1
|
Cunningham C, Sun B. Representation of high-dimensional cell morphology and morphodynamics in 2D latent space. Phys Biol 2025; 22:10.1088/1478-3975/adcd37. [PMID: 40233771 PMCID: PMC12083545 DOI: 10.1088/1478-3975/adcd37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
The morphology and morphodynamics of cells as important biomarkers of the cellular state are widely appreciated in both fundamental research and clinical applications. Quantification of cell morphology often requires a large number of geometric measures that form a high-dimensional feature vector. This mathematical representation creates barriers to communicating, interpreting, and visualizing data. Here, we develop a deep learning-based algorithm to project 13-dimensional (13D) morphological feature vectors into 2-dimensional (2D) morphological latent space (MLS). We show that the projection has less than 5% information loss and separates the different migration phenotypes of metastatic breast cancer cells. Using the projection, we demonstrate the phenotype-dependent motility of breast cancer cells in the 3D extracellular matrix, and the continuous cell state change upon drug treatment. We also find that dynamics in the 2D MLS quantitatively agrees with the morphodynamics of cells in the 13D feature space, preserving the diffusive power and the Lyapunov exponent of cell shape fluctuations even though the dimensional reduction projection is highly nonlinear. Our results suggest that MLS is a powerful tool to represent and understand the cell morphology and morphodynamics.
Collapse
Affiliation(s)
- Christian Cunningham
- Department of Physics, Oregon State University, Corvallis, OR 97331, United States of America
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, United States of America
| |
Collapse
|
2
|
Ranamukhaarachchi SK, Walker A, Tang MH, Leineweber WD, Lam S, Rappel WJ, Fraley SI. Global versus local matrix remodeling drives rotational versus invasive collective migration of epithelial cells. Dev Cell 2025; 60:871-884.e8. [PMID: 39706188 PMCID: PMC11945606 DOI: 10.1016/j.devcel.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM. Matrix-remodeling activity by matrix metalloproteinases (MMPs) is localized to the base of protrusions in cells that initiate ICM, whereas RCM does not require MMPs and is associated with ITGβ1-mediated remodeling localized globally around the cell body. Further analysis in vitro and in vivo supports the concept that distinct matrix-remodeling strategies encode collective migration behaviors and tissue structure.
Collapse
Affiliation(s)
| | - Alyssa Walker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Man-Ho Tang
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - William D Leineweber
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia Lam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Physical principles and mechanisms of cell migration. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:2. [PMID: 39829952 PMCID: PMC11738987 DOI: 10.1038/s44341-024-00008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025]
Abstract
Cell migration is critical in processes such as developmental biology, wound healing, immune response, and cancer invasion/metastasis. Understanding its regulation is essential for developing targeted therapies in regenerative medicine, cancer treatment and immune modulation. This review examines cell migration mechanisms, highlighting fundamental physical principles, key molecular components, and cellular behaviors, identifying existing gaps in current knowledge, and suggesting potential directions for future research.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
- Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN USA
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
- University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, MN USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
4
|
Li XM, Xu K, Wang JY, Guo JY, Wang XH, Zeng L, Wan B, Wang J, Chu BB, Yang GY, Pan JJ, Hao WB. The actin cytoskeleton is important for pseudorabies virus infection. Virology 2024; 600:110233. [PMID: 39255726 DOI: 10.1016/j.virol.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Viruses are dependent on the host factors for their replication and survival. Therefore, identification of host factors that druggable for antiviral development is crucial. The actin cytoskeleton plays an important role in the virus infection. The dynamics change of actin and its function are regulated by multiple actin-associated proteins (AAPs). However, the role and mechanism of various AAPs in the life cycle of virus are still enigmatic. In this study, we analyzed the roles of actin and AAPs in the replication of pseudorabies virus (PRV). Using a library of compounds targeting AAPs, our data found that multiple AAPs, such as Rho-GTPases, Rock, Myosin and Formin were involved in PRV infection. Besides, our result demonstrated that the actin-binding protein Drebrin was also participated in PRV infection. Further studies are necessary to elucidate the molecular mechanism of AAPs in the virus life cycle, in the hope of mining host factors for antiviral developments.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Driscoll MK, Welf ES, Weems A, Sapoznik E, Zhou F, Murali VS, García-Arcos JM, Roh-Johnson M, Piel M, Dean KM, Fiolka R, Danuser G. Proteolysis-free amoeboid migration of melanoma cells through crowded environments via bleb-driven worrying. Dev Cell 2024; 59:2414-2428.e8. [PMID: 38870943 PMCID: PMC11421976 DOI: 10.1016/j.devcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move. To examine how they do so, we visualized amoeboid human melanoma cells in dense environments and found that they carve tunnels via bleb-driven degradation of extracellular matrix components without the need for proteolytic degradation. Interactions between adhesions and collagen at the cell front induce a signaling cascade that promotes bleb enlargement via branched actin polymerization. Large blebs abrade collagen, creating feedback between extracellular matrix structure, cell morphology, and polarization that enables both path generation and persistent movement.
Collapse
Affiliation(s)
- Meghan K Driscoll
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erik S Welf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Weems
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Sapoznik
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Felix Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vasanth S Murali
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Minna Roh-Johnson
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Kaufmann J, Haist M, Kur IM, Zimmer S, Hagemann J, Matthias C, Grabbe S, Schmidberger H, Weigert A, Mayer A. Tumor-stroma contact ratio - a novel predictive factor for tumor response to chemoradiotherapy in locally advanced oropharyngeal cancer. Transl Oncol 2024; 46:102019. [PMID: 38833784 PMCID: PMC11190748 DOI: 10.1016/j.tranon.2024.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
The growth pattern of oropharyngeal squamous cell carcinomas (OPSCC) varies from compact tumor cell aggregates to diffusely infiltrating tumor cell-clusters. The influence of the growth pattern on local tumor control and survival has been studied mainly for surgically treated oral cavity carcinomas on a visual basis. In this study, we used multiplex immunofluorescence staining (mIF) to examine the antigens pan-cytokeratin, p16INK4a, Ki67, CD271, PD-L1, and CD8 in pretherapeutic biopsies from 86 OPSCC. We introduce Tumor-stroma contact ratio (TSC), a novel parameter, to quantify the relationship between tumor cells in contact with the stromal surface and the total number of epithelial tumor cells. mIF tumor cores were analyzed at the single-cell level, and tumor-stromal contact area was quantified using the R package "Spatstat". TSC was correlated with the visually assessed invasion pattern by two independent investigators. Furthermore, TSC was analyzed in relation to clinical parameters and patient survival data to evaluate its potential prognostic significance. Higher TSC correlated with poor response to (chemo-)radiotherapy (r = 0.3, p < 0.01), and shorter overall (OS) and progression-free (PFS) survival (median OS: 13 vs 136 months, p < 0.0001; median PFS: 5 vs 85 months, p < 0.0001). Visual categorization of growth pattern according to established criteria of tumor aggressiveness showed interobserver variability increasing with more nuanced categories (2 categories: k = 0.7, 95 %-CI: 0.55 - 0.85; 4 categories k = 0.48, 95 %-CI: 0.35 - 0.61). In conclusion, TSC is an objective and reproducible computer-based parameter to quantify tumor-stroma contact area. We demonstrate its relevance for the response of oropharyngeal carcinomas to primary (chemo-)radiotherapy.
Collapse
Affiliation(s)
- Justus Kaufmann
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany.
| | - Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ivan-Maximiliano Kur
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Christoph Matthias
- Department of Otorhinolaryngology, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes-Gutenberg-University, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| | - Arnulf Mayer
- Department of Radiation Oncology and Radiotherapy, University Medical Center of the Johannes-Gutenberg-University, Mainz 55131, Germany; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
7
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
8
|
Ang I, Yousafzai MS, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioeng 2024; 8:026109. [PMID: 38706957 PMCID: PMC11069407 DOI: 10.1063/5.0191765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.
Collapse
Affiliation(s)
- Ida Ang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Heilala M, Lehtonen A, Arasalo O, Peura A, Pokki J, Ikkala O, Nonappa, Klefström J, Munne PM. Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells. Adv Healthc Mater 2023; 12:e2301137. [PMID: 37671812 PMCID: PMC11469292 DOI: 10.1002/adhm.202301137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.
Collapse
Affiliation(s)
- Maria Heilala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Arttu Lehtonen
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Ossi Arasalo
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Aino Peura
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Juho Pokki
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33720Finland
| | - Juha Klefström
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Pauliina M. Munne
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| |
Collapse
|
11
|
Li XM, Wang SP, Wang JY, Tang T, Wan B, Zeng L, Wang J, Chu BB, Yang GY, Pan JJ. RhoA suppresses pseudorabies virus replication in vitro. Virol J 2023; 20:264. [PMID: 37968757 PMCID: PMC10652432 DOI: 10.1186/s12985-023-02229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023] Open
Abstract
The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Shi-Ping Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Ting Tang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
12
|
Samain R, Maiques O, Monger J, Lam H, Candido J, George S, Ferrari N, KohIhammer L, Lunetto S, Varela A, Orgaz JL, Vilardell F, Olsina JJ, Matias-Guiu X, Sarker D, Biddle A, Balkwill FR, Eyles J, Wilkinson RW, Kocher HM, Calvo F, Wells CM, Sanz-Moreno V. CD73 controls Myosin II-driven invasion, metastasis, and immunosuppression in amoeboid pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadi0244. [PMID: 37851808 PMCID: PMC10584351 DOI: 10.1126/sciadv.adi0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Remi Samain
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joanne Monger
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
- GSK, R&D Portfolio, Strategy and Business Insights, GSK House, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Juliana Candido
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - Samantha George
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Ferrari
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Translational Science and Experimental Medicine, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Leonie KohIhammer
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophia Lunetto
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Varela
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jose L. Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Jorge Juan Olsina
- Department of Surgery, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
- IRBLLEIDA, IDIBELL, University Hospita of Bellvitge, CIBERONC, Lleida, Spain
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Frances R. Balkwill
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jim Eyles
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011 Santander, Spain
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
13
|
Merkher Y, Kontareva E, Bogdan E, Achkasov K, Maximova K, Grolman JM, Leonov S. Encapsulation and adhesion of nanoparticles as a potential biomarker for TNBC cells metastatic propensity. Sci Rep 2023; 13:12289. [PMID: 37516753 PMCID: PMC10387085 DOI: 10.1038/s41598-023-33540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/14/2023] [Indexed: 07/31/2023] Open
Abstract
Metastasis is the main cause of cancer-related mortality; therefore, the ability to predict its propensity can remarkably affect survival rate. Metastasis development is predicted nowadays by lymph-node status, tumor size, histopathology, and genetic testing. However, all these methods may have inaccuracies, and some require weeks to complete. Identifying novel prognostic markers will open an essential source for risk prediction, possibly guiding to elevated patient treatment by personalized strategies. Cancer cell invasion is a critical step in metastasis. The cytoskeletal mechanisms used by metastatic cells for the invasion process are very similar to the utilization of actin cytoskeleton in the endocytosis process. In the current study, the adhesion and encapsulation efficiency of low-cost carboxylate-modified fluorescent nanoparticles by breast cancer cells with high (HM) and low metastatic potential (LM) have been evaluated; benign cells were used as control. Using high-content fluorescence imaging and analysis, we have revealed (within a short time of 1 h), that efficiency of nanoparticles adherence and encapsulation is sufficiently higher in HM cells compared to LM cells, while benign cells are not encapsulating or adhering the particles during experiment time at all. We have utilized custom-made automatic image analysis algorithms to find quantitative co-localization (Pearson's coefficients) of the nanoparticles with the imaged cells. The method proposed here is straightforward; it does not require especial equipment or expensive materials nor complicated cell manipulations, it may be potentially applicable for various cells, including patient-derived cells. Effortless and quantitative determination of the metastatic likelihood has the potential to be performed using patient-specific biopsy/surgery sample, which will directly influence the choice of protocols for cancer patient's treatment and, as a result, increase their life expectancy.
Collapse
Affiliation(s)
- Yulia Merkher
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| | - Elizaveta Kontareva
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Ksenia Maximova
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Joshua M Grolman
- The Biomechanic Materials Lab, Technion Israel Institute of Technology, Haifa, Israel
| | - Sergey Leonov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
14
|
Kale VP, Hengst JA, Sharma AK, Golla U, Dovat S, Amin SG, Yun JK, Desai DH. Characterization of Anticancer Effects of the Analogs of DJ4, a Novel Selective Inhibitor of ROCK and MRCK Kinases. Pharmaceuticals (Basel) 2023; 16:1060. [PMID: 37630974 PMCID: PMC10458458 DOI: 10.3390/ph16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The Rho associated coiled-coil containing protein kinase (ROCK1 and ROCK2) and myotonic dystrophy-related Cdc-42 binding kinases (MRCKα and MRCKβ) are critical regulators of cell proliferation and cell plasticity, a process intimately involved in cancer cell migration and invasion. Previously, we reported the discovery of a novel small molecule (DJ4) selective multi-kinase inhibitor of ROCK1/2 and MRCKα/β. Herein, we further characterized the anti-proliferative and apoptotic effects of DJ4 in non-small cell lung cancer and triple-negative breast cancer cells. To further optimize the ROCK/MRCK inhibitory potency of DJ4, we generated a library of 27 analogs. Among the various structural modifications, we identified four additional active analogs with enhanced ROCK/MRCK inhibitory potency. The anti-proliferative and cell cycle inhibitory effects of the active analogs were examined in non-small cell lung cancer, breast cancer, and melanoma cell lines. The anti-proliferative effectiveness of DJ4 and the active analogs was further demonstrated against a wide array of cancer cell types using the NCI-60 human cancer cell line panel. Lastly, these new analogs were tested for anti-migratory effects in highly invasive MDA-MB-231 breast cancer cells. Together, our results demonstrate that selective inhibitors of ROCK1/2 (DJE4, DJ-Allyl) inhibited cell proliferation and induced cell cycle arrest at G2/M but were less effective in cell death induction compared with dual ROCK1/2 and MRCKα/β (DJ4 and DJ110).
Collapse
Affiliation(s)
- Vijay Pralhad Kale
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jeremy A. Hengst
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Arati K. Sharma
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Upendarrao Golla
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Sinisa Dovat
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Shantu G. Amin
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Jong K. Yun
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| | - Dhimant H. Desai
- Department of Pharmacology Penn State College of Medicine, Hershey, PA 17033, USA (J.A.H.); (S.G.A.)
| |
Collapse
|
15
|
Demirdizen E, Al-Ali R, Narayanan A, Sun X, Varga JP, Steffl B, Brom M, Krunic D, Schmidt C, Schmidt G, Bestvater F, Taranda J, Turcan Ş. TRIM67 drives tumorigenesis in oligodendrogliomas through Rho GTPase-dependent membrane blebbing. Neuro Oncol 2023; 25:1031-1043. [PMID: 36215168 PMCID: PMC10237422 DOI: 10.1093/neuonc/noac233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND IDH mutant gliomas are grouped into astrocytomas or oligodendrogliomas depending on the codeletion of chromosome arms 1p and 19q. Although the genomic alterations of IDH mutant gliomas have been well described, transcriptional changes unique to either tumor type have not been fully understood. Here, we identify Tripartite Motif Containing 67 (TRIM67), an E3 ubiquitin ligase with essential roles during neuronal development, as an oncogene distinctly upregulated in oligodendrogliomas. METHODS We used several cell lines, including patient-derived oligodendroglioma tumorspheres, to knock down or overexpress TRIM67. We coupled high-throughput assays, including RNA sequencing, total lysate-mass spectrometry (MS), and coimmunoprecipitation (co-IP)-MS with functional assays including immunofluorescence (IF) staining, co-IP, and western blotting (WB) to assess the in vitro phenotype associated with TRIM67. Patient-derived oligodendroglioma tumorspheres were orthotopically implanted in mice to determine the effect of TRIM67 on tumor growth and survival. RESULTS TRIM67 overexpression alters the abundance of cytoskeletal proteins and induces membrane bleb formation. TRIM67-associated blebbing was reverted with the nonmuscle class II myosin inhibitor blebbistatin and selective ROCK inhibitor fasudil. NOGO-A/Rho GTPase/ROCK2 signaling is altered upon TRIM67 ectopic expression, pointing to the underlying mechanism for TRIM67-induced blebbing. Phenotypically, TRIM67 expression resulted in higher cell motility and reduced cell adherence. In orthotopic implantation models of patient-derived oligodendrogliomas, TRIM67 accelerated tumor growth, reduced overall survival, and led to increased vimentin expression at the tumor margin. CONCLUSIONS Taken together, our results demonstrate that upregulated TRIM67 induces blebbing-based rounded cell morphology through Rho GTPase/ROCK-mediated signaling thereby contributing to glioma pathogenesis.
Collapse
Affiliation(s)
- Engin Demirdizen
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Ruslan Al-Ali
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Ashwin Narayanan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Xueyuan Sun
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julianna Patricia Varga
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Bianca Steffl
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Brom
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Damir Krunic
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Gabriele Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Felix Bestvater
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julian Taranda
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| |
Collapse
|
16
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
17
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
18
|
George S, Martin JAJ, Graziani V, Sanz-Moreno V. Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Front Cell Dev Biol 2023; 10:1091801. [PMID: 36699013 PMCID: PMC9869768 DOI: 10.3389/fcell.2022.1091801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Cell migration is crucial for efficient immune responses and is aberrantly used by cancer cells during metastatic dissemination. Amoeboid migrating cells use myosin II-powered blebs to propel themselves, and change morphology and direction. Immune cells use amoeboid strategies to respond rapidly to infection or tissue damage, which require quick passage through several barriers, including blood, lymph and interstitial tissues, with complex and varied environments. Amoeboid migration is also used by metastatic cancer cells to aid their migration, dissemination and survival, whereby key mechanisms are hijacked from professionally motile immune cells. We explore important parallels observed between amoeboid immune and cancer cells. We also consider key distinctions that separate the lifespan, state and fate of these cell types as they migrate and/or fulfil their function. Finally, we reflect on unexplored areas of research that would enhance our understanding of how tumour cells use immune cell strategies during metastasis, and how to target these processes.
Collapse
|
19
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
20
|
Modeling ATP-mediated endothelial cell elongation on line patterns. Biomech Model Mechanobiol 2022; 21:1531-1548. [PMID: 35902488 PMCID: PMC9626447 DOI: 10.1007/s10237-022-01604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Endothelial cell (EC) migration is crucial for a wide range of processes including vascular wound healing, tumor angiogenesis, and the development of viable endovascular implants. We have previously demonstrated that ECs cultured on 15-μm wide adhesive line patterns exhibit three distinct migration phenotypes: (a) “running” cells that are polarized and migrate continuously and persistently on the adhesive lines with possible spontaneous directional changes, (b) “undecided” cells that are highly elongated and exhibit periodic changes in the direction of their polarization while maintaining minimal net migration, and (c) “tumbling-like” cells that migrate persistently for a certain amount of time but then stop and round up for a few hours before spreading again and resuming migration. Importantly, the three migration patterns are associated with distinct profiles of cell length. Because of the impact of adenosine triphosphate (ATP) on cytoskeletal organization and cell polarization, we hypothesize that the observed differences in EC length among the three different migration phenotypes are driven by differences in intracellular ATP levels. In the present work, we develop a mathematical model that incorporates the interactions between cell length, cytoskeletal (F-actin) organization, and intracellular ATP concentration. An optimization procedure is used to obtain the model parameter values that best fit the experimental data on EC lengths. The results indicate that a minimalist model based on differences in intracellular ATP levels is capable of capturing the different cell length profiles observed experimentally.
Collapse
|
21
|
Esfahani P, Levine H, Mukherjee M, Sun B. Three-dimensional cancer cell migration directed by dual mechanochemical guidance. PHYSICAL REVIEW RESEARCH 2022; 4:L022007. [PMID: 37033157 PMCID: PMC10081505 DOI: 10.1103/physrevresearch.4.l022007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Directed cell migration guided by external cues plays a central role in many physiological and pathophysiological processes. The microenvironment of cells often simultaneously contains various cues and the motility response of cells to multiplexed guidance is poorly understood. Here we combine experiments and mathematical models to study the three-dimensional migration of breast cancer cells in the presence of both contact guidance and a chemoattractant gradient. We find that the chemotaxis of cells is complicated by the presence of contact guidance as the microstructure of extracellular matrix (ECM) vary spatially. In the presence of dual guidance, the impact of ECM alignment is determined externally by the coherence of ECM fibers and internally by cell mechanosensing Rho/Rock pathways. When contact guidance is parallel to the chemical gradient, coherent ECM fibers significantly increase the efficiency of chemotaxis. When contact guidance is perpendicular to the chemical gradient, cells exploit the ECM disorder to locate paths for chemotaxis. Our results underscore the importance of fully characterizing the cancer cell microenvironment in order to better understand invasion and metastasis.
Collapse
Affiliation(s)
- Pedram Esfahani
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Departments of Physics and Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
22
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
23
|
Fibroblast-mediated uncaging of cancer cells and dynamic evolution of the physical microenvironment. Sci Rep 2022; 12:791. [PMID: 35039528 PMCID: PMC8764094 DOI: 10.1038/s41598-021-03134-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Stromal cells are prominent in solid tumor microenvironments and contribute to tumor progression. In particular, fibroblasts are common cell types in the tumor stroma that play important roles in remodeling the extracellular matrix (ECM). Here, we perform co-culture experiments with tumor cells and fibroblasts embedded in 3D collagen I matrices. We investigate the impact of fibroblasts on the migratory behavior of neighboring tumor cells and on the evolution of the surrounding ECM. We find that fibroblasts increase tumor cell motility and facilitate the transition from confined to diffusive tumor cell motions, indicative of an uncaging effect. Furthermore, the ECM is globally and locally remodeled substantially with the presence of fibroblasts. Moreover, these fibroblast-mediated phenomena are in part dependent on matrix metalloproteinases.
Collapse
|
24
|
Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021; 9:740009. [PMID: 34957091 PMCID: PMC8692837 DOI: 10.3389/fcell.2021.740009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
The human body is normally adapted to maintain homeostasis in a terrestrial environment. The novel conditions of a space environment introduce challenges that changes the cellular response to its surroundings. Such an alteration causes physical changes in the extracellular microenvironment, inducing the secretion of cytokines such as interleukin-6 (IL-6) and tumor growth factor-β (TGF-β) from cancer cells to enhance cancer malignancy. Cancer is one of the most prominent cell types to be affected by mechanical cues via active interaction with the tumor microenvironment. However, the mechanism by which cancer cells mechanotransduce in the space environment, as well as the influence of this process on human health, have not been fully elucidated. Due to the growing interest in space biology, this article reviews cancer cell responses to the representative conditions altered in space: microgravity, decompression, and irradiation. Interestingly, cytokine and gene expression that assist in tumor survival, invasive phenotypic transformation, and cancer cell proliferation are upregulated when exposed to both simulated and actual space conditions. The necessity of further research on space mechanobiology such as simulating more complex in vivo experiments or finding other mechanical cues that may be encountered during spaceflight are emphasized.
Collapse
Affiliation(s)
- Hyondeog Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Yun Shin
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
25
|
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev 2021; 179:113910. [PMID: 34358539 PMCID: PMC8986465 DOI: 10.1016/j.addr.2021.113910] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have shown significant promises as nano-/micro-size carriers in drug delivery and bioimaging. With more characteristics of EVs explored through tremendous research efforts, their unmatched physicochemical properties, biological features, and mechanical aspects make them unique vehicles, owning exceptional pharmacokinetics, circulatory metabolism and biodistribution pattern when delivering theranostic cargoes. In this review we firstly analyzed pros and cons of the EVs as a delivery platform. Secondly, compared to engineered nanoparticle delivery systems, such as biocompatible di-block co-polymers, rational design to improve EVs (exosomes in particular) were elaborated. Lastly, different pharmaceutical loading approaches into EVs were compared, reaching a conclusion on how to construct a clinically available and effective nano-/micro-carrier for a satisfactory medical mission.
Collapse
Affiliation(s)
- Peiwen Fu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China
| | - Jianguo Zhang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven 06520, USA.
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| |
Collapse
|
26
|
Kim S, Kim SA, Han J, Kim IS. Rho-Kinase as a Target for Cancer Therapy and Its Immunotherapeutic Potential. Int J Mol Sci 2021; 22:ijms222312916. [PMID: 34884721 PMCID: PMC8657458 DOI: 10.3390/ijms222312916] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is fast rising as a prominent new pillar of cancer treatment, harnessing the immune system to fight against numerous types of cancer. Rho-kinase (ROCK) pathway is involved in diverse cellular activities, and is therefore the target of interest in various diseases at the cellular level including cancer. Indeed, ROCK is well-known for its involvement in the tumor cell and tumor microenvironment, especially in its ability to enhance tumor cell progression, migration, metastasis, and extracellular matrix remodeling. Importantly, ROCK is also considered to be a novel and effective modulator of immune cells, although further studies are needed. In this review article, we describe the various activities of ROCK and its potential to be utilized in cancer treatment, particularly in cancer immunotherapy, by shining a light on its activities in the immune system.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong A. Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; (S.K.); (S.A.K.); (J.H.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
27
|
Tognoli ML, Vlahov N, Steenbeek S, Grawenda AM, Eyres M, Cano‐Rodriguez D, Scrace S, Kartsonaki C, von Kriegsheim A, Willms E, Wood MJ, Rots MG, van Rheenen J, O'Neill E, Pankova D. RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis. EMBO J 2021; 40:e107680. [PMID: 34532864 PMCID: PMC8521318 DOI: 10.15252/embj.2021107680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.
Collapse
Affiliation(s)
| | | | - Sander Steenbeek
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | | | - David Cano‐Rodriguez
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Simon Scrace
- Department of OncologyUniversity of OxfordOxfordUK
| | | | - Alex von Kriegsheim
- Cancer Research UK Edinburgh CentreMRC Institute of Genetics & Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Eduard Willms
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | | | - Marianne G Rots
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jacco van Rheenen
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
28
|
Eddy CZ, Raposo H, Manchanda A, Wong R, Li F, Sun B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep 2021; 11:20434. [PMID: 34650167 PMCID: PMC8516896 DOI: 10.1038/s41598-021-99902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.
Collapse
Affiliation(s)
- Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Helena Raposo
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, 97331, USA
| | - Ryan Wong
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA
| | - Fuxin Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
29
|
Ray A, Provenzano PP. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr Opin Cell Biol 2021; 72:63-71. [PMID: 34186415 PMCID: PMC8530881 DOI: 10.1016/j.ceb.2021.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Organized extracellular matrix (ECM), in the form of aligned architectures, is a critical mediator of directed cancer cell migration by contact guidance, leading to metastasis in solid tumors. Current models suggest anisotropic force generation through the engagement of key adhesion and cytoskeletal complexes drives contact-guided migration. Likewise, disrupting the balance between cell-cell and cell-ECM forces, driven by ECM engagement for cells at the tumor-stromal interface, initiates and drives local invasion. Furthermore, processes such as traction forces exerted by cancer and stromal cells, spontaneous reorientation of matrix-producing fibroblasts, and direct binding of ECM modifying proteins lead to the emergence of collagen alignment in tumors. Thus, as we obtain a deeper understanding of the origins of ECM alignment and the mechanisms by which it is maintained to direct invasion, we are poised to use the new paradigm of stroma-targeted therapies to disrupt this vital axis of disease progression in solid tumors.
Collapse
Affiliation(s)
- Arja Ray
- Department of Pathology, University of California, San Francisco, USA.
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, USA; University of Minnesota Physical Sciences in Oncology Center, USA; Masonic Cancer Center, University of Minnesota, USA; Institute for Engineering in Medicine, University of Minnesota, USA; Stem Cell Institute, University of Minnesota, USA.
| |
Collapse
|
30
|
Muñoz EN, Rivera HM, Gómez LA. Changes in cytoarchitecture and mobility in B16F1 melanoma cells induced by 5-Br-2'-dU coincide with Rock2, miRNAs 138-5p and 455-3p reciprocal expressions. Biochem Biophys Rep 2021; 27:101027. [PMID: 34159262 PMCID: PMC8202345 DOI: 10.1016/j.bbrep.2021.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
ROCK2 is a protein involved in the restructuring of the cytoskeleton in cell adhesion and contractibility processes. miR-138-5p and miR-455-3p regulate Rock2 expression, cell proliferation, migration, and invasion in different experimental cell models. However, their participation in the cytoarchitecture and mobility of B16F1 melanoma cells exposed to 5-Br-2'-dU is partially known. This work aimed to analyze ROCK2 and miRs 138-5p and 455-3p expression associated with morphological and mobility changes of B16F1 mouse melanoma cells exposed to the thymidine analog 5-Bromo-2'-deoxyuridine (5-Br-2'-dU). We observed an increase (2.2X n = 3, p < 0.05) in the cell area, coinciding with an increase in cell diameter (1.27X n = 3, p < 0.05), as well as greater cell granularity, capacity for circularization, adhesion, which was associated with more significant polymerization of F-actin, collapsed in the intermediate filaments of vimentin (VIM), and coinciding with a decrease in migration (87%). Changes coincided with a decrease in Rock2 mRNA expression (2.88X n = 3, p < 0.05), increased vimentin and a reciprocal decrease in miR-138-5p (1.8X), and an increase in miR-455-3p (2.39X). The Rock2 kinase inhibitor Y27632 partially rescued these changes. These results suggest ROCK2 and VIM regulate the morphological and mobility changes of B16 melanoma cells after exposure to 5-Br-2'-dU, and its expression may be reciprocally regulated, at least in part, by miR-138-5p and miR-455-3p.
Collapse
Affiliation(s)
- Esther Natalia Muñoz
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Hernán Mauricio Rivera
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
| | - Luis Alberto Gómez
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| |
Collapse
|
31
|
Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021; 21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Collective cancer invasion with leader-follower organization is increasingly recognized as a predominant mechanism in the metastatic cascade. Leader cells support cancer invasion by creating invasion tracks, sensing environmental cues and coordinating with follower cells biochemically and biomechanically. With the latest developments in experimental and computational models and analysis techniques, the range of specific traits and features of leader cells reported in the literature is rapidly expanding. Yet, despite their importance, there is no consensus on how leader cells arise or their essential characteristics. In this Perspective, we propose a framework for defining the essential aspects of leader cells and provide a unifying perspective on the varying cellular and molecular programmes that are adopted by each leader cell subtype to accomplish their functions. This Perspective can lead to more effective strategies to interdict a major contributor to metastatic capability.
Collapse
Affiliation(s)
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
- Department of Physics and Astronomy, Department of Chemistry and Department of Biosciences, Rice University, Houston, TX, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
32
|
de Winde CM, George SL, Crosas-Molist E, Hari-Gupta Y, Arp AB, Benjamin AC, Millward LJ, Makris S, Carver A, Imperatore V, Martínez VG, Sanz-Moreno V, Acton SE. Podoplanin drives dedifferentiation and amoeboid invasion of melanoma. iScience 2021; 24:102976. [PMID: 34485858 PMCID: PMC8405990 DOI: 10.1016/j.isci.2021.102976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/12/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo. Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2/Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.
Collapse
Affiliation(s)
- Charlotte M. de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Samantha L. George
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK,Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Eva Crosas-Molist
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yukti Hari-Gupta
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Abbey B. Arp
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Agnesska C. Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lindsey J. Millward
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Alexander Carver
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valerio Imperatore
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK,Cell Biogenesis and Tissue Regeneration Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Víctor G. Martínez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, John Vane Science Building, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sophie E. Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK,Corresponding author
| |
Collapse
|
33
|
SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol 2021; 22:529-547. [PMID: 33990789 PMCID: PMC8663916 DOI: 10.1038/s41580-021-00366-6] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/03/2023]
Abstract
Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Claisened Hexafluoro Inhibits Metastatic Spreading of Amoeboid Melanoma Cells. Cancers (Basel) 2021; 13:cancers13143551. [PMID: 34298765 PMCID: PMC8305480 DOI: 10.3390/cancers13143551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.
Collapse
|
35
|
Das S, Surve V, Marathe S, Wad S, Karulkar A, Srinivasan S, Dwivedi A, Barthel SR, Purwar R. IL-9 Abrogates the Metastatic Potential of Breast Cancer by Controlling Extracellular Matrix Remodeling and Cellular Contractility. THE JOURNAL OF IMMUNOLOGY 2021; 206:2740-2752. [PMID: 34021045 DOI: 10.4049/jimmunol.2000383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
IL-9 is produced by Th9 cells and is classically known as a growth-promoting cytokine. Although protumorigenic functions of IL-9 are described in T cell lymphoma, recently, we and others have reported anti-tumor activities of IL-9 in melanoma mediated by mast cells and CD8+ T cells. However, involvement of IL-9 in invasive breast and cervical cancer remains unexplored. In this study, we demonstrate IL-9-dependent inhibition of metastasis of both human breast (MDA-MB-231 and MCF-7) and cervical (HeLa) tumor cells in physiological three-dimensional invasion assays. To dissect underlying mechanisms of IL-9-mediated suppression of invasion, we analyzed IL-9-dependent pathways of cancer cell metastasis, including proteolysis, contractility, and focal adhesion dynamics. IL-9 markedly blocked tumor cell-collagen degradation, highlighting the effects of IL-9 on extracellular matrix remodeling. Moreover, IL-9 significantly reduced phosphorylation of myosin L chain and resultant actomyosin contractility and also increased focal adhesion formation. Finally, IL-9 suppressed IL-17- and IFN-γ-induced metastasis of both human breast (MDA-MB-231) and cervical (HeLa) cancer cells. In conclusion, IL-9 inhibits the metastatic potential of breast and cervical cancer cells by controlling extracellular matrix remodeling and cellular contractility.
Collapse
Affiliation(s)
- Sreya Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Vishakha Surve
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Soumitra Marathe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Siddhi Wad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Atharva Karulkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Srisathya Srinivasan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Alka Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India; and
| |
Collapse
|
36
|
Wu Y, Zanotelli MR, Zhang J, Reinhart-King CA. Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration. Biophys J 2021; 120:1705-1717. [PMID: 33705759 PMCID: PMC8204337 DOI: 10.1016/j.bpj.2021.02.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
The microenvironment provides both active and passive mechanical cues that regulate cell morphology, adhesion, migration, and metabolism. Although the cellular response to those mechanical cues often requires energy-intensive actin cytoskeletal remodeling and actomyosin contractility, it remains unclear how cells dynamically adapt their metabolic activity to altered mechanical cues to support migration. Here, we investigated the changes in cellular metabolic activity in response to different two-dimensional and three-dimensional microenvironmental conditions and how these changes relate to cytoskeletal activity and migration. Utilizing collagen micropatterning on polyacrylamide gels, intracellular energy levels and oxidative phosphorylation were found to be correlated with cell elongation and spreading and necessary for membrane ruffling. To determine whether this relationship holds in more physiological three-dimensional matrices, collagen matrices were used to show that intracellular energy state was also correlated with protrusive activity and increased with matrix density. Pharmacological inhibition of oxidative phosphorylation revealed that cancer cells rely on oxidative phosphorylation to meet the elevated energy requirements for protrusive activity and migration in denser matrices. Together, these findings suggest that mechanical regulation of cytoskeletal activity during spreading and migration by the physical microenvironment is driven by an altered metabolic profile.
Collapse
Affiliation(s)
- Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew R Zanotelli
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
37
|
Mosier JA, Wu Y, Reinhart-King CA. Recent advances in understanding the role of metabolic heterogeneities in cell migration. Fac Rev 2021; 10:8. [PMID: 33659926 PMCID: PMC7894266 DOI: 10.12703/r/10-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent in cell populations and their contributions to cell migration.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
38
|
Chao F, Song Z, Wang S, Ma Z, Zhuo Z, Meng T, Xu G, Chen G. Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clin Transl Med 2021; 11:e360. [PMID: 33784000 PMCID: PMC8002909 DOI: 10.1002/ctm2.360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metastatic prostate cancer is a fatal disease despite multiple new approvals in recent years. Recent studies revealed that circular RNAs (circRNAs) can be involved in cancer metastasis. Defining the role of circRNAs in prostate cancer metastasis and discovering therapeutic targets that block cancer metastasis is of great significance for the treatment of prostate cancer. METHODS The circSOBP levels in prostate cancer (PCa) were determined by qRT-PCR. We evaluated the function of circSOBP using a transwell assay and nude mice lung metastasis models. Immunofluorescence assay and electron microscopic assay were applied to determine the phenotypes of prostate cancer cells' migration. We used fluorescence in situ hybridization assay to determine the localization of RNAs. Dual luciferase and rescue assays were applied to verify the interactions between circSOBP, miR-141-3p, MYPT1, and phosphomyosin light chain (p-MLC2). RESULTS We observed that circSOBP level was significantly lower in PCa specimens compared with adjacent noncancerous prostate specimens, and was correlated with the grade group of PCa. Overexpression of circSOBP suppressed PCa migration and invasion in vitro and metastasis in vivo. CircSOBP depletion increased migration and invasion and induced amoeboid migration of PCa cells. Mechanistically, circSOBP bound miR-141-3p and regulated the MYPT1/p-MLC2 axis. Moreover, the depletion of MYPT1 reversed the inhibitory effect of circSOBP on the migration and invasion of PCa cells. Complementary intronic Alu elements induced but were not necessary for the formation of circSOBP. The nuclear export of circSOBP was mediated by URH49. CONCLUSION Our results suggest that circSOBP suppresses amoeboid migration of PCa cells and inhibits migration and invasion through sponging miR-141-3p and regulating the MYPT1/p-MLC2 axis.
Collapse
Affiliation(s)
- Fan Chao
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhenyu Song
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Shiyu Wang
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhe Ma
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Zhiyuan Zhuo
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Ting Meng
- Research Center for Clinical MedicineJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Guoxiong Xu
- Research Center for Clinical MedicineJinshan HospitalFudan UniversityShanghaiP. R. China
| | - Gang Chen
- Department of UrologyJinshan HospitalFudan UniversityShanghaiP. R. China
- Department of SurgeryShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| |
Collapse
|
39
|
Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021; 22:ijms22041821. [PMID: 33673054 PMCID: PMC7918886 DOI: 10.3390/ijms22041821] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
There is ample evidence that, instead of a binary switch, epithelial-mesenchymal transition (EMT) in cancer results in a flexible array of phenotypes, each one uniquely suited to a stage in the invasion-metastasis cascade. The phenotypic plasticity of epithelium-derived cancer cells gives them an edge in surviving and thriving in alien environments. This review describes in detail the actin cytoskeleton and E-cadherin-based adherens junction rearrangements that cancer cells need to implement in order to achieve the advantageous epithelial/mesenchymal phenotype and plasticity of migratory phenotypes that can arise from partial EMT.
Collapse
|
40
|
Tolomeo M, Cascio A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021; 22:ijms22020603. [PMID: 33435349 PMCID: PMC7826746 DOI: 10.3390/ijms22020603] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been widely demonstrated, an increasing amount of data indicate that STAT3 functions are multifaced and not easy to classify. In fact, the specific cellular role of STAT3 seems to be determined by the integration of multiple signals, by the oncogenic environment, and by the alternative splicing into two distinct isoforms, STAT3α and STAT3β. On the basis of these different conditions, STAT3 can act both as a potent tumor promoter or tumor suppressor factor. This implies that the therapies based on STAT3 modulators should be performed considering the pleiotropic functions of this transcription factor and tailored to the specific tumor type.
Collapse
|
41
|
Abstract
Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments evolved in intimate feedback with the most classical image processing techniques because they contribute objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods help us illustrate how proper quantification can augment biological data, for example, by choosing mathematical representations that amplify initially subtle differences, by statistically uncovering general laws or by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and microenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy, this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis struggles against ever more complex data.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
- Sorbonne Université, Paris 75005, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS ERL9195, Paris, France
| |
Collapse
|
42
|
Onken MD, Blumer KJ, Cooper JA. Uveal melanoma cells use ameboid and mesenchymal mechanisms of cell motility crossing the endothelium. Mol Biol Cell 2021; 32:413-421. [PMID: 33405963 PMCID: PMC8098856 DOI: 10.1091/mbc.e20-04-0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uveal melanomas (UMs) are malignant cancers arising from the pigmented layers of the eye. UM cells spread through the bloodstream, and circulating UM cells are detectable in patients before metastases appear. Extravasation of UM cells is necessary for formation of metastases, and transendothelial migration (TEM) is a key step in extravasation. UM cells execute TEM via a stepwise process involving the actin-based processes of ameboid blebbing and mesenchymal lamellipodial protrusion. UM cancers are driven by oncogenic mutations that activate Gαq/11, and this activates TRIO, a guanine nucleotide exchange factor for RhoA and Rac1. We found that pharmacologic inhibition of Gαq/11 in UM cells reduced TEM. Inhibition of the RhoA pathway blocked amoeboid motility but led to enhanced TEM; in contrast, inhibition of the Rac1 pathway decreased mesenchymal motility and reduced TEM. Inhibition of Arp2/3 complex allowed cells to transmigrate without intercalation, a direct mechanism similar to the one often displayed by immune cells. BAP1-deficient (+/–) UM subclones displayed motility behavior and increased levels of TEM, similar to the effects of RhoA inhibitors. We conclude that RhoA and Rac1 signaling pathways, downstream of oncogenic Gαq/11, combine with pathways regulated by BAP1 to control the motility and transmigration of UM cells.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| | - Kendall J Blumer
- Department of Cell Biology & Physiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
43
|
Caley MP, Martins VL, Moore K, Lashari M, Nissinen L, Kähäri VM, Alexander S, Jones E, Harwood CA, Jones J, Donaldson M, Marshall JF, O'Toole EA. Loss of the laminin subunit alpha-3 induces cell invasion and macrophage infiltration in cutaneous squamous cell carcinoma. Br J Dermatol 2020; 184:923-934. [PMID: 32767748 DOI: 10.1111/bjd.19471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a common cancer that invades the dermis through the basement membrane. The role of the basement membrane in poorly differentiated cSCC is not well understood. OBJECTIVES To study the effect that loss of the laminin subunit alpha-3 (α3) chain from the tumour microenvironment has on tumour invasion and inflammatory cell recruitment. METHODS We examined the role of the basement membrane proteins laminin subunits α3, β3 and γ2 in SCC invasion and inflammatory cell recruitment using immunohistochemistry, short hairpin RNA knockdown, RNA-Seq, mouse xenograft models and patient tumour samples. RESULTS Analysis of SCC tumours and cell lines using antibodies specific to laminin chains α3, β3 and γ2 identified a link between poorly differentiated SCC and reduced expression of laminin α3 but not the other laminin subunits investigated. Knockdown of laminin α3 increased tumour invasion both in vitro and in vivo. Western blot and immunohistochemical staining identified increased phosphorylated myosin light chain with loss of laminin α3. Inhibition of ROCK (rho-associated protein kinase) but not Rac1 significantly reduced the invasive potential of laminin α3 knockdown cells. Knockdown of laminin subunits α3 and γ2 increased monocyte recruitment to the tumour microenvironment. However, only the loss of laminin α3 correlated with increased tumour-associated macrophages both in xenografted tumours and in patient tumour samples. CONCLUSIONS These data provide evidence that loss of the laminin α3 chain in cSCC has an effect on both the epithelial and immune components of cSCC, resulting in an aggressive tumour microenvironment.
Collapse
Affiliation(s)
- M P Caley
- Centre for Cell Biology and Cutaneous Research
| | - V L Martins
- Centre for Cell Biology and Cutaneous Research
| | - K Moore
- Barts Cancer Institute; Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Lashari
- Centre for Cell Biology and Cutaneous Research
| | - L Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | - V-M Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | - S Alexander
- Centre for Cell Biology and Cutaneous Research
| | - E Jones
- Centre for Cell Biology and Cutaneous Research
| | - C A Harwood
- Centre for Cell Biology and Cutaneous Research
| | - J Jones
- School of Molecular Biosciences, BLS 202F, Washington State University, Pullman, WA, USA
| | | | - J F Marshall
- Barts Cancer Institute; Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E A O'Toole
- Centre for Cell Biology and Cutaneous Research
| |
Collapse
|
44
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
45
|
Actin as a Target to Reduce Cell Invasiveness in Initial Stages of Metastasis. Ann Biomed Eng 2020; 49:1342-1352. [PMID: 33145677 DOI: 10.1007/s10439-020-02679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
We demonstrate the relative roles of the cell cytoskeleton, and specific importance of actin in facilitating mechanical aspects of metastatic invasion. A crucial step in metastasis, the typically lethal spread of cancer to distant body-sites, is cell invasion through dense tissues composed of extracellular matrix and various non-cancerous cells. Cell invasion requires cell-cytoskeleton remodeling to facilitate dynamic morphological changes and force application. We have previously shown invasive cell subsets in heterogeneous samples can rapidly (2 h) and forcefully indent non-degradable, impenetrable, synthetic gels to cell-scale depths. The amounts of indenting cells and their attained depths provide the mechanical invasiveness of the sample, which as we have shown agrees with the in vitro metastatic potential and the in vivo metastatic risk in humans. To identify invasive force-application mechanisms, we evaluated changes in mechanical invasiveness following chemical perturbations targeting the structure and function of cytoskeleton elements and associated proteins. We evaluate effects on short-term (2-hr) indentations of single, well-spaced or closely situated cells as compared to long-time-scale Boyden chamber migration. We show that actomyosin inhibition may be used to reduce (mechanical) invasiveness of single or collectively invading cells, while actin-disruption may induce escape-response of treated single-cells, which may promote metastasis.
Collapse
|
46
|
Schönholzer MT, Migliavacca J, Alvarez E, Santhana Kumar K, Neve A, Gries A, Ma M, Grotzer MA, Baumgartner M. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia 2020; 22:470-483. [PMID: 32818841 PMCID: PMC7452206 DOI: 10.1016/j.neo.2020.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Aberrantly activated kinase signaling pathways drive invasion and dissemination in medulloblastoma (MB). A majority of tumor-promoting kinase signaling pathways feed into the mitogen-activated protein kinase (MAPK) extracellular regulated kinase (ERK1/2) pathway. The activation status of ERK1/2 during invasion of MB cells is not known and its implication in invasion control unclear. We established a synthetic kinase activation relocation sensor (SKARS) for the MAPK ERK1/2 pathway in MB cells for real-time measuring of drug response. We used 3D invasion assays and organotypic cerebellum slice culture to test drug effects in a physiologically relevant tissue environment. We found that hepatocyte growth factor (HGF), epidermal growth factor (EGF), or basic fibroblast growth factor (bFGF) caused rapid nuclear ERK1/2 activation in MB cells, which persisted for several hours. Concomitant treatment with the BCR/ABL kinase inhibitor dasatinib completely repressed nuclear ERK1/2 activity induced by HGF and EGF but not by bFGF. Increased nuclear ERK1/2 activity correlated positively with speed of invasion. Dasatinib blocked ERK-associated invasion in the majority of cells, but we also observed fast-invading cells with low ERK1/2 activity. These ERK1/2-low, fast-moving cells displayed a rounded morphology, while ERK-high fast-moving cells displayed a mesenchymal morphology. Dasatinib effectively blocked EGF-induced proliferation while it only moderately repressed tissue invasion, indicating that a subset of cells may evade invasion repression by dasatinib through non-mesenchymal motility. Thus, growth factor-induced nuclear activation of ERK1/2 is associated with mesenchymal motility and proliferation in MB cells and can be blocked with the BCR/ABL kinase inhibitor dasatinib.
Collapse
Affiliation(s)
- Marc Thomas Schönholzer
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Jessica Migliavacca
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Elena Alvarez
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Karthiga Santhana Kumar
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Anuja Neve
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Alexandre Gries
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland
| | - Min Ma
- Quantitative Signaling Group, Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael A Grotzer
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland; University Children's Hospital ZÏrich, Steinwiesstrasse 75, CH-8032 ZÏrich, Switzerland
| | - Martin Baumgartner
- Pediatric Neuro-Oncology Research Group, University Children's Hospital ZÏrich, Children's Research Center, Balgrist Campus, Lengghalde 5, CH-8008 ZÏrich, Switzerland.
| |
Collapse
|
47
|
Cui Y, Cole S, Pepper J, Otero JJ, Winter JO. Hyaluronic acid induces ROCK-dependent amoeboid migration in glioblastoma cells. Biomater Sci 2020; 8:4821-4831. [PMID: 32749402 PMCID: PMC7473492 DOI: 10.1039/d0bm00505c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and deadly adult brain tumor, primarily because of its high infiltrative capacity and development of resistance to therapy. Although GBM cells are typically believed to migrate via mesenchymal (e.g., fibroblast-like) migration modes, amoeboid (e.g., leucocyte-like) migration modes have been identified and may constitute a salvage pathway. However, the mesenchymal to amoeboid transition (MAT) process in GB is not well characterized, most likely because most culture models induce MAT via pharmacological or genetic inhibition conditions that are far from physiological. In this study, we examined the ability of hyaluronic acid (HA) content in three-dimensional collagen (Col) hydrogels to induce MAT in U87 GBM cells. HA and Col are naturally-occurring components of the brain extracellular matrix (ECM). In pure Col gels, U87 cells displayed primarily mesenchymal behaviors, including elongated cell morphology, clustered actin and integrin expression, and crawling migration behaviors. Whereas an increasing population of cells displaying amoeboid behaviors, including rounded morphology, cortical actin expression, low/no integrin expression, and squeezing or gliding motility, were observed with increasing HA content (0.1-0.2 wt% in Col). Consistent with amoeboid migration, these behaviors were abrogated by ROCK inhibition with the non-specific small molecule inhibitor Y27632. Toward identification of histological MAT classification criteria, we also examined the correlation between cell and nuclear aspect ratio (AR) in Col and Col-HA gels, finding that nuclear AR has a small variance and is not correlated to cell AR in HA-rich gels. These results suggest that HA may regulate GBM cell motility in a ROCK-dependent manner.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
48
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
49
|
Gandalovičová A, Šůchová AM, Čermák V, Merta L, Rösel D, Brábek J. Sustained Inflammatory Signalling through Stat1/Stat2/IRF9 Is Associated with Amoeboid Phenotype of Melanoma Cells. Cancers (Basel) 2020; 12:cancers12092450. [PMID: 32872349 PMCID: PMC7564052 DOI: 10.3390/cancers12092450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Treatment of metastatic cancer is complicated by the ability of cancer cells to utilize various invasion modes when spreading through the body. Here, we studied the transition of melanoma cells between the round, amoeboid and elongated, mesenchymal invasion modes. Our results show that inflammatory signalling, which is commonly upregulated in the tumour microenvironment, is associated with the amoeboid phenotype of cancer cells. Treatment of melanoma cells with interferon beta promotes the amoeboid invasion modes and individual invasion. This suggests that inflammation associated signalling contributes to cancer cell invasion plasticity. Abstract The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal–amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Anna-Marie Šůchová
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Vladimír Čermák
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Ladislav Merta
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, 12843 Prague, Czech Republic; (A.G.); (A.-M.Š.); (V.Č.); (L.M.); (D.R.)
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), 25242 Vestec, Czech Republic
- Correspondence: or
| |
Collapse
|
50
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|