1
|
Dicipulo R, Selland LG, Carpenter RG, Waskiewicz AJ. Functional role for Taz during hindbrain ventricle morphogenesis. PLoS One 2025; 20:e0313262. [PMID: 40080483 PMCID: PMC11906067 DOI: 10.1371/journal.pone.0313262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 10/21/2024] [Indexed: 03/15/2025] Open
Abstract
The brain ventricle system, composed of the ventricular cavities and the cerebral spinal fluid within, performs critical functions including circulation of nutrients, removal of wastes, and cushioning of neural tissues. Development of the hindbrain ventricle requires a series of factors that coordinate its initial formation and subsequent inflation. Previous work has demonstrated that the transcriptional co-activator Taz (also known as WW domain-containing transcription regulator protein 1, Wwtr1), a component of Hippo signalling, is active at hindbrain rhombomere boundaries where it is regulated by mechanotransduction and promotes proliferation. Here, we demonstrate that Taz is also a critical regulator of hindbrain ventricle development. Zebrafish embryos that lack Taz protein fail to undergo initial midline separation of the hindbrain ventricle. Furthermore, the ventricle phenotype is a result of disorganized cytoskeletal F-actin and apicobasal polarity components. In addition, we have demonstrated that the hindbrain rhombomere boundaries are a location of active Wnt-Hippo crosstalk. Through our work, we propose a model where Taz protein is stabilized at rhombomere boundaries and promotes proper cell polarity necessary for formation of the brain ventricle.
Collapse
Affiliation(s)
- Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lyndsay G. Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan G. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J. Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Women & Children’s Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2025; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
3
|
Stehle IF, Imventarza JA, Woerz F, Hoffmann F, Boldt K, Beyer T, Quinn PM, Ueffing M. Human CRB1 and CRB2 form homo- and heteromeric protein complexes in the retina. Life Sci Alliance 2024; 7:e202302440. [PMID: 38570189 PMCID: PMC10992996 DOI: 10.26508/lsa.202302440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.
Collapse
Affiliation(s)
- Isabel F Stehle
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joel A Imventarza
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University; New York, NY, USA
| | - Franziska Woerz
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Mj Quinn
- Department of Ophthalmology, Vagelos College of Physicians & Surgeons, Columbia University; New York, NY, USA
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Zhou X, Zhao L, Wang C, Sun W, Jia B, Li D, Fu J. Diverse functions and pathogenetic role of Crumbs in retinopathy. Cell Commun Signal 2024; 22:290. [PMID: 38802833 PMCID: PMC11129452 DOI: 10.1186/s12964-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.
Collapse
Affiliation(s)
- Xuebin Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Wei Sun
- College of Basic Medical Sciences, Jilin University, Changchun, 130000, China
| | - Bo Jia
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Dan Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
5
|
Burcklé C, Raitière J, Michaux G, Kodjabachian L, Le Bivic A. Crb3 is required to organize the apical domain of multiciliated cells. J Cell Sci 2024; 137:jcs261046. [PMID: 37840525 DOI: 10.1242/jcs.261046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.
Collapse
Affiliation(s)
- Céline Burcklé
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Juliette Raitière
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Laurent Kodjabachian
- Aix Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Turing Centre for Living Systems, Marseille, F-13288 France
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| |
Collapse
|
6
|
Zhang L, Wei X. Stepwise modulation of apical orientational cell adhesions for vertebrate neurulation. Biol Rev Camb Philos Soc 2023; 98:2271-2283. [PMID: 37534608 DOI: 10.1111/brv.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Neurulation transforms the neuroectoderm into the neural tube. This transformation relies on reorganising the configurational relationships between the orientations of intrinsic polarities of neighbouring cells. These orientational intercellular relationships are established, maintained, and modulated by orientational cell adhesions (OCAs). Here, using zebrafish (Danio rerio) neurulation as a major model, we propose a new perspective on how OCAs contribute to the parallel, antiparallel, and opposing intercellular relationships that underlie the neural plate-keel-rod-tube transformation, a stepwise process of cell aggregation followed by cord hollowing. We also discuss how OCAs in neurulation may be regulated by various adhesion molecules, including cadherins, Eph/Ephrins, Claudins, Occludins, Crumbs, Na+ /K+ -ATPase, and integrins. By comparing neurulation among species, we reveal that antiparallel OCAs represent a conserved mechanism for the fusion of the neural tube. Throughout, we highlight some outstanding questions regarding OCAs in neurulation. Answers to these questions will help us understand better the mechanisms of tubulogenesis of many tissues.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Psychology, Dalian Medical University, 9 South LvShun Road, Dalian, 116044, China
| | - Xiangyun Wei
- Departments of Ophthalmology, Developmental Biology, and Microbiology & Molecular Genetics, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Owen N, Toms M, Tian Y, Toualbi L, Richardson R, Young R, Tracey‐White D, Dhami P, Beck S, Moosajee M. Loss of the crumbs cell polarity complex disrupts epigenetic transcriptional control and cell cycle progression in the developing retina. J Pathol 2023; 259:441-454. [PMID: 36656098 PMCID: PMC10601974 DOI: 10.1002/path.6056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The crumbs cell polarity complex plays a crucial role in apical-basal epithelial polarity, cellular adhesion, and morphogenesis. Homozygous variants in human CRB1 result in autosomal recessive Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP), with no established genotype-phenotype correlation. The associated protein complexes have key functions in developmental pathways; however, the underlying disease mechanism remains unclear. Using the oko meduzym289/m289 (crb2a-/- ) zebrafish, we performed integrative transcriptomic (RNA-seq data) and methylomic [reduced representation bisulphite sequencing (RRBS)] analysis of whole retina to identify dysregulated genes and pathways. Delayed retinal cell specification was identified in both the crb2a-/- zebrafish and CRB1 patient-derived retinal organoids, highlighting the dysfunction of cell cycle modulation and epigenetic transcriptional control. Differential DNA methylation analysis revealed novel hypermethylated pathways involving biological adhesion, Hippo, and transforming growth factor β (TGFβ) signalling. By integrating gene expression with DNA methylation using functional epigenetic modules (FEM), we identified six key modules involving cell cycle control and disturbance of TGFβ, bone morphogenetic protein (BMP), Hippo, and SMAD protein signal transduction pathways, revealing significant interactome hotspots relevant to crb2a function and confirming the epigenetic control of gene regulation in early retinal development, which points to a novel mechanism underlying CRB1-retinopathies. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Owen
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Maria Toms
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Yuan Tian
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Lyes Toualbi
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rose Richardson
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | - Rodrigo Young
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
| | | | - Pawan Dhami
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Stephan Beck
- Medical Genomics, UCL Cancer InstituteUniversity College LondonLondonUK
| | - Mariya Moosajee
- UCL Institute of OphthalmologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
- Department of OphthalmologyGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Department of GeneticsMoorfields Eye Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
8
|
Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus. Vet Sci 2022; 9:vetsci9070312. [PMID: 35878329 PMCID: PMC9323928 DOI: 10.3390/vetsci9070312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Diabetes is a chronic metabolic disease characterized by high blood glucose levels (hyperglycemia). Type 2 diabetes mellitus (T2DM) and its complications are a worldwide public health problem, affecting people from all developed and developing countries. Hyperglycemia can cause damage to the vascular system and dysfunction of organs, such as the kidneys, heart, retina of the eyes, and nerves. Diabetic nephropathy (DN) is one of the most severe micro-vascular complications, which can lead to ESRD (end-stage renal disease). Zebrafish are ideal for wide-scale analysis or screening, due to their small size, quick growth, transparent embryos, vast number of offspring, and gene similarity with humans, which combine to make zebrafish an ideal model for diabetes. The readily available tools for gene editing using morpholinos or CRISPR/Cas9, as well as chemical/drug therapy by microinjection or skin absorption, enable zebrafish diabetes mellitus models to be established in a number of ways. In this review, we emphasize the physiological and pathological processes relating to micro-vascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish. This study specifies the benefits and drawbacks and future perspective of using zebrafish as a disease model. Abstract Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
Collapse
|
9
|
Weatherly SM, Collin GB, Charette JR, Stone L, Damkham N, Hyde LF, Peterson JG, Hicks W, Carter GW, Naggert JK, Krebs MP, Nishina PM. Identification of Arhgef12 and Prkci as genetic modifiers of retinal dysplasia in the Crb1rd8 mouse model. PLoS Genet 2022; 18:e1009798. [PMID: 35675330 PMCID: PMC9212170 DOI: 10.1371/journal.pgen.1009798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/21/2022] [Accepted: 05/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.
Collapse
Affiliation(s)
| | - Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wanda Hicks
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
10
|
Rathbun LI, Everett CA, Bergstralh DT. Emerging Cnidarian Models for the Study of Epithelial Polarity. Front Cell Dev Biol 2022; 10:854373. [PMID: 35433674 PMCID: PMC9012326 DOI: 10.3389/fcell.2022.854373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are vital to the function of most organs, providing critical functions such as secretion, protection, and absorption. Cells within an epithelial layer must coordinate to create functionally distinct apical, lateral, and basal surfaces in order to maintain proper organ function and organism viability. This is accomplished through the careful targeting of polarity factors to their respective locations within the cell, as well as the strategic placement of post-mitotic cells within the epithelium during tissue morphogenesis. The process of establishing and maintaining epithelial tissue integrity is conserved across many species, as important polarity factors and spindle orientation mechanisms can be found in many phyla. However, most of the information gathered about these processes and players has been investigated in bilaterian organisms such as C. elegans, Drosophila, and vertebrate species. This review discusses the advances made in the field of epithelial polarity establishment from more basal organisms, and the advantages to utilizing these simpler models. An increasing number of cnidarian model organisms have been sequenced in recent years, such as Hydra vulgaris and Nematostella vectensis. It is now feasible to investigate how polarity is established and maintained in basal organisms to gain an understanding of the most basal requirements for epithelial tissue morphogenesis.
Collapse
Affiliation(s)
| | | | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
11
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Falkenberg LG, Beckman SA, Ravisankar P, Dohn TE, Waxman JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. Dis Model Mech 2021; 14:dmm048439. [PMID: 34028558 PMCID: PMC8214733 DOI: 10.1242/dmm.048439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
The pathology of primary ciliary dyskinesia (PCD) is predominantly attributed to impairment of motile cilia. However, PCD patients also have perplexing functional defects in myeloid cells, which lack motile cilia. Here, we show that coiled-coil domain-containing protein 103 (CCDC103), one of the genes that, when mutated, is known to cause PCD, is required for the proliferation and directed migration of myeloid cells. CCDC103 is expressed in human myeloid cells, where it colocalizes with cytoplasmic microtubules. Zebrafish ccdc103/schmalhans (smh) mutants have macrophages and neutrophils with reduced proliferation, abnormally rounded cell morphology and an inability to migrate efficiently to the site of sterile wounds, all of which are consistent with a loss of cytoplasmic microtubule stability. Furthermore, we demonstrate that direct interactions between CCDC103 and sperm associated antigen 6 (SPAG6), which also promotes microtubule stability, are abrogated by CCDC103 mutations from PCD patients, and that spag6 zebrafish mutants recapitulate the myeloid defects observed in smh mutants. In summary, we have illuminated a mechanism, independent of motile cilia, to explain functional defects in myeloid cells from PCD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lauren G. Falkenberg
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah A. Beckman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tracy E. Dohn
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
13
|
Clark BS, Miesfeld JB, Flinn MA, Collery RF, Link BA. Dynamic Polarization of Rab11a Modulates Crb2a Localization and Impacts Signaling to Regulate Retinal Neurogenesis. Front Cell Dev Biol 2021; 8:608112. [PMID: 33634099 PMCID: PMC7900515 DOI: 10.3389/fcell.2020.608112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023] Open
Abstract
Interkinetic nuclear migration (IKNM) is the process in which pseudostratified epithelial nuclei oscillate from the apical to basal surface and in phase with the mitotic cycle. In the zebrafish retina, neuroepithelial retinal progenitor cells (RPCs) increase Notch activity with apical movement of the nuclei, and the depth of nuclear migration correlates with the probability that the next cell division will be neurogenic. This study focuses on the mechanisms underlying the relationships between IKNM, cell signaling, and neurogenesis. In particular, we have explored the role IKNM has on endosome biology within RPCs. Through genetic manipulation and live imaging in zebrafish, we find that early (Rab5-positive) and recycling (Rab11a-positive) endosomes polarize in a dynamic fashion within RPCs and with reference to nuclear position. Functional analyses suggest that dynamic polarization of recycling endosomes and their activity within the neuroepithelia modulates the subcellular localization of Crb2a, consequently affecting multiple signaling pathways that impact neurogenesis including Notch, Hippo, and Wnt activities. As nuclear migration is heterogenous and asynchronous among RPCs, Rab11a-affected signaling within the neuroepithelia is modulated in a differential manner, providing mechanistic insight to the correlation of IKNM and selection of RPCs to undergo neurogenesis.
Collapse
Affiliation(s)
- Brian S Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joel B Miesfeld
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A Flinn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Geusz RJ, Wang A, Chiou J, Lancman JJ, Wetton N, Kefalopoulou S, Wang J, Qiu Y, Yan J, Aylward A, Ren B, Dong PDS, Gaulton KJ, Sander M. Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development. eLife 2021; 10:e59067. [PMID: 33544077 PMCID: PMC7864636 DOI: 10.7554/elife.59067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.
Collapse
Affiliation(s)
- Ryan J Geusz
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Allen Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Joshua Chiou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Nichole Wetton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Samy Kefalopoulou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Jinzhao Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Yunjiang Qiu
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Jian Yan
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Anthony Aylward
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Bing Ren
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Ludwig Institute for Cancer ResearchSan DiegoUnited States
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| |
Collapse
|
15
|
Hao Q, Zheng M, Weng K, Hao Y, Zhou Y, Lin Y, Gao F, Kou Z, Kawamura S, Yao K, Xu P, Chen J, Zou J. Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish. J Genet Genomics 2021; 48:52-62. [PMID: 33771456 DOI: 10.1016/j.jgg.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Although the unique organization of vertebrate cone mosaics was first described long ago, both their underlying molecular basis and physiological significance are largely unknown. Here, we demonstrate that Crumbs proteins, the key regulators of epithelial apical polarity, establish the planar cellular polarity of photoreceptors in zebrafish. Via heterophilic Crb2a-Crb2b interactions, the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors. The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors, thereby stabilizing the geometric organization of cone mosaics. Notably, loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation. These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.
Collapse
Affiliation(s)
- Qinlong Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kechao Weng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yumei Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuchen Lin
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Feng Gao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ziqi Kou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jinghai Chen
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China.
| |
Collapse
|
16
|
Hao Y, Zhou Y, Yu Y, Zheng M, Weng K, Kou Z, Liang J, Zhang Q, Tang X, Xu P, Link BA, Yao K, Zou J. Interplay of MPP5a with Rab11 synergistically builds epithelial apical polarity and zonula adherens. Development 2020; 147:dev184457. [PMID: 33060129 DOI: 10.1242/dev.184457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/09/2020] [Indexed: 11/20/2022]
Abstract
Adherens junction remodeling regulated by apical polarity proteins constitutes a major driving force for tissue morphogenesis, although the precise mechanism remains inconclusive. Here, we report that, in zebrafish, the Crumbs complex component MPP5a interacts with small GTPase Rab11 in Golgi to transport cadherin and Crumbs components synergistically to the apical domain, thus establishing apical epithelial polarity and adherens junctions. In contrast, Par complex recruited by MPP5a is incapable of interacting with Rab11 but might assemble cytoskeleton to facilitate cadherin exocytosis. In accordance, dysfunction of MPP5a induces an invasive migration of epithelial cells. This adherens junction remodeling pattern is frequently observed in zebrafish lens epithelial cells and neuroepithelial cells. The data identify an unrecognized MPP5a-Rab11 complex and describe its essential role in guiding apical polarization and zonula adherens formation in epithelial cells.
Collapse
Affiliation(s)
- Yumei Hao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao Zhou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yinhui Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingjie Zheng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kechao Weng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Kou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiancheng Liang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiajing Tang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310058, China
| |
Collapse
|
17
|
Nadolski NJ, Balay SD, Wong CXL, Waskiewicz AJ, Hocking JC. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32293666 PMCID: PMC7401959 DOI: 10.1167/iovs.61.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.
Collapse
|
18
|
Zebrafish Crb1, Localizing Uniquely to the Cell Membranes around Cone Photoreceptor Axonemes, Alleviates Light Damage to Photoreceptors and Modulates Cones' Light Responsiveness. J Neurosci 2020; 40:7065-7079. [PMID: 32817065 DOI: 10.1523/jneurosci.0497-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
The crumbs (crb) apical polarity genes are essential for the development and functions of epithelia. Adult zebrafish retinal neuroepithelium expresses three crb genes (crb1, crb2a, and crb2b); however, it is unknown whether and how Crb1 differs from other Crb proteins in expression, localization, and functions. Here, we show that, unlike zebrafish Crb2a and Crb2b as well as mammalian Crb1 and Crb2, zebrafish Crb1 does not localize to the subapical regions of photoreceptors and Müller glial cells; rather, it localizes to a small region of cone outer segments: the cell membranes surrounding the axonemes. Moreover, zebrafish Crb1 is not required for retinal morphogenesis and photoreceptor patterning. Interestingly, Crb1 promotes rod survival under strong white light irradiation in a previously unreported non--cell-autonomous fashion; in addition, Crb1 delays UV and blue cones' chromatin condensation caused by UV light irradiation. Finally, Crb1 plays a role in cones' responsiveness to light through an arrestin-translocation-independent mechanism. The localization of Crb1 and its functions do not differ between male and female fish. We conclude that zebrafish Crb1 has diverged from other vertebrate Crb proteins, representing a neofunctionalization in Crb biology during evolution.SIGNIFICANCE STATEMENT Apicobasal polarity of epithelia is an important property that underlies the morphogenesis and functions of epithelial tissues. Epithelial apicobasal polarity is controlled by many polarity genes, including the crb genes. In vertebrates, multiple crb genes have been identified, but the differences in their expression patterns and functions are not fully understood. Here, we report a novel subcellular localization of zebrafish Crb1 in retinal cone photoreceptors and evidence for its new functions in photoreceptor maintenance and light responsiveness. This study expands our understanding of the biology of the crb genes in epithelia, including retinal neuroepithelium.
Collapse
|
19
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Tait CM, Chinnaiya K, Manning E, Murtaza M, Ashton JP, Furley N, Hill CJ, Alves CH, Wijnholds J, Erdmann KS, Furley A, Rashbass P, Das RM, Storey KG, Placzek M. Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. PLoS Biol 2020; 18:e3000470. [PMID: 32150534 PMCID: PMC7108746 DOI: 10.1371/journal.pbio.3000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/31/2020] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
In the spinal cord, the central canal forms through a poorly understood process termed dorsal collapse that involves attrition and remodelling of pseudostratified ventricular layer (VL) cells. Here, we use mouse and chick models to show that dorsal ventricular layer (dVL) cells adjacent to dorsal midline Nestin(+) radial glia (dmNes+RG) down-regulate apical polarity proteins, including Crumbs2 (CRB2) and delaminate in a stepwise manner; live imaging shows that as one cell delaminates, the next cell ratchets up, the dmNes+RG endfoot ratchets down, and the process repeats. We show that dmNes+RG secrete a factor that promotes loss of cell polarity and delamination. This activity is mimicked by a secreted variant of Crumbs2 (CRB2S) which is specifically expressed by dmNes+RG. In cultured MDCK cells, CRB2S associates with apical membranes and decreases cell cohesion. Analysis of Crb2F/F/Nestin-Cre+/- mice, and targeted reduction of Crb2/CRB2S in slice cultures reveal essential roles for transmembrane CRB2 (CRB2TM) and CRB2S on VL cells and dmNes+RG, respectively. We propose a model in which a CRB2S-CRB2TM interaction promotes the progressive attrition of the dVL without loss of overall VL integrity. This novel mechanism may operate more widely to promote orderly progenitor delamination.
Collapse
Affiliation(s)
- Christine M Tait
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kavitha Chinnaiya
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Elizabeth Manning
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Mariyam Murtaza
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - John-Paul Ashton
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Chris J Hill
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - C Henrique Alves
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kai S Erdmann
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Furley
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Penny Rashbass
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Raman M Das
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
The extracellular and intracellular regions of Crb2a play distinct roles in guiding the formation of the apical zonula adherens. Biomed Pharmacother 2020; 125:109942. [PMID: 32044715 DOI: 10.1016/j.biopha.2020.109942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
The transmembrane protein Crumbs (Crb), a key regulator of apical polarity, has a known involvement in establishment of the apical zonula adherens in epithelia, although the precise mechanism remains elusive. The zonula adherens are required to maintain the integrity and orderly arrangement of epithelia. Loss of the zonula adherens leads to morphogenetic defects in the tissues derived from epithelium. In this study, we revealed that the intracellular tail of Crb2a promoted the apical distribution of adherens junctions (AJs) in zebrafish retinal and lens epithelia, but caused assembly into unstable punctum adherens-like adhesion plaques. The extracellular region of Crb2a guided the transformation of AJs from the punctum adherens into stable zonula adherens. Accordingly, a truncated form of Crb2a lacking the extracellular region (Crb2aΔEX) could only partially rescue the retinal patterning defects in crb2a null mutant zebrafish (crb2am289). By contrast, constitutive over-expression of Crb2aΔEX disrupted the integrity of the outer limiting membrane in photoreceptors, which is derived from the zonula adherens of the retinal neuroepithelium. This study demonstrated that both the extracellular region and the intracellular tail of Crb2a are required to guide the formation of the apical zonula adherens.
Collapse
|
22
|
Kujawski S, Crespo C, Luz M, Yuan M, Winkler S, Knust E. Loss of Crb2b-lf leads to anterior segment defects in old zebrafish. Biol Open 2020; 9:bio047555. [PMID: 31988089 PMCID: PMC7044448 DOI: 10.1242/bio.047555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
Defects in the retina or the anterior segment of the eye lead to compromised vision and affect millions of people. Understanding how these ocular structures develop and are maintained is therefore of paramount importance. The maintenance of proper vision depends, among other factors, on the function of genes controlling apico-basal polarity. In fact, mutations in polarity genes are linked to retinal degeneration in several species, including human. Here we describe a novel zebrafish crb2b allele (crb2be40 ), which specifically affects the crb2b long isoform. crb2be40 mutants are viable and display normal ocular development. However, old crb2be40 mutant fish develop multiple defects in structures of the anterior segment, which includes the cornea, the iris and the lens. Phenotypes are characterised by smaller pupils due to expansion of the iris and tissues of the iridocorneal angle, an increased number of corneal stromal keratocytes, an abnormal corneal endothelium and an expanded lens capsule. These findings illustrate a novel role for crb2b in the maintenance of the anterior segment and hence add an important function to this polarity regulator, which may be conserved in other vertebrates including humans.
Collapse
Affiliation(s)
- Satu Kujawski
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cátia Crespo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marta Luz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
23
|
Abstract
The inner ear, which mediates the senses of hearing and balance, derives from a simple ectodermal vesicle in the vertebrate embryo. In the zebrafish, the otic placode and vesicle express a whole suite of genes required for ciliogenesis and ciliary motility. Every cell of the otic epithelium is ciliated at early stages; at least three different ciliary subtypes can be distinguished on the basis of length, motility, genetic requirements and function. In the early otic vesicle, most cilia are short and immotile. Long, immotile kinocilia on the first sensory hair cells tether the otoliths, biomineralized aggregates of calcium carbonate and protein. Small numbers of motile cilia at the poles of the otic vesicle contribute to the accuracy of otolith tethering, but neither the presence of cilia nor ciliary motility is absolutely required for this process. Instead, otolith tethering is dependent on the presence of hair cells and the function of the glycoprotein Otogelin. Otic cilia or ciliary proteins also mediate sensitivity to ototoxins and coordinate responses to extracellular signals. Other studies are beginning to unravel the role of ciliary proteins in cellular compartments other than the kinocilium, where they are important for the integrity and survival of the sensory hair cell. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Carney KR, Bryan CD, Gordon HB, Kwan KM. LongAxis: A MATLAB-based program for 3D quantitative analysis of epithelial cell shape and orientation. Dev Biol 2019; 458:1-11. [PMID: 31589834 DOI: 10.1016/j.ydbio.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Epithelial morphogenesis, a fundamental aspect of development, generates 3-dimensional tissue structures crucial for organ function. Underlying morphogenetic mechanisms are, in many cases, poorly understood, but mutations that perturb organ development can affect epithelial cell shape and orientation - difficult features to quantify in three dimensions. The basic structure of the eye is established via epithelial morphogenesis: in the embryonic optic cup, the retinal progenitor epithelium enwraps the lens. We previously found that loss of the extracellular matrix protein laminin-alpha1 (lama1) led to mislocalization of apical polarity markers and apparent misorientation of retinal progenitors. We sought to visualize and quantify this phenotype, and determine whether loss of the apical polarity determinant pard3 might rescue the phenotype. To this end, we developed LongAxis, a MATLAB-based program optimized for the retinal progenitor neuroepithelium. LongAxis facilitates 3-dimensional cell segmentation, visualization, and quantification of cell orientation and morphology. Using LongAxis, we find that retinal progenitors in the lama1-/- optic cup are misoriented and slightly less elongated. In the lama1;MZpard3 double mutant, cells are still misoriented, but larger. Therefore, loss of pard3 does not rescue loss of lama1, and in fact uncovers a novel cell size phenotype. LongAxis enables population-level visualization and quantification of retinal progenitor cell orientation and morphology. These results underscore the importance of visualizing and quantifying cell orientation and shape in three dimensions within the retina.
Collapse
Affiliation(s)
- Keith R Carney
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
25
|
Notch-mediated inhibition of neurogenesis is required for zebrafish spinal cord morphogenesis. Sci Rep 2019; 9:9958. [PMID: 31292468 PMCID: PMC6620349 DOI: 10.1038/s41598-019-46067-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
The morphogenesis of the nervous system requires coordinating the specification and differentiation of neural precursor cells, the establishment of neuroepithelial tissue architecture and the execution of specific cellular movements. How these aspects of neural development are linked is incompletely understood. Here we inactivate a major regulator of embryonic neurogenesis - the Delta/Notch pathway - and analyze the effect on zebrafish central nervous system morphogenesis. While some parts of the nervous system can establish neuroepithelial tissue architecture independently of Notch, Notch signaling is essential for spinal cord morphogenesis. In this tissue, Notch signaling is required to repress neuronal differentiation and allow thereby the emergence of neuroepithelial apico-basal polarity. Notch-mediated suppression of neurogenesis is also essential for the execution of specific morphogenetic movements of zebrafish spinal cord precursor cells. In the wild-type neural tube, cells divide at the organ midline to contribute one daughter cell to each organ half. Notch signaling deficient animals fail to display this behavior and therefore form a misproportioned spinal cord. Taken together, our findings show that Notch-mediated suppression of neurogenesis is required to allow the execution of morphogenetic programs that shape the zebrafish spinal cord.
Collapse
|
26
|
Date P, Ackermann P, Furey C, Fink IB, Jonas S, Khokha MK, Kahle KT, Deniz E. Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus. Sci Rep 2019; 9:6196. [PMID: 30996265 PMCID: PMC6470164 DOI: 10.1038/s41598-019-42549-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/02/2019] [Indexed: 12/30/2022] Open
Abstract
Cerebrospinal fluid (CSF) flow in the brain ventricles is critical for brain development. Altered CSF flow dynamics have been implicated in congenital hydrocephalus (CH) characterized by the potentially lethal expansion of cerebral ventricles if not treated. CH is the most common neurosurgical indication in children effecting 1 per 1000 infants. Current treatment modalities are limited to antiquated brain surgery techniques, mostly because of our poor understanding of the CH pathophysiology. We lack model systems where the interplay between ependymal cilia, embryonic CSF flow dynamics and brain development can be analyzed in depth. This is in part due to the poor accessibility of the vertebrate ventricular system to in vivo investigation. Here, we show that the genetically tractable frog Xenopus tropicalis, paired with optical coherence tomography imaging, provides new insights into CSF flow dynamics and role of ciliary dysfunction in hydrocephalus pathogenesis. We can visualize CSF flow within the multi-chambered ventricular system and detect multiple distinct polarized CSF flow fields. Using CRISPR/Cas9 gene editing, we modeled human L1CAM and CRB2 mediated aqueductal stenosis. We propose that our high-throughput platform can prove invaluable for testing candidate human CH genes to understand CH pathophysiology.
Collapse
Affiliation(s)
- Priya Date
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Pascal Ackermann
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Charuta Furey
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Ina Berenice Fink
- Department of Medical Informatics, Uniklinik RWTH Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Kristopher T Kahle
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Neurosurgery and Cellular & Molecular Physiology, and Centers for Mendelian Genomics, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
27
|
Photoreceptor cell development requires prostaglandin signaling in the zebrafish retina. Biochem Biophys Res Commun 2019; 510:230-235. [DOI: 10.1016/j.bbrc.2019.01.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
|
28
|
Johnson CA. Obituary: Jarema Malicki (1965-2019). Development 2019. [DOI: 10.1242/dev.176677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Jarema Malicki, a pioneer in developmental studies of the vertebrate retina, died on 4th January 2019, shortly after being diagnosed with cancer. Here, I reflect on Jarema's life and work, with a particular focus on his research interests in zebrafish as a model organism for vertebrate retinogenesis and human ciliopathies.
Collapse
Affiliation(s)
- Colin A. Johnson
- Leeds Institute of Medical Research, The University of Leeds, Wellcome Trust Brenner Building, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
29
|
Jiménez-Amilburu V, Stainier DYR. The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish. Development 2019; 146:dev.171207. [DOI: 10.1242/dev.171207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Tissue morphogenesis requires changes in cell-cell adhesion as well as in cell shape and polarity. Cardiac trabeculation is a morphogenetic process essential to form a functional ventricular wall. Here we show that zebrafish hearts lacking Crb2a, a component of the Crumbs polarity complex, display compact wall integrity defects and fail to form trabeculae. Crb2a localization is very dynamic at a time when other cardiomyocyte junctional proteins also relocalize. Before the initiation of cardiomyocyte delamination to form the trabecular layer, Crb2a is expressed in all ventricular cardiomyocytes and colocalizes with the junctional protein ZO-1. Subsequently, Crb2a becomes localized all along the apical membrane of compact layer cardiomyocytes and is downregulated in the delaminating cardiomyocytes. We show that blood flow and Nrg/ErbB2 signaling regulate Crb2a localization dynamics. crb2a−/− display a multilayered wall with polarized cardiomyocytes, a unique phenotype. Our data further indicate that Crb2a regulates cardiac trabeculation by controlling the localization of tight and adherens junction proteins in cardiomyocytes. Importantly, transplantation data show that Crb2a controls CM behavior in a cell-autonomous manner in the sense that crb2a−/− cardiomyocytes transplanted into wild-type animals were always found in the trabecular layer. Altogether, our study reveals a critical role for Crb2a during cardiac development.
Collapse
Affiliation(s)
- Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
30
|
Crespo C, Knust E. Characterisation of maturation of photoreceptor cell subtypes during zebrafish retinal development. Biol Open 2018; 7:bio.036632. [PMID: 30237290 PMCID: PMC6262866 DOI: 10.1242/bio.036632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor cells (PRCs) mature from simple epithelial cells, a process characterised by growth and compartmentalisation of the apical membrane into an inner and an outer segment. So far, a PRC subtype-specific description of morphological and cellular changes in the developing zebrafish retina is missing. Here, we performed an in-depth characterisation of four of the five PRC subtypes of the zebrafish retina between 51 and 120 h post fertilisation, including quantification of the size of different compartments, localisation of polarity proteins and positioning of organelles. One of the major findings was the anisotropic and subtype-specific growth of the different PRC compartments. In addition, a transient accumulation of endoplasmic reticulum in rod PRCs, changes in chromatin organisation in UV sensitive cones and differential expression of polarity proteins during the initial stages of PRC maturation were observed. The results obtained provide a developmental timeline that can be used as a platform for future studies on PRC maturation and function. This platform was applied to document that increased exposure to light leads to smaller apical domains of PRCs. Summary: We characterised subtype-specific growth of the different photoreceptor compartments, organelle distribution and the influence of light on the growth of the apical membrane.
Collapse
Affiliation(s)
- Cátia Crespo
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| |
Collapse
|
31
|
Polarized Organization of the Cytoskeleton: Regulation by Cell Polarity Proteins. J Mol Biol 2018; 430:3565-3584. [DOI: 10.1016/j.jmb.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
|
32
|
Apodaca G. Role of Polarity Proteins in the Generation and Organization of Apical Surface Protrusions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027813. [PMID: 28264821 DOI: 10.1101/cshperspect.a027813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protruding from the apical surfaces of epithelial cells are specialized structures, including cilia, microplicae, microvilli, and stereocilia. These contribute to epithelial function by cushioning the apical surface, by amplifying its surface area to facilitate nutrient absorption, and by promoting sensory transduction and barrier function. Despite these important roles, and the diseases that result when their formation is perturbed, there remain significant gaps in our understanding of the biogenesis of apical protrusions, or the pathways that promote their organization and orientation once at the apical surface. Here, I review some general aspects of these apical structures, and then discuss our current understanding of their formation and organization with respect to proteins that specify apicobasolateral polarity and planar cell polarity.
Collapse
Affiliation(s)
- Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
33
|
Fu J, Nagashima M, Guo C, Raymond PA, Wei X. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes. Invest Ophthalmol Vis Sci 2018; 59:505-518. [PMID: 29368007 PMCID: PMC5786287 DOI: 10.1167/iovs.17-22572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/10/2017] [Indexed: 01/01/2023] Open
Abstract
Purpose Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. Methods We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Results Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. Conclusions These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.
Collapse
Affiliation(s)
- Jinling Fu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Mikiko Nagashima
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States
| | - Chuanyu Guo
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Pamela A. Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, United States
| | - Xiangyun Wei
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
34
|
Hazime K, Malicki JJ. Apico-basal Polarity Determinants Encoded by crumbs Genes Affect Ciliary Shaft Protein Composition, IFT Movement Dynamics, and Cilia Length. Genetics 2017; 207:1041-1051. [PMID: 28882989 PMCID: PMC5676222 DOI: 10.1534/genetics.117.300260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/23/2017] [Indexed: 02/04/2023] Open
Abstract
One of the most obvious manifestations of polarity in epithelia is the subdivision of the cell surface by cell junctions into apical and basolateral domains. crumbs genes are among key regulators of this form of polarity. Loss of crumbs function disrupts the apical cell junction belt and crumbs overexpression expands the apical membrane size. Crumbs proteins contain a single transmembrane domain and localize to cell junction area at the apical surface of epithelia. In some tissues, they are also found in cilia. To test their role in ciliogenesis, we investigated mutant phenotypes of zebrafish crumbs genes. In zebrafish, mutations of three crumbs genes, oko meduzy/crb2a, crb3a, and crb2b, affect cilia length in a subset of tissues. In oko meduzy (ome), this is accompanied by accumulation of other Crumbs proteins in the ciliary compartment. Moreover, intraflagellar transport (IFT) particle components accumulate in the ciliary shaft of ome;crb3a double mutants. Consistent with the above, Crb3 knockdown in mammalian cells affects the dynamics of IFT particle movement. These findings reveal crumbs-dependent mechanisms that regulate the localization of ciliary proteins, including Crumbs proteins themselves, and show that crumbs genes modulate intraflagellar transport and cilia elongation.
Collapse
Affiliation(s)
- Khodor Hazime
- Bateson Centre, Department of Biomedical Science, University of Sheffield, S10 2TN, United Kingdom
| | - Jarema J Malicki
- Bateson Centre, Department of Biomedical Science, University of Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
35
|
Bazellières E, Aksenova V, Barthélémy-Requin M, Massey-Harroche D, Le Bivic A. Role of the Crumbs proteins in ciliogenesis, cell migration and actin organization. Semin Cell Dev Biol 2017; 81:13-20. [PMID: 29056580 DOI: 10.1016/j.semcdb.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.
Collapse
Affiliation(s)
- Elsa Bazellières
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | - Veronika Aksenova
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | | | | | - André Le Bivic
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France.
| |
Collapse
|
36
|
Pellikka M, Tepass U. Unique cell biological profiles of retinal disease-causing missense mutations in the polarity protein Crumbs. J Cell Sci 2017; 130:2147-2158. [PMID: 28515229 DOI: 10.1242/jcs.197178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/11/2017] [Indexed: 01/09/2023] Open
Abstract
Mutations in human crumbs 1 (CRB1) are a major cause of retinal diseases that lead to blindness. CRB1 is a transmembrane protein found in the inner segment of photoreceptor cells (PRCs) and the apical membrane of Müller glia. The function of the extracellular region of CRB1 is poorly understood, although more than 80 disease-causing missense mutations have been mapped to it. We have recreated four of these mutations, affecting different extracellular domains, in Drosophila Crumbs (Crb). Crb regulates epithelial polarity and growth, and contributes to PRC differentiation and survival. The mutant Crb isoforms showed a remarkable diversity in protein abundance, subcellular distribution and ability to rescue the lack of endogenous Crb, elicit a gain-of-function phenotype or promote PRC degeneration. Interestingly, although expression of mutant isoforms led to a substantial rescue of the developmental defects seen in crb mutants, they accelerated PRC degeneration compared to that seen in retinas that lacked Crb, indicating that the function of Crb in cellular differentiation and cell survival depends on distinct molecular pathways. Several Crb mutant proteins accumulated abnormally in the rhabdomere and affected rhodopsin trafficking, suggesting that abnormal rhodopsin physiology contributes to Crb/CRB1-associated retinal degeneration.
Collapse
Affiliation(s)
- Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| |
Collapse
|
37
|
CRB3 downregulation confers breast cancer stem cell traits through TAZ/β-catenin. Oncogenesis 2017; 6:e322. [PMID: 28436991 PMCID: PMC5520500 DOI: 10.1038/oncsis.2017.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
The cancer stem cell (CSC) theory depicts a special population within the cancer mass that self-renew and sustain the cancer, even if the other cells were eliminated by therapies. How CSCs acquire these unique traits is still unclear. Crumbs homolog 3 (CRB3), a member of the CRB polarity complex, has been reported to act as a tumor suppressor. Here, we detected significantly lower or negative CRB3 expression in human breast cancer tissues. Knockdown of CRB3 generated non-tumorigenic, immortalized breast epithelial cell line MCF 10A with CSC properties. Simultaneously, we found that CRB3 downregulation induced the epithelial–mesenchymal transition and activated TAZ (transcriptional co-activator with PDZ-binding motif) and β-catenin. Significantly, the activation of TAZ and β-catenin sufficed in conferring MCF 10A cells with CSC properties. This study demonstrates that cell polarity proteins may serve as a switch of the differentiated vs multipotent states in breast cancers.
Collapse
|
38
|
Arno G, Carss KJ, Hull S, Zihni C, Robson AG, Fiorentino A, Hardcastle AJ, Holder GE, Cheetham ME, Plagnol V, Moore AT, Raymond FL, Matter K, Balda MS, Webster AR. Biallelic Mutation of ARHGEF18, Involved in the Determination of Epithelial Apicobasal Polarity, Causes Adult-Onset Retinal Degeneration. Am J Hum Genet 2017; 100:334-342. [PMID: 28132693 PMCID: PMC5294887 DOI: 10.1016/j.ajhg.2016.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.
Collapse
Affiliation(s)
- Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Keren J Carss
- Department of Haematology, University of Cambridge NHS Blood and Transplant Centre, Cambridge CB2 0PT, UK; NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Sarah Hull
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Alessia Fiorentino
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Alison J Hardcastle
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Graham E Holder
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Vincent Plagnol
- University College London Genetics Institute, London WC1E 6BT, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK; Ophthalmology Department, UCSF School of Medicine, Koret Vision Centre, San Francisco, CA 94133-0644, USA
| | - F Lucy Raymond
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals NHS Foundation, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; Moorfields Eye Hospital, London EC1V 2PD, UK.
| |
Collapse
|
39
|
Malicki JJ, Johnson CA. The Cilium: Cellular Antenna and Central Processing Unit. Trends Cell Biol 2017; 27:126-140. [PMID: 27634431 PMCID: PMC5278183 DOI: 10.1016/j.tcb.2016.08.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/14/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
Cilia mediate an astonishing diversity of processes. Recent advances provide unexpected insights into the regulatory mechanisms of cilium formation, and reveal diverse regulatory inputs that are related to the cell cycle, cytoskeleton, proteostasis, and cilia-mediated signaling itself. Ciliogenesis and cilia maintenance are regulated by reciprocal antagonistic or synergistic influences, often acting in parallel to each other. By receiving parallel inputs, cilia appear to integrate multiple signals into specific outputs and may have functions similar to logic gates of digital systems. Some combinations of input signals appear to impose higher hierarchical control related to the cell cycle. An integrated view of these regulatory inputs will be necessary to understand ciliogenesis and its wider relevance to human biology.
Collapse
Affiliation(s)
- Jarema J Malicki
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Western Bank Sheffield, S10 2TN, UK.
| | - Colin A Johnson
- Wellcome Trust Brenner Building, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
40
|
Boubakri M, Chaya T, Hirata H, Kajimura N, Kuwahara R, Ueno A, Malicki J, Furukawa T, Omori Y. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport. J Biol Chem 2016; 291:24465-24474. [PMID: 27681595 DOI: 10.1074/jbc.m116.738658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases.
Collapse
Affiliation(s)
- Meriam Boubakri
- From the Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, and
| | - Taro Chaya
- From the Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, and; PRESTO, Japan Science and Technology Agency (JST), 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Hirata
- the Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258, Japan
| | - Naoko Kajimura
- the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, and
| | - Ryusuke Kuwahara
- the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, and
| | - Akiko Ueno
- From the Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, and
| | - Jarema Malicki
- the Bateson Centre, Department of Biomedical Science, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, United Kingdom
| | - Takahisa Furukawa
- From the Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, and
| | - Yoshihiro Omori
- From the Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, and; PRESTO, Japan Science and Technology Agency (JST), 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan,.
| |
Collapse
|
41
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
42
|
Slavotinek AM. The Family of Crumbs Genes and Human Disease. Mol Syndromol 2016; 7:274-281. [PMID: 27867342 DOI: 10.1159/000448109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
The family of vertebrate Crumbs proteins, homologous to Drosophila Crumbs (Crb), share large extracellular domains with epidermal growth factor-like repeats and laminin-globular domains, a single transmembrane domain, and a short intracellular C-terminus containing a single membrane proximal 4.1/ezrin/radixin/moesin-binding domain and PSD-95/Discs large/ZO-1-binding motifs. There are 3 Crb genes in humans - Crumbs homolog-1 (CRB1), Crumbs homolog-2 (CRB2), and Crumbs homolog-3 (CRB3). Bilallelic loss-of-function mutations in CRB1 cause visual impairment, with Leber's congenital amaurosis and retinitis pigmentosa, whereas CRB2 mutations are associated with raised maternal serum and amniotic fluid alpha feto-protein levels, ventriculomegaly/hydrocephalus, and renal disease, ranging from focal segmental glomerulosclerosis to congenital Finnish nephrosis. CRB3 has not yet been associated with human disease. In this review, we summarize the phenotypic findings associated with deleterious sequence variants in CRB1 and CRB2. We discuss the mutational spectrum, animal models of loss of function for both genes and speculate on the likely mechanisms of disease.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, UCSF School of Medicine, University of California San Francisco, San Francisco, Calif., USA
| |
Collapse
|
43
|
Leventea E, Hazime K, Zhao C, Malicki J. Analysis of cilia structure and function in zebrafish. Methods Cell Biol 2016; 133:179-227. [PMID: 27263414 DOI: 10.1016/bs.mcb.2016.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cilia are microtubule-based protrusions on the surface of most eukaryotic cells. They are found in most, if not all, vertebrate organs. Prominent cilia form in sensory structures, the eye, the ear, and the nose, where they are crucial for the detection of environmental stimuli, such as light and odors. Cilia are also involved in developmental processes, including left-right asymmetry formation, limb morphogenesis, and the patterning of neurons in the neural tube. Some cilia, such as those found in nephric ducts, are thought to have mechanosensory roles. Zebrafish proved very useful in genetic analysis and imaging of cilia-related processes, and in the modeling of mechanisms behind human cilia abnormalities, known as ciliopathies. A number of zebrafish defects resemble those seen in human ciliopathies. Forward and reverse genetic strategies generated a wide range of cilia mutants in zebrafish, which can be studied using sophisticated genetic and imaging approaches. In this chapter, we provide a set of protocols to examine cilia morphology, motility, and cilia-related defects in a variety of organs, focusing on the embryo and early postembryonic development.
Collapse
Affiliation(s)
- E Leventea
- The University of Sheffield, Sheffield, United Kingdom
| | - K Hazime
- The University of Sheffield, Sheffield, United Kingdom
| | - C Zhao
- The University of Sheffield, Sheffield, United Kingdom; Ocean University of China, Qingdao, China
| | - J Malicki
- The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
44
|
Jaron R, Rosenfeld N, Zahdeh F, Carmi S, Beni-Adani L, Doviner V, Picard E, Segel R, Zeligson S, Carmel L, Renbaum P, Levy-Lahad E. Expanding the phenotype of CRB2 mutations - A new ciliopathy syndrome? Clin Genet 2016; 90:540-544. [PMID: 26925547 DOI: 10.1111/cge.12764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
Recessive CRB2 mutations were recently reported to cause both steroid resistant nephrotic syndrome and prenatal onset ventriculomegaly with kidney disease. We report two Ashkenazi Jewish siblings clinically diagnosed with ciliopathy. Both presented with severe congenital hydrocephalus and mild urinary tract anomalies. One affected sibling also has lung hypoplasia and heart defects. Exome sequencing and further CRB2 analysis revealed that both siblings are compound heterozygotes for CRB2 mutations p.N800K and p.Gly1036Alafs*43, and heterozygous for a deleterious splice variant in the ciliopathy gene TTCB21. CRB2 is a polarity protein which plays a role in ciliogenesis and ciliary function. Biallelic CRB2 mutations in animal models result in phenotypes consistent with ciliopathy. This report expands the phenotype of CRB2 mutations to include lung hypoplasia and uretero-pelvic renal anomalies, and confirms cardiac malformation as a feature. We suggest that CRB2-associated disease is a new ciliopathy syndrome with possible digenic/triallelic inheritance, as observed in other ciliopathies. Clinically, CRB2 should be assessed when ciliopathy is suspected, especially in Ashkenazi Jews, where we found that p.N800K carrier frequency is 1 of 64. Patients harboring CRB2 mutations should be tested for the complete range of ciliopathy manifestations.
Collapse
Affiliation(s)
- R Jaron
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - N Rosenfeld
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| | - F Zahdeh
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science Jerusalem, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel.,Hereditary Research Lab, Life Sciences Department, Bethlehem University, Bethlehem, Israel
| | - S Carmi
- Braun School of Public Health, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L Beni-Adani
- Pediatric Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel.,Pediatric Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - V Doviner
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Picard
- Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel.,Pediatric Pulmonary Institute, Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
| | - R Segel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| | - S Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - L Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science Jerusalem, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - P Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - E Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, The Hebrew University of Jerusalem Medical School, Jerusalem, Israel
| |
Collapse
|
45
|
Houbrechts AM, Vergauwen L, Bagci E, Van Houcke J, Heijlen M, Kulemeka B, Hyde DR, Knapen D, Darras VM. Deiodinase knockdown affects zebrafish eye development at the level of gene expression, morphology and function. Mol Cell Endocrinol 2016; 424:81-93. [PMID: 26802877 DOI: 10.1016/j.mce.2016.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Retinal development in vertebrates relies extensively on thyroid hormones. Their local availability is tightly controlled by several regulators, including deiodinases (Ds). Here we used morpholino technology to explore the roles of Ds during eye development in zebrafish. Transcriptome analysis at 3 days post fertilization (dpf) revealed a pronounced effect of knockdown of both T4-activating Ds (D1D2MO) or knockdown of T3-inactivating D3 (D3bMO) on phototransduction and retinoid recycling. This was accompanied by morphological defects (studied from 1 to 7 dpf) including reduced eye size, disturbed retinal lamination and strong reduction in rods and all four cone types. Defects were more prominent and persistent in D3-deficient fish. Finally, D3-deficient zebrafish larvae had disrupted visual function at 4 dpf and were less sensitive to a light stimulus at 5 dpf. These data demonstrate the importance of TH-activating and -inactivating Ds for correct zebrafish eye development, and point to D3b as a central player.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Enise Bagci
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium; Systemic Physiological & Ecotoxicological Research, Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jolien Van Houcke
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Marjolein Heijlen
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - Bernard Kulemeka
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
46
|
Charrier LE, Loie E, Laprise P. Mouse Crumbs3 sustains epithelial tissue morphogenesis in vivo. Sci Rep 2015; 5:17699. [PMID: 26631503 PMCID: PMC4668553 DOI: 10.1038/srep17699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
The human apical protein CRB3 (Crb3 in mouse) organizes epithelial cell polarity. Loss of CRB3 expression increases the tumorogenic potential of cultured epithelial cells and favors metastasis formation in nude mice. These data emphasize the need of in vivo models to study CRB3 functions. Here, we report the phenotypic analysis of a novel Crb3 knockout mouse model. Crb3-deficient newborn mice show improper clearance of airways, suffer from respiratory distress and display perinatal lethality. Crb3 is also essential to maintain apical membrane identity in kidney epithelial cells. Numerous kidney cysts accompany these polarity defects. Impaired differentiation of the apical membrane is also observed in a subset of cells of the intestinal epithelium. This results in improper remodeling of adhesive contacts in the developing intestinal epithelium, thereby leading to villus fusion. We also noted a strong increase in cytoplasmic β-catenin levels in intestinal epithelial cells. β-catenin is a mediator of the Wnt signaling pathway, which is overactivated in the majority of colon cancers. In addition to clarifying the physiologic roles of Crb3, our study highlights that further functional analysis of this protein is likely to provide insights into the etiology of diverse pathologies, including respiratory distress syndrome, polycystic kidney disease and cancer.
Collapse
Affiliation(s)
- Lucie E. Charrier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie/Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- CRCHU de Québec-axe oncologie, Québec, Canada
| | - Elise Loie
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie/Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- CRCHU de Québec-axe oncologie, Québec, Canada
| | - Patrick Laprise
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie/Centre de Recherche sur le Cancer, Université Laval, Québec, Canada
- CRCHU de Québec-axe oncologie, Québec, Canada
| |
Collapse
|
47
|
Abu-Siniyeh A, Owen DM, Benzing C, Rinkwitz S, Becker TS, Majumdar A, Gaus K. The aPKC/Par3/Par6 Polarity Complex and Membrane Order Are Functionally Interdependent in Epithelia During Vertebrate Organogenesis. Traffic 2015; 17:66-79. [PMID: 26456025 DOI: 10.1111/tra.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/17/2022]
Abstract
The differential distribution of lipids between apical and basolateral membranes is necessary for many epithelial cell functions, but how this characteristic membrane organization is integrated within the polarity network during ductal organ development is poorly understood. Here we quantified membrane order in the gut, kidney and liver ductal epithelia in zebrafish larvae at 3-11 days post fertilization (dpf) with Laurdan 2-photon microscopy. We then applied a combination of Laurdan imaging, antisense knock-down and analysis of polarity markers to understand the relationship between membrane order and apical-basal polarity. We found a reciprocal relationship between membrane order and the cell polarity network. Reducing membrane condensation by exogenously added oxysterol or depletion of cholesterol reduced apical targeting of the polarity protein, aPKC. Conversely, using morpholino knock down in zebrafish, we found that membrane order was dependent upon the Crb3 and Par3 polarity protein expression in ductal epithelia. Hence our data suggest that the biophysical property of membrane lipid packing is a regulatory element in apical basal polarity.
Collapse
Affiliation(s)
- Ahmed Abu-Siniyeh
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia.,Present address: Department of Chemistry and Medical Analysis, Faculty of Science, Al-Balqa' Applied University, Al-Salt, 19117, Jordan
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Carola Benzing
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School and Department of Health Sciences, University of Sydney, Australia
| | - Arindam Majumdar
- Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden
| | - Katharina Gaus
- School of Medical Sciences, ARC Centre for Advanced Molecular Imaging and Australian Centre for NanoMedicine, The University of New South Wales, Australia
| |
Collapse
|
48
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
49
|
Li P, Mao X, Ren Y, Liu P. Epithelial cell polarity determinant CRB3 in cancer development. Int J Biol Sci 2015; 11:31-7. [PMID: 25552927 PMCID: PMC4278252 DOI: 10.7150/ijbs.10615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Cell polarity, which is defined as asymmetry in cell shape, organelle distribution and cell function, is essential in numerous biological processes, including cell growth, cell migration and invasion, molecular transport, and cell fate. Epithelial cell polarity is mainly regulated by three conserved polarity protein complexes, the Crumbs (CRB) complex, partitioning defective (PAR) complex and Scribble (SCRIB) complex. Research evidence has indicated that dysregulation of cell polarity proteins may play an important role in cancer development. Crumbs homolog 3 (CRB3), a member of the CRB complex, may act as a cancer suppressor in mouse kidney epithelium and mouse mammary epithelium. In this review, we focus on the current data available on the roles of CRB3 in cancer development.
Collapse
Affiliation(s)
- Pingping Li
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Xiaona Mao
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Yu Ren
- 2. Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Peijun Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
50
|
Nie J, Mahato S, Zelhof AC. The actomyosin machinery is required for Drosophila retinal lumen formation. PLoS Genet 2014; 10:e1004608. [PMID: 25233220 PMCID: PMC4168998 DOI: 10.1371/journal.pgen.1004608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen. Biological tubes are integral units of tissues and organs such as lung, kidney, and the cardiovascular system. The fundamental design of tubes involves a central lumen wrapped by a sheet of cells. To function properly, the tubes require a precise genetic control over their creation, the diametric growth and maintenance of the lumen during development. In the fruit fly, Drosophila melanogaster, the photoreceptor cells of the eye form a tubular structure. The formation of the retinal lumen is critical for separating and positioning the light sensing organelles of each photoreceptor cell to achieve visual sensitivity. In an effort to investigate the mechanisms of Drosophila retinal lumen formation, we identified a contractile machinery that was present at the apical portion of photoreceptor cells. Our data is consistent with the idea that a contractile force contributes to the initial separation of the juxtaposed apical membranes and subsequent enlargement of the luminal space. Our work suggests that building a biological tube requires not only an extrinsic pushing force provided by the growing central lumen, but also a cell intrinsic pulling force powered by contraction of cells lining the lumen. Our findings expand and demonstrate the coordination of several molecular mechanisms to generate a tube.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Andrew C. Zelhof
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|