1
|
Miki T, Hashimoto M, Takahashi H, Shimizu M, Nakayama S, Furuta T, Mihara H. De novo designed YK peptides forming reversible amyloid for synthetic protein condensates in mammalian cells. Nat Commun 2024; 15:8503. [PMID: 39424799 PMCID: PMC11489810 DOI: 10.1038/s41467-024-52708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
In mammalian cells, protein condensates underlie diverse cell functions. Intensive synthetic biological research has been devoted to fabricating liquid droplets using de novo peptides/proteins designed from scratch in test tubes or bacterial cells. However, the development of de novo sequences for synthetic droplets forming in eukaryotes is challenging. Here, we report YK peptides, comprising 9-15 residues of alternating repeats of tyrosine and lysine, which form reversible amyloid-like fibrils accompanied by binding with poly-anion species such as ATP. By genetically tagging the YK peptide, superfolder GFPs assemble into artificial liquid-like droplets in living cells. Rational design of the YK system allows fine-tuning of the fluidity and construction of multi-component droplets. The YK system not only facilitates intracellular reconstitution of simplified models for natural protein condensates, but it also provides a toolbox for the systematic creation of droplets with different dynamics and composition for in situ evaluation.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hiroki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Masatoshi Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sae Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
2
|
Chattaraj A, Baltaci Z, Chung S, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation. Mol Biol Cell 2024; 35:ar122. [PMID: 39046778 PMCID: PMC11449392 DOI: 10.1091/mbc.e24-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation is daunting. Using experiments and computation, we therefore studied a simple model system consisting of polySH3 and polyPRM designed for pentavalent heterotypic binding. We tested whether the peak solubility product, or the product of the dilute phase concentration of each component, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both experiments and models. However, we found that measurements of dilute phase concentration include small oligomers and monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. Even with the inclusion of small polyPRM and polySH3 oligomers, models did not predict experimental results. This led us to perform dynamic light scattering experiments, which revealed homotypic binding of polyPRM. Addition of this interaction to our model recapitulated the experimentally observed asymmetry. Thus, comparing experiments with simulation reveals that the solubility product can be predictive of the interactions underlying phase separation, even if small oligomers and low affinity homotypic interactions complicate the analysis.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Zeynep Baltaci
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Steve Chung
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
3
|
Stergas HR, Dillon-Martin M, Dumas CM, Hansen NA, Carasi-Schwartz FJ, D'Amico AR, Finnegan KM, Juch U, Kane KR, Kaplan IE, Masengarb ML, Melero ME, Meyer LE, Sacher CR, Scriven EA, Ebert AM, Ballif BA. CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS Lett 2024; 598:302-320. [PMID: 38058169 DOI: 10.1002/1873-3468.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
CRK adaptor proteins are important for signal transduction mechanisms driving cell proliferation and positioning during vertebrate central nervous system development. Zebrafish lacking both CRK family members exhibit small, disorganized retinas with 50% penetrance. The goal of this study was to determine whether another adaptor protein might functionally compensate for the loss of CRK adaptors. Expression patterns in developing zebrafish, and bioinformatic analyses of the motifs recognized by their SH2 and SH3 domains, suggest NCK adaptors are well-positioned to compensate for loss of CRK adaptors. In support of this hypothesis, proteomic analyses found CRK and NCK adaptors share overlapping interacting partners including known regulators of cell adhesion and migration, suggesting their functional intersection in neurodevelopment.
Collapse
Affiliation(s)
| | | | - Caroline M Dumas
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Nicole A Hansen
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Alex R D'Amico
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Kylie M Finnegan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Uatchet Juch
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Keeley R Kane
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Isabel E Kaplan
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | - Marina E Melero
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Lauren E Meyer
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Conrad R Sacher
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Evan A Scriven
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
4
|
Hashimoto M, Miki T, Niwa T, Mihara H. Proximity labeling and identification of endogenous client proteins recruited to Y15-based artificial granules tethering a bait protein. J Pept Sci 2024; 30:e3536. [PMID: 37580979 DOI: 10.1002/psc.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Protein clustering is a ubiquitous event in diverse cellular processes. Self-association of proteins triggers recruitment of downstream proteins to regulate cellular signaling. To investigate the interactions in detail, chemical biology tools to identify proteins recruited to defined assemblies are required. Here, we exploit an identification of proteins recruited in artificial granules (IPRAG) platform that combines intracellular Y15-based supramolecule construction with a proximity labeling method. We validated the IPRAG tool using Nck1 as a target bait protein. We constructed Nck1-tethering granules, labeled the recruited proteins with biotin, and analyzed them by LC-MS/MS. As a result, we successfully identified proteins that directly or indirectly interact with Nck1.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Ilovich O, Dines M, Paul BK, Barkai E, Lamprecht R. Nck1 activity in lateral amygdala regulates long-term fear memory formation. Transl Psychiatry 2022; 12:475. [PMID: 36371406 PMCID: PMC9653413 DOI: 10.1038/s41398-022-02244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Fear conditioning leads to long-term fear memory formation and is a model for studying fear-related psychopathological conditions such as phobias and post-traumatic stress disorder. Long-term fear memory formation is believed to involve alterations of synaptic efficacy mediated by changes in synaptic transmission and morphology in lateral amygdala (LA). Nck1 is a key neuronal adaptor protein involved in the regulation of the actin cytoskeleton and the neuronal processes believed to be involved in memory formation. However, the role of Nck1 in memory formation is not known. Here we explored the role of Nck1 in fear memory formation in lateral amygdala (LA). Reduction of Nck1 in excitatory neurons in LA enhanced long-term, but not short-term, auditory fear conditioning memory. Activation of Nck1, by using a photoactivatable Nck1 (PA-Nck1), during auditory fear conditioning in excitatory neurons in LA impaired long-term, but not short-term, fear memory. Activation of Nck1 immediately or a day after fear conditioning did not affect fear memory. The hippocampal-mediated contextual fear memory was not affected by the reduction or activation of Nck1 in LA. We show that Nck1 is localized to the presynapses in LA. Nck1 activation in LA excitatory neurons decreased the frequency of AMPA receptors-mediated miniature excitatory synaptic currents (mEPSCs). Nck1 activation did not affect GABA receptor-mediated inhibitory synaptic currents (mIPSCs). These results show that Nck1 activity in excitatory neurons in LA regulates glutamate release and sets the threshold for fear memory formation. Moreover, our research shows that Nck1 may serve as a target for pharmacological treatment of fear and anxiety disorders.
Collapse
Affiliation(s)
- Or Ilovich
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Monica Dines
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Blesson K. Paul
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Basant A, Way M. The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. eLife 2022; 11:e74655. [PMID: 35796545 PMCID: PMC9333988 DOI: 10.7554/elife.74655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Phosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to assemble complex signalling networks. The concept of phase separation has recently changed our appreciation of multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now investigated this parameter in the operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3 complex-mediated actin polymerisation. Manipulating the position of pTyr motifs in A36 and the unrelated p14 from Orthoreovirus, we find that only specific spatial arrangements of Nck and Grb2 binding sites result in robust N-WASP recruitment, Arp2/3 complex driven actin polymerisation and viral spread. This suggests that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are frequently conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those undergoing phase transitions.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
7
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
8
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
9
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
10
|
Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun 2021; 12:3412. [PMID: 34099696 DOI: 10.1038/s41467-021-23794-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
De novo designed self-assembling peptides (SAPs) are promising building blocks of supramolecular biomaterials, which can fulfill a wide range of applications, such as scaffolds for tissue culture, three-dimensional cell culture, and vaccine adjuvants. Nevertheless, the use of SAPs in intracellular spaces has mostly been unexplored. Here, we report a self-assembling peptide, Y15 (YEYKYEYKYEYKYEY), which readily forms β-sheet structures to facilitate bottom-up synthesis of functional protein assemblies in living cells. Superfolder green fluorescent protein (sfGFP) fused to Y15 assembles into fibrils and is observed as fluorescent puncta in mammalian cells. Y15 self-assembly is validated by fluorescence anisotropy and pull-down assays. By using the Y15 platform, we demonstrate intracellular reconstitution of Nck assembly, a Src-homology 2 and 3 domain-containing adaptor protein. The artificial clusters of Nck induce N-WASP (neural Wiskott-Aldrich syndrome protein)-mediated actin polymerization, and the functional importance of Nck domain valency and density is evaluated.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan.
| | - Taichi Nakai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Stark K, Crowe O, Lewellyn L. Precise levels of the Drosophila adaptor protein Dreadlocks maintain the size and stability of germline ring canals. J Cell Sci 2021; 134:238107. [PMID: 33912915 PMCID: PMC8106954 DOI: 10.1242/jcs.254730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper. Summary:Drosophila Dock likely functions downstream of WASp and the Arp2/3 complex to regulate the size and stability of the germline ring canals in the developing egg chamber.
Collapse
Affiliation(s)
- Kara Stark
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Olivia Crowe
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
12
|
The multiple roles of actin-binding proteins at invadopodia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33962752 DOI: 10.1016/bs.ircmb.2021.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Invadopodia are actin-rich membrane protrusions that facilitate cancer cell dissemination by focusing on proteolytic activity and clearing paths for migration through physical barriers, such as basement membranes, dense extracellular matrices, and endothelial cell junctions. Invadopodium formation and activity require spatially and temporally regulated changes in actin filament organization and dynamics. About three decades of research have led to a remarkable understanding of how these changes are orchestrated by sequential recruitment and coordinated activity of different sets of actin-binding proteins. In this chapter, we provide an update on the roles of the actin cytoskeleton during the main stages of invadopodium development with a particular focus on actin polymerization machineries and production of pushing forces driving extracellular matrix remodeling.
Collapse
|
13
|
Wiegand T, Hyman AA. Drops and fibers - how biomolecular condensates and cytoskeletal filaments influence each other. Emerg Top Life Sci 2020; 4:247-261. [PMID: 33048111 PMCID: PMC7733666 DOI: 10.1042/etls20190174] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
The cellular cytoskeleton self-organizes by specific monomer-monomer interactions resulting in the polymerization of filaments. While we have long thought about the role of polymerization in cytoskeleton formation, we have only begun to consider the role of condensation in cytoskeletal organization. In this review, we highlight how the interplay between polymerization and condensation leads to the formation of the cytoskeleton.
Collapse
Affiliation(s)
- Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Chaki SP, Barhoumi R, Rivera GM. Nck adapter proteins promote podosome biogenesis facilitating extracellular matrix degradation and cancer invasion. Cancer Med 2019; 8:7385-7398. [PMID: 31638742 PMCID: PMC6885876 DOI: 10.1002/cam4.2640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Podosomes are membrane‐bound adhesive structures formed by actin remodeling. They are capable of extracellular matrix (ECM) degradation, which is a prerequisite for cancer cell invasion and metastasis. The signaling mechanism of podosome formation is still unknown in cancer. We previously reported that Nck adaptors regulate directional cell migration and endothelial lumen formation by actin remodeling, while deficiency of Nck reduces cancer metastasis. This study evaluated the role of Nck adaptors in podosome biogenesis and cancer invasion. Methods This study was conducted in vitro using both healthy cells (Human Umbilical Vein Endothelial Cell, 3T3 fibroblasts) and cancer cells (prostate cancer cell line; PC3, breast cancer cell line; MDA‐MB‐231). Confocal and TIRF imaging of cells expressing Green Fluorescence Protein (GFP) mutant under altered levels of Nck or downstream of kinase 1 (Dok1) was used to evaluate the podosome formation and fluorescent gelatin matrix degradation. Levels of Nck in human breast carcinoma tissue sections were detected by immune histochemistry using Nck polyclonal antibody. Biochemical interaction of Nck/Dok1 was detected in podosome forming cells using immune precipitation and far‐western blotting. Results This study demonstrates that ectopic expression of Nck1 and Nck2 can induce the endothelial podosome formation in vitro. Nck silencing by short‐hairpin RNA blocked podosome biogenesis and ECM degradation in cSrc‐Y530F transformed endothelial cells in this study. Immunohistochemical analysis revealed the Nck overexpression in human breast carcinoma tissue sections. Immunoprecipitation and far‐western blotting revealed the biochemical interaction of Nck/p62Dok in podosome forming cells. Conclusions Nck adaptors in interaction with Dok1 induce podosome biogenesis and ECM degradation facilitating cancer cell invasion, and therefore a bona fide target of cancer therapy.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
16
|
Morris DC, Popp JL, Tang LK, Gibbs HC, Schmitt E, Chaki SP, Bywaters BC, Yeh AT, Porter WW, Burghardt RC, Barhoumi R, Rivera GM. Nck deficiency is associated with delayed breast carcinoma progression and reduced metastasis. Mol Biol Cell 2017; 28:3500-3516. [PMID: 28954862 PMCID: PMC5683761 DOI: 10.1091/mbc.e17-02-0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Nck promotes breast carcinoma progression and metastasis by directing the polarized interaction of carcinoma cells with collagen fibrils, decreasing actin turnover, and enhancing the localization and activity of MMP14 at the cell surface through modulation of the spatiotemporal activation of Cdc42 and RhoA. Although it is known that noncatalytic region of tyrosine kinase (Nck) regulates cell adhesion and migration by bridging tyrosine phosphorylation with cytoskeletal remodeling, the role of Nck in tumorigenesis and metastasis has remained undetermined. Here we report that Nck is required for the growth and vascularization of primary tumors and lung metastases in a breast cancer xenograft model as well as extravasation following injection of carcinoma cells into the tail vein. We provide evidence that Nck directs the polarization of cell–matrix interactions for efficient migration in three-dimensional microenvironments. We show that Nck advances breast carcinoma cell invasion by regulating actin dynamics at invadopodia and enhancing focalized extracellular matrix proteolysis by directing the delivery and accumulation of MMP14 at the cell surface. We find that Nck-dependent cytoskeletal changes are mechanistically linked to enhanced RhoA but restricted spatiotemporal activation of Cdc42. Using a combination of protein silencing and forced expression of wild-type/constitutively active variants, we provide evidence that Nck is an upstream regulator of RhoA-dependent, MMP14-mediated breast carcinoma cell invasion. By identifying Nck as an important driver of breast carcinoma progression and metastasis, these results lay the groundwork for future studies assessing the therapeutic potential of targeting Nck in aggressive cancers.
Collapse
Affiliation(s)
- David C Morris
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Julia L Popp
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Leung K Tang
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Emily Schmitt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Briana C Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-4467
| | - Weston W Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467
| |
Collapse
|
17
|
Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. eLife 2017; 6. [PMID: 28813247 PMCID: PMC5559269 DOI: 10.7554/elife.29140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior. DOI:http://dx.doi.org/10.7554/eLife.29140.001 Actin is one of the most abundant proteins in yeast, mammalian and other eukaryotic cells. It assembles into long chains known as filaments that the cell uses to generate forces for various purposes. For example, actin filaments are needed to pull part of the membrane surrounding the cell inwards to bring molecules from the external environment into the cell by a process called endocytosis. In yeast, a member of the WASP family of proteins promotes the assembly of actin filaments around the site where endocytosis will occur. To achieve this, WASP interacts with several other proteins including WIP and myosin, a motor protein that moves along actin filaments to generate mechanical forces. However, it was not clear how these proteins work together to trigger actin filaments to assemble at the right place and time. Sun et al. addressed this question by studying yeast cells with genetic mutations affecting one or more of these proteins. The experiments show that WASP, myosin and WIP are recruited to sites where endocytosis is about to occur through specific interactions with other proteins. For example, a region of WASP known as the proline-rich domain can bind to proteins that contain an “SH3” domain. WASP and WIP arrive first, stimulating actin to assemble in an “all and nothing” manner and attracting myosin to the actin. Further experiments indicate that WASP and WIP need to reach a threshold level before actin starts to assemble. The findings of Sun et al. suggest that WASP and WIP play key roles in establishing the network of proteins needed for actin filaments to assemble during endocytosis. These proteins are needed for many other processes in yeast and other cells, including mammalian cells. Therefore, the next steps will be to investigate whether WASP and WIP use the same mechanism to operate in other situations. DOI:http://dx.doi.org/10.7554/eLife.29140.002
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole T Leong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astou Tangara
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Verma R, Venkatareddy M, Kalinowski A, Patel SR, Garg P. Integrin Ligation Results in Nephrin Tyrosine Phosphorylation In Vitro. PLoS One 2016; 11:e0148906. [PMID: 26848974 PMCID: PMC4743922 DOI: 10.1371/journal.pone.0148906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/24/2016] [Indexed: 11/19/2022] Open
Abstract
Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.
Collapse
Affiliation(s)
- Rakesh Verma
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Madhusudan Venkatareddy
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Anne Kalinowski
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Sanjeevkumar R. Patel
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Puneet Garg
- Division of Nephroloigy, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Shp2 Associates with and Enhances Nephrin Tyrosine Phosphorylation and Is Necessary for Foot Process Spreading in Mouse Models of Podocyte Injury. Mol Cell Biol 2015; 36:596-614. [PMID: 26644409 DOI: 10.1128/mcb.00956-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.
Collapse
|
20
|
Borinskaya S, Velle KB, Campellone KG, Talman A, Alvarez D, Agaisse H, Wu YI, Loew LM, Mayer BJ. Integration of linear and dendritic actin nucleation in Nck-induced actin comets. Mol Biol Cell 2015; 27:247-59. [PMID: 26609071 PMCID: PMC4713129 DOI: 10.1091/mbc.e14-11-1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
Abstract
The role of the Nck adaptor protein in balancing linear versus branched actin nucleation in comet tails is evaluated. Nck recruits both linear and branched nucleation-promoting factors, both of which are necessary for the formation of actin comets. The findings highlight a novel role for Nck in pathogen-like actin motility. The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.
Collapse
Affiliation(s)
- Sofya Borinskaya
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Katrina B Velle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Kenneth G Campellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Arthur Talman
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Diego Alvarez
- Biotechnology Research Institute, University of San Martin, 1650 San Martin, Argentina
| | - Hervé Agaisse
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT 06519
| | - Yi I Wu
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Bruce J Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030 Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
21
|
Abstract
Actin filament networks assemble on cellular membranes in response to signals that locally activate neural Wiskott-Aldrich-syndrome protein (N-WASP) and the Arp2/3 complex. An inactive conformation of N-WASP is stabilized by intramolecular contacts between the GTPase binding domain (GBD) and the C helix of the verprolin-homology, connector-helix, acidic motif (VCA) segment. Multiple SH3 domain-containing adapter proteins can bind and possibly activate N-WASP, but it remains unclear how such binding events relieve autoinhibition to unmask the VCA segment and activate the Arp2/3 complex. Here, we have used purified components to reconstitute a signaling cascade driven by membrane-localized Src homology 3 (SH3) adapters and N-WASP, resulting in the assembly of dynamic actin networks. Among six SH3 adapters tested, Nck was the most potent activator of N-WASP-driven actin assembly. We identify within Nck a previously unrecognized activation motif in a linker between the first two SH3 domains. This linker sequence, reminiscent of bacterial virulence factors, directly engages the N-WASP GBD and competes with VCA binding. Our results suggest that animals, like pathogenic bacteria, have evolved peptide motifs that allosterically activate N-WASP, leading to localized actin nucleation on cellular membranes.
Collapse
|
22
|
Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proc Natl Acad Sci U S A 2015; 112:E6426-35. [PMID: 26553976 DOI: 10.1073/pnas.1508778112] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins.
Collapse
|
23
|
Che DL, Duan L, Zhang K, Cui B. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells. ACS Synth Biol 2015; 4:1124-35. [PMID: 25985220 DOI: 10.1021/acssynbio.5b00048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other. Quantitative analysis reveals that membrane-bound CRY2 has drastically enhanced oligomerization activity compared to that of its cytoplasmic form. While CRY2 homo-oligomerization and CRY2-CIB1 heterodimerization could happen concomitantly, the presence of certain CIB1 fusion proteins can suppress CRY2 homo-oligomerization. However, the homo-oligomerization of cytoplasmic CRY2 can be significantly intensified by its recruitment to the membrane via interaction with the membrane-bound CIB1. These results contribute to the understanding of the light-inducible CRY2-CRY2 and CRY2-CIB1 interaction systems and can be used as a guide to establish new strategies utilizing the dual optogenetic characteristics of CRY2 to probe cellular processes.
Collapse
Affiliation(s)
- Daphne L. Che
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Deligianni DD. MWCNTs enhance hBMSCs spreading but delay their proliferation in the direction of differentiation acceleration. Cell Adh Migr 2015; 8:404-17. [PMID: 25482637 DOI: 10.4161/19336918.2014.969993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Investigating the ability of films of pristine multiwalled nanotubes (MWCNTs) to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts, we concluded to the following: A. MWCNTs delay the proliferation of hBMS cells but increase their differentiation. The enhancement of the differentiation markers could be a result of decreased proliferation and maturation of the extracellular matrix B. Cell spread on MWCNTs toward a polygonal shape with many thin filopodia to attach to the surfaces. Spreading may be critical in supporting osteogenic differentiation in pre-osteoblastic progenitors, being related with cytoskeletal tension. C. hBMS cells prefer MWCNTs than tissue plastic to attach and grow, being non-toxic to these cells. MWCNTs can be regarded as osteoinductive biomaterial topographies for bone regenerative engineering.
Collapse
Affiliation(s)
- Despina D Deligianni
- a Department of Mechanical Engineering & Aeronautics ; University of Patras ; Rion , Greece
| |
Collapse
|
25
|
Chaki SP, Barhoumi R, Rivera GM. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell 2015; 26:3047-60. [PMID: 26157164 PMCID: PMC4551318 DOI: 10.1091/mbc.e15-06-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023] Open
Abstract
Nck-dependent actin remodeling enables endothelial morphogenesis by promoting cell elongation and proper organization of VE-cadherin intercellular junctions. Nck determines spatiotemporal patterns of Cdc42/aPKC activation to regulate endothelial apical-basal polarity and lumen formation. Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| |
Collapse
|
26
|
Wagh D, Terry-Lorenzo R, Waites CL, Leal-Ortiz SA, Maas C, Reimer RJ, Garner CC. Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1. PLoS One 2015; 10:e0120093. [PMID: 25897839 PMCID: PMC4405365 DOI: 10.1371/journal.pone.0120093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1.
Collapse
Affiliation(s)
- Dhananjay Wagh
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Ryan Terry-Lorenzo
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Clarissa L. Waites
- Department of Pathology and Cell Biology Columbia University New York, New York, United States of America
| | - Sergio A. Leal-Ortiz
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Christoph Maas
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
| | - Richard J. Reimer
- Department of Neurology and Neurological Sciences Stanford University and Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Craig C. Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 2014; 5:4925. [PMID: 25233328 PMCID: PMC4170572 DOI: 10.1038/ncomms5925] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
Collapse
|
28
|
Stylli SS, Luwor RB, Kaye AH, I STT, Hovens CM, Lock P. Expression of the adaptor protein Tks5 in human cancer: prognostic potential. Oncol Rep 2014; 32:989-1002. [PMID: 24993883 DOI: 10.3892/or.2014.3310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/04/2014] [Indexed: 11/05/2022] Open
Abstract
Tks5 (tyrosine kinase substrate with 5 SH3 domains) is an adaptor protein which cooperates with Src tyrosine kinase to promote the formation of protease-enriched, actin-based projections known as invadopodia, which are utilized by invasive cancer cells to degrade the extracellular matrix (ECM). We previously identified a Src-Tks5-Nck pathway which promotes invadopodium formation and ECM proteolysis in melanoma and breast cancer cells. We therefore sought to investigate the significance of Tks5 expression in human cancers. This was undertaken retrospectively through an immunohistochemical evaluation in tissue microarray cores and through data mining of the public database, Oncomine. Here we showed that Tks5 was expressed at higher levels in the microarray cores of breast, colon, lung and prostate cancer tissues compared to the levels in normal tissues. Importantly, mining of Oncomine datasets revealed a strong correlation between Tks5 mRNA overexpression in a number of cancers with increased metastatic events and a poorer prognosis. Collectively, these findings suggest a clinical association of Tks5 expression in human cancers. It identifies the importance for further investigations in examining the full potential of Tks5 as a relevant prognostic marker in a select number of cancers which may have implications for future targeted therapies.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Stacey T T I
- Department of Biochemistry, La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Christopher M Hovens
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Peter Lock
- Department of Biochemistry, La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
29
|
Mallick EM, Garber JJ, Vanguri VK, Balasubramanian S, Blood T, Clark S, Vingadassalom D, Louissaint C, McCormick B, Snapper SB, Leong JM. The ability of an attaching and effacing pathogen to trigger localized actin assembly contributes to virulence by promoting mucosal attachment. Cell Microbiol 2014; 16:1405-24. [PMID: 24780054 DOI: 10.1111/cmi.12302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) colonizes the intestine and causes bloody diarrhoea and kidney failure by producing Shiga toxin. Upon binding intestinal cells, EHEC triggers a change in host cell shape, generating actin 'pedestals' beneath bound bacteria. To investigate the importance of pedestal formation to disease, we infected genetically engineered mice incapable of supporting pedestal formation by an EHEC-like mouse pathogen, or wild type mice with a mutant of that pathogen incapable of generating pedestals. We found that pedestal formation promotes attachment of bacteria to the intestinal mucosa and vastly increases the severity of Shiga toxin-mediated disease.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aryal ACS, Miyai K, Hayata T, Notomi T, Nakamoto T, Pawson T, Ezura Y, Noda M. Nck1 deficiency accelerates unloading-induced bone loss. J Cell Physiol 2013; 228:1397-403. [PMID: 23280595 DOI: 10.1002/jcp.24317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022]
Abstract
Mechanical stress is an important signal to determine the levels of bone mass. Unloading-induced osteoporosis is a critical issue in bed-ridden patients and astronauts. Many molecules have been suggested to be involved in sensing mechanical stress in bone, though the mechanisms involved in this phenomenon are not fully understood. Nck1 is an adaptor protein known to mediate signaling from plasma membrane-activated receptors to cytosolic effectors regulating actin cytoskeleton remodeling. Nck1 has also been implicated in cellular responses to endoplasmic reticulum stress. In vitro, in case of cell stress the actin cytoskeleton is disrupted and in such cases Nck1 has been reported to enter the nucleus of the cells to mediate the nuclear actin polymerization. However, the role of Nck1 in vivo during the bone response to mechanical stimuli is unknown. The purpose of this study is to examine the role of Nck1 in unloading-induced bone loss in vivo. Sciatic and femoral nerve resection was conducted. Neurectomy-based unloading enhanced Nck1 gene expression in bone about twofold. Using the Nck1 deficient mice and control Nck1+/+, effects of neurectomy-based unloading on bone structure were examined. Unloading reduced bone volume in wild type mice by 30% whereas the levels in bone loss were exacerbated to 50% in Nck1 deficient mice due to neurectomy after 4 weeks. These data demonstrate that Nck1 gene deficiency accelerates the mechanical unloading-induced bone loss suggesting Nck1 to be a crucial molecule in mechanical stress mediated regulation in bone metabolism.
Collapse
Affiliation(s)
- A C Smriti Aryal
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
32
|
Chaki SP, Rivera GM. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. BIOARCHITECTURE 2013; 3:57-63. [PMID: 23887203 PMCID: PMC3782540 DOI: 10.4161/bioa.25744] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar and apical-basal cellular polarization of epithelia and endothelia are crucial during morphogenesis. The establishment of these distinct polarity states and their transitions are regulated by signaling networks that include polarity complexes, Rho GTPases, and phosphoinositides. The spatiotemporal coordination of signaling by these molecules modulates cytoskeletal remodeling and vesicle trafficking to specify membrane domains, a prerequisite for the organization of tissues and organs. Here we present an overview of how activation of the WASp/Arp2/3 pathway of actin remodeling by Nck coordinates directional cell migration and speculate on its role as a signaling integrator in the coordination of cellular processes involved in endothelial cell polarity and vascular lumen formation.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
33
|
Chaki SP, Barhoumi R, Berginski ME, Sreenivasappa H, Trache A, Gomez SM, Rivera GM. Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics. J Cell Sci 2013; 126:1637-49. [DOI: 10.1242/jcs.119610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Directional migration requires the coordination of cytoskeletal changes essential for cell polarization and adhesion turnover. Extracellular signals that alter tyrosine phosphorylation drive directional migration by inducing reorganization of the actin cytoskeleton. It is recognized that Nck is an important link between tyrosine phosphorylation and actin dynamics, however, the role of Nck in cytoskeletal remodeling during directional migration and the underlying molecular mechanisms remain largely undetermined. In this study, a combination of molecular genetics and quantitative live cell microscopy was used to show that Nck is essential in the establishment of front-back polarity and directional migration of endothelial cells. Time-lapse differential interference contrast and total internal reflection fluorescence microscopy showed that Nck couples the formation of polarized membrane protrusions with their stabilization through the assembly and maturation of cell-substratum adhesions. Measurements by atomic force microscopy showed that Nck also modulates integrin α5β1-fibronectin adhesion force and cell stiffness. Fluorescence resonance energy transfer imaging revealed that Nck depletion results in delocalized and increased activity of Cdc42 and Rac. In contrast, the activity of RhoA and myosin II phosphorylation were reduced by Nck knockdown. Thus, this study identifies Nck as a key coordinator of cytoskeletal changes that enable cell polarization and directional migration which are critical processes in development and disease.
Collapse
|
34
|
Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 2012; 12:346-59. [PMID: 22980331 DOI: 10.1016/j.chom.2012.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 01/11/2023]
Abstract
During their egress, newly assembled vaccinia virus particles fuse with the plasma membrane and enhance their spread by inducing Arp2/3-dependent actin polymerization. Investigating the events surrounding vaccinia virus fusion, we discovered that vaccinia transiently recruits clathrin in a manner dependent on the clathrin adaptor AP-2. The recruitment of clathrin to vaccinia dramatically enhances the ability of the virus to induce actin-based motility. We demonstrate that clathrin promotes clustering of the virus actin tail nucleator A36 and host N-WASP, which activates actin nucleation through the Arp2/3 complex. Increased clustering enhances N-WASP stability, leading to more efficient actin tail initiation and sustained actin polymerization. Our observations uncover an unexpected role for clathrin during virus spread and have important implications for the regulation of actin polymerization.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
35
|
Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, Wang H, McLaughlin M, Mangos S, Kalluri R, Holzman LB, Drummond IA, Brown D, Salant DJ, Lu W. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Rep 2012; 2:52-61. [PMID: 22840396 DOI: 10.1016/j.celrep.2012.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/05/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022] Open
Abstract
Robo2 is the cell surface receptor for the repulsive guidance cue Slit and is involved in axon guidance and neuronal migration. Nephrin is a podocyte slit-diaphragm protein that functions in the kidney glomerular filtration barrier. Here, we report that Robo2 is expressed at the basal surface of mouse podocytes and colocalizes with nephrin. Biochemical studies indicate that Robo2 forms a complex with nephrin in the kidney through adaptor protein Nck. In contrast to the role of nephrin that promotes actin polymerization, Slit2-Robo2 signaling inhibits nephrin-induced actin polymerization. In addition, the amount of F-actin associated with nephrin is increased in Robo2 knockout mice that develop an altered podocyte foot process structure. Genetic interaction study further reveals that loss of Robo2 alleviates the abnormal podocyte structural phenotype in nephrin null mice. These results suggest that Robo2 signaling acts as a negative regulator on nephrin to influence podocyte foot process architecture.
Collapse
Affiliation(s)
- Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dart AE, Donnelly SK, Holden DW, Way M, Caron E. Nck and Cdc42 co-operate to recruit N-WASP to promote FcγR-mediated phagocytosis. J Cell Sci 2012; 125:2825-30. [PMID: 22454526 DOI: 10.1242/jcs.106583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptor protein Nck has been shown to link receptor ligation to actin-based signalling in a diverse range of cellular events, such as changes in cell morphology and motility. It has also been implicated in phagocytosis. However, its molecular role in controlling actin remodelling associated with phagocytic uptake remains to be clarified. Here, we show that Nck, which is recruited to phagocytic cups, is required for Fcγ receptor (FcγR)- but not complement receptor 3 (CR3)-induced phagocytosis. Nck recruitment in response to FcγR ligation is mediated by the phosphorylation of tyrosine 282 and 298 in the ITAM motif in the cytoplasmic tail of the receptor. In the absence of FcγR phosphorylation, there is also no recruitment of N-WASP or Cdc42 to phagocytic cups. Nck promotes FcγR-mediated phagocytosis by recruiting N-WASP to phagocytic cups. Efficient phagocytosis, however, only occurs, if the CRIB domain of N-WASP can also interact with Cdc42. Our observations demonstrate that Nck and Cdc42 collaborate to stimulate N-WASP-dependent FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Anna E Dart
- Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
37
|
Leslie M. Nck by the numbers. J Biophys Biochem Cytol 2012. [PMCID: PMC3365489 DOI: 10.1083/jcb.1975if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Meshing experiments and simulations, study uncovers the stoichiometry of actin-polymerizing proteins.
Collapse
|
38
|
Ditlev JA, Michalski PJ, Huber G, Rivera GM, Mohler WA, Loew LM, Mayer BJ. Stoichiometry of Nck-dependent actin polymerization in living cells. ACTA ACUST UNITED AC 2012; 197:643-58. [PMID: 22613834 PMCID: PMC3365498 DOI: 10.1083/jcb.201111113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation.
Collapse
Affiliation(s)
- Jonathon A Ditlev
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, and Richard D Berlin Center for Cell Analysis & Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Venkatareddy M, Cook L, Abuarquob K, Verma R, Garg P. Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin. PLoS One 2011; 6:e28710. [PMID: 22194892 PMCID: PMC3237483 DOI: 10.1371/journal.pone.0028710] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/14/2011] [Indexed: 12/28/2022] Open
Abstract
Actin dynamics has emerged at the forefront of podocyte biology. Slit diaphragm junctional adhesion protein Nephrin is necessary for development of the podocyte morphology and transduces phosphorylation-dependent signals that regulate cytoskeletal dynamics. The present study extends our understanding of Nephrin function by showing in cultured podocytes that Nephrin activation induced actin dynamics is necessary for lamellipodia formation. Upon activation Nephrin recruits and regulates a protein complex that includes Ship2 (SH2 domain containing 5′ inositol phosphatase), Filamin and Lamellipodin, proteins important in regulation of actin and focal adhesion dynamics, as well as lamellipodia formation. Using the previously described CD16-Nephrin clustering system, Nephrin ligation or activation resulted in phosphorylation of the actin crosslinking protein Filamin in a p21 activated kinase dependent manner. Nephrin activation in cell culture results in formation of lamellipodia, a process that requires specialized actin dynamics at the leading edge of the cell along with focal adhesion turnover. In the CD16-Nephrin clustering model, Nephrin ligation resulted in abnormal morphology of actin tails in human podocytes when Ship2, Filamin or Lamellipodin were individually knocked down. We also observed decreased lamellipodia formation and cell migration in these knock down cells. These data provide evidence that Nephrin not only initiates actin polymerization but also assembles a protein complex that is necessary to regulate the architecture of the generated actin filament network and focal adhesion dynamics.
Collapse
Affiliation(s)
- Madhusudan Venkatareddy
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Leslie Cook
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kamal Abuarquob
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rakesh Verma
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Puneet Garg
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
40
|
Haglund CM, Welch MD. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. ACTA ACUST UNITED AC 2011; 195:7-17. [PMID: 21969466 PMCID: PMC3187711 DOI: 10.1083/jcb.201103148] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
41
|
Dovas A, Cox D. Regulation of WASp by phosphorylation: Activation or other functions? Commun Integr Biol 2011; 3:101-5. [PMID: 20585499 DOI: 10.4161/cib.3.2.10759] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 11/28/2009] [Indexed: 11/19/2022] Open
Abstract
Wiskott-Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor that regulates actin polymerisation via the Arp2/3 complex. Its mutation in human syndromes has led to extensive studies on the regulation and activities of this molecule. Several mechanisms for the regulation of WASp activity have been proposed, however, the role of tyrosine phosphorylation remains controversial, particularly due to inconsistencies between results obtained through biochemical and cell biological approaches. In this mini-review, we are addressing the major aspects of WASp regulation with an emphasis on the role of tyrosine phosphorylation on WASp activities.
Collapse
|
42
|
Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc Natl Acad Sci U S A 2011; 108:E463-71. [PMID: 21676862 DOI: 10.1073/pnas.1100125108] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Actin-related protein (Arp) 2/3 complex mediates the formation of actin filament branches during endocytosis and at the leading edge of motile cells. The pathway of branch formation is ambiguous owing to uncertainty regarding the stoichiometry and location of VCA binding sites on Arp2/3 complex. Isothermal titration calorimetry showed that the CA motif from the C terminus of fission yeast WASP (Wsp1p) bound to fission yeast and bovine Arp2/3 complex with a stoichiometry of 2 to 1 and very different affinities for the two sites (K(d)s of 0.13 and 1.6 μM for fission yeast Arp2/3 complex). Equilibrium binding, kinetic, and cross-linking experiments showed that (i) CA at high-affinity site 1 inhibited Arp2/3 complex binding to actin filaments, (ii) low-affinity site 2 had a higher affinity for CA when Arp2/3 complex was bound to actin filaments, and (iii) Arp2/3 complex had a much higher affinity for free CA than VCA cross-linked to an actin monomer. Crystal structures showed the C terminus of CA bound to the low-affinity site 2 on Arp3 of bovine Arp2/3 complex. The C helix is likely to bind to the barbed end groove of Arp3 in a position for VCA to deliver the first actin subunit to the daughter filament.
Collapse
|
43
|
Ger M, Zitkus Z, Valius M. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity. Cell Signal 2011; 23:1651-8. [PMID: 21664272 DOI: 10.1016/j.cellsig.2011.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/25/2022]
Abstract
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.
Collapse
Affiliation(s)
- Marija Ger
- Proteomics Centre, Vilnius University Institute of Biochemistry, Lithuania.
| | | | | |
Collapse
|
44
|
Tyrosine kinase signaling in kidney glomerular podocytes. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:317852. [PMID: 21776384 PMCID: PMC3135133 DOI: 10.1155/2011/317852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
Abstract
During the last decade, several key molecules have been identified as essential components for the filtration barrier function of kidney glomerular podocytes. Mutations in genes encoding these molecules severely impair the podocyte architecture in the affected patients, leading to the development of proteinuria. Extensive investigations have been performed on the function of these molecules, which highlights the importance of tyrosine kinase signaling in the podocytes. An Src family tyrosine kinase, Fyn, plays a major role in this signaling pathway. Here, we review the current understanding of this important signal transduction system and its role in the development and the maintenance of podocytes.
Collapse
|
45
|
Petty RT, Mrksich M. De novo motif for kinase mediated signaling across the cell membrane. Integr Biol (Camb) 2011; 3:816-22. [DOI: 10.1039/c1ib00009h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor. Mol Cell Biol 2010; 31:584-98. [PMID: 21098119 DOI: 10.1128/mcb.00845-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, mother cells switch mating types between a and α forms, whereas daughter cells do not. This developmental asymmetry arises because the expression of the HO endonuclease, which initiates the interconversion of a and α mating type cassettes, is extinguished by the daughter-specific Ash1 transcriptional repressor. When daughters become mothers in the subsequent cell cycle, Ash1 must be eliminated to enable a new developmental state. Here, we report that the ubiquitin ligase SCF(Cdc4) mediates the phosphorylation-dependent elimination of Ash1. The inactivation of SCF(Cdc4) stabilizes Ash1 in vivo, and consistently, Ash1 binds to and is ubiquitinated by SCF(Cdc4) in a phosphorylation-dependent manner in vitro. The mutation of a critical in vivo cyclin-dependent kinase (CDK) phosphorylation site (Thr290) on Ash1 reduces its ubiquitination and rate of degradation in vivo and decreases the frequency of mating type switching. Ash1 associates with active Cdc28 kinase in vivo and is targeted to SCF(Cdc4) in a Cdc28-dependent fashion in vivo and in vitro. Ash1 recognition by Cdc4 appears to be mediated by at least three phosphorylation sites that form two redundant diphosphorylated degrons. The phosphorylation-dependent elimination of Ash1 by the ubiquitin-proteasome system thus underpins developmental asymmetry in budding yeast.
Collapse
|
47
|
Abstract
The proteins of the Wiskott-Aldrich syndrome protein (WASP) family are activators of the ubiquitous actin nucleation factor, the Arp2/3 complex. WASP family proteins contain a C-terminal VCA domain that binds and activates the Arp2/3 complex in response to numerous inputs, including Rho family GTPases, phosphoinositide lipids, SH3 domain-containing proteins, kinases, and phosphatases. In the archetypal members of the family, WASP and N-WASP, these signals are integrated through two levels of regulation, an allosteric autoinhibitory interaction, in which the VCA is sequestered from the Arp2/3 complex, and dimerization/oligomerization, in which multi-VCA complexes are better activators of the Arp2/3 complex than monomers. Here, we review the structural, biochemical, and biophysical details of these mechanisms and illustrate how they work together to control WASP activity in response to multiple inputs. These regulatory principles, derived from studies of WASP and N-WASP, are likely to apply broadly across the family.
Collapse
Affiliation(s)
- Shae B Padrick
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
48
|
Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J Biol Chem 2010; 285:22676-88. [PMID: 20472933 DOI: 10.1074/jbc.m110.122929] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Actin dynamics determines podocyte morphology during development and in response to podocyte injury and might be necessary for maintaining normal podocyte morphology. Because podocyte intercellular junction receptor Nephrin plays a role in regulating actin dynamics, and given the described role of cofilin in actin filament polymerization and severing, we hypothesized that cofilin-1 activity is regulated by Nephrin and is necessary in normal podocyte actin dynamics. Nephrin activation induced cofilin dephosphorylation via intermediaries that include phosphatidylinositol 3-kinase, SSH1, 14-3-3, and LIMK in a cell culture model. This Nephrin-induced cofilin activation required a direct interaction between Nephrin and the p85 subunit of phosphatidylinositol 3-kinase. In a similar fashion, cofilin-1 dephosphorylation was observed in a rat model of podocyte injury at a time when foot process spreading is initially observed. To investigate the necessity of cofilin-1 in the glomerulus, podocyte-specific Cfl1 null mice were generated. Cfl1 null podocytes developed normally. However, these mice developed persistent proteinuria by 3 months of age, although they did not exhibit foot process spreading until 8 months, when the rate of urinary protein excretion became more exaggerated. In a mouse model of podocyte injury, protamine sulfate perfusion of the Cfl1 mutant mouse induced a broadened and flattened foot process morphology that was distinct from that observed following perfusion of control kidneys, and mutant podocytes did not recover normal structure following additional perfusion with heparin sulfate. We conclude that cofilin-1 is necessary for maintenance of normal podocyte architecture and for actin structural changes that occur during induction and recovery from podocyte injury.
Collapse
Affiliation(s)
- Puneet Garg
- Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Campellone KG. Cytoskeleton-modulating effectors of enteropathogenic and enterohaemorrhagic Escherichia coli: Tir, EspFU and actin pedestal assembly. FEBS J 2010; 277:2390-402. [PMID: 20477869 DOI: 10.1111/j.1742-4658.2010.07653.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of microbes manipulate the cytoskeleton of mammalian cells to promote their internalization, motility and/or spread. Among such bacteria, enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli are closely related pathogens that adhere to human intestinal cells and reorganize the underlying actin cytoskeleton into 'pedestals'. The assembly of pedestals is likely to be an important step in colonization, and is triggered by the E. coli virulence factors translocated intimin receptor and E. coli secreted protein F in prophage U, which modulate multiple host signaling cascades that lead to actin polymerization. In recent years, these bacterial effectors have been exploited as powerful experimental tools for investigating actin cytoskeletal and membrane dynamics, and several studies have significantly advanced our understanding of the regulation of actin assembly in mammalian cells and the potential role of pedestal formation in pathogenesis.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|