCL4 and LIF were undetectable in the majority of samples. The median osteopontin concentration at T0 and T2 was significantly higher in NRs than in Rs. The median T0 and T2 values of IL-8 were also higher in NRs than in Rs, although the statistical significance was not reached. No differences were detected for BDNF. In 39 Rs with matched T0, T2, and TP samples, osteopontin and IL-8 significantly decreased from T0 to T2 and rose again at TP, while BDNF levels remained unchanged. In NRs, none of the cytokines showed a significant decrease at T2. Only osteopontin demonstrated a good ability to discriminate between Rs and NRs. A high IL-8 T0 level was associated with significantly shorter PFS and OS and higher risk of progression and mortality, and remained an independent negative prognostic factor for OS in multivariate analysis. An elevated osteopontin T0 concentration was also significantly associated with worse OS and increased risk of death. Patients with high IL-8 and high osteopontin showed the lowest PFS and OS, and in multivariate analysis this cytokine combination remained independently associated with a three- to six-fold increased risk of mortality. CONCLUSION Circulating IL-8 and osteopontin appear useful biomarkers to refine prognosis evaluation of patients undergoing targeted therapy, and deserve attention as potential targets to improve its clinical efficacy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Present Address: Research Coordination and Support Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ester Alvino
- Institute of Translational Pharmacology, National Council of Research, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Gian Carlo Antonini Cappellini
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: UOC Oncologia, Interpresidio ASL RM2, Via Dei Monti Tiburtini 387, 00157, Rome, Italy
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Laura Bonmassar
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
- Present Address: Regional Transplant Center Lazio (CRTL), San Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Pedro Miguel Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Antonella Bresin
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Federica De Galitiis
- Department of Oncology and Dermatological Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Giandomenico Russo
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Dei Monti Di Creta 104, 00167, Rome, Italy.
| |
Collapse
|
28
|
Albarrán V, Guerrero P, de Quevedo CG, González C, Chamorro J, Rosero DI, Moreno J, Calvo JC, de Aguado PP, Alía V, Sotoca P, Barrill AM, Román MS, Álvarez-Ballesteros P, Serrano JJ, Soria A, Olmedo ME, Saavedra C, Cortés A, Gómez A, Lage Y, Ruiz Á, Ferreiro MR, Longo F, Garrido P, Gajate P. Negative association of steroids with immunotherapy efficacy in a multi-tumor cohort: time and dose-dependent. Cancer Immunol Immunother 2024; 73:186. [PMID: 39093378 PMCID: PMC11297225 DOI: 10.1007/s00262-024-03772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024]
Abstract
Previous studies have suggested a negative impact of steroids on the efficacy of immune checkpoint inhibitors (ICI), but how this effect is modulated by the dosage and time of administration is yet to be clarified. We have performed a retrospective analysis of 475 patients with advanced solid tumors treated with ICI as monotherapy from 2015 to 2022. Data regarding immune-related adverse events (irAEs) and clinical outcomes were collected. For each patient, the daily steroid dose (in mg/kg of prednisone) was registered until disease progression or death. The impact of cumulative doses on response rates and survival outcomes was analyzed within different periods. The objective response rate (ORR) was significantly lower among patients exposed to steroids within 30 days before the first cycle of ICI (C1) (20.3% vs. 36.7%, p < 0.01) and within the first 90 days of treatment (25.7% vs. 37.7%, p = 0.01). This negative association was confirmed by multivariable analysis. Higher mean steroid doses were observed among non-responders, and cumulative doses were inversely correlated with the disease control rate (DCR) around ICI initiation. Remarkably, poorer outcomes were observed even in patients belonging to the lowest dose quartile compared to the steroid-naïve population. The exposure to steroids after 6 months of ICI was not associated with worse survival outcomes. Our results suggest that the potential impact of steroids on ICI efficacy may be time-dependent, prevailing around ICI initiation, and dose-dependent, with modulation of neutrophil-to-lymphocyte ratio as a possible underlying mechanism.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Patricia Guerrero
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Coral García de Quevedo
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos González
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jesús Chamorro
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diana Isabel Rosero
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Jaime Moreno
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Carlos Calvo
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Pérez de Aguado
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor Alía
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pilar Sotoca
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ana María Barrill
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María San Román
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Álvarez-Ballesteros
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan José Serrano
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ainara Soria
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Eugenia Olmedo
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Cristina Saavedra
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alfonso Cortés
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ana Gómez
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Yolanda Lage
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Álvaro Ruiz
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Reyes Ferreiro
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Federico Longo
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pilar Garrido
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pablo Gajate
- Department of Medical Oncology, Ramon y Cajal University Hospital (Madrid), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
29
|
Murakami K, Ganguly S. The Nectin family ligands, PVRL2 and PVR, in cancer immunology and immunotherapy. Front Immunol 2024; 15:1441730. [PMID: 39156900 PMCID: PMC11327090 DOI: 10.3389/fimmu.2024.1441730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
In recent years, immunotherapy has emerged as a crucial component of cancer treatment. However, its efficacy remains limited across various cancer types, highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus receptor (PVR) are members of the Nectin and Nectin-like Molecules family, known for their role as cell-cell adhesion molecules. With the development of immunotherapy, their involvement in tumor immune mechanisms as immune checkpoint factors has garnered significant attention. PVRL2 and PVR are predominantly expressed on tumor cells and antigen-presenting cells, binding to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells, thereby suppressing antitumor immunity. Notably, gynecological cancers such as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and PVR, with similar trends observed in various other solid and hematologic tumors. Targeting these immune checkpoint pathways offers a promising therapeutic avenue, potentially in combination with existing treatments. However, the immunomodulatory mechanism involving these bindings, known as the DNAM-1 axis, is complex, underscoring the importance of understanding it for developing novel therapies. This article comprehensively reviews the immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating their implications for various cancer types.
Collapse
Affiliation(s)
| | - Sudipto Ganguly
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Shi H, Tian C, Wu M, Ma L, Sun J, Chen H. m6A- and m5C- modified lncRNAs orchestrate the prognosis in cutaneous melanoma and m6A- modified LINC00893 regulates cutaneous melanoma cell metastasis. Skin Res Technol 2024; 30:e13842. [PMID: 38965799 PMCID: PMC11224130 DOI: 10.1111/srt.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND As the most important modifications on the RNA level, N6-methyladenosine (m6A-) and 5-methylcytosine (m5C-) modification could have a direct influence on the RNAs. Long non-coding RNAs (lncRNAs) could also be modified by methylcytosine modification. Compared with mRNAs, the function of lncRNAs could be more potent to some extent in biological processes like tumorigenesis. Until now, rare reports have been done associated with cutaneous melanoma. Herein, we wonder if the m6A- and m5C- modified lncRNAs could influence the immune landscape and prognosis in melanoma, and we also want to find some lncRNAs which could directly affect the malignant behaviors of melanoma. METHODS Systematically, we explored the expression pattern of m6A- and m5C- modified lncRNAs in melanoma from datasets including UCSC Xena and NCBI GEO, and the prognostic lncRNAs were selected. Then, according to the expression pattern of lncRNAs, melanoma samples from these datasets were divided into several subtypes. Prognostic model, nomogram survival model, drug sensitivity, GO, and KEGG pathway analysis were performed. Furthermore, among several selected lncRNAs, we identified one lncRNA named LINC00893 and investigated its expression pattern and its biological function in melanoma cell lines. RESULTS We identified 27 m6A- and m5C- related lncRNAs which were significantly associated with survival, and we made a subtype analysis of melanoma samples based on these 27 lncRNAs. Among the two subtypes, we found differences of immune cells infiltration between these two subtypes. Then, LASSO algorithm was used to screen the optimized lncRNAs combination including ZNF252P-AS1, MIAT, FAM13A-AS1, LINC-PINT, LINC00893, AGAP2-AS1, OIP5-AS1, and SEMA6A-AS1. We also found that there was a significant correlation between the different risk groups predicted based on RS model and the actual prognosis. The nomogram survival model based on independent survival prognostic factors was also constructed. Besides, sensitivity to chemotherapeutic agents, GO and KEGG analysis were performed. In different risk groups, a total of 14 drug molecules with different distributions were obtained, which included AZD6482, AZD7762, AZD8055, camptothecin, dasatinib, erlotinib, gefitinib, gemcitabine, GSK269962A, nilotinib, rapamycin, and sorafenib. A total of 55 significantly related biological processes and 17 KEGG signaling pathways were screened. At last, we noticed that LINC00893 had a relatively lower expression in melanoma tissue and cell lines compared with adjacent tissues and epidermal melanocyte, and down-regulation of LINC00893 could promote the malignant behavior of melanoma cells in A875 and MV3. In these two melanoma cell lines, down-regulation of m6A-related molecules like YTHDF3 and METTL3 could promote the expression of LINC00893. CONCLUSION We made an analysis of m6A- and m5C- related lncRNAs in melanoma samples and a prediction of these lncRNAs' role in prognosis, tumor microenvironment, immune infiltration, and clinicopathological features. We also found that LINC00893, which is potentially regulated by m6A modification, could serve as a tumor-suppressor in melanoma and play an inhibitory role in melanoma metastasis.
Collapse
Affiliation(s)
- Hao‐Ze Shi
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Cui‐Cui Tian
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Ming‐Yang Wu
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Li Ma
- Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Jian‐Fang Sun
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Hao Chen
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| |
Collapse
|
31
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
32
|
Ren Z, Xu Z, Chang X, Liu J, Xiao W. STC1 competitively binding βPIX enhances melanoma progression via YAP nuclear translocation and M2 macrophage recruitment through the YAP/CCL2/VEGFA/AKT feedback loop. Pharmacol Res 2024; 204:107218. [PMID: 38768671 DOI: 10.1016/j.phrs.2024.107218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, βPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to βPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Zhijie Xu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Xiyue Chang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Jie Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wan'an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
33
|
Navasardyan I, Zaravinos A, Bonavida B. Therapeutic Implications of Targeting YY1 in Glioblastoma. Cancers (Basel) 2024; 16:2074. [PMID: 38893192 PMCID: PMC11171050 DOI: 10.3390/cancers16112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor Yin Yang 1 (YY1) plays a pivotal role in the pathogenesis of glioblastoma multiforme (GBM), an aggressive form of brain tumor. This review systematically explores the diverse roles of YY1 overexpression and activities in GBM, including its impact on the tumor microenvironment (TME) and immune evasion mechanisms. Due to the poor response of GBM to current therapies, various findings of YY1-associated pathways in the literature provide valuable insights into novel potential targeted therapeutic strategies. Moreover, YY1 acts as a significant regulator of immune checkpoint molecules and, thus, is a candidate therapeutic target in combination with immune checkpoint inhibitors. Different therapeutic implications targeting YY1 in GBM and its inherent associated challenges encompass the use of nanoparticles, YY1 inhibitors, targeted gene therapy, and exosome-based delivery systems. Despite the inherent complexities of such methods, the successful targeting of YY1 emerges as a promising avenue for reshaping GBM treatment strategies, presenting opportunities for innovative therapeutic approaches and enhanced patient outcomes.
Collapse
Affiliation(s)
- Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
35
|
Gao Y, Cai X, Zou W, Tang X, Jiang L, Hao J, Zheng Y, Ye X, Ying T, Li A. Self-supplying Cu 2+ and H 2O 2 synergistically enhancing disulfiram-mediated melanoma chemotherapy. RSC Adv 2024; 14:13180-13189. [PMID: 38655468 PMCID: PMC11036371 DOI: 10.1039/d4ra01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Yingqian Gao
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Department of Ultrasound in Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing Jiangsu China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weijuan Zou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiuzhen Tang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xinhua Ye
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ao Li
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
36
|
Bai Z, Peng Y, Xia X, Li Y, Zhong Y, Chen L, Guan Q, Liu W, Zhou Y, Ma L. Inhibiting autophagy enhanced mitotic catastrophe-mediated anticancer immune responses by regulating the cGAS-STING pathway. Cancer Lett 2024; 586:216695. [PMID: 38325769 DOI: 10.1016/j.canlet.2024.216695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Given the limitations of the response rate and efficacy of immune checkpoint inhibitors (ICIs) in clinical applications, exploring new therapeutic strategies for cancer immunotherapy is necessary. We found that 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl)imidazole (BZML), a microtubule-targeting agent, exhibited potent anticancer activity by inducing mitotic catastrophe in A549/Taxol and L929 cells. Nuclear membrane disruption and nuclease reduction provided favorable conditions for cGAS-STING pathway activation in cells with mitotic catastrophe. Similar results were obtained in paclitaxel-, docetaxel- and doxorubicin-induced mitotic catastrophe in various cancer cells. Notably, the surface localization of CALR and MHC-I and the release of HMGB1 were also significantly increased in cells with mitotic catastrophe, but not in apoptotic cells, suggesting that mitotic catastrophe is an immunogenic cell death. Furthermore, activated CD8+T cells enhanced the anticancer effects originating from mitotic catastrophe induced by BZML. Inhibiting the cGAS-STING pathway failed to affect BZML-induced mitotic catastrophe but could inhibit mitotic catastrophe-mediated anticancer immune effects. Interestingly, the expression of p-TBK1 first increased and then declined; however, autophagy inhibition reversed the decrease in p-TBK1 expression and enhanced mitotic catastrophe-mediated anticancer immune effects. Collectively, the inhibition of autophagy can potentiate mitotic catastrophe-mediated anticancer immune effects by regulating the cGAS-STING pathway, which explains why the anticancer immune effects induced by chemotherapeutics have not fully exerted their therapeutic efficacy in some patients and opens a new area of research in cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| | - Yaling Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue'er Xia
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yupeng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yuejiao Zhong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Lingxiang Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiran Zhou
- Department of General Surgery, Ruijin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
37
|
Ren H, Liu C, Zhang C, Wu H, Zhang J, Wang Z, Chen L, Wang H, Shao C, Zhou L. A cuproptosis-related gene expression signature predicting clinical prognosis and immune responses in intrahepatic cholangiocarcinoma detected by single-cell RNA sequence analysis. Cancer Cell Int 2024; 24:92. [PMID: 38431620 PMCID: PMC10908169 DOI: 10.1186/s12935-024-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma represents a malignant neoplasm originating from the hepatobiliary tree, with a subset of tumors developing inside the liver. Intrahepatic cholangiocarcinomas (ICC) commonly exhibit an asymptomatic presentation, rendering both diagnosis and treatment challenging. Cuproptosis, an emerging regulated cell death pathway induced by copper ions, has garnered attention recently. As cancer cells show altered copper metabolism and comparatively higher copper needs, cuproptosis may play a role in the development of ICC. However, studies investigating this possibility are currently lacking. METHODS Single-cell and bulk RNA sequence data were analyzed, and correlations were established between the expression of cuproptosis-related molecules and ICC patient survival. Genes with predicting survival were used to create a CUPT score using Cox and LASSO regression and tumor mutation burden (TMB) analysis. The CIBERSORT software was employed to characterize immune cell infiltration within the tumors. Furthermore, immune infiltration prediction, biological function enrichment, and drug sensitivity analyses were conducted to explore the potential implications of the cuproptosis-related signature. The effects of silencing solute carrier family 39 member 4 gene (SLC39A4) expression using siRNA were investigated using assays measuring cell proliferation, colony formation, and cell migration. Key genes of cuproptosis were detected by western blotting. RESULTS The developed CUPT score divided patients into high and low CUPT score groups. Those with a low score had significantly better prognosis and longer survival. In contrast, high CUPT scores were associated with worse clinical outcomes and significantly higher TMB. Comparisons of the two groups also indicated differences in the immune infiltrate present in the tumors. Finally, we were able to identify 95 drugs potentially affecting the cuproptosis pathway. Some of these might be effective in the treatment of ICC. The in vitro experiments revealed that suppressing the expression of SLC39A4 in ICC cell lines resulted in reduced cell proliferation, colony formation, and cell migration. It also led to an increase in cell death and the upregulation of key genes associated with cuproptosis, namely ferredoxin 1 (FDX1) and dihydrolipoyl transacetylase (DLAT). These findings strongly suggest that this cuproptosis-associated molecule may play a pivotal role in the development and metastasis of ICC. CONCLUSIONS Changes in the expression of a cuproptosis-related gene signature can predict the clinical prognosis of ICC with considerable accuracy. This supports the notion that cuproptosis influences the diversity and complexity of the immune microenvironment, mutational landscape, and biological behavior of ICC. Understanding this pathway better may hold promise for the development of innovative strategies in the management of this disease.
Collapse
Affiliation(s)
- Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer and Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Lei Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huiquan Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chenghao Shao
- Department of Pancreatic-Biliary Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
38
|
Zhang J, Wang L, Zhang S, Cao R, Zhao Y, Zhao Y, Song Y, Guo Z. Alpha-fetoprotein predicts the treatment efficacy of immune checkpoint inhibitors for gastric cancer patients. BMC Cancer 2024; 24:266. [PMID: 38408930 PMCID: PMC10895833 DOI: 10.1186/s12885-024-11999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are commonly used in conjunction with chemotherapy to improve treatment outcomes for patients with gastric cancer. Since AFP could influence immunity by both inhibiting natural killer (NK) cells and regulating negatively the function of dendritic cells, we evaluated the influence of baseline serum alpha-fetoprotein (AFP) levels on the curative effect of ICIs in advanced gastric cancer (AGC) patients. METHODS A retrospective analysis was conducted on 158 AGC patients who underwent ICI treatment. The patients were divided into high and low groups based on the AFP threshold of 20 ng/ml. The efficacy of ICI treatment was assessed using objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). RESULTS The higher levels of baseline AFP were found to be associated with a decrease in the effectiveness of ICIs, as evidenced by a DCR of 50.0% in the group with high AFP levels compared to 87.7% in the group with low AFP levels (P < 0.001). Further analysis using Kaplan-Meier survival techniques indicated that a high AFP level was linked to shorter progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.001) in AGC individuals receiving ICIs. After propensity score matching, a log rank test revealed that the high AFP group had a decrease in median PFS (P = 0.011) and median OS (P = 0.036) compared to the low AFP group. The high AFP levels also showed its association with shorter PFS and OS in the subgroup analysis of ICI plus chemotherapy patients. CONCLUSIONS Baseline AFP levels may predict immune checkpoint inhibitor treatment efficacy in AGC patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, Hebei, P.R. China
| | - Shasha Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Ruijie Cao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yue Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China
| | - Yanrong Song
- Department of Medical Technology, Xingtai Medical College, 054000, Xingtai, Hebei, P.R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, 050011, Shijiazhuang, Hebei, P.R. China.
| |
Collapse
|
39
|
Moskalenko Y. Biological mechanisms of resistance to immune checkpoint inhibitors and overcoming this resistance: Challenges in medical oncology. REGULATORY MECHANISMS IN BIOSYSTEMS 2024; 15:83-91. [DOI: 10.15421/022412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Immune checkpoint inhibitors have opened up new possibilities in clinical oncology. Monoclonal antibodies have shown their high clinical efficiency. They block CTLA-4, PD-1, and PD-L1 receptors and activate the immune response. Many patients have stable and even complete responses. However, some patients have primary or acquired resistance. Therefore, the treatment results in this category of patients are not predictable. Mechanisms of resistance to immune checkpoint inhibitors have not been definitively studied. Many theories try to explain the mechanisms of this phenomenon. Our study aimed to structure and combine the data into groups depending on the etiological factor that reduces the immune response. In addition, based on understanding the mechanisms of resistance and the results of recent clinical studies, we aimed to identify the main ways to overcome it. Therefore, mechanisms that lead to resistance may be associated with tumor properties, tumor microenvironment, or patient characteristics. Tumor properties that reduce the immune response include a) low tumor mutation burden and loss of tumor neoantigens, b) changes in the processing or presentation of neoantigens, and c) changes in signaling pathways of tumor development and epigenetic modifications in genes. The tumor microenvironment is represented by stromal and immune cells, extracellular matrix, cytokines, and blood vessels. Each structure can enhance or reduce the immune response and contribute to the acquired resistance to immune checkpoint inhibitors. The effectiveness of the treatment depends not only on the cells in the tumor microenvironment but also on the metabolic background. In addition, the basic characteristics of the patient ( gender, gut microbiota, HLA-I genotype) can modify the immune response. Based on knowledge about the mechanisms of resistance to immune checkpoint inhibitors, several therapeutic strategies aimed at activating antitumor activity have been evaluated. All of them are based on combining immune checkpoint inhibitors with other drugs. One of the most common options is a combination of PD-1/PD-L1 and CTLA-4 inhibitors. Alternative immune checkpoints are TIM-3, LAG-3, TIGIT and VISTA. Combining immunotherapy with chemotherapy, targeted therapy, neoangiogenesis inhibitors, epigenetic modifiers, PARP or TGF-β inhibitors enhances antitumor response by preventing depletion of effector T cells, enhancing T cell infiltration in the tumor, changes on the tumor microenvironment, and decreasing the accumulation of immunosuppressive cells. This review explores the biological mechanisms of resistance and potential ways of solving this problem.
Collapse
|
40
|
Versluis JM, Hoefsmit EP, Shehwana H, Dimitriadis P, Sanders J, Broeks A, Blank CU. Tumor characteristics of dissociated response to immune checkpoint inhibition in advanced melanoma. Cancer Immunol Immunother 2024; 73:28. [PMID: 38280045 PMCID: PMC10821835 DOI: 10.1007/s00262-023-03581-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) has improved patients' outcomes in advanced melanoma, often resulting in durable response. However, not all patients have durable responses and the patients with dissociated response are a valuable subgroup to identify mechanisms of ICI resistance. METHODS Stage IV melanoma patients treated with ICI and dissociated response were retrospectively screened for available samples containing sufficient tumor at least at two time-points. Included were one patient with metachronous regressive and progressive lesions at the same site, two patients with regressive and novel lesion at different sites, and three patients with regressive and progressive lesions at different sites. In addition, four patients with acquired resistant tumor samples without a matched second sample were included. RESULTS In the majority of patients, the progressive tumor lesion contained higher CD8+ T cell counts/mm2 and interferon-gamma (IFNγ) signature level, but similar tumor PD-L1 expression. The tumor mutational burden levels were in 2 out 3 lesions higher compared to the corresponding regressive tumors lesion. In the acquired tumor lesions, high CD8+/mm2 and relatively high IFNγ signature levels were observed. In one patient in both the B2M and PTEN gene a stop gaining mutation and in another patient a pathogenic POLE mutation were found. CONCLUSION Intrapatient comparison of progressive versus regressive lesions indicates no defect in tumor T cell infiltration, and in general no tumor immune exclusion were observed.
Collapse
Affiliation(s)
- J M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E P Hoefsmit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Shehwana
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P Dimitriadis
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A Broeks
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
41
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
42
|
Mejía-Guarnizo LV, Monroy-Camacho PS, Turizo-Smith AD, Rodríguez-García JA. The role of immune checkpoints in antitumor response: a potential antitumor immunotherapy. Front Immunol 2023; 14:1298571. [PMID: 38162657 PMCID: PMC10757365 DOI: 10.3389/fimmu.2023.1298571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy aims to stimulate the immune system to inhibit tumor growth or prevent metastases. Tumor cells primarily employ altered expression of human leukocyte antigen (HLA) as a mechanism to avoid immune recognition and antitumor immune response. The antitumor immune response is primarily mediated by CD8+ cytotoxic T cells (CTLs) and natural killer (NK) cells, which plays a key role in the overall anti-tumor immune response. It is crucial to comprehend the molecular events occurring during the activation and subsequent regulation of these cell populations. The interaction between antigenic peptides presented on HLA-I molecules and the T-cell receptor (TCR) constitutes the initial signal required for T cell activation. Once activated, in physiologic circumstances, immune checkpoint expression by T cells suppress T cell effector functions when the antigen is removed, to ensures the maintenance of self-tolerance, immune homeostasis, and prevention of autoimmunity. However, in cancer, the overexpression of these molecules represents a common method through which tumor cells evade immune surveillance. Numerous therapeutic antibodies have been developed to inhibit immune checkpoints, demonstrating antitumor activity with fewer side effects compared to traditional chemotherapy. Nevertheless, it's worth noting that many immune checkpoint expressions occur after T cell activation and consequently, altered HLA expression on tumor cells could diminish the clinical efficacy of these antibodies. This review provides an in-depth exploration of immune checkpoint molecules, their corresponding blocking antibodies, and their clinical applications.
Collapse
Affiliation(s)
- Lidy Vannessa Mejía-Guarnizo
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Sciences Faculty, Master in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
43
|
Liu C, Zhao H, Wang P, Guo Z, Qu Z. The combination of circulating IgM and geriatric nutritional risk index predicts the prognostic of hepatocellular carcinoma patients who underwent immune checkpoint inhibitors. Int Immunopharmacol 2023; 123:110704. [PMID: 37506504 DOI: 10.1016/j.intimp.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) have shown promise in hepatocellular carcinoma (HCC) treatment. With the increasing use of ICIs in cancer treatment, identifying biomarkers that can predict the prognosis of patients receiving ICIs is of great importance. We aimed to investigate the potential of circulating immunoglobulins and the combination of Geriatric Nutritional Risk Index (GNRI) with IgM to predict prognosis in patients with HCC who received ICIs. METHODS Clinical and pathological data were collected from 101 patients with HCC who were administered ICIs and underwent circulating immunoglobulin testing between January 2018 and December 2021. Survival analysis, Cox regression analysis, and nomogram construction were performed to evaluate the prognostic value of the indicators. RESULTS In the preliminary survival analysis, we observed a significant correlation between patient prognosis and IgM levels. Patients with low IgM had shorter survival times. Upon combining the GNRI with IgM, patients with low GNRI and IgM levels had shorter progression-free survival (PFS) and overall survival (OS) (P < 0.001). Additionally, GNRI-IgM had the highest area under the curve (AUC) and was identified as an independent prognostic marker in this study. The C-indices of the nomograms for PFS and OS were 0.797 (0.734-0.860) and 0.827 (0.778-0.876), respectively. CONCLUSIONS IgM was significantly associated with the prognosis of patients with HCC receiving ICIs. The combination of the GNRI with IgM provided superior prognostic value and served as an independent prognostic marker. The GNRI-IgM can be used to effectively identify patients with HCC who are responsive to ICIs.
Collapse
Affiliation(s)
- Chunxun Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haoran Zhao
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Peng Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zuoming Guo
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhaowei Qu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
44
|
Tian Y, Ma J, Wang M, Yi X, Guo S, Wang H, Zhang H, Wang H, Yang Y, Zhang B, Du J, Shi Q, Gao T, Li C, Guo W. BCKDHA contributes to melanoma progression by promoting the expressions of lipogenic enzymes FASN and ACLY. Exp Dermatol 2023; 32:1633-1643. [PMID: 37377173 DOI: 10.1111/exd.14865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
The dysregulation of branched-chain amino acid (BCAA) metabolism and related enzymes has been greatly implicated in the progression of multiple types of cancer, whereas remains far from understood in melanoma. Here, we explored the role of the BCAA metabolism enzyme BCKDHA in melanoma pathogenesis and elucidated the underlying mechanisms. In vitro cell biology experiments and in vivo pre-clinical mice model experiments were performed to investigate the role of BCKDHA in melanoma progression. RNA sequencing, immunohistochemical/immunofluorescence staining and bioinformatics analysis were used to examine the underlying mechanism. BCKDHA expression was prominently increased in both melanoma tissues and cell lines. The up-regulation of BCKDHA promoted long-term tumour cell proliferation, invasion and migration in vitro and tumour growth in vivo. Through RNA-sequencing technology, it was found that BCKDHA regulated the expressions of lipogenic fatty acid synthase (FASN) and ATP-citrate lyase (ACLY), which was thereafter proved to mediate the oncogenic role of BCKDHA in melanoma. Our results demonstrate that BCKDHA promotes melanoma progression by regulating FASN and ACLY expressions. Targeting BCKDHA could be exploited as a promising strategy to restrain tumour progression in melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengru Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Hartman ML, Koziej P, Kluszczyńska K, Czyz M. Pro-Apoptotic Activity of MCL-1 Inhibitor in Trametinib-Resistant Melanoma Cells Depends on Their Phenotypes and Is Modulated by Reversible Alterations Induced by Trametinib Withdrawal. Cancers (Basel) 2023; 15:4799. [PMID: 37835493 PMCID: PMC10571954 DOI: 10.3390/cancers15194799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Although BRAFV600/MEK inhibitors improved the treatment of melanoma patients, resistance is acquired almost inevitably. METHODS Trametinib withdrawal/rechallenge and MCL-1 inhibition in trametinib-resistance models displaying distinct p-ERK1/2 levels were investigated. RESULTS Trametinib withdrawal/rechallenge caused reversible changes in ERK1/2 activity impacting the balance between pro-survival and pro-apoptotic proteins. Reversible alterations were found in MCL-1 levels and MCL-1 inhibitors, BIM and NOXA. Taking advantage of melanoma cell dependency on MCL-1 for survival, we used S63845. While it was designed to inhibit MCL-1 activity, we showed that it also significantly reduced NOXA levels. S63845-induced apoptosis was detected as the enhancement of Annexin V-positivity, caspase-3/7 activation and histone H2AX phosphorylation. Percentages of Annexin V-positive cells were increased most efficiently in trametinib-resistant melanoma cells displaying the p-ERK1/2low/MCL-1low/BIMhigh/NOXAlow phenotype with EC50 values at concentrations as low as 0.1 μM. Higher ERK1/2 activity associated with increased MCL-1 level and reduced BIM level limited pro-apoptotic activity of S63845 further influenced by a NOXA level. CONCLUSIONS Our study supports the notion that the efficiency of an agent designed to target a single protein can largely depend on the phenotype of cancer cells. Thus, it is important to define appropriate phenotype determinants to stratify the patients for the novel therapy.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.H.); (P.K.); (K.K.)
| |
Collapse
|
46
|
Tian Y, Zhou J, Chai X, Ping Z, Zhao Y, Xu X, Luo C, Sheng J. TCF12 Activates TGFB2 Expression to Promote the Malignant Progression of Melanoma. Cancers (Basel) 2023; 15:4505. [PMID: 37760480 PMCID: PMC10527220 DOI: 10.3390/cancers15184505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As one of the most common malignant tumors, melanoma is a serious threat to human health. More than half of melanoma patients have a BRAF mutation, and 90% of them have a BRAF(V600E) mutation. There is a targeted therapy for patients using a BRAF(V600E) inhibitor. However, no response to treatment is generally inevitable due to the heterogeneity of melanoma. Coupled with its high metastatic character, melanoma ultimately leads to poor overall survival. This study aimed to explore the possible mechanisms of melanoma metastasis and identify a more effective method for the treatment of melanoma. In this paper, we report that TCF12 expression is higher in melanoma, especially in metastatic tumors, through analyzing data from TCGA. Then, cell proliferation, colony formation, and transwell assays show that the upregulated expression of TCF12 can promote proliferation and metastasis of melanoma cells in vitro. The same result is confirmed in the subcutaneous tumor formation assay. Moreover, TGFB2 is identified as a direct downstream target of TCF12 by RNA-seq, qPCR, immunoblotting, ChIP, and a dual luciferase reporting assay. Interestingly, depletion of TCF12 can sensitize melanoma to BRAF inhibition both in vitro and in vivo. Overall, our results demonstrate that TCF12 promotes melanoma progression and can be a potential tumor therapeutic target.
Collapse
Affiliation(s)
- Youjia Tian
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Jiang Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China;
| | - Xinxin Chai
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Zejun Ping
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Yurong Zhao
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Xin Xu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Chi Luo
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
47
|
Earland N, Zhang W, Usmani A, Nene A, Bacchiocchi A, Chen DY, Sznol M, Halaban R, Chaudhuri AA, Newman AM. CD4 T cells and toxicity from immune checkpoint blockade. Immunol Rev 2023; 318:96-109. [PMID: 37491734 PMCID: PMC10838135 DOI: 10.1111/imr.13248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Immune-related toxicities, otherwise known as immune-related adverse events (irAEs), occur in a substantial fraction of cancer patients treated with immune checkpoint inhibitors (ICIs). Ranging from asymptomatic to life-threatening, ICI-induced irAEs can result in hospital admission, high-dose corticosteroid treatment, ICI discontinuation, and in some cases, death. A deeper understanding of the factors underpinning severe irAE development will be essential for improved irAE prediction and prevention, toward maximizing the benefits and safety profiles of ICIs. In recent work, we applied mass cytometry, single-cell RNA sequencing, single-cell V(D)J sequencing, bulk RNA sequencing, and bulk T-cell receptor (TCR) sequencing to identify pretreatment determinants of severe irAE development in patients with advanced melanoma. Across 71 patients separated into three cohorts, we found that two baseline features in circulation-elevated activated CD4 effector memory T-cell abundance and TCR diversity-are associated with severe irAE development, independent of the affected organ system within 3 months of ICI treatment initiation. Here, we provide an extended perspective on this work, synthesize and discuss related literature, and summarize practical considerations for clinical translation. Collectively, these findings lay a foundation for data-driven and mechanistic insights into irAE development, with the potential to reduce ICI morbidity and mortality in the future.
Collapse
Affiliation(s)
- Noah Earland
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Wubing Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Abul Usmani
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Antonella Bacchiocchi
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - David Y. Chen
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Sznol
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine, Division of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruth Halaban
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Aadel A. Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
49
|
Giovannini E, Bonasoni MP, D'Aleo M, Tamagnini I, Tudini M, Fais P, Pelotti S. Pembrolizumab-Induced Fatal Myasthenia, Myocarditis, and Myositis in a Patient with Metastatic Melanoma: Autopsy, Histological, and Immunohistochemical Findings-A Case Report and Literature Review. Int J Mol Sci 2023; 24:10919. [PMID: 37446095 DOI: 10.3390/ijms241310919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a major advance in cancer treatment. The lowered immune tolerance induced by ICIs brought to light a series of immune-related adverse events (irAEs). Pembrolizumab belongs to the ICI class and is a humanized IgG4 anti-PD-1 antibody that blocks the interaction between PD-1 and PD-L1. The ICI-related irAEs involving various organ systems and myocarditis are uncommon (incidence of 0.04% to 1.14%), but they are associated with a high reported mortality. Unlike idiopathic inflammatory myositis, ICI-related myositis has been reported to frequently co-occur with myocarditis. The triad of myasthenia, myositis, and myocarditis must not be underestimated as they can rapidly deteriorate, leading to death. Herein we report a case of a patient with metastatic melanoma who fatally developed myasthenia gravis, myocarditis, and myositis, after a single cycle of pembrolizumab. Considering evidence from the literature review, autopsy, histological, and immunohistochemical investigations on heart and skeletal muscle are presented and discussed, also from a medical-legal perspective.
Collapse
Affiliation(s)
- Elena Giovannini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Michele D'Aleo
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Matteo Tudini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Paolo Fais
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
50
|
Rok J, Kowalska J, Rzepka Z, Stencel D, Skorek A, Banach K, Wrześniok D. The Assessment of Anti-Melanoma Potential of Tigecycline-Cellular and Molecular Studies of Cell Proliferation, Apoptosis and Autophagy on Amelanotic and Melanotic Melanoma Cells. Cells 2023; 12:1564. [PMID: 37371034 DOI: 10.3390/cells12121564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
High mortality, aggressiveness, and the relatively low effectiveness of therapy make melanoma the most dangerous of skin cancers. Previously published studies presented the promising therapeutic potential of minocycline, doxycycline, and chlortetracycline on melanoma cells. This study aimed to assess the cytotoxicity of tigecycline, a third-generation tetracycline, on melanotic (COLO 829) and amelanotic (A375) melanoma cell lines. The obtained results showed that tigecycline, proportionally to the concentration and incubation time, efficiently inhibited proliferation of both types of melanoma cells. The effect was accompanied by the dysregulation of the cell cycle, the depolarization of the mitochondrial membrane, and a decrease in the reduced thiols and the levels of MITF and p44/42 MAPK. However, the ability to induce apoptosis was only found in COLO 829 melanoma cells. A375 cells appeared to be more resistant to the treatment with tigecycline. The drug did not induce apoptosis but caused an increase in LC3A/B protein levels-an autophagy marker. The observed differences in drug action on the tested cell lines also involved an increase in p21 and p16 protein levels in melanotic melanoma, which was related to cell cycle arrest in the G1/G0 phase. The greater sensitivity of melanotic melanoma cells to the action of tigecycline suggests the possibility of considering the use of the drug in targeted therapy.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dominika Stencel
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Anna Skorek
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|