1
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Khurana I, Kaipananickal H, Maxwell S, Birkelund S, Syreeni A, Forsblom C, Okabe J, Ziemann M, Kaspi A, Rafehi H, Jørgensen A, Al-Hasani K, Thomas MC, Jiang G, Luk AO, Lee HM, Huang Y, Thewjitcharoen Y, Nakasatien S, Himathongkam T, Fogarty C, Njeim R, Eid A, Hansen TW, Tofte N, Ottesen EC, Ma RC, Chan JC, Cooper ME, Rossing P, Groop PH, El-Osta A. Reduced methylation correlates with diabetic nephropathy risk in type 1 diabetes. J Clin Invest 2023; 133:160959. [PMID: 36633903 PMCID: PMC9927943 DOI: 10.1172/jci160959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.
Collapse
Affiliation(s)
- Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Maxwell
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sørine Birkelund
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haloom Rafehi
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anne Jørgensen
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Merlin C. Thomas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | | | | | - Christopher Fogarty
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Nete Tofte
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Ronald C.W. Ma
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics,,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mark E. Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per-Henrik Groop
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory and,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia.,University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark.,Hong Kong Institute of Diabetes and Obesity,,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
4
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Dawson WK, Lazniewski M, Plewczynski D. Free energy-based model of CTCF-mediated chromatin looping in the human genome. Methods 2020; 181-182:35-51. [PMID: 32645447 DOI: 10.1016/j.ymeth.2020.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 04/21/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, high-throughput techniques have revealed considerable structural organization of the human genome with diverse regions of the chromatin interacting with each other in the form of loops. Some of these loops are quite complex and may encompass regions comprised of many interacting chain segments around a central locus. Popular techniques for extracting this information are chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture (Hi-C). Here, we introduce a physics-based method to predict the three-dimensional structure of chromatin from population-averaged ChIA-PET data. The approach uses experimentally-validated data from human B-lymphoblastoid cells to generate 2D meta-structures of chromatin using a dynamic programming algorithm that explores the chromatin free energy landscape. By generating both optimal and suboptimal meta-structures we can calculate both the free energy and additionally the relative thermodynamic probability. A 3D structure prediction program with applied restraints then can be used to generate the tertiary structures. The main advantage of this approach for population-averaged experimental data is that it provides a way to distinguish between the principal and the spurious contacts. This study also finds that euchromatin appear to have rather precisely regulated 2D meta-structures compared to heterochromatin. The program source-code is available at https://github.com/plewczynski/looper.
Collapse
Affiliation(s)
- Wayne K Dawson
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan.
| | - Michal Lazniewski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, Warsaw 02-089, Poland; Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
6
|
Liu Y, Li J, Zhou C, Meng B, Wei Y, Yang G, Lu Z, Shen Q, Zhang Y, Yang H, Qiao Y. Allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci using Staphylococcus aureus Cas9 (SaCas9). Sci Bull (Beijing) 2019; 64:1592-1600. [PMID: 36659571 DOI: 10.1016/j.scib.2019.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Allele-specific DNA methylation is the most important imprinting marker localized to differentially methylated regions (DMRs), and aberrant genomic imprinted DNA methylation is associated with some human diseases, including Prader-Willi syndrome and cancer. Thus, the development of an effective strategy for the precise editing of allele-specific methylated genes is essential for the functional clarification of imprinting elements and the correction of imprinting disorders in human diseases. To discover a feasible allele-specific genome editing tool based on the CRISPR/Cas system, which is an efficient gene-targeting technique in various organisms, we examined the targeting efficiency of Staphylococcus aureus Cas9 (SaCas9) and Streptococcus pyogenes Cas9 (SpCas9) in response to DNA methylation interference. We found that the targeting efficiency of SaCas9, but not SpCas9, was enhanced by targeted DNA demethylation using the dCas9-Tet1 catalytic domain (CD) but suppressed by targeted DNA methylation using Dnmt3l-Dnmt3a-dCas9. An in vitro cleavage assay further demonstrated that SaCas9 nuclease activity was inhibited by 5-methylcytosine (5mC) in a synthesized CpG-containing context. Further analysis with ChIP-Q-PCR demonstrated that the non-methylated sequence targeting of SaCas9 depends on the binding preference of SaCas9 to non-methylated sequences. Taking advantage of this feature of SaCas9, we have successfully obtained non-methylated allele-biased targeted embryos/mice for two imprinting genes, H19 and Snrpn, with relatively high efficiencies of 28.6% and 47.4%, respectively. These results indicate that the targeting efficiency of SaCas9 was strongly reduced by DNA methylation. By using SaCas9, we successfully achieved allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci.
Collapse
Affiliation(s)
- Yajing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyang Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 200031, China
| | - Yu Wei
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmei Shen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
7
|
EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun 2019; 10:3858. [PMID: 31451685 PMCID: PMC6710278 DOI: 10.1038/s41467-019-11800-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.
Collapse
|
8
|
Li M, Ma Z, Roy S, Patel SK, Lane DC, Duffy CR, Cai HN. Selective interactions between diverse STEs organize the ANT-C Hox cluster. Sci Rep 2018; 8:15158. [PMID: 30310129 PMCID: PMC6181975 DOI: 10.1038/s41598-018-33588-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/01/2018] [Indexed: 11/09/2022] Open
Abstract
The three-dimensional organization of the eukaryotic genome is important for its structure and function. Recent studies indicate that hierarchies of chromatin loops underlie important aspects of both genomic organization and gene regulation. Looping between insulator or boundary elements interferes with enhancer-promoter communications and limits the spread active or repressive organized chromatin. We have used the SF1 insulator in the Drosophila Antennapedia homeotic gene complex (ANT-C) as a model to study the mechanism and regulation of chromatin looping events. We reported previously that SF1 tethers a transient chromatin loop in the early embryo that insulates the Hox gene Sex comb reduce from the neighbor non-Hox gene fushi tarazu for their independent regulation. To further probe the functional range and connectivity of SF1, we used high-resolution chromosomal conformation capture (3C) to search for SF1 looping partners across ANT-C. We report here the identification of three distal SF1 Tether Elements (STEs) located in the labial, Deformed and Antennapedia Hox gene regions, extending the range of SF1 looping network to the entire complex. These novel STEs are bound by four different combinations of insulator proteins and exhibit distinct behaviors in enhancer block, enhancer-bypass and boundary functions. Significantly, the six STEs we identified so far map to all but one of the major boundaries between repressive and active histone domains, underlining the functional relevance of these long-range chromatin loops in organizing the Hox complex. Importantly, SF1 selectively captured with only 5 STEs out of ~20 sites that display similar insulator binding profiles, indicating that presence of insulator proteins alone is not sufficient to determine looping events. These findings suggest that selective interaction among diverse STE insulators organize the Drosophila Hox genes in the 3D nuclear space.
Collapse
Affiliation(s)
- Mo Li
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zhibo Ma
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Sharmila Roy
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Sapna K Patel
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Derrick C Lane
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Haini N Cai
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Saha P, Verma S, Pathak RU, Mishra RK. Long Noncoding RNAs in Mammalian Development and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:155-198. [PMID: 28815540 DOI: 10.1007/978-981-10-5203-3_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shreekant Verma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rashmi U Pathak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
11
|
Keating ST, van Diepen JA, Riksen NP, El-Osta A. Epigenetics in diabetic nephropathy, immunity and metabolism. Diabetologia 2018; 61:6-20. [PMID: 29128937 PMCID: PMC6448927 DOI: 10.1007/s00125-017-4490-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023]
Abstract
When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways.
Collapse
Affiliation(s)
- Samuel T Keating
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Janna A van Diepen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Department of Internal Medicine (463), Radboud University Medical Center, Nijmegen, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Assam El-Osta
- Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
12
|
Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28975734 DOI: 10.1002/wrna.1448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 12/25/2022]
Abstract
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Matthew Hk Cheng
- International Max Planck Research School, Tuebingen, Germany.,Interfaculty Institute of Biochemistry, Tuebingen, Germany
| | | |
Collapse
|
13
|
Chatzinikolaou G, Apostolou Z, Aid-Pavlidis T, Ioannidou A, Karakasilioti I, Papadopoulos GL, Aivaliotis M, Tsekrekou M, Strouboulis J, Kosteas T, Garinis GA. ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes. Nat Cell Biol 2017; 19:421-432. [PMID: 28368372 DOI: 10.1038/ncb3499] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Inborn defects in DNA repair are associated with complex developmental disorders whose causal mechanisms are poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the nucleotide excision repair (NER) structure-specific endonuclease ERCC1-XPF complex interacts with the insulator binding protein CTCF, the cohesin subunits SMC1A and SMC3 and with MBD2; the factors co-localize with ATRX at the promoters and control regions (ICRs) of imprinted genes during postnatal hepatic development. Loss of Ercc1 or exposure to MMC triggers the localization of CTCF to heterochromatin, the dissociation of the CTCF-cohesin complex and ATRX from promoters and ICRs, altered histone marks and the aberrant developmental expression of imprinted genes without altering DNA methylation. We propose that ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes and that persistent DNA damage triggers chromatin changes that affect gene expression programs associated with NER disorders.
Collapse
Affiliation(s)
- Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Tamara Aid-Pavlidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Anna Ioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - Ismene Karakasilioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Giorgio L Papadopoulos
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Division of Molecular Oncology, Biomedical Sciences Research Center 'Alexander Fleming', GR 16672 Vari, Greece
| | - Theodore Kosteas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Vassilika Vouton, GR71409 Heraklion, Crete, Greece
| |
Collapse
|
14
|
Angrand PO, Vennin C, Le Bourhis X, Adriaenssens E. The role of long non-coding RNAs in genome formatting and expression. Front Genet 2015; 6:165. [PMID: 25972893 PMCID: PMC4413816 DOI: 10.3389/fgene.2015.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/12/2015] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but having a pivotal role in numerous biological functions. Long non-coding RNAs act as regulators at different levels of gene expression including chromatin organization, transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs expression has been found to be associated to cancer and other human disorders. Here, we review the different types of lncRNAs, their mechanisms of action on genome formatting and expression and emphasized on the multifaceted action of the H19 lncRNA.
Collapse
Affiliation(s)
| | - Constance Vennin
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| | - Xuefen Le Bourhis
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| | - Eric Adriaenssens
- Cell Plasticity and Cancer - Inserm U908, University of Lille Lille, France
| |
Collapse
|
15
|
Azzi S, Steunou V, Tost J, Rossignol S, Thibaud N, Das Neves C, Le Jule M, Habib WA, Blaise A, Koudou Y, Busato F, Le Bouc Y, Netchine I. Exhaustive methylation analysis revealed uneven profiles of methylation at IGF2/ICR1/H19 11p15 loci in Russell Silver syndrome. J Med Genet 2014; 52:53-60. [PMID: 25395389 DOI: 10.1136/jmedgenet-2014-102732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The structural organisation of the human IGF2/ICR1/H19 11p15 domain is very complex, and the mechanisms underlying its regulation are poorly understood. The Imprinted Center Region 1 (ICR1) contains seven binding sites for the zinc-finger protein CTCF (CBS: CTCF Binding Sites); three additional differentially methylated regions (DMR) are located at the H19 promoter (H19DMR) and two in the IGF2 gene (DMR0 and DMR2), respectively. Loss of imprinting at the IGF2/ICR1/H19 domain results in two growth disorders with opposite phenotypes: Beckwith-Wiedemann syndrome and Russell Silver syndrome (RSS). Despite the IGF2/ICR1/H19 locus being widely studied, the extent of hypomethylation across the domain remains not yet addressed in patients with RSS. METHODS We assessed a detailed investigation of the methylation status of the 11p15 ICR1 CBS1-7, IGF2DMR0 and H19DMR (H19 promoter) in a population of controls (n=50) and RSS carrying (n=104) or not (n=65) carrying a hypomethylation at the 11p15 ICR1 region. RESULTS The methylation indexes (MI) were balanced at all regions in the control population and patients with RSS without any as yet identified molecular anomaly. Interestingly, patients with RSS with ICR1 hypomethylation showed uneven profiles of methylation among the CBSs and DMRs. Furthermore, normal MIs at CBS1 and CBS7 were identified in 9% of patients. CONCLUSIONS The hypomethylation does not spread equally throughout the IGF2/ICR1/H19 locus, and some loci could have normal MI, which may lead to underdiagnosis of patients with RSS with ICR1 hypomethylation. The uneven pattern of methylation suggests that some CBSs may play different roles in the tridimensional chromosomal looping regulation of this locus.
Collapse
Affiliation(s)
- Salah Azzi
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), National Genotyping Center, CEA-Institute of Genomics, Evry, France
| | - Sylvie Rossignol
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Nathalie Thibaud
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Cristina Das Neves
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Marilyne Le Jule
- Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Walid Abi Habib
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Annick Blaise
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Yves Koudou
- INSERM, Centre for research in Epidemiology and Population Health (CESP), U1018, Lifelong epidemiology of obesity, diabetes and renal disease team, Villejuif, France Paris-Sud University, UMRS 1018, Villejuif, France
| | - Florence Busato
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Yves Le Bouc
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| | - Irène Netchine
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France Department of Pediatric Endocrinology, APHP, Armand Trousseau Hospital, Paris, France
| |
Collapse
|
16
|
Liyanage VRB, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. BIOLOGY 2014; 3:670-723. [PMID: 25340699 PMCID: PMC4280507 DOI: 10.3390/biology3040670] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.
Collapse
Affiliation(s)
- Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Nanditha Murugeshan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
17
|
Maschietto M, Charlton J, Perotti D, Radice P, Geller JI, Pritchard-Jones K, Weeks M. The IGF signalling pathway in Wilms tumours--a report from the ENCCA Renal Tumours Biology-driven drug development workshop. Oncotarget 2014; 5:8014-26. [PMID: 25478630 PMCID: PMC4226664 DOI: 10.18632/oncotarget.2485] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022] Open
Abstract
It is hypothesised that Wilms tumour (WT) results from aberrant renal development due to its embryonic morphology, associated undifferentiated precursor lesions (termed nephrogenic rests) and embryonic kidney-like chromatin and gene expression profiles. From the study of overgrowth syndrome-associated WT, germline dysregulation was identified in the imprinted region at 11p15 affecting imprinted genes IGF2 and H19. This is also detected in ~70% sporadic cases, making this the most common somatic molecular aberration in WT. This review summarises the critical discussion at an international workshop held under the auspices of The European Network for Cancer Research in Children and Adolescents (ENCCA) consortium, where the potential for drug development to target IGF2 and the WT epigenome was debated. Here, we consider current cancer treatments which include targeting the IGF pathway and the use of methylation agents alone or in combination with other drugs in clinical trials of paediatric cancers. Finally, we discuss the possibility of the use of these drugs to treat patients with WT.
Collapse
Affiliation(s)
- Mariana Maschietto
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Jocelyn Charlton
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniela Perotti
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Radice
- Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James I Geller
- UC department of paediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Kathy Pritchard-Jones
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mark Weeks
- Cancer Section, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
18
|
Shin HS, Seo JH, Jeong SH, Park SW, Park Y, Son SW, Kim JS, Kang HG. Exposure of pregnant mice to chlorpyrifos-methyl alters embryonic H19 gene methylation patterns. ENVIRONMENTAL TOXICOLOGY 2014; 29:926-935. [PMID: 23125134 DOI: 10.1002/tox.21820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/11/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to identify whether chlorpyrifos methyl (CPM) exposure during pregnancy leads to changes in the methylation patterns of H19 gene. CPM 4, 20, 100 mg/kg bw/day was administered to 4 pregnant mice per group between 7 and 12 days post coitum (d.p.c.). Pregnant mice were killed at 13 d.p.c. The genomic methylation in primordial germ cells (PGCs) and fetal organs (the liver, intestine, and placenta) was examined. Four polymorphism sites in the H19 alleles of maternal (C57BL/6J) and paternal (CAST/Ei) alleles were identified at nucleotide position 1407, 1485, 1566, and 1654. The methylation patterns of 17 CpG sites were analyzed. The methylation level in male and female PGCs was not altered by CPM treatment in the maternal allele H19. The methylation level of the paternal H19 allele was altered in only male PGCs in response to the CPM treatment. The methylation level at a binding site for the transcriptional regulator CTCF2 was higher than that at the CTCF1 binding site in all CPM-treated groups. In the placenta, the aggregate methylation level of H19 was 56.89%in control group. But, those levels were ranged from 47.7% to 49.89% after treatment with increasing doses of CPM. H19 gene from the liver and intestine of 13 d.p.c. fetuses treated with CPM was hypomethylated as compared with controls, although H19 mRNA expression was unaltered. In the placenta, H19 expression was slightly increased in the CPM-treated group, although not significantly. IGF2 expression levels were not significantly changed in the placenta. In conclusion, CPM exposure during pregnancy alters the methylation status of the H19 gene in PGCs and embryonic tissues. We infer that these alterations are likely related to changes in DNA demethylase activity.
Collapse
Affiliation(s)
- Hyo-Sook Shin
- Toxicology & Residue Chemistry Division, Animal, Plant and Fisheries Quarantine and Inspection Agency, 175 Anyangro, Anyang-si, Gyeonggi-do 430-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ball AR, Chen YY, Yokomori K. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:191-202. [PMID: 24269489 PMCID: PMC3951616 DOI: 10.1016/j.bbagrm.2013.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
20
|
Marshall AD, Bailey CG, Rasko JEJ. CTCF and BORIS in genome regulation and cancer. Curr Opin Genet Dev 2013; 24:8-15. [PMID: 24657531 DOI: 10.1016/j.gde.2013.10.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 10/25/2022]
Abstract
CTCF plays a vital role in chromatin structure and function. CTCF is ubiquitously expressed and plays diverse roles in gene regulation, imprinting, insulation, intra/interchromosomal interactions, nuclear compartmentalisation, and alternative splicing. CTCF has a single paralogue, the testes-specific CTCF-like gene (CTCFL)/BORIS. CTCF and BORIS can be deregulated in cancer. The tumour suppressor gene CTCF can be mutated or deleted in cancer, or CTCF DNA binding can be altered by epigenetic changes. BORIS is aberrantly expressed frequently in cancer, leading some to propose a pro-tumourigenic role for BORIS. However, BORIS can inhibit cell proliferation, and is mutated in cancer similarly to CTCF suggesting BORIS activation in cancer may be due to global genetic or epigenetic changes typical of malignant transformation.
Collapse
Affiliation(s)
- Amy D Marshall
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, Missenden Road, Camperdown 2050, NSW, Australia; Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, NSW, Australia.
| |
Collapse
|
21
|
Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A. A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7:e39371. [PMID: 22724006 PMCID: PMC3378572 DOI: 10.1371/journal.pone.0039371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/19/2012] [Indexed: 11/19/2022] Open
Abstract
CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - Cristina Abraira
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
- Institut National de la Santé et de la Recherche Médicale, ADR Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
22
|
ADP-ribose polymers localized on Ctcf-Parp1-Dnmt1 complex prevent methylation of Ctcf target sites. Biochem J 2012; 441:645-52. [PMID: 21985173 PMCID: PMC3258657 DOI: 10.1042/bj20111417] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PARylation [poly(ADP-ribosyl)ation] is involved in the maintenance of genomic methylation patterns through its control of Dnmt1 [DNA (cytosine-5)-methyltransferase 1] activity. Our previous findings indicated that Ctcf (CCCTC-binding factor) may be an important player in key events whereby PARylation controls the unmethylated status of some CpG-rich regions. Ctcf is able to activate Parp1 [poly(ADP-ribose) polymerase 1], which ADP-ribosylates itself and, in turn, inhibits DNA methylation via non-covalent interaction between its ADP-ribose polymers and Dnmt1. By such a mechanism, Ctcf may preserve the epigenetic pattern at promoters of important housekeeping genes. The results of the present study showed Dnmt1 as a new protein partner of Ctcf. Moreover, we show that Ctcf forms a complex with Dnmt1 and PARylated Parp1 at specific Ctcf target sequences and that PARylation is responsible for the maintenance of the unmethylated status of some Ctcf-bound CpGs. We suggest a mechanism by which Parp1, tethered and activated at specific DNA target sites by Ctcf, preserves their methylation-free status.
Collapse
|
23
|
Weth O, Renkawitz R. CTCF function is modulated by neighboring DNA binding factors. Biochem Cell Biol 2011; 89:459-68. [PMID: 21895576 DOI: 10.1139/o11-033] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zinc-finger protein CTCF was originally identified in the context of gene silencing and gene repression (Baniahmad et al. 1990; Lobanenkov et al. 1990). CTCF was later shown to be involved in several transcriptional mechanisms such as gene activation (Vostrov et al. 2002) and enhancer blocking (Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000; Lutz et al. 2003; Szabó et al. 2000; Tanimoto et al. 2003; Phillips and Corces 2009; Bell et al. 1999; Zlatanova and Caiafa 2009a, 2009b). Insulators block the action of enhancers when positioned between enhancer and promoter. CTCF was found to be required in almost all cases of enhancer blocking tested in vertebrates. This CTCF-mediated enhancer blocking is in many instances conferred by constitutive CTCF action. For some examples however, a modulation of the enhancer blocking activity was documented (Lutz et al. 2003; Weth et al. 2010). One mechanism is achieved by regulation of binding to DNA. It was shown that CTCF is not able to bind to those binding-sites containing methylated CpG sequences. At the imprinting control region (ICR) of the Igf2/H19 locus the binding-site for CTCF on the paternal allele is methylated. This prevents DNA-binding of CTCF, resulting in the loss of enhancer blocking (Bell and Felsenfeld 2000; Chao et al. 2002; Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000, 2002; Szabó et al. 2000; Takai et al. 2001). Not only can DNA methylation interfere with CTCF binding to DNA, it was also shown in one report that RNA transcription through the CTCF binding site results in CTCF eviction (Lefevre et al. 2008). In contrast to these cases most of the DNA sites are not differentially bound by CTCF. Even CTCF interaction with its cofactor cohesin does not seem to differ in different cell types (Schmidt et al. 2010). These results indicate that regulation of CTCF activity might be achieved by neighboring factors bound to DNA. In fact, whole genome analyses of CTCF binding sites identified several classes of neighboring sequences (Dickson et al. 2010; Boyle et al. 2010; Essien et al. 2009). Therefore, in this review we will summarize those results for which a combined action of CTCF with factors bound adjacently was found. These neighboring factors include the RNA polymerases I, II and III, another zinc finger factor VEZF1 and the factors YY1, SMAD, TR and Oct4. Each of these seems to influence, modulate or determine the function of CTCF. Thereby, at least some of the pleiotropic effects of CTCF can be explained.
Collapse
Affiliation(s)
- Oliver Weth
- Institute for Genetics, Justus-Liebig-University Giessen, D35392 Giessen, Germany.
| | | |
Collapse
|
24
|
A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation. Genetics 2011; 189:441-54. [PMID: 21840866 DOI: 10.1534/genetics.111.132662] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.
Collapse
|
25
|
Singh NP, Madabhushi SR, Srivastava S, Senthilkumar R, Neeraja C, Khosla S, Mishra RK. Epigenetic profile of the euchromatic region of human Y chromosome. Nucleic Acids Res 2011; 39:3594-606. [PMID: 21252296 PMCID: PMC3089472 DOI: 10.1093/nar/gkq1342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genome of a multi-cellular organism acquires various functional capabilities in different cell types by means of distinct chromatin modifications and packaging states. Acquired during early development, the cell type-specific epigenotype is maintained by cellular memory mechanisms that involve epigenetic modifications. Here we present the epigenetic status of the euchromatic region of the human Y chromosome that has mostly been ignored in earlier whole genome epigenetic mapping studies. Using ChIP-on-chip approach, we mapped H3K9ac, H3K9me3, H3K27me3 modifications and CTCF binding sites while DNA methylation analysis of selected CpG islands was done using bisulfite sequencing. The global pattern of histone modifications observed on the Y chromosome reflects the functional state and evolutionary history of the sequences that constitute it. The combination of histone and DNA modifications, along with CTCF association in some cases, reveals the transcriptional potential of all protein coding genes including the sex-determining gene SRY and the oncogene TSPY. We also observe preferential association of histone marks with different tandem repeats, suggesting their importance in genome organization and gene regulation. Our results present the first large scale epigenetic analysis of the human Y chromosome and link a number of cis-elements to epigenetic regulatory mechanisms, enabling an understanding of such mechanisms in Y chromosome linked disorders.
Collapse
Affiliation(s)
- Narendra Pratap Singh
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | | | | | | | | | | | | |
Collapse
|
26
|
van Roon EHJ, de Miranda NFCC, van Nieuwenhuizen MP, de Meijer EJ, van Puijenbroek M, Yan PS, Huang THM, van Wezel T, Morreau H, Boer JM. Tumour-specific methylation of PTPRG intron 1 locus in sporadic and Lynch syndrome colorectal cancer. Eur J Hum Genet 2010; 19:307-12. [PMID: 21150880 DOI: 10.1038/ejhg.2010.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is a hallmark in a subset of right-sided colorectal cancers. Methylation-based screening may improve prevention and survival rate for this type of cancer, which is often clinically asymptomatic in the early stages. We aimed to discover prognostic or diagnostic biomarkers for colon cancer by comparing DNA methylation profiles of right-sided colon tumours and paired normal colon mucosa using an 8.5 k CpG island microarray. We identified a diagnostic CpG-rich region, located in the first intron of the protein-tyrosine phosphatase gamma gene (PTPRG) gene, with altered methylation already in the adenoma stage, that is, before the carcinoma transition. Validation of this region in an additional cohort of 103 sporadic colorectal tumours and 58 paired normal mucosa tissue samples showed 94% sensitivity and 96% specificity. Interestingly, comparable results were obtained when screening a cohort of Lynch syndrome-associated cancers. Functional studies showed that PTPRG intron 1 methylation did not directly affect PTPRG expression, however, the methylated region overlapped with a binding site of the insulator protein CTCF. Chromatin immunoprecipitation (ChIP) showed that methylation of the locus was associated with absence of CTCF binding. Methylation-associated changes in CTCF binding to PTPRG intron 1 could have implications on tumour gene expression by enhancer blocking, chromosome loop formation or abrogation of its insulator function. The high sensitivity and specificity for the PTPRG intron 1 methylation in both sporadic and hereditary colon cancers support biomarker potential for early detection of colon cancer.
Collapse
Affiliation(s)
- Eddy H J van Roon
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
López Castel A, Nakamori M, Tomé S, Chitayat D, Gourdon G, Thornton CA, Pearson CE. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum Mol Genet 2010; 20:1-15. [PMID: 21044947 DOI: 10.1093/hmg/ddq427] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy (DM1) affects multiple organs, shows age-dependent progression and is caused by CTG expansions at the DM1 locus. We determined the DM1 CpG methylation profile and CTG length in tissues from DM1 foetuses, DM1 adults, non-affected individuals and transgenic DM1 mice. Analysis included CTCF binding sites upstream and downstream of the CTG tract, as methylation-sensitive CTCF binding affects chromatinization and transcription of the DM1 locus. In humans, in a given foetus, expansions were largest in heart and smallest in liver, differing by 40-400 repeats; in adults, the largest expansions were in heart and cerebral cortex and smallest in cerebellum, differing by up to 5770 repeats in the same individual. Abnormal methylation was specific to the mutant allele. In DM1 adults, heart, liver and cortex showed high-to-moderate methylation levels, whereas cerebellum, kidney and skeletal muscle were devoid of methylation. Methylation decreased between foetuses and adults. Contrary to previous findings, methylation was not restricted to individuals with congenital DM1. The expanded repeat demarcates an abrupt boundary of methylation. Upstream sequences, including the CTCF site, were methylated, whereas the repeat itself and downstream sequences were not. In DM1 mice, expansion-, tissue- and age-specific methylation patterns were similar but not identical to those in DM1 individuals; notably in mice, methylation was present up- and downstream of the repeat, but greater upstream. Thus, in humans, the CpG-free expanded CTG repeat appears to maintain a highly polarized pattern of CpG methylation at the DM1 locus, which varies markedly with age and tissues.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, Department of Pediatrics, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Robert C. Microarray analysis of gene expression during early development: a cautionary overview. Reproduction 2010; 140:787-801. [PMID: 20833752 DOI: 10.1530/rep-10-0191] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rise of the 'omics' technologies started nearly a decade ago and, among them, transcriptomics has been used successfully to contrast gene expression in mammalian oocytes and early embryos. The scarcity of biological material that early developmental stages provide is the prime reason why the field of transcriptomics is becoming more and more popular with reproductive biologists. The potential to amplify scarce mRNA samples and generate the necessary amounts of starting material enables the relative measurement of RNA abundance of thousands of candidates simultaneously. So far, microarrays have been the most commonly used high-throughput method in this field. Microarray platforms can be found in a wide variety of formats, from cDNA collections to long or short oligo probe sets. These platforms generate large amounts of data that require the integration of comparative RNA abundance values in the physiological context of early development for their full benefit to be appreciated. Unfortunately, significant discrepancies between datasets suggest that direct comparison between studies is difficult and often not possible. We have investigated the sample-handling steps leading to the generation of microarray data produced from prehatching embryo samples and have identified key steps that significantly impact the downstream results. This review provides a discussion on the best methods for the preparation of samples from early embryos for microarray analysis and focuses on the challenges that impede dataset comparisons from different platforms and the reasons why methodological benchmarking performed using somatic cells may not apply to the atypical nature of prehatching development.
Collapse
Affiliation(s)
- Claude Robert
- Laboratory of Functional Genomics of Early Embryonic Development, Laval University, Pavillon Comtois, Local 4221 Université Laval, Québec, Québec, Canada.
| |
Collapse
|
29
|
Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G, Vinci G, Chapron C, Vaiman D. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol 2010; 24:1872-85. [PMID: 20685852 DOI: 10.1210/me.2010-0160] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence indicate that endometriosis could be partially due to selective epigenetic deregulations. Promoter hypermethylation of some key genes, such as progesterone receptor and aromatase, has been associated with the silencing of these genes and might contribute to the disease. However, it is unknown whether global alterations in DNA methylation patterns occur in endometriosis and to what extent they are involved in its pathogenesis. We conducted a whole-genome scanning of methylation status in more than 25,000 promoters, using methylated DNA immunoprecipitation with hybridization to promoter microarrays. We detailed the methylation profiles for each subtype of the disease (superficial endometriosis, endometriomas, and deep infiltrating endometriosis) and compared them with the profile obtained for the eutopic endometrium. In line with the current theory of the endometrial origin of endometriosis, the overall methylation profile was highly similar between the endometrium and the lesions. It showed promoter regions consistently hypomethylated or hypermethylated (more than 1.5-times, as compared with endometrium) and others specific to one given subtype. Albeit there was no systematic correlation between promoter methylation and expression of nearby genes, 35 genes had both methylation and expressional alterations in the lesions. These genes, reported here for the first time, might be of interest in the development of endometriosis. In addition, hypermethylated regions were located at the ends of the chromosomes, whereas hypomethylated regions were randomly distributed all along the chromosomes. We postulated that this original observation might participate to the chromosomal stability and protect the endometriotic lesion against malignancy.
Collapse
Affiliation(s)
- Bruno Borghese
- Département Génétique et Développement, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
MacDonald WA, Menon D, Bartlett NJ, Sperry GE, Rasheva V, Meller V, Lloyd VK. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. BMC Biol 2010; 8:105. [PMID: 20673338 PMCID: PMC2922095 DOI: 10.1186/1741-7007-8-105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 07/30/2010] [Indexed: 11/28/2022] Open
Abstract
Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;f)LJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;f)LJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104
Collapse
|
31
|
McDaniell R, Lee BK, Song L, Liu Z, Boyle AP, Erdos MR, Scott LJ, Morken MA, Kucera KS, Battenhouse A, Keefe D, Collins FS, Willard HF, Lieb JD, Furey TS, Crawford GE, Iyer VR, Birney E. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 2010; 328:235-9. [PMID: 20299549 PMCID: PMC2929018 DOI: 10.1126/science.1184655] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans.
Collapse
Affiliation(s)
- Ryan McDaniell
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | - Bum-Kyu Lee
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | - Lingyun Song
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Zheng Liu
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | - Alan P. Boyle
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
| | - Michael R. Erdos
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Laura J. Scott
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mario A. Morken
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Katerina S. Kucera
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
| | - Anna Battenhouse
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | - Damian Keefe
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1RQ, UK
| | - Francis S. Collins
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Huntington F. Willard
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
| | - Jason D. Lieb
- Department of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terrence S. Furey
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
| | - Gregory E. Crawford
- Institute for Genome Sciences and Policy (IGSP), Duke University, Durham, NC 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Vishwanath R. Iyer
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712, USA
| | - Ewan Birney
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1RQ, UK
| |
Collapse
|
32
|
Heath H, Ribeiro de Almeida C, Sleutels F, Dingjan G, van de Nobelen S, Jonkers I, Ling KW, Gribnau J, Renkawitz R, Grosveld F, Hendriks RW, Galjart N. CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J 2008; 27:2839-50. [PMID: 18923423 DOI: 10.1038/emboj.2008.214] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/19/2008] [Indexed: 01/20/2023] Open
Abstract
The 11-zinc finger protein CCCTC-binding factor (CTCF) is a highly conserved protein, involved in imprinting, long-range chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality. Tissue-specific inactivation of CTCF in thymocytes specifically hampers the differentiation of alphabeta T cells and causes accumulation of late double-negative and immature single-positive cells in the thymus of mice. These cells are normally large and actively cycling, and contain elevated amounts of CTCF. In Ctcf knockout animals, however, these cells are small and blocked in the cell cycle due to increased expression of the cyclin-CDK inhibitors p21 and p27. Taken together, our results show that CTCF is required in a dose-dependent manner and is involved in cell cycle progression of alphabeta T cells in the thymus. We propose that CTCF positively regulates cell growth in rapidly dividing thymocytes so that appropriate number of cells are generated before positive and negative selection in the thymus.
Collapse
Affiliation(s)
- Helen Heath
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol 2008; 28:6731-45. [PMID: 18794369 DOI: 10.1128/mcb.02103-07] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The H19/IGFf2 locus belongs to a large imprinted domain located on human chromosome 11p15.5 (homologue to mouse distal chromosome 7). The H19 gene is expressed from the maternal allele, while IGF2 is paternally expressed. Natural antisense transcripts and intergenic transcription have been involved in many aspects of eukaryotic gene expression, including genomic imprinting and RNA interference. However, apart from the identification of some IGF2 antisense transcripts, few data are available on that topic at the H19/IGF2 locus. We identify here a novel transcriptional activity at both the human and the mouse H19/IGF2 imprinted loci. This activity occurs antisense to the H19 gene and has the potential to produce a single 120-kb transcript that we called the 91H RNA. This nuclear and short-lived RNA is not imprinted in mouse but is expressed predominantly from the maternal allele in both mice and humans within the H19 gene region. Moreover, the transcript is stabilized in breast cancer cells and overexpressed in human breast tumors. Finally, knockdown experiments showed that, in humans, 91H, rather than affecting H19 expression, regulates IGF2 expression in trans.
Collapse
|
34
|
Ito Y, Koessler T, Ibrahim AE, Rai S, Vowler SL, Abu-Amero S, Silva AL, Maia AT, Huddleston JE, Uribe-Lewis S, Woodfine K, Jagodic M, Nativio R, Dunning A, Moore G, Klenova E, Bingham S, Pharoah PD, Brenton JD, Beck S, Sandhu MS, Murrell A. Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 2008; 17:2633-43. [PMID: 18541649 PMCID: PMC2515372 DOI: 10.1093/hmg/ddn163] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 05/23/2008] [Indexed: 01/20/2023] Open
Abstract
The imprinted insulin-like growth factor 2 (IGF2) gene is expressed predominantly from the paternal allele. Loss of imprinting (LOI) associated with hypomethylation at the promoter proximal sequence (DMR0) of the IGF2 gene was proposed as a predisposing constitutive risk biomarker for colorectal cancer. We used pyrosequencing to assess whether IGF2 DMR0 methylation is either present constitutively prior to cancer or whether it is acquired tissue-specifically after the onset of cancer. DNA samples from tumour tissues and matched non-tumour tissues from 22 breast and 42 colorectal cancer patients as well as peripheral blood samples obtained from colorectal cancer patients [SEARCH (n=case 192, controls 96)], breast cancer patients [ABC (n=case 364, controls 96)] and the European Prospective Investigation of Cancer [EPIC-Norfolk (n=breast 228, colorectal 225, controls 895)] were analysed. The EPIC samples were collected 2-5 years prior to diagnosis of breast or colorectal cancer. IGF2 DMR0 methylation levels in tumours were lower than matched non-tumour tissue. Hypomethylation of DMR0 was detected in breast (33%) and colorectal (80%) tumour tissues with a higher frequency than LOI indicating that methylation levels are a better indicator of cancer than LOI. In the EPIC population, the prevalence of IGF2 DMR0 hypomethylation was 9.5% and this correlated with increased age not cancer risk. Thus, IGF2 DMR0 hypomethylation occurs as an acquired tissue-specific somatic event rather than a constitutive innate epimutation. These results indicate that IGF2 DMR0 hypomethylation has diagnostic potential for colon cancer rather than value as a surrogate biomarker for constitutive LOI.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Thibaud Koessler
- Strangeways Research Laboratory, Cancer Research UK Department of Oncology, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Ashraf E.K. Ibrahim
- CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sushma Rai
- Department of Biological Sciences, University of Essex, Colchester CQ4 3SQ, Essex, UK
| | - Sarah L. Vowler
- CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sayeda Abu-Amero
- Department of Clinical & Molecular Genetics, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana-Luisa Silva
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ana-Teresa Maia
- CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna E. Huddleston
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Santiago Uribe-Lewis
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Kathryn Woodfine
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Maja Jagodic
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Raffaella Nativio
- CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alison Dunning
- Strangeways Research Laboratory, Cancer Research UK Department of Oncology, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Gudrun Moore
- Department of Clinical & Molecular Genetics, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Elena Klenova
- Department of Biological Sciences, University of Essex, Colchester CQ4 3SQ, Essex, UK
| | - Sheila Bingham
- Medical Research Council Dunn Human Nutrition Unit, University of Cambridge, CB2 0XY
| | - Paul D.P. Pharoah
- Strangeways Research Laboratory, Cancer Research UK Department of Oncology, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - James D. Brenton
- CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephan Beck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Manjinder S. Sandhu
- MRC Centre for Nutrition in Cancer Epidemiology Prevention and Survival, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Adele Murrell
- Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka- Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
35
|
Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I, Hansen RL, Van de Water J, Pessah IN, Jiang R, Robinson WP, LaSalle JM. MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res 2008; 1:169-78. [PMID: 19132145 PMCID: PMC2614877 DOI: 10.1002/aur.24] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epigenetic mechanisms have been proposed to play a role in the etiology of autism. This hypothesis is supported by the discovery of increased MECP2 promoter methylation associated with decreased MeCP2 protein expression in autism male brain. To further understand the influence of female X chromosome inactivation (XCI) and neighboring methylation patterns on aberrant MECP2 promoter methylation in autism, multiple methylation analyses were peformed on brain and blood samples from individuals with autism. Bisulfite sequencing analyses of a region 0.6 kb upstream of MECP2 in brain DNA samples revealed an abrupt transition from a highly methylated region in both sexes to a region unmethylated in males and subject to XCI in females. Chromatin immunoprecipitation analysis demonstrated that the CCTC-binding factor (CTCF) bound to this transition region in neuronal cells, consistent with a chromatin boundary at the methylation transition. Male autism brain DNA samples displayed a slight increase in methylation in this transition region, suggesting a possible aberrant spreading of methylation into the MECP2 promoter in autism males across this boundary element. In addition, autistic female brain DNA samples showed evidence for aberrant MECP2 promoter methylation as an increase in the number of bisulfite sequenced clones with undefined XCI status for MECP2 but not androgen receptor (AR). To further investigate the specificity of MECP2 methylation alterations in autism, blood DNA samples from females and mothers of males with autism were also examined for XCI skewing at AR, but no significant increase in XCI skewing was observed compared to controls. These results suggest that the aberrant MECP2 methylation in autism brain DNA samples is due to locus-specific rather than global X chromosome methylation changes.
Collapse
Affiliation(s)
- Raman P. Nagarajan
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| | - Katherine A. Patzel
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| | - Michelle Martin
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| | - Dag H. Yasui
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| | - Susan E. Swanberg
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and Division of Epidemiology, Divisions of Epidemiology and Environmental and Occupational Health, University of California, Davis, CA, USA
- Medical Institute for Neurodevelopmental Disorders, University of California, Davis, CA, USA
| | - Robin L. Hansen
- Medical Institute for Neurodevelopmental Disorders, University of California, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Judy Van de Water
- Medical Institute for Neurodevelopmental Disorders, University of California, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Isaac N. Pessah
- Medical Institute for Neurodevelopmental Disorders, University of California, Davis, CA, USA
- Department of Veterinary Molecular Biosciences, University of California, Davis, CA, USA
| | - Ruby Jiang
- Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Wendy P. Robinson
- Department of Medical Genetics, University of British Columbia, and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Janine M. LaSalle
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Tomazou EM, Rakyan VK, Lefebvre G, Andrews R, Ellis P, Jackson DK, Langford C, Francis MD, Bäckdahl L, Miretti M, Coggill P, Ottaviani D, Sheer D, Murrell A, Beck S. Generation of a genomic tiling array of the human major histocompatibility complex (MHC) and its application for DNA methylation analysis. BMC Med Genomics 2008; 1:19. [PMID: 18513384 PMCID: PMC2430202 DOI: 10.1186/1755-8794-1-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/30/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. METHODS To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), array comparative genomic hybridization (aCGH) and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. RESULTS Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs). Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. CONCLUSION A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.
Collapse
Affiliation(s)
- Eleni M Tomazou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Vardhman K Rakyan
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Gregory Lefebvre
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David K Jackson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew D Francis
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Liselotte Bäckdahl
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Marcos Miretti
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Penny Coggill
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Diego Ottaviani
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
- Cancer Research UK London Research Institute, Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Denise Sheer
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK
| | - Adele Murrell
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
37
|
Abstract
Alteration in epigenetic regulation of gene expression is a frequent event in human cancer. CpG island hypermethylation and downregulation is observed for many genes involved in a diverse range of functions and pathways that become deregulated in cancer. Paradoxically, global hypomethylation is a hallmark of almost all human cancers. Methylation profiles can be used as molecular markers to distinguish subtypes of cancers and potentially as predictors of disease outcome and treatment response. The role of epigenetics in diagnosis and treatment is likely to increase as mechanisms leading to the transcriptional silencing of genes involved in human cancers are revealed. Drugs that inhibit methylation are used both as a research tool to assess reactivation of genes silenced in cancer by hypermethylation and in the treatment of some hematological malignancies. Multidimensional analysis, evaluating genetic and epigenetic alterations on a global and locus-specific scale in human cancer, is imperative to understand mechanisms driving changes in gene dosage, and as a means towards identifying pathways driving cancer initiation and progression.
Collapse
Affiliation(s)
- Emily A Vucic
- British Columbia Cancer Research Centre, Department of Cancer Genetics and Developmental Biology, 675 West 10th Avenue, V5Z 1L3, Vancouver, BC, Canada.
| | | | | |
Collapse
|
38
|
Abstract
Neural stem cell is presently the research hotspot in neuroscience. Recent progress indicates that epigenetic modulation is closely related to the self-renewal and differentiation of neural stem cell. Epigenetics refer to the study of mitotical/meiotical heritage changes in gene function that cannot be explained by changes in the DNA sequence. Major epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, genomic imprinting, and non-coding RNA. In this review, we focus on the new insights into the epigenetic mechanism for neural stem cells fate.
Collapse
Affiliation(s)
- Hai-Liang Tang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, 200040 China
- National Key Laboratory for Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian-Hong Zhu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, 200040 China
- National Key Laboratory for Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
39
|
Gomos-Klein J, Harrow F, Alarcón J, Ortiz BD. CTCF-Independent, but Not CTCF-Dependent, Elements Significantly Contribute to TCR-α Locus Control Region Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:1088-95. [PMID: 17617601 DOI: 10.4049/jimmunol.179.2.1088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse TCRalpha/TCRdelta/Dad1 gene locus bears a locus control region (LCR) that drives high-level, position-independent, thymic transgene expression in chromatin. It achieves this through DNA sequences that enhance transcription and protect transgene expression from integration site-dependent position effects. The former activity maps to a classical enhancer region (Ealpha). In contrast, the elements supporting the latter capacity that suppresses position effects are incompletely understood. Such elements likely play important roles in their native locus and may resemble insulator/boundary sequences. Insulators support enhancer blocking and/or chromatin barrier activity. Most vertebrate enhancer-blocking insulators are dependent on the CTCF transcription factor and its cognate DNA binding site. However, studies have also revealed CTCF-independent enhancer blocking and barrier insulator activity in the vertebrate genome. The TCRalpha LCR contains a CTCF-dependent and multiple CTCF-independent enhancer-blocking regions whose roles in LCR activity are unknown. Using randomly integrated reporter transgenes in mice, we find that the CTCF region plays a very minor role in LCR function. In contrast, we report the in vivo function of two additional downstream elements located in the region of the LCR that supports CTCF-independent enhancer-blocking activity in cell culture. Internal deletion of either of these elements significantly impairs LCR activity. These results reveal that the position-effect suppression region of the TCRalpha LCR harbors an array of CTCF-independent, positive-acting gene regulatory elements, some of which share characteristics with barrier-type insulators. These elements may help manage the separate regulatory programs of the TCRalpha and Dad1 genes.
Collapse
Affiliation(s)
- Janette Gomos-Klein
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
40
|
Risinger JI, Chandramouli GVR, Maxwell GL, Custer M, Pack S, Loukinov D, Aprelikova O, Litzi T, Schrump DS, Murphy SK, Berchuck A, Lobanenkov V, Barrett JC. Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression. Clin Cancer Res 2007; 13:1713-9. [PMID: 17363524 DOI: 10.1158/1078-0432.ccr-05-2569] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer/testis (CT) genes predominantly expressed in the testis (germ cells) and generally not in other normal tissues are aberrantly expressed in human cancers. This highly restricted expression provides a unique opportunity to use these CT genes for diagnostics, immunotherapeutic, or other targeted therapies. The purpose of this study was to identify those CT genes with the greatest incidence of expression in uterine cancers. EXPERIMENTAL DESIGN We queried the expression of known and putative CT gene transcripts (representing 79 gene loci) using whole genome gene expression arrays. Specifically, the global gene expressions of uterine cancers (n = 122) and normal uteri (n = 10) were determined using expression data from the Affymetrix HG-U133A and HG-U133B chips. Additionally, we also examined the brother of the regulator of imprinted sites (BORIS) transcript by reverse transcription-PCR and quantitative PCR because its transcript was not represented on the array. RESULTS Global microarray analysis detected many CT genes expressed in various uterine cancers; however, no individual CT gene was expressed in more than 25% of all cancers. The expression of the two most commonly expressed CT genes on the arrays, MAGEA9 (24 of 122 cancers and 0 of 10 normal tissues) and Down syndrome critical region 8 (DSCR8)/MMA1 (16 if 122 cancers and 0 of 10 normal tissues), was confirmed by reverse transcription-PCR methods, validating the array screening approach. In contrast to the relatively low incidence of expression of the other CT genes, BORIS expression was detected in 73 of 95 (77%) endometrial cancers and 24 of 31 (77%) uterine mixed mesodermal tumors. CONCLUSIONS These data provide the first extensive survey of multiple CT genes in uterine cancers. Importantly, we detected a high frequency of BORIS expression in uterine cancers, suggesting its potential as an immunologic or diagnostic target for these cancers. Given the high incidence of BORIS expression and its possible regulatory role, an examination of BORIS function in the etiology of these cancers is warranted.
Collapse
Affiliation(s)
- John Ian Risinger
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
De La Rosa-Velázquez IA, Rincón-Arano H, Benítez-Bribiesca L, Recillas-Targa F. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res 2007; 67:2577-85. [PMID: 17363576 DOI: 10.1158/0008-5472.can-06-2024] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic misregulation is a more common feature in human cancer than previously anticipated. In the present investigation, we identified CCCTC-binding factor (CTCF), the multivalent 11-zinc-finger nuclear factor, as a regulator that favors a particular local chromatin conformation of the human retinoblastoma gene promoter. We show that its binding contributes to Rb gene promoter epigenetic stability. Ablation of the CTCF binding site from the human Rb gene promoter induced a rapid epigenetic silencing of reporter gene expression in an integrated genome context. CTCF DNA binding is methylation sensitive, and the methylated Rb-CTCF site is recognized by the Kaiso methyl-CpG-binding protein. This is the first evidence suggesting that CTCF protects the Rb gene promoter, a classic CpG island, against DNA methylation, and when such control region is abnormally methylated Kaiso, and probably its associated repressor complex, induce epigenetic silencing of the promoter. Our results identify CTCF as a novel epigenetic regulator of the human retinoblastoma gene promoter.
Collapse
Affiliation(s)
- Inti A De La Rosa-Velázquez
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | |
Collapse
|
42
|
Recillas-Targa F, De La Rosa-Velázquez IA, Soto-Reyes E, Benítez-Bribiesca L. Epigenetic boundaries of tumour suppressor gene promoters: the CTCF connection and its role in carcinogenesis. J Cell Mol Med 2007; 10:554-68. [PMID: 16989720 PMCID: PMC3933142 DOI: 10.1111/j.1582-4934.2006.tb00420.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic and epigenetic regulations are essential mechanisms that ensure proper early and subsequent mammalian programming of diverse cellular processes. These mechanisms affect transcriptional regulation, stem cell determination and cell cycle control, including senescence and aging. It is not surprising that perturbation of the exquisite balance between genetic and epigenetic regulation can lead to diverse diseases, including cancer. Histone covalent modifications and DNA methylation do not explain all epigenetic phenomena. We describe a previously unsuspected epigenetic factor and propose the incorporation of the 11-zinc finger CCCTC-binding factor, known as CTCF as a novel and multifunctional epigenetic regulator.
Collapse
Affiliation(s)
- Felix Recillas-Targa
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, México.
| | | | | | | |
Collapse
|
43
|
Abstract
Recent advances in studying long-range chromatin interactions have shifted focus from the transcriptional regulation by nearby regulatory elements to recognition of the role of higher-order chromatin organization within the nucleus. These advances have also suggested that CCCTC-binding factor (CTCF), a known chromatin insulator protein, may play a central role in mediating long-range chromatin interactions, directing DNA segments into transcription factories and/or facilitating interactions with other DNA regions. Several models that describe possible mechanisms for multiple functions of CTCF in establishment and maintenance of epigenetic programs are now emerging. Epigenetics plays an important role in normal development and disease including cancer. CTCF involvement in multiple aspects of epigenetic regulation, including regulation of genomic imprinting and X-chromosome inactivation, has been well established. More recently, CTCF was found to play a role in regulation of noncoding transcription and establishing local chromatin structure at the repetitive elements in mammalian genomes, suggesting a new epigenetic basis for several repeat-associated genetic disorders. Emerging evidence also points to the role of CTCF deregulation in the epigenetic imbalance in cancer. These studies provide some of the important missing links in our understanding of epigenetic control of both development and cancer.
Collapse
Affiliation(s)
- Galina N Filippova
- Human Biology Division, Fred Hutchinson Cancer Research Center Seattle, Washington 98109, USA
| |
Collapse
|
44
|
Russo S, Finelli P, Recalcati MP, Ferraiuolo S, Cogliati F, Dalla Bernardina B, Tibiletti MG, Agosti M, Sala M, Bonati MT, Larizza L. Molecular and genomic characterisation of cryptic chromosomal alterations leading to paternal duplication of the 11p15.5 Beckwith-Wiedemann region. J Med Genet 2006; 43:e39. [PMID: 16882733 PMCID: PMC2649021 DOI: 10.1136/jmg.2005.038398] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with increased risk of paediatric tumours. The aetiology involves epigenetic and genetic alterations affecting the 11p15 region, methylation of the differentially methylated DMR2 region being the most common defect, while less frequent aetiologies include mosaic paternal 11p uniparental disomy (11patUPD), maternally inherited mutations of the CDKN1C gene, and hypermethylation of DMR1. A few patients have cytogenetic abnormalities involving 11p15.5. METHODS Screening of 70 trios of BWS probands for 11p mosaic paternal UPD and for cryptic cytogenetic rearrangements using microsatellite segregation analysis identified a profile compatible with paternal 11p15 duplication in two patients. RESULTS Fluorescence in situ hybridisation analysis revealed in one case the unbalanced translocation der(21)t(11;21)(p15.4;q22.3) originated from missegregation of a cryptic paternal balanced translocation. The second patient, trisomic for D11S1318, carried a small de novo dup(11)(p15.5p15.5), resulting from unequal recombination at paternal meiosis I. The duplicated region involves only IC1 and spares IC2/LIT1, as shown by fluorescent in situ hybridisation (FISH) mapping of the proximal duplication breakpoint within the amino-terminal part of KvLQT1. CONCLUSIONS An additional patient with Wolf-Hirschorn syndrome was shown by FISH studies to carry a der(4)t(4;11)(p16.3;p15.4), contributed by a balanced translocation father. Interestingly, refined breakpoint mapping on 11p and the critical regions on the partner 21q and 4p chromosomal regions suggested that both translocations affecting 11p15.4 are mediated by segmental duplications. These findings of chromosomal rearrangements affecting 11p15.5-15.4 provide a tool to further dissect the genomics of the BWS region and the pathogenesis of this imprinting disorder.
Collapse
|
45
|
Tost J, Jammes H, Dupont JM, Buffat C, Robert B, Mignot TM, Mondon F, Carbonne B, Siméoni U, Grangé G, Kerjean A, Ferré F, Gut IG, Vaiman D. Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region. Nucleic Acids Res 2006; 34:5438-48. [PMID: 17012269 PMCID: PMC1636469 DOI: 10.1093/nar/gkl657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR—target of the CTCF insulator—is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site.
Collapse
Affiliation(s)
- Jörg Tost
- Laboratoire d'Epigénétique, Centre National de Génotypage, 2 rue Gaston Crémieux, 91000 Evry, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoo EJ, Cajiao I, Kim JS, Kimura AP, Zhang A, Cooke NE, Liebhaber SA. Tissue-specific chromatin modifications at a multigene locus generate asymmetric transcriptional interactions. Mol Cell Biol 2006; 26:5569-79. [PMID: 16847312 PMCID: PMC1592780 DOI: 10.1128/mcb.00405-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitary cell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd., 428 Clinical Research Building, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70:789-829. [PMID: 16959969 PMCID: PMC1594587 DOI: 10.1128/mmbr.00040-05] [Citation(s) in RCA: 523] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD(+)-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as "programmed necrosis" (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., "histone code"), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD(+)-dependent pathways is discussed.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
48
|
Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 2006; 119:1746-59. [PMID: 16595548 DOI: 10.1242/jcs.02890] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
Collapse
Affiliation(s)
- Verónica Torrano
- Grupo de Biología Molecular del Cáncer, Departamento de Biologia Molecular, Universidad de Cantabria, 39011-Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. DNA motifs associated with aberrant CpG island methylation. Genomics 2006; 87:572-9. [PMID: 16487676 DOI: 10.1016/j.ygeno.2005.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 02/06/2023]
Abstract
Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.
Collapse
Affiliation(s)
- F Alex Feltus
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road. NE, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
50
|
Maeda N, Hayashizaki Y. Genome-wide survey of imprinted genes. Cytogenet Genome Res 2006; 113:144-52. [PMID: 16575174 DOI: 10.1159/000090826] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/15/2005] [Indexed: 01/06/2023] Open
Abstract
The developmental failure of mammalian parthenogenote has been a mystery for a long time and posed a question as to why bi-parental reproduction is necessary for development to term. In the 1980s, it was proven that this failure was not due to the genetic information itself, but to epigenetic modification of genomic DNA. In the following decade, several studies successfully identified imprinted genes which were differentially expressed in a parent-of-origin-specific manner, and it was shown that the differential expression depended on the pattern of DNA methylation. These facts prompted development of genome-wide systematic screening methods based on DNA methylation and differential gene expression to identify imprinted genes. Recently computational approaches and microarray technology have been introduced to identify imprinted genes/loci, contributing to the expansion of our knowledge. However, it has been shown that the gene silencing derived from genomic imprinting is accomplished by several mechanisms in addition to direct DNA methylation, indicating that novel approaches are further required for comprehensive understanding of genomic imprinting. To unveil the mechanism of developmental failure in mammalian parthenogenote, systematic screenings for imprinted genes/loci have been developed. In this review, we describe genomic imprinting focusing on the history of genome-wide screening.
Collapse
Affiliation(s)
- N Maeda
- Genome Science Laboratory, Discovery and Research Institute, RIKEN, Saitama, Japan
| | | |
Collapse
|