1
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Predictive model for cytoneme guidance in Hedgehog signaling based on Ihog- Glypicans interaction. Nat Commun 2022; 13:5647. [PMID: 36163184 PMCID: PMC9512826 DOI: 10.1038/s41467-022-33262-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
During embryonic development, cell-cell communication is crucial to coordinate cell behavior, especially in the generation of differentiation patterns via morphogen gradients. Morphogens are signaling molecules secreted by a source of cells that elicit concentration-dependent responses in target cells. For several morphogens, cell-cell contact via filopodia-like-structures (cytonemes) has been proposed as a mechanism for their gradient formation. Despite of the advances on cytoneme signaling, little is known about how cytonemes navigate through the extracellular matrix and how they orient to find their target. For the Hedgehog (Hh) signaling pathway in Drosophila, Hh co-receptor and adhesion protein Interference hedgehog (Ihog) and the glypicans Dally and Dally-like-protein (Dlp) interact affecting the cytoneme behavior. Here, we describe that differences in the cytoneme stabilization and orientation depend on the relative levels of Ihog and glypicans, suggesting a mechanism for cytoneme guidance. Furthermore, we have developed a mathematical model to study and corroborate this cytoneme guiding mechanism. Cytonemes are specialized filopodia-like structures known to be involved in signal transduction. Here they propose a new predictive model for cytoneme guidance in Hedgehog signaling, which is based on Ihog, Dally, and Dlp protein levels.
Collapse
|
4
|
Bali N, Lee HK(P, Zinn K. Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 2022; 11:e71469. [PMID: 35356892 PMCID: PMC9000958 DOI: 10.7554/elife.71469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Type IIa receptor-like protein tyrosine phosphatases (RPTPs) are essential for neural development. They have cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and coreceptors. We identified the immunoglobulin superfamily CAM Sticks and Stones (Sns) as a new partner for the Drosophila Type IIa RPTP Lar. Lar and Sns bind to each other in embryos and in vitro, and the human Sns ortholog, Nephrin, binds to human Type IIa RPTPs. Genetic analysis shows that Lar and Sns function together to regulate larval neuromuscular junction development, axon guidance in the mushroom body (MB), and innervation of the optic lobe (OL) medulla by R7 photoreceptors. In the neuromuscular system, Lar and Sns are both required in motor neurons, and may function as coreceptors. In the MB and OL, however, the relevant Lar-Sns interactions are in trans (between neurons), so Sns functions as a Lar ligand in these systems.
Collapse
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hyung-Kook (Peter) Lee
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
5
|
Ma K, Xing S, Luan Y, Zhang C, Liu Y, Fei Y, Zhang Z, Liu Y, Chen X. Glypican 4 Regulates Aβ Internalization in Neural Stem Cells Partly via Low-Density Lipoprotein Receptor-Related Protein 1. Front Cell Neurosci 2021; 15:732429. [PMID: 34552470 PMCID: PMC8450433 DOI: 10.3389/fncel.2021.732429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Neural stem cell (NSC) damage has been reported in patients with Alzheimer’s disease. Intracellular Aβ plays a vital role in NSC damage. Heparan sulfate proteoglycans are potent mediators of Aβ enrichment in the brain. We hypothesized the heparan sulfate proteoglycan glypican 4 (Gpc4) regulates Aβ internalization by NSCs. We evaluated Gpc4 expression in NSCs from P0–P2 generations using immunofluorescence. Adenovirus and lentivirus were used to regulate Gpc4 expression in NSCs and APP/PS1 mice, respectively. Co-immunoprecipitation was used to determine the relationship between Gpc4, Aβ, and low-density lipoprotein receptor-related protein 1 (LRP1). Intracellular Aβ concentrations were detected using enzyme-linked immunosorbent assay and immunofluorescence. The role of Gpc4/LRP1 on toxic/physical Aβ-induced effects was evaluated using the JC-1 kit, terminal deoxynucleotidyl transferase dUPT nick end labeling, and western blotting. Gpc4 was stably expressed in NSCs, neurons, and astrocytes. Gpc4 was upregulated by Aβ in NSCs and regulated Aβ internalization. Gpc4 attenuation reduced Aβ uptake; Gpc4 overexpression increased Aβ uptake. Gpc4 regulated Aβ internalization through LRP1 and contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential and cell apoptosis, partly via LRP1. Therefore, Gpc4 is a key regulator of Aβ enrichment in NSCs. Inhibiting Gpc4 rescued the Aβ-induced toxic effect and attenuated the nontoxic Aβ enrichment into intracellular toxic concentrations. Gpc4 contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential damage and cell apoptosis, partly via LRP1. These findings suggest a potential role of Gpc4 in treating Alzheimer’s disease at an early stage, by targeting NSCs.
Collapse
Affiliation(s)
- Kaige Ma
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shan Xing
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yan Luan
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenglin Zhang
- 2018 Grade, Zonglian College, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yulang Fei
- Medical College, Xijing University, Xi'an, China
| | - Zhichao Zhang
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Department of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
6
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
7
|
Zandonadi FS, Castañeda Santa Cruz E, Korvala J. New SDC function prediction based on protein-protein interaction using bioinformatics tools. Comput Biol Chem 2019; 83:107087. [PMID: 31351242 DOI: 10.1016/j.compbiolchem.2019.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The precise roles for SDC have been complex to specify. Assigning and reanalyzing protein and peptide identification to novel protein functions is one of the most important challenges in postgenomic era. Here, we provide SDC molecular description to support, contextualize and reanalyze the corresponding protein-protein interaction (PPI). From SDC-1 data mining, we discuss the potential of bioinformatics tools to predict new biological rules of SDC. Using these methods, we have assembled new possibilities for SDC biology from PPI data, once, the understanding of biology complexity cannot be capture from one simple question.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
9
|
Hakeda-Suzuki S, Takechi H, Kawamura H, Suzuki T. Two receptor tyrosine phosphatases dictate the depth of axonal stabilizing layer in the visual system. eLife 2017; 6:31812. [PMID: 29116043 PMCID: PMC5683756 DOI: 10.7554/elife.31812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring.
Collapse
Affiliation(s)
- Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroki Takechi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
10
|
Won SY, Kim CY, Kim D, Ko J, Um JW, Lee SB, Buck M, Kim E, Heo WD, Lee JO, Kim HM. LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate. Front Mol Neurosci 2017; 10:327. [PMID: 29081732 PMCID: PMC5645493 DOI: 10.3389/fnmol.2017.00327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023] Open
Abstract
The leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that direct axonal growth and neuronal regeneration. LAR-RPTPs are also synaptic adhesion molecules that form trans-synaptic adhesion complexes by binding to various postsynaptic adhesion ligands, such as Slit- and Trk-like family of proteins (Slitrks), IL-1 receptor accessory protein-like 1 (IL1RAPL1), interleukin-1 receptor accessory protein (IL-1RAcP) and neurotrophin receptor tyrosine kinase C (TrkC), to regulate synaptogenesis. Here, we determined the crystal structure of the human LAR-RPTP/IL1RAPL1 complex and found that lateral interactions between neighboring LAR-RPTP/IL1RAPL1 complexes in crystal lattices are critical for the higher-order assembly and synaptogenic activity of these complexes. Moreover, we found that LAR-RPTP binding to the postsynaptic adhesion ligands, Slitrk3, IL1RAPL1 and IL-1RAcP, but not TrkC, induces reciprocal higher-order clustering of trans-synaptic adhesion complexes. Although LAR-RPTP clustering was induced by either HS or postsynaptic adhesion ligands, the dominant binding of HS to the LAR-RPTP was capable of dismantling pre-established LAR-RPTP-mediated trans-synaptic adhesion complexes. These findings collectively suggest that LAR-RPTP clustering for synaptogenesis is modulated by a complex synapse-organizing protein network.
Collapse
Affiliation(s)
- Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Cha Yeon Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Jaewon Ko
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Ji Won Um
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea,*Correspondence: Ho Min Kim Jie-Oh Lee Won Do Heo
| | - Jie-Oh Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea,*Correspondence: Ho Min Kim Jie-Oh Lee Won Do Heo
| | - Ho Min Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea,*Correspondence: Ho Min Kim Jie-Oh Lee Won Do Heo
| |
Collapse
|
11
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|
12
|
HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix. Sci Rep 2016; 6:33916. [PMID: 27671118 PMCID: PMC5037378 DOI: 10.1038/srep33916] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries.
Collapse
|
13
|
Abstract
Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. Summary: This Review article examines the role of heparan sulfate proteoglycans in vertebrate development and explores the concept of an instructive 'sugar code' for modulating development.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - H Joseph Yost
- University of Utah, Department of Neurobiology and Anatomy, Department of Pediatrics, Salt Lake City, UT 84132, USA
| |
Collapse
|
14
|
Murakami K, Tanaka T, Bando Y, Yoshida S. Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in primary sensory neurons. Neuroscience 2015; 300:338-50. [PMID: 26002314 DOI: 10.1016/j.neuroscience.2015.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/26/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have important functions in development of the central nervous system; however, their functions in nerve injury are not yet fully understood. We previously reported the expression of syndecan-1, a type of HSPG, in cranial motor neurons after nerve injury, suggesting the importance of syndecan-1 in the pathology of motor nerve injury. In this study, we examined the expression of syndecan-1, a type of HSPG, in primary sensory neurons after nerve injury in mice. Sciatic nerve axotomy strongly induced the expression of syndecan-1 in a subpopulation of injured dorsal root ganglion (DRG) neurons, which were small in size and had CGRP- or isolectin B4-positive fibers. Syndecan-1 was also distributed in the dorsal horn of the spinal cord ipsilateral to the axotomy, and located on the membrane of axons in lamina II of the dorsal horn. Not only sciatic nerve axotomy, infraorbital nerve axotomy also induced the expression of syndecan-1 in trigeminal ganglion neurons. Moreover, syndecan-1 knockdown in cultured DRG neurons induced a shorter neurite extension. These results suggest that syndecan-1 expression in injured primary sensory neurons may have functional roles in nerve regeneration and synaptic plasticity, resulting in the development of neuropathic pain.
Collapse
Affiliation(s)
- K Murakami
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan.
| | - T Tanaka
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - Y Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| | - S Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan
| |
Collapse
|
15
|
Kim CS, Seong KM, Lee BS, Lee IK, Yang KH, Kim JY, Nam SY. Chronic low-dose γ-irradiation of Drosophila melanogaster larvae induces gene expression changes and enhances locomotive behavior. JOURNAL OF RADIATION RESEARCH 2015; 56:475-484. [PMID: 25792464 PMCID: PMC4426922 DOI: 10.1093/jrr/rru128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 06/04/2023]
Abstract
Although radiation effects have been extensively studied, the biological effects of low-dose radiation (LDR) are controversial. This study investigates LDR-induced alterations in locomotive behavior and gene expression profiles of Drosophila melanogaster. We measured locomotive behavior using larval pupation height and the rapid iterative negative geotaxis (RING) assay after exposure to 0.1 Gy γ-radiation (dose rate of 16.7 mGy/h). We also observed chronic LDR effects on development (pupation and eclosion rates) and longevity (life span). To identify chronic LDR effects on gene expression, we performed whole-genome expression analysis using gene-expression microarrays, and confirmed the results using quantitative real-time PCR. The pupation height of the LDR-treated group at the first larval instar was significantly higher (∼2-fold increase in PHI value, P < 0.05). The locomotive behavior of LDR-treated male flies (∼3 - 5 weeks of age) was significantly increased by 7.7%, 29% and 138%, respectively (P < 0.01), but pupation and eclosion rates and life spans were not significantly altered. Genome-wide expression analysis identified 344 genes that were differentially expressed in irradiated larvae compared with in control larvae. We identified several genes belonging to larval behavior functional groups such as locomotion (1.1%), oxidation reduction (8.0%), and genes involved in conventional functional groups modulated by irradiation such as defense response (4.9%), and sensory and perception (2.5%). Four candidate genes were confirmed as differentially expressed genes in irradiated larvae using qRT-PCR (>2-fold change). These data suggest that LDR stimulates locomotion-related genes, and these genes can be used as potential markers for LDR.
Collapse
Affiliation(s)
- Cha Soon Kim
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| | - Ki Moon Seong
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-736, Korea
| | - Byung Sub Lee
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| | - In Kyung Lee
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| | - Kwang Hee Yang
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| | - Ji-Young Kim
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| | - Seon Young Nam
- Low-dose Radiation Research Team, Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul 132-703, Korea
| |
Collapse
|
16
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
17
|
PTPσ functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission. Proc Natl Acad Sci U S A 2015; 112:1874-9. [PMID: 25624497 DOI: 10.1073/pnas.1410138112] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukocyte common antigen-related receptor protein tyrosine phosphatases--comprising LAR, PTPδ, and PTPσ--are synaptic adhesion molecules that organize synapse development. Here, we identify glypican 4 (GPC-4) as a ligand for PTPσ. GPC-4 showed strong (nanomolar) affinity and heparan sulfate (HS)-dependent interaction with the Ig domains of PTPσ. PTPσ bound only to proteolytically cleaved GPC-4 and formed additional complex with leucine-rich repeat transmembrane protein 4 (LRRTM4) in rat brains. Moreover, single knockdown (KD) of PTPσ, but not LAR, in cultured neurons significantly reduced the synaptogenic activity of LRRTM4, a postsynaptic ligand of GPC-4, in heterologous synapse-formation assays. Finally, PTPσ KD dramatically decreased both the frequency and amplitude of excitatory synaptic transmission. This effect was reversed by wild-type PTPσ, but not by a HS-binding-defective PTPσ mutant. Our results collectively suggest that presynaptic PTPσ, together with GPC-4, acts in a HS-dependent manner to maintain excitatory synapse development and function.
Collapse
|
18
|
Abstract
One of the most fascinating questions in the field of neurobiology is to understand how neuronal connections are properly formed. During development, neurons extend axons that are guided along defined paths by attractive and repulsive cues to reach their brain target. Most of these guidance factors are regulated by heparan sulfate proteoglycans (HSPGs), a family of cell-surface and extracellular core proteins with attached heparan sulfate (HS) glycosaminoglycans. The unique diversity and structural complexity of HS sugar chains, as well as the variety of core proteins, have been proposed to generate a complex "sugar code" essential for brain wiring. While the functions of HSPGs have been well characterized in C. elegans or Drosophila, relatively little is known about their roles in nervous system development in vertebrates. In this chapter, we describe the advantages and the different methods available to study the roles of HSPGs in axon guidance directly in vivo in zebrafish. We provide protocols for visualizing axons in vivo, including precise dye labeling and time-lapse imaging, and for disturbing the functions of HS-modifying enzymes and core proteins, including morpholino, DNA, or RNA injections.
Collapse
Affiliation(s)
- Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Coker Life Science Building, 715 Sumter street, Columbia, SC, 29208, USA,
| |
Collapse
|
19
|
Wilson NH, Stoeckli ET. Sonic hedgehog regulates its own receptor on postcrossing commissural axons in a glypican1-dependent manner. Neuron 2013; 79:478-91. [PMID: 23931997 DOI: 10.1016/j.neuron.2013.05.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Upon reaching their intermediate target, the floorplate, commissural axons acquire responsiveness to repulsive guidance cues, allowing the axons to exit the midline and adopt a contralateral, longitudinal trajectory. The molecular mechanisms that regulate this switch from attraction to repulsion remain poorly defined. Here, we show that the heparan sulfate proteoglycan Glypican1 (GPC1) is required as a coreceptor for the Shh-dependent induction of Hedgehog-interacting protein (Hhip) in commissural neurons. In turn, Hhip is required for postcrossing axons to respond to a repulsive anteroposterior Shh gradient. Thus, Shh is a cue with dual function. In precrossing axons it acts as an attractive guidance molecule in a transcription-independent manner. At the same time, Shh binds to GPC1 to induce the expression of its own receptor, Hhip, which mediates the repulsive response of postcrossing axons to Shh. Our study characterizes a molecular mechanism by which navigating axons switch their responsiveness at intermediate targets.
Collapse
Affiliation(s)
- Nicole H Wilson
- Institute of Molecular Life Sciences, Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
20
|
Abstract
To form complex neuronal networks, growth cones use intermediate targets as guideposts on the path to more distant targets. In the developing zebrafish (Danio rerio), the muscle pioneers (MPs) are intermediate targets for primary motor neurons (PMNs) that innervate the trunk musculature. The mechanisms regulating PMN axon guidance at the MPs are not fully understood. We have identified a new member of the Notum family in zebrafish, Notum 2, which is expressed exclusively in the MPs during primary motor innervation. While homologs of Notum, including zebrafish Notum 1a, negatively regulate the Wnt/β-catenin signaling pathway, we discovered a novel function of Notum 2 in regulating motor axon guidance. Knockdown of Notum 2 resulted in a failure of caudal primary (CaP) axons to migrate beyond the MPs, despite the proper specification of the intermediate target. In contrast, mosaic Notum 2 overexpression induced branching of PMN axons. This effect is specific to Notum 2, as overexpression of Notum 1a does not affect PMN axon trajectory. Ectopic expression of Notum 2 by cells contacting the growing CaP axon induced the highest frequency of branching, suggesting that localized Notum 2 expression affects axon behavior. We propose a model where Notum 2 expression at the MPs provides a cue to release CaP motor axons from their intermediate targets, allowing growth cones to proceed to secondary targets in the ventral muscle. This work demonstrates an unexpected role for a Notum homolog in regulating growth cone migration, separate from the well established functions of other Notum homologs in Wnt signaling.
Collapse
|
21
|
Zhang Y, Wang N, Raab RW, McKown RL, Irwin JA, Kwon I, van Kuppevelt TH, Laurie GW. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J Biol Chem 2013; 288:12090-101. [PMID: 23504321 DOI: 10.1074/jbc.m112.422717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev 2012; 26:2222-35. [PMID: 23028146 DOI: 10.1101/gad.193136.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila transmembrane semaphorin-1a (Sema-1a) is a repulsive guidance cue that uses the Plexin A (PlexA) receptor during neural development. Sema-1a is required in axons to facilitate motor axon defasciculation at guidance choice points. We found that mutations in the trol gene strongly suppress Sema-1a-mediated repulsive axon guidance. trol encodes the phylogenetically conserved secreted heparan sulfate proteoglycan (HSPG) perlecan, a component of the extracellular matrix. Motor axon guidance defects in perlecan mutants resemble those observed in Sema-1a- and PlexA-null mutant embryos, and perlecan mutants genetically interact with PlexA and Sema-1a. Perlecan protein is found in both the CNS and the periphery, with higher expression levels in close proximity to motor axon trajectories and pathway choice points. Restoring perlecan to mutant motor neurons rescues perlecan axon guidance defects. Perlecan augments the reduction in phospho-focal adhesion kinase (phospho-FAK) levels that result from treating insect cells in vitro with Sema-1a, and genetic interactions among integrin, Sema-1a, and FAK in vivo support an antagonistic relationship between Sema-1a and integrin signaling. Therefore, perlecan is required for Sema-1a-PlexA-mediated repulsive guidance, revealing roles for extracellular matrix proteoglycans in modulating transmembrane guidance cue signaling during neural development.
Collapse
|
23
|
Murakami K, Yoshida S. Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in peripheral motor neurons. Neurosci Lett 2012; 527:28-33. [PMID: 22944346 DOI: 10.1016/j.neulet.2012.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023]
Abstract
Heparan sulfate proteoglycans play important roles in embryogenesis, including the development of the central nervous system. However, their function in nerve regeneration is not yet understood. We previously reported that nerve injury induces the expression of heparan sulfate glycosaminoglycans and syndecan-1, a heparan sulfate proteoglycan, in injured hypoglossal motor neurons. In this study, we examined the expression of syndecan family members, including syndecan-1, in injured hypoglossal motor neurons after hypoglossal nerve axotomy. We could not detect any changes in expression after axotomy, except for syndecan-1. The expression of syndecan-1 was markedly increased on post-operative day 7. Syndecan-1 was localized not only in the cell bodies of hypoglossal motor neurons, but also in the injured hypoglossal nerve, and it accumulated in the terminals of regenerating fibers. Similarly, facial nerve axotomy and vagus nerve axotomy induced the expression of syndecan-1 in the facial nucleus, dorsal nucleus of vagus and ambiguous nucleus, respectively. However, sciatic nerve axotomy induced very little syndecan-1 expression in injured spinal motor neurons. These results suggest that syndecan-1 may have a crucial role in the survival of injured motor neurons and in nerve regeneration after injury. Our observations also reveal the diversity of peripheral motor neurons.
Collapse
Affiliation(s)
- Koichi Murakami
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan.
| | | |
Collapse
|
24
|
Horn KE, Xu B, Gobert D, Hamam BN, Thompson KM, Wu CL, Bouchard JF, Uetani N, Racine RJ, Tremblay ML, Ruthazer ES, Chapman CA, Kennedy TE. Receptor protein tyrosine phosphatase sigma regulates synapse structure, function and plasticity. J Neurochem 2012; 122:147-61. [PMID: 22519304 DOI: 10.1111/j.1471-4159.2012.07762.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms that regulate synapse formation and maintenance are incompletely understood. In particular, relatively few inhibitors of synapse formation have been identified. Receptor protein tyrosine phosphatase σ (RPTPσ), a transmembrane tyrosine phosphatase, is widely expressed by neurons in developing and mature mammalian brain, and functions as a receptor for chondroitin sulfate proteoglycans that inhibits axon regeneration following injury. In this study, we address RPTPσ function in the mature brain. We demonstrate increased axon collateral branching in the hippocampus of RPTPσ null mice during normal aging or following chemically induced seizure, indicating that RPTPσ maintains neural circuitry by inhibiting axonal branching. Previous studies demonstrated a role for pre-synaptic RPTPσ promoting synaptic differentiation during development; however, subcellular fractionation revealed enrichment of RPTPσ in post-synaptic densities. We report that neurons lacking RPTPσ have an increased density of pre-synaptic varicosities in vitro and increased dendritic spine density and length in vivo. RPTPσ knockouts exhibit an increased frequency of miniature excitatory post-synaptic currents, and greater paired-pulse facilitation, consistent with increased synapse density but reduced synaptic efficiency. Furthermore, RPTPσ nulls exhibit reduced long-term potentiation and enhanced novel object recognition memory. We conclude that RPTPσ limits synapse number and regulates synapse structure and function in the mature CNS.
Collapse
Affiliation(s)
- Katherine E Horn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Smart AD, Course MM, Rawson J, Selleck S, Van Vactor D, Johnson KG. Heparan sulfate proteoglycan specificity during axon pathway formation in the Drosophila embryo. Dev Neurobiol 2011; 71:608-18. [PMID: 21500363 PMCID: PMC3115403 DOI: 10.1002/dneu.20854] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.
Collapse
Affiliation(s)
- Ashley D. Smart
- Department of Biology and Program in Neuroscience, 175 West 6 Street, Pomona College, Claremont, CA 91711
| | - Meredith M. Course
- Department of Biology and Program in Neuroscience, 175 West 6 Street, Pomona College, Claremont, CA 91711
| | | | | | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Karl G. Johnson
- Department of Biology and Program in Neuroscience, 175 West 6 Street, Pomona College, Claremont, CA 91711
| |
Collapse
|
27
|
Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 2010; 277:3876-89. [PMID: 20840585 DOI: 10.1111/j.1742-4658.2010.07798.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteolytic processes in the extracellular matrix are a major influence on cell adhesion, migration, survival, differentiation and proliferation. The syndecan cell-surface proteoglycans are important mediators of cell spreading on extracellular matrix and respond to growth factors and other biologically active polypeptides. The ectodomain of each syndecan is constitutively shed from many cultured cells, but is accelerated in response to wound healing and diverse pathophysiological events. Ectodomain shedding is an important regulatory mechanism, because it rapidly changes surface receptor dynamics and generates soluble ectodomains that can function as paracrine or autocrine effectors, or competitive inhibitors. It is known that the family of syndecans can be shed by a variety of matrix proteinase, including many metzincins. Shedding is particularly active in proliferating and invasive cells, such as cancer cells, where cell-surface components are continually released. Here, recent research into the shedding of syndecans and its physiological relevance are assessed.
Collapse
Affiliation(s)
- Tina Manon-Jensen
- Deparment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Astigarraga S, Hofmeyer K, Treisman JE. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr Opin Genet Dev 2010; 20:400-7. [PMID: 20434326 DOI: 10.1016/j.gde.2010.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Abstract
Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
29
|
Nishihara S. Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods Enzymol 2010; 480:323-51. [DOI: 10.1016/s0076-6879(10)80015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Prakash S, Maclendon H, Dubreuil CI, Ghose A, Hwa J, Dennehy KA, Tomalty KM, Clark K, Van Vactor D, Clandinin TR. Complex interactions amongst N-cadherin, DLAR, and Liprin-alpha regulate Drosophila photoreceptor axon targeting. Dev Biol 2009; 336:10-9. [PMID: 19766621 PMCID: PMC2783772 DOI: 10.1016/j.ydbio.2009.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022]
Abstract
The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-alpha play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone and are themselves regulated remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-alpha function in a complex to regulate adhesive interactions between pre- and post-synaptic cells and provide a novel mechanism for controlling the activity of Liprin-alpha in the developing growth cone.
Collapse
Affiliation(s)
- Saurabh Prakash
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Helen Maclendon
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Catherine I. Dubreuil
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Aurnab Ghose
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Jennifer Hwa
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelly A. Dennehy
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Katharine M.H. Tomalty
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - Kelsey Clark
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| | - David Van Vactor
- Department of Cell Biology & Program in Neuroscience, 45 Shattuck Street, Harvard Medical School, Boston, MA, 02115
| | - Thomas R. Clandinin
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA, 94305
| |
Collapse
|
31
|
The receptor protein tyrosine phosphatase LAR promotes R7 photoreceptor axon targeting by a phosphatase-independent signaling mechanism. Proc Natl Acad Sci U S A 2009; 106:19399-404. [PMID: 19889974 DOI: 10.1073/pnas.0903961106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Receptor protein tyrosine phosphatases (RPTPs) control many aspects of nervous system development. At the Drosophila neuromuscular junction (NMJ), regulation of synapse growth and maturation by the RPTP LAR depends on catalytic phosphatase activity and on the extracellular ligands Syndecan and Dally-like. We show here that the function of LAR in controlling R7 photoreceptor axon targeting in the visual system differs in several respects. The extracellular domain of LAR important for this process is distinct from the domains known to bind Syndecan and Dally-like, suggesting the involvement of a different ligand. R7 targeting does not require LAR phosphatase activity, but instead depends on the phosphatase activity of another RPTP, PTP69D. In addition, a mutation that prevents dimerization of the intracellular domain of LAR interferes with its ability to promote R7 targeting, although it does not disrupt phosphatase activity or neuromuscular synapse growth. We propose that LAR function in R7 is independent of its phosphatase activity, but requires structural features that allow dimerization and may promote the assembly of downstream effectors.
Collapse
|
32
|
Jen YHL, Musacchio M, Lander AD. Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev 2009; 4:33. [PMID: 19732411 PMCID: PMC2746204 DOI: 10.1186/1749-8104-4-33] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 09/04/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. RESULTS Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1(-/-) phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. CONCLUSION These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development.
Collapse
Affiliation(s)
- Yi-Huei Linda Jen
- Department of Developmental and Cell Biology, Developmental Biology Center and Center for Complex Biological Systems, University of California, Irvine, CA 92697-2300, USA.
| | | | | |
Collapse
|
33
|
Okina E, Manon-Jensen T, Whiteford JR, Couchman JR. Syndecan proteoglycan contributions to cytoskeletal organization and contractility. Scand J Med Sci Sports 2009; 19:479-89. [PMID: 19538537 DOI: 10.1111/j.1600-0838.2009.00941.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cells exert tension on the extracellular matrix through specific receptors that link to the actin cytoskeleton. The best characterized are the integrins, which, when activated and clustered, can link to the extracellular matrix at specialized adhesion zones, known as focal contacts or focal adhesions. However, other transmembrane receptors can also localize there, including one transmembrane proteoglycan, syndecan-4. This heparan sulfate proteoglycan can also link directly to the cytoskeleton through alpha-actinin, and can signal through protein kinase C. In turn, the pathway leads to RhoA and Rho kinases that control actomyosin contractility. Syndecan-4 may, therefore, be a sensor of tension exerted on the matrix. These processes are described here, their significance being potential roles in wound contraction, tumor-stroma interactions, fibrosis and the regulation of motility.
Collapse
Affiliation(s)
- E Okina
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Meyer F, Moussian B. Drosophila multiplexin (Dmp) modulates motor axon pathfinding accuracy. Dev Growth Differ 2009; 51:483-98. [PMID: 19469789 DOI: 10.1111/j.1440-169x.2009.01111.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiplexins are multidomain collagens typically composed of an N-terminal thrombospondin-related domain, an interrupted triple helix and a C-terminal endostatin domain. They feature a clear regulatory function in the development of different tissues, which is chiefly conveyed by the endostatin domain. This domain can be found in proteolytically released monomeric and trimeric versions, and their diverse and opposed effects on the migratory behavior of epithelial and endothelial cell types have been demonstrated in cell culture experiments. The only Drosophila multiplexin displays specific features of both vertebrate multiplexins, collagens XV and XVIII. We characterized the Drosophila multiplexin (dmp) gene and found that three main isoforms are expressed from it, one of which is the monomeric endostatin version. Generation of dmp deletion alleles revealed that Dmp plays a role in motor axon pathfinding, as the mutants exhibit ventral bypass defects of the intersegmental nerve b (ISNb) similar to other motor axon guidance mutants. Transgenic overexpression of monomeric endostatin as well as of full-length Dmp, but not trimeric endostatin, were able to rescue these defects. In contrast, trimeric endostatin increased axon pathfinding accuracy in wild type background. We conclude that Dmp plays a modulating role in motor axon pathfinding and may be part of a buffering system that functions to avoid innervation errors.
Collapse
Affiliation(s)
- Frauke Meyer
- Max-Planck-Institute for Developmental Biology, Department III - Genetics, Spemannstrasse 35, 72076 Tübingen, Germany
| | | |
Collapse
|
35
|
Abstract
The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.
Collapse
|
36
|
Host glycosaminoglycan confers susceptibility to bacterial infection in Drosophila melanogaster. Infect Immun 2008; 77:860-6. [PMID: 19047407 DOI: 10.1128/iai.00995-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many pathogens engage host cell surface glycosaminoglycans, but redundancy in pathogen adhesins and host glycosaminoglycan-anchoring proteins (heparan sulfate proteoglycans) has limited the understanding of the importance of glycosaminoglycan binding during infection. The alpha C protein of group B streptococcus, a virulence determinant for this neonatal human pathogen, binds to host glycosaminoglycan and mediates the entry of bacteria into human cells. We studied alpha C protein-glycosaminoglycan binding in Drosophila melanogaster, whose glycosaminoglycan repertoire resembles that of humans but whose genome includes only three characterized membrane heparan sulfate proteoglycan genes. The knockdown of glycosaminoglycan polymerases or of heparan sulfate proteoglycans reduced the cellular binding of alpha C protein. The interruption of alpha C protein-glycosaminoglycan binding was associated with longer host survival and a lower bacterial burden. These data indicate that the glycosaminoglycan-alpha C protein interaction involves multiple heparan sulfate proteoglycans and impairs bacterial killing. Host glycosaminoglycans, anchored by multiple proteoglycans, thereby determine susceptibility to infection. Because there is homology between Drosophila and human glycosaminoglycan/proteoglycan structures and many pathogens express glycosaminoglycan-binding structures, our data suggest that interfering with glycosaminoglycan binding may protect against infections in humans.
Collapse
|
37
|
Zhao J, Yoneda M, Takeyama M, Inoue Y, Kataoka T, Ohno-Jinno A, Isogai Z, Iwaki M, Zako M. Competitive binding of heparin with hyaluronan to a specific motif in SPACR. J Neurochem 2008; 107:823-31. [PMID: 18786170 DOI: 10.1111/j.1471-4159.2008.05669.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The critical hyaluronan binding motif (HABM) in sialoprotein associated with cones and rods (SPACR) has already been determined. As sialoproteoglycan associated with cones and rods, another interphotoreceptor matrix molecule, binds to chondroitin sulfate and heparin with or without the employment of HABMs, respectively, we evaluated and compared the binding of these glycosaminoglycans to SPACR. A western blotting study in combination with inhibition assays showed that heparin bound specifically to SPACR. A series of GST fusion proteins covering the whole SPACR molecule narrowed down the region responsible for the binding. Finally, a site-directed mutagenesis assay demonstrated that the critical HABM also acts as a specific binding site for heparin. These results were supported with mutual inhibitions by hyaluronan and heparin in analyses using GST fusion proteins and native SPACR derived from retina. Thus, these glycosaminoglycans bind to SPACR in a different manner than to sialoproteoglycan associated with cones and rods. The competitive binding between hyaluronan and heparin to SPACR, mediated through the identical HABM, may dominate the functions of SPACR, in turn involving physiological and pathological processes involved in retinal development, aging and other related disorders.
Collapse
Affiliation(s)
- Jinsong Zhao
- Department of Ophthalmology, Aichi Medical University, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ueyama M, Takemae H, Ohmae Y, Yoshida H, Toyoda H, Ueda R, Nishihara S. Functional analysis of proteoglycan galactosyltransferase II RNA interference mutant flies. J Biol Chem 2007; 283:6076-84. [PMID: 18165227 DOI: 10.1074/jbc.m709189200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heparan sulfate proteoglycan plays an important role in developmental processes by modulating the distribution and stability of the morphogens Wingless, Hedgehog, and Decapentaplegic. Heparan and chondroitin sulfates share a common linkage tetrasaccharide structure, GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser. In the present study, we identified Drosophila proteoglycan galactosyltransferase II (dbeta3GalTII), determined its substrate specificity, and performed its functional analysis by using RNA interference (RNAi) mutant flies. The enzyme transferred a galactose to Galbeta1,4Xyl-pMph, confirming that it is the Drosophila ortholog of human proteoglycan galactosyltransferase II. Real-time PCR analyses revealed that dbeta3GalTII is expressed in various tissues and throughout development. The dbeta3GalTII RNAi mutant flies showed decreased amounts of heparan sulfate proteoglycans. A genetic interaction of dbeta3GalTII with Drosophila beta1,4-galactoslyltransferase 7 (dbeta4GalT7) or with six genes that encode enzymes contributing to the synthesis of glycosaminoglycans indicated that dbeta3GalTII is involved in heparan sulfate synthesis for wing and eye development. Moreover, dbeta3GalTII knock-down caused a decrease in extracellular Wingless in the wing imaginal disc of the third instar larvae. These results demonstrated that dbeta3GalTII contributes to heparan sulfate proteoglycan synthesis in vitro and in vivo and also modulates Wingless distribution.
Collapse
Affiliation(s)
- Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo
| | | | | | | | | | | | | |
Collapse
|
39
|
Gabut M, Dejardin J, Tazi J, Soret J. The SR family proteins B52 and dASF/SF2 modulate development of the Drosophila visual system by regulating specific RNA targets. Mol Cell Biol 2007; 27:3087-97. [PMID: 17283056 PMCID: PMC1899935 DOI: 10.1128/mcb.01876-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout the growth of a whole organism. Modulating the expression levels of five SR proteins in the developing eye of Drosophila melanogaster revealed that these splicing factors induce various phenotypic alterations in eye organogenesis and also affect viability. Although the SR proteins dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impaired normal axonal projections of photoreceptors and neurogenesis in visual ganglia. Microarray analyses revealed that many transcripts involved in brain organogenesis have altered splicing profiles upon both loss and gain of B52 function. Conversely, a large proportion of transcripts regulated by dASF/SF2 are involved in eye development. These differential and specific effects of SR proteins indicate that they function to confer accuracy to developmental gene expression programs by facilitating the cell lineage decisions that underline the generation of tissue identities.
Collapse
Affiliation(s)
- Mathieu Gabut
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier F-34293, France
| | | | | | | |
Collapse
|
40
|
Collins CA, DiAntonio A. Synaptic development: insights from Drosophila. Curr Opin Neurobiol 2007; 17:35-42. [PMID: 17229568 DOI: 10.1016/j.conb.2007.01.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/04/2007] [Indexed: 01/14/2023]
Abstract
In Drosophila, the larval neuromuscular junction is particularly tractable for studying how synapses develop and function. In contrast to vertebrate central synapses, each presynaptic motor neuron and postsynaptic muscle cell is unique and identifiable, and the wiring circuit is invariant. Thus, the full power of Drosophila genetics can be brought to bear on a single, reproducibly identifiable, synaptic terminal. Each individual neuromuscular junction encompasses hundreds of synaptic neurotransmitter release sites housed in a chain of synaptic boutons. Recent advances have increased our understanding of the mechanisms that shape the development of both individual synapses--that is, the transmitter release sites including active zones and their apposed glutamate receptor clusters--and the whole synaptic terminal that connects a pre- and post-synaptic cell.
Collapse
Affiliation(s)
- Catherine A Collins
- Department of Molecular Biology and Pharmacology, Campus Box 8103, 660 South Euclid, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Mahalingam Y, Gallagher JT, Couchman JR. Cellular Adhesion Responses to the Heparin-binding (HepII) Domain of Fibronectin Require Heparan Sulfate with Specific Properties. J Biol Chem 2007; 282:3221-30. [PMID: 17130131 DOI: 10.1074/jbc.m604938200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.
Collapse
Affiliation(s)
- Yashithra Mahalingam
- Division of Biomedical Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
42
|
Abstract
Proteoglycans (PGs), molecules in which glycosaminoglycans (GAGs) are covalently linked to a protein core, are components of the extracellular matrix of all multicellular organisms. Sugar moieties in GAGs are often extensively modified, which make these molecules enormously complex. We discuss here the role of PGs during animal development, emphasizing the in vivo significance of sugar modifications. We explore a model in which the modification patterns of GAG chains may provide a specific code that contributes to the correct development of a multicellular organism.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
43
|
Alexopoulou AN, Multhaupt HAB, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 2006; 39:505-28. [PMID: 17097330 DOI: 10.1016/j.biocel.2006.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 01/24/2023]
Abstract
Syndecans are heparan sulphate proteoglycans consisting of a type I transmembrane core protein modified by heparan sulphate and sometimes chondroitin sulphate chains. They are major proteoglycans of many organs including the vasculature, along with glypicans and matrix proteoglycans. Heparan sulphate chains have potential to interact with a wide array of ligands, including many growth factors, cytokines, chemokines and extracellular matrix molecules relevant to growth regulation in vascular repair, hypoxia, angiogenesis and immune cell function. This is consistent with the phenotypes of syndecan knock-out mice, which while viable and fertile, show deficits in tissue repair. Furthermore, there are potentially important changes in syndecan distribution and function described in a variety of human vascular diseases. The purpose of this review is to describe syndecan structure and function, consider the role of syndecan core proteins in transmembrane signalling and also their roles as co-receptors with other major classes of cell surface molecules. Current debates include potential redundancy between syndecan family members, the significance of multiple heparan sulphate interactions, regulation of the cytoskeleton and cell behaviour and the switch between promoter and inhibitor of important cell functions, resulting from protease-mediated shedding of syndecan ectodomains.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- Division of Biomedical Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
44
|
Kirkpatrick CA, Knox SM, Staatz WD, Fox B, Lercher DM, Selleck SB. The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev Biol 2006; 300:570-82. [PMID: 17055473 DOI: 10.1016/j.ydbio.2006.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Division abnormally delayed (Dally) is one of two glycosylphosphatidylinositol (GPI)-linked heparan sulfate proteoglycans in Drosophila. Numerous studies have shown that it influences Decapentaplegic (Dpp) and Wingless signaling. It has been generally assumed that Dally affects signaling by directly interacting with these growth factors, primarily through its heparan sulfate (HS) chains. To understand the functional contributions of HS chains and protein core we have (1) assessed the growth factor binding properties of purified Dally using surface plasmon resonance, (2) generated a form of Dally that is not HS modified and evaluated its signaling capacity in vivo. Purified Dally binds directly to FGF2, FGF10, and the functional Dpp homolog BMP4. FGF binding is abolished by preincubation with HS, but BMP4 association is partially HS-resistant, suggesting the Dally protein core contributes to binding. Cell binding and co-immunoprecipitation studies suggest that non-HS-modified Dally retains some ability to bind Dpp or BMP4. Expression of HS-deficient Dally in vivo showed it does not promote signaling as well as wild-type Dally, yet it can rescue several dally mutant phenotypes. These data reveal that heparan sulfate modification of Dally is not required for all in vivo activities and that significant functional capacity resides in the protein core.
Collapse
Affiliation(s)
- Catherine A Kirkpatrick
- The Developmental Biology Center, Department of Pediatrics, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
45
|
Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL, Flanagan JG, Van Vactor D. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006; 49:517-31. [PMID: 16476662 DOI: 10.1016/j.neuron.2006.01.026] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/07/2005] [Accepted: 01/23/2006] [Indexed: 12/28/2022]
Abstract
The formation and plasticity of synaptic connections rely on regulatory interactions between pre- and postsynaptic cells. We show that the Drosophila heparan sulfate proteoglycans (HSPGs) Syndecan (Sdc) and Dallylike (Dlp) are synaptic proteins necessary to control distinct aspects of synaptic biology. Sdc promotes the growth of presynaptic terminals, whereas Dlp regulates active zone form and function. Both Sdc and Dlp bind at high affinity to the protein tyrosine phosphatase LAR, a conserved receptor that controls both NMJ growth and active zone morphogenesis. These data and double mutant assays showing a requirement of LAR for actions of both HSPGs lead to a model in which presynaptic LAR is under complex control, with Sdc promoting and Dlp inhibiting LAR in order to control synapse morphogenesis and function.
Collapse
Affiliation(s)
- Karl G Johnson
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chakravarti R, Adams JC. Comparative genomics of the syndecans defines an ancestral genomic context associated with matrilins in vertebrates. BMC Genomics 2006; 7:83. [PMID: 16620374 PMCID: PMC1464127 DOI: 10.1186/1471-2164-7-83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 04/18/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The syndecans are the major family of transmembrane proteoglycans in animals and are known for multiple roles in cell interactions and growth factor signalling during development, inflammatory response, wound-repair and tumorigenesis. Although syndecans have been cloned from several invertebrate and vertebrate species, the extent of conservation of the family across the animal kingdom is unknown and there are gaps in our knowledge of chordate syndecans. Here, we develop a new level of knowledge for the whole syndecan family, by combining molecular phylogeny of syndecan protein sequences with analysis of the genomic contexts of syndecan genes in multiple vertebrate organisms. RESULTS We identified syndecan-encoding sequences in representative Cnidaria and throughout the Bilateria. The C1 and C2 regions of the cytoplasmic domain are highly conserved throughout the animal kingdom. We identified in the variable region a universally-conserved leucine residue and a tyrosine residue that is conserved throughout the Bilateria. Of all the genomes examined, only tetrapod and fish genomes encode multiple syndecans. No syndecan-1 was identified in fish. The genomic context of each vertebrate syndecan gene is syntenic between human, mouse and chicken, and this conservation clearly extends to syndecan-2 and -3 in T. nigroviridis. In addition, tetrapod syndecans were found to be encoded from paralogous chromosomal regions that also contain the four members of the matrilin family. Whereas the matrilin-3 and syndecan-1 genes are adjacent in tetrapods, this chromosomal region appears to have undergone extensive lineage-specific rearrangements in fish. CONCLUSION Throughout the animal kingdom, syndecan extracellular domains have undergone rapid change and elements of the cytoplasmic domains have been very conserved. The four syndecan genes of vertebrates are syntenic across tetrapods, and synteny of the syndecan-2 and -3 genes is apparent between tetrapods and fish. In vertebrates, each of the four family members are encoded from paralogous genomic regions in which members of the matrilin family are also syntenic between tetrapods and fish. This genomic organization appears to have been set up after the divergence of urochordates (Ciona) and vertebrates. The syndecan-1 gene appears to have been lost relatively early in the fish lineage. These conclusions provide the basis for a new model of syndecan evolution in vertebrates and a new perspective for analyzing the roles of syndecans in cells and whole organisms.
Collapse
Affiliation(s)
- Ritu Chakravarti
- Dept. of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Josephine C Adams
- Dept. of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Dept. of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
47
|
Abstract
Heparan sulfate proteoglycans (HSPGs) are ubiquitous molecules that are critical for signaling mediated by many growth factors, including members of the Wnt, transforming growth factor-beta, Hedgehog, and fibroblast growth factor families, and are essential for cell specification, axon guidance, and the establishment of morphogen gradients. Although the heparan sulfate modifications of HSPGs are critical, there is much to learn about how the protein cores contribute to the specific signaling functions of these cell-surface and matrix molecules. Recent work has demonstrated that glypican-1 and syndecan-1 expressed by tumor cells have specific roles in FGF2 signaling, affecting their responses to this mitogenic stimulus.
Collapse
Affiliation(s)
- Scott B Selleck
- The Developmental Biology Center, and Department of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
48
|
Van Vactor D, Wall DP, Johnson KG. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol 2006; 16:40-51. [PMID: 16417999 DOI: 10.1016/j.conb.2006.01.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 01/09/2006] [Indexed: 12/20/2022]
Abstract
With the identification of the molecular determinants of neuronal connectivity, our understanding of the extracellular information that controls axon guidance and synapse formation has evolved from single factors towards the complexity that neurons face in a living organism. As we move in this direction - ready to see the forest for the trees - attention is returning to one of the most ancient regulators of cell-cell interaction: the extracellular matrix. Among many matrix components that influence neuronal connectivity, recent studies of the heparan sulfate proteoglycans suggest that these ancient molecules function as versatile extracellular scaffolds that both sculpt the landscape of extracellular cues and modulate the way that neurons perceive the world around them.
Collapse
Affiliation(s)
- David Van Vactor
- Departments of Cell Biology and Program in Neuroscience and Systems Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | | | | |
Collapse
|
49
|
Fan Y, Soller M, Flister S, Hollmann M, Müller M, Bello B, Egger B, White K, Schäfer MA, Reichert H. The egghead gene is required for compartmentalization in Drosophila optic lobe development. Dev Biol 2005; 287:61-73. [PMID: 16182276 DOI: 10.1016/j.ydbio.2005.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/15/2005] [Accepted: 08/16/2005] [Indexed: 11/18/2022]
Abstract
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting.
Collapse
Affiliation(s)
- Yun Fan
- Biozentrum/Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Whitelock JM, Iozzo RV. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem Rev 2005; 105:2745-64. [PMID: 16011323 DOI: 10.1021/cr010213m] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|