1
|
Sémon M, Mouginot M, Peltier M, Corneloup C, Veber P, Guéguen L, Pantalacci S. Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation. Nat Commun 2025; 16:768. [PMID: 39824799 PMCID: PMC11742040 DOI: 10.1038/s41467-025-55826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Mice have evolved a new dental plan with two additional cusps on the upper molar, while hamsters were retaining the ancestral plan. By comparing the dynamics of molar development with transcriptome time series, we found at least three early changes in mouse upper molar development. Together, they redirect spatio-temporal dynamics to ultimately form two additional cusps. The mouse lower molar has undergone much more limited phenotypic evolution. Nevertheless, its developmental trajectory evolved as much as that of the upper molar and co-evolved with it. Among the coevolving changes, some are clearly involved in the new upper molar phenotype. We found a similar level of coevolution in bat limbs. In conclusion, our study reveals how serial organ morphology has adapted through organ-specific developmental changes, as expected, but also through shared changes that have organ-specific effects on the final phenotype. This highlights the important role of developmental system drift in one organ to accommodate adaptation in another.
Collapse
Affiliation(s)
- Marie Sémon
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Marion Mouginot
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Manon Peltier
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Claudine Corneloup
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Philippe Veber
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| |
Collapse
|
2
|
McColgan Á, DiFrisco J. Understanding developmental system drift. Development 2024; 151:dev203054. [PMID: 39417684 PMCID: PMC11529278 DOI: 10.1242/dev.203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developmental system drift (DSD) occurs when the genetic basis for homologous traits diverges over time despite conservation of the phenotype. In this Review, we examine the key ideas, evidence and open problems arising from studies of DSD. Recent work suggests that DSD may be pervasive, having been detected across a range of different organisms and developmental processes. Although developmental research remains heavily reliant on model organisms, extrapolation of findings to non-model organisms can be error-prone if the lineages have undergone DSD. We suggest how existing data and modelling approaches may be used to detect DSD and estimate its frequency. More direct study of DSD, we propose, can inform null hypotheses for how much genetic divergence to expect on the basis of phylogenetic distance, while also contributing to principles of gene regulatory evolution.
Collapse
Affiliation(s)
- Áine McColgan
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Lyu H, Moya ND, Andersen EC, Chamberlin HM. Gene duplication and evolutionary plasticity of lin-12/Notch gene function in Caenorhabditis. Genetics 2024; 227:iyae064. [PMID: 38809718 PMCID: PMC11492284 DOI: 10.1093/genetics/iyae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene duplication is an important substrate for the evolution of new gene functions, but the impacts of gene duplicates on their own activities and on the developmental networks in which they act are poorly understood. Here, we use a natural experiment of lin-12/Notch gene duplication within the nematode genus Caenorhabditis, combined with characterization of loss- and gain-of-function mutations, to uncover functional distinctions between the duplicate genes in 1 species (Caenorhabditis briggsae) and their single-copy ortholog in Caenorhabditis elegans. First, using improved genomic sequence and gene model characterization, we confirm that the C. briggsae genome includes 2 complete lin-12 genes, whereas most other genes encoding proteins that participate in the LIN-12 signaling pathway retain a one-to-one orthology with C. elegans. We use CRISPR-mediated genome editing to introduce alleles predicted to cause gain-of-function (gf) or loss-of-function (lf) into each C. briggsae gene and find that the gf mutations uncover functional distinctions not apparent from the lf alleles. Specifically, Cbr-lin-12.1(gf), but not Cbr-lin-12.2(gf), causes developmental defects similar to those observed in Cel-lin-12(gf). In contrast to Cel-lin-12(gf), however, the Cbr-lin-12.1(gf) alleles do not cause dominant phenotypes as compared to the wild type, and the mutant phenotype is observed only when 2 gf alleles are present. Our results demonstrate that gene duplicates can exhibit differential capacities to compensate for each other and to interfere with normal development, and uncover coincident gene duplication and evolution of developmental sensitivity to LIN-12/Notch activity.
Collapse
Affiliation(s)
- Haimeng Lyu
- Department of Molecular Genetics, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Bascom UTL 383, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Bascom UTL 383, 3400 North Charles St., Baltimore, MD 21218, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
5
|
Schwartz HT, Tan CH, Peraza J, Raymundo KLT, Sternberg PW. Molecular identification of a peroxidase gene controlling body size in the entomopathogenic nematode Steinernema hermaphroditum. Genetics 2024; 226:iyad209. [PMID: 38078889 PMCID: PMC11491526 DOI: 10.1093/genetics/iyad209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
The entomopathogenic nematode Steinernema hermaphroditum was recently rediscovered and is being developed as a genetically tractable experimental system for the study of previously unexplored biology, including parasitism of its insect hosts and mutualism with its bacterial endosymbiont Xenorhabdus griffiniae. Through whole-genome re-sequencing and genetic mapping we have for the first time molecularly identified the gene responsible for a mutationally defined phenotypic locus in an entomopathogenic nematode. In the process we observed an unexpected mutational spectrum following ethyl methansulfonate mutagenesis in this species. We find that the ortholog of the essential Caenorhabditis elegans peroxidase gene skpo-2 controls body size and shape in S. hermaphroditum. We confirmed this identification by generating additional loss-of-function mutations in the gene using CRISPR-Cas9. We propose that the identification of skpo-2 will accelerate gene targeting in other Steinernema entomopathogenic nematodes used commercially in pest control, as skpo-2 is X-linked and males hemizygous for loss of its function can mate, making skpo-2 an easily recognized and maintained marker for use in co-CRISPR.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, NewYork, NY 10027, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Wanninger A. Hox, homology, and parsimony: An organismal perspective. Semin Cell Dev Biol 2024; 152-153:16-23. [PMID: 36670036 DOI: 10.1016/j.semcdb.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Hox genes are important regulators in animal development. They often show a mosaic of conserved (e.g., longitudinal axis patterning) and lineage-specific novel functions (e.g., development of skeletal, sensory, or locomotory systems). Despite extensive research over the past decades, it remains controversial at which node in the animal tree of life the Hox cluster evolved. Its presence already in the last common metazoan ancestor has been proposed, although the genomes of both putative earliest extant metazoan offshoots, the ctenophores and the poriferans, are devoid of Hox sequences. The lack of Hox genes in the supposedly "simple"-built poriferans and their low number in cnidarians and the basally branching bilaterians, the xenacoelomorphs, seems to support the classical notion that the number of Hox genes is correlated with the degree of animal complexity. However, the 4-fold increase of the Hox cluster in xiphosurans, a basally branching chelicerate clade, as well as the situation in some teleost fishes that show a multitude of Hox genes compared to, e.g., human, demonstrates, that there is no per se direct correlation between organismal complexity and Hox number. Traditional approaches have tried to base homology on the morphological level on shared expression profiles of individual genes, but recent data have shown that, in particular with respect to Hox and other regulatory genes, complex gene-gene interactions rather than expression signatures of individual genes alone are responsible for shaping morphological traits during ontogeny. Accordingly, for sound homology assessments and reconstructions of character evolution on organ system level, additional independent datasets (e.g., morphological, developmental) need to be included in any such analyses. If supported by solid data, proposed structural homology should be regarded as valid and not be rejected solely on the grounds of non-parsimonious distribution of the character over a given phylogenetic topology.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Vienna, Department of Evolutionary Biology, Unit for Integrative Zoology, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Broitman-Maduro G, Maduro MF. Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift. J Dev Biol 2023; 11:32. [PMID: 37489333 PMCID: PMC10366740 DOI: 10.3390/jdb11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Morris F Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Jhaveri N, Gupta B. Characterization of two new C. briggsae multivulva genes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000859. [PMID: 37383173 PMCID: PMC10293904 DOI: 10.17912/micropub.biology.000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
The nematode C. briggsae is an excellent genetic model for comparative and evolutionary studies involving its well-known cousin C. elegans . The vulval system in these two species has been used extensively to investigate genes and pathways involved in cell proliferation and cell differentiation. Here we report initial characterization of two C. briggsae multivulva (Muv) mutants, Cbr-lin(bh1) and Cbr-lin(bh3) .
Collapse
|
9
|
Chamberlin HM, Jain IM, Corchado-Sonera M, Kelley LH, Sharanya D, Jama A, Pabla R, Dawes AT, Gupta BP. Evolution of Transcriptional Repressors Impacts Caenorhabditis Vulval Development. Mol Biol Evol 2021; 37:1350-1361. [PMID: 31960924 DOI: 10.1093/molbev/msaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.
Collapse
Affiliation(s)
| | - Ish M Jain
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Leanne H Kelley
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Devika Sharanya
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Abdulrahman Jama
- Department of Molecular Genetics, Ohio State University, Columbus, OH
| | - Romy Pabla
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Adriana T Dawes
- Department of Molecular Genetics, Ohio State University, Columbus, OH.,Department of Mathematics, Ohio State University, Columbus, OH
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Cohen JD, Sparacio AP, Belfi AC, Forman-Rubinsky R, Hall DH, Maul-Newby H, Frand AR, Sundaram MV. A multi-layered and dynamic apical extracellular matrix shapes the vulva lumen in Caenorhabditis elegans. eLife 2020; 9:e57874. [PMID: 32975517 PMCID: PMC7544507 DOI: 10.7554/elife.57874] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Biological tubes must develop and maintain their proper diameter to transport materials efficiently. These tubes are molded and protected in part by apical extracellular matrices (aECMs) that line their lumens. Despite their importance, aECMs are difficult to image in vivo and therefore poorly understood. The Caenorhabditis elegans vulva has been a paradigm for understanding many aspects of organogenesis. Here we describe the vulva luminal matrix, which contains chondroitin proteoglycans, Zona Pellucida (ZP) domain proteins, and other glycoproteins and lipid transporters related to those in mammals. Confocal and transmission electron microscopy revealed, with unprecedented detail, a complex and dynamic aECM. Different matrix factors assemble on the apical surfaces of each vulva cell type, with clear distinctions seen between Ras-dependent (1°) and Notch-dependent (2°) cell types. Genetic perturbations suggest that chondroitin and other aECM factors together generate a structured scaffold that both expands and constricts lumen shape.
Collapse
Affiliation(s)
- Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alessandro P Sparacio
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Alexandra C Belfi
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Rachel Forman-Rubinsky
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Hannah Maul-Newby
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| |
Collapse
|
11
|
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol 2020; 8:170. [PMID: 32258041 PMCID: PMC7093329 DOI: 10.3389/fcell.2020.00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
Developmental gene regulatory networks (GRNs) underpin metazoan embryogenesis and have undergone substantial modification to generate the tremendous variety of animal forms present on Earth today. The nematode Caenorhabditis elegans has been a central model for advancing many important discoveries in fundamental mechanistic biology and, more recently, has provided a strong base from which to explore the evolutionary diversification of GRN architecture and developmental processes in other species. In this short review, we will focus on evolutionary diversification of the GRN for the most ancient of the embryonic germ layers, the endoderm. Early embryogenesis diverges considerably across the phylum Nematoda. Notably, while some species deploy regulative development, more derived species, such as C. elegans, exhibit largely mosaic modes of embryogenesis. Despite the relatively similar morphology of the nematode gut across species, widespread variation has been observed in the signaling inputs that initiate the endoderm GRN, an exemplar of developmental system drift (DSD). We will explore how genetic variation in the endoderm GRN helps to drive DSD at both inter- and intraspecies levels, thereby resulting in a robust developmental system. Comparative studies using divergent nematodes promise to unveil the genetic mechanisms controlling developmental plasticity and provide a paradigm for the principles governing evolutionary modification of an embryonic GRN.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Joel H. Rothman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
12
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
13
|
Torres Cleuren YN, Ewe CK, Chipman KC, Mears ER, Wood CG, Al-Alami CEA, Alcorn MR, Turner TL, Joshi PM, Snell RG, Rothman JH. Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. eLife 2019; 8:48220. [PMID: 31414984 PMCID: PMC6754231 DOI: 10.7554/elife.48220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.
Collapse
Affiliation(s)
- Yamila N Torres Cleuren
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chee Kiang Ewe
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Kyle C Chipman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Emily R Mears
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cricket G Wood
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Melissa R Alcorn
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Pradeep M Joshi
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joel H Rothman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
14
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
15
|
Monniaux M, Pieper B, McKim SM, Routier-Kierzkowska AL, Kierzkowski D, Smith RS, Hay A. The role of APETALA1 in petal number robustness. eLife 2018; 7:39399. [PMID: 30334736 PMCID: PMC6205810 DOI: 10.7554/elife.39399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023] Open
Abstract
Invariant floral forms are important for reproductive success and robust to natural perturbations. Petal number, for example, is invariant in Arabidopsis thaliana flowers. However, petal number varies in the closely related species Cardamine hirsuta, and the genetic basis for this difference between species is unknown. Here we show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness. This large effect of AP1 is explained by epistatic interactions: A. thaliana AP1 confers robustness by masking the phenotypic expression of quantitative trait loci controlling petal number in C. hirsuta. We show that C. hirsuta AP1 fails to complement this function of A. thaliana AP1, conferring variable petal number, and that upstream regulatory regions of AP1 contribute to this divergence. Moreover, variable petal number is maintained in C. hirsuta despite sufficient standing genetic variation in natural accessions to produce plants with four-petalled flowers.
Collapse
Affiliation(s)
- Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah M McKim
- Plant Sciences Department, University of Oxford, Oxford, United Kingdom
| | | | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
16
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
17
|
Physiological Starvation Promotes Caenorhabditis elegans Vulval Induction. G3-GENES GENOMES GENETICS 2018; 8:3069-3081. [PMID: 30037804 PMCID: PMC6118308 DOI: 10.1534/g3.118.200449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying how molecular pathways respond to ecologically relevant environmental variation is fundamental to understand organismal development and its evolution. Here we characterize how starvation modulates Caenorhabditis elegans vulval cell fate patterning – an environmentally sensitive process, with a nevertheless robust output. Past research has shown many vulval mutants affecting EGF-Ras-MAPK, Delta-Notch and Wnt pathways to be suppressed by environmental factors, such as starvation. Here we aimed to resolve previous, seemingly contradictory, observations on how starvation modulates levels of vulval induction. Using the strong starvation suppression of the Vulvaless phenotype of lin-3/egf reduction-of-function mutations as an experimental paradigm, we first tested for a possible involvement of the sensory system in relaying starvation signals to affect vulval induction: mutation of various sensory inputs, DAF-2/Insulin or DAF-7/TGF-β signaling did not abolish lin-3(rf) starvation suppression. In contrast, nutrient deprivation induced by mutation of the intestinal peptide transporter gene pept-1 or the TOR pathway component rsks-1 (the ortholog of mammalian P70S6K) very strongly suppressed lin-3(rf) mutant phenotypes. Therefore, physiologically starved animals induced by these mutations tightly recapitulated the effects of external starvation on vulval induction. While both starvation and pept-1 RNAi were sufficient to increase Ras and Notch pathway activities in vulval cells, the highly penetrant Vulvaless phenotype of a tissue-specific null allele of lin-3 was not suppressed by either condition. This and additional results indicate that partial lin-3 expression is required for starvation to affect vulval induction. These results suggest a cross-talk between nutrient deprivation, TOR-S6K and EGF-Ras-MAPK signaling during C. elegans vulval induction.
Collapse
|
18
|
Valfort AC, Launay C, Sémon M, Delattre M. Evolution of mitotic spindle behavior during the first asymmetric embryonic division of nematodes. PLoS Biol 2018; 16:e2005099. [PMID: 29357348 PMCID: PMC5794175 DOI: 10.1371/journal.pbio.2005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/01/2018] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
Asymmetric cell division is essential to generate cellular diversity. In many animal cells, the cleavage plane lies perpendicular to the mitotic spindle, and it is the spindle positioning that dictates the size of the daughter cells. Although some properties of spindle positioning are conserved between distantly related model species and different cell types, little is known of the evolutionary robustness of the mechanisms underlying this event. We recorded the first embryonic division of 42 species of nematodes closely related to Caenorhabditis elegans, which is an excellent model system to study the biophysical properties of asymmetric spindle positioning. Our recordings, corresponding to 128 strains from 27 Caenorhabditis and 15 non-Caenorhabditis species (accessible at http://www.ens-lyon.fr/LBMC/NematodeCell/videos/), constitute a powerful collection of subcellular phenotypes to study the evolution of various cellular processes across species. In the present work, we analyzed our collection to the study of asymmetric spindle positioning. Although all the strains underwent an asymmetric first cell division, they exhibited large intra- and inter-species variations in the degree of cell asymmetry and in several parameters controlling spindle movement, including spindle oscillation, elongation, and displacement. Notably, these parameters changed frequently during evolution with no apparent directionality in the species phylogeny, with the exception of spindle transverse oscillations, which were an evolutionary innovation at the base of the Caenorhabditis genus. These changes were also unrelated to evolutionary variations in embryo size. Importantly, spindle elongation, displacement, and oscillation each evolved independently. This finding contrasts starkly with expectations based on C. elegans studies and reveals previously unrecognized evolutionary changes in spindle mechanics. Collectively, these data demonstrate that, while the essential process of asymmetric cell division has been conserved over the course of nematode evolution, the underlying spindle movement parameters can combine in various ways. Like other developmental processes, asymmetric cell division is subject to system drift.
Collapse
Affiliation(s)
- Aurore-Cécile Valfort
- Department of Pharmacology & Physiology (Colin Flaveny lab), Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Caroline Launay
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | - Marie Delattre
- UnivLyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| |
Collapse
|
19
|
Corson F, Siggia ED. Gene-free methodology for cell fate dynamics during development. eLife 2017; 6:30743. [PMID: 29235987 PMCID: PMC5771671 DOI: 10.7554/elife.30743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Models of cell function that assign a variable to each gene frequently lead to systems of equations with many parameters whose behavior is obscure. Geometric models reduce dynamics to intuitive pictorial elements that provide compact representations for sparse in vivo data and transparent descriptions of developmental transitions. To illustrate, a geometric model fit to vulval development in Caenorhabditis elegans, implies a phase diagram where cell-fate choices are displayed in a plane defined by EGF and Notch signaling levels. This diagram defines allowable and forbidden cell-fate transitions as EGF or Notch levels change, and explains surprising observations previously attributed to context-dependent action of these signals. The diagram also reveals the existence of special points at which minor changes in signal levels lead to strong epistatic interactions between EGF and Notch. Our model correctly predicts experiments near these points and suggests specific timed perturbations in signals that can lead to additional unexpected outcomes. At first, embryos are made up of identical cells. Then, as the embryo develops, these cells specialize into different types, such as heart and brain cells. Chemical signals sent and received by the cells are key to forming the right type of cell at the right time and place. The cellular machinery that produces and interprets these signals is exceedingly complex and difficult to understand. In the 1950s, Conrad Waddington presented an alternative way of thinking about how an unspecialized cell progresses to one of many different fates. He suggested visualizing the developing cell as a ball rolling along a hilly landscape. As the ball travels, obstacles in its way guide it along particular paths. Eventually the ball comes to rest in a valley, with each valley in the landscape representing a different cell fate. Although this “landscape model” is an appealing metaphor for how signaling events guide cell specialization, it was not clear whether it could be put to productive use. The egg-laying organ in the worm species Caenorhabditis elegans is called the vulva, and is often studied by researchers who want to learn more about how organs develop. The vulva develops from a small number of identical cells that adopt one of three possible cell fates. Two chemical signals, called epidermal growth factor (EGF) and Notch, control this specialization process. Corson and Siggia have now constructed a simple landscape model that can reproduce the normal arrangement of cell types in the vulva. When adjusted to describe the effect of genetic mutations that affect either EGF or Notch, the model could predict the outcome of mutations that affect both signals at once. The twists and turns of cell paths in the landscape could also account for several non-intuitive cell fate outcomes that had been assumed to result from subtle regulation of EGF and Notch signals. Landscape models should be easy to apply to other developing tissues and organs. By providing an intuitive picture of how signals shape cellular decisions, the models could help researchers to learn how to control cell and tissue development. This could lead to new treatments to repair or replace failing organs, making regenerative medicine a reality.
Collapse
Affiliation(s)
- Francis Corson
- Laboratoire de Physique Statistique, CNRS / Ecole Normale Supérieure, Paris, France
| | - Eric D Siggia
- Center for Studies in Physics and Biology, Rockefeller University, New York, United States
| |
Collapse
|
20
|
Underwood RS, Deng Y, Greenwald I. Integration of EGFR and LIN-12/Notch Signaling by LIN-1/Elk1, the Cdk8 Kinase Module, and SUR-2/Med23 in Vulval Precursor Cell Fate Patterning in Caenorhabditis elegans. Genetics 2017; 207:1473-1488. [PMID: 28954762 PMCID: PMC5714460 DOI: 10.1534/genetics.117.300192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023] Open
Abstract
Six initially equivalent, multipotential Vulval Precursor Cells (VPCs) in Caenorhabditis elegans adopt distinct cell fates in a precise spatial pattern, with each fate associated with transcription of different target genes. The pattern is centered on a cell that adopts the "1°" fate through Epidermal Growth Factor Receptor (EGFR) activity, and produces a lateral signal composed of ligands that activate LIN-12/Notch in the two flanking VPCs to cause them to adopt "2°" fate. Here, we investigate orthologs of a transcription complex that acts in mammalian EGFR signaling-lin-1/Elk1, sur-2/Med23, and the Cdk8 Kinase module (CKM)-previously implicated in aspects of 1° fate in C. elegans and show they act in different combinations for different processes for 2° fate. When EGFR is inactive, the CKM, but not SUR-2, helps to set a threshold for LIN-12/Notch activity in all VPCs. When EGFR is active, all three factors act to resist LIN-12/Notch, as revealed by the reduced ability of ectopically-activated LIN-12/Notch to activate target gene reporters. We show that overcoming this resistance in the 1° VPC leads to repression of lateral signal gene reporters, suggesting that resistance to LIN-12/Notch helps ensure that P6.p becomes a robust source of the lateral signal. In addition, we show that sur-2/Med23 and lin-1/Elk1, and not the CKM, are required to promote endocytic downregulation of LIN-12-GFP in the 1° VPC. Finally, our analysis using cell fate reporters reveals that both EGFR and LIN-12/Notch signal transduction pathways are active in all VPCs in lin-1/Elk1 mutants, and that lin-1/Elk1 is important for integrating EGFR and lin-12/Notch signaling inputs in the VPCs so that the proper gene complement is transcribed.
Collapse
Affiliation(s)
- Ryan S Underwood
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Yuting Deng
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Iva Greenwald
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
- Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
21
|
de la Cova C, Townley R, Regot S, Greenwald I. A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification. Dev Cell 2017; 42:542-553.e4. [PMID: 28826819 PMCID: PMC5595649 DOI: 10.1016/j.devcel.2017.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023]
Abstract
Kinase translocation reporters (KTRs) are genetically encoded fluorescent activity sensors that convert kinase activity into a nucleocytoplasmic shuttling equilibrium for visualizing single-cell signaling dynamics. Here, we adapt the first-generation KTR for extracellular signal-regulated kinase (ERK) to allow easy implementation in vivo. This sensor, "ERK-nKTR," allows quantitative and qualitative assessment of ERK activity by analysis of individual nuclei and faithfully reports ERK activity during development and neural function in diverse cell contexts in Caenorhabditis elegans. Analysis of ERK activity over time in the vulval precursor cells, a well-characterized paradigm of epidermal growth factor receptor (EGFR)-Ras-ERK signaling, has identified dynamic features not evident from analysis of developmental endpoints alone, including pulsatile frequency-modulated signaling associated with proximity to the EGF source. The toolkit described here will facilitate studies of ERK signaling in other C. elegans contexts, and the design features will enable implementation of this technology in other multicellular organisms.
Collapse
Affiliation(s)
- Claire de la Cova
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Robert Townley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sergi Regot
- Department of Molecular Biology & Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Mahalak KK, Jama AM, Billups SJ, Dawes AT, Chamberlin HM. Differing roles for sur-2/MED23 in C. elegans and C. briggsae vulval development. Dev Genes Evol 2017; 227:213-218. [PMID: 28220250 DOI: 10.1007/s00427-017-0577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Normal vulval development in the nematode Caenorhabditis briggsae is identical to that in the related Caenorhabditis elegans. However, several experiments suggest that there are differences between the two species with respect to the contribution of EGF/Ras signaling. To investigate these differences genetically, we have characterized a C. briggsae mutant strain that phenocopies the effect observed when C. briggsae animals are treated with U0126, an inhibitor of the EGF pathway component MEK. We identify that the gene affected in the mutant strain is Cbr-sur-2, which encodes a MED23 mediator complex protein that acts downstream of EGF signaling in C. elegans and other organisms, such as mammals. When Cbr-sur-2 and Cel-sur-2 mutants are compared, we find that the production of additional vulval cells from P5.p and P7.p in C. elegans is dependent on proper development of P6.p, while C. briggsae does not have a similar requirement. Combined chemical and genetic interference with the EGF pathway completely eliminates vulval development in C. elegans but not in C. briggsae. Our results provide genetic evidence for the differing requirements for EGF signaling in the two species.
Collapse
Affiliation(s)
- Karley K Mahalak
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Graduate Program in Molecular Cellular and Developmental Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrahman M Jama
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
| | - Steven J Billups
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
| | - Adriana T Dawes
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Mathematics, Ohio State University, Columbus, OH, 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Slos D, Sudhaus W, Stevens L, Bert W, Blaxter M. Caenorhabditis monodelphis sp. n.: defining the stem morphology and genomics of the genus Caenorhabditis. BMC ZOOL 2017. [DOI: 10.1186/s40850-017-0013-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
24
|
Dawes AT, Wu D, Mahalak KK, Zitnik EM, Kravtsova N, Su H, Chamberlin HM. A computational model predicts genetic nodes that allow switching between species-specific responses in a conserved signaling network. Integr Biol (Camb) 2017; 9:156-166. [DOI: 10.1039/c6ib00238b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations to only specific parameters in a model including EGF, Wnt and Notch lead to cell behavior differences.
Collapse
Affiliation(s)
- Adriana T. Dawes
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Molecular Genetics
| | - David Wu
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | - Karley K. Mahalak
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
- Graduate Program in Molecular
| | - Edward M. Zitnik
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
| | - Natalia Kravtsova
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Statistics
| | - Haiwei Su
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | | |
Collapse
|
25
|
Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis. PLoS Genet 2016; 12:e1006278. [PMID: 27588814 PMCID: PMC5010242 DOI: 10.1371/journal.pgen.1006278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change—less than 30%—in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR) binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression. Diversification of mechanisms regulating gene expression of key developmental factors is a major force in the evolution of development. However, in the past, comparisons of gene expression across different species have often been qualitative (i.e. ‘expression is on versus off’ in a certain cell) without precise quantification. New experimental methods now allow us to quantitatively compare the expression of gene homologs across species, with single cell resolution. Moreover, the development of genome editing tools enables the dissection of regulatory DNA sequences that drive gene expression. We use here a well-established “textbook” example of animal organogenesis in the microscopic nematode, Caenorhabditis elegans, focusing on the expression of lin-3, coding for the main inducer of the vulva, in a single cell called the anchor cell. We find that the lin-3 expression level is remarkably conserved, with 20–25 messenger RNAs per anchor cell, in species that are molecularly as distant as fish and mammals. This conservation occurs despite substantial changes and compensation in the regulatory elements required for cell-specific gene expression.
Collapse
|
26
|
Paaby AB, Gibson G. Cryptic Genetic Variation in Evolutionary Developmental Genetics. BIOLOGY 2016; 5:E28. [PMID: 27304973 PMCID: PMC4929542 DOI: 10.3390/biology5020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 01/17/2023]
Abstract
Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes-processes that cannot be fully observed in continuously varying visible traits.
Collapse
Affiliation(s)
- Annalise B Paaby
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Greg Gibson
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
27
|
Ehrenreich IM, Pfennig DW. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. ANNALS OF BOTANY 2016; 117:769-79. [PMID: 26359425 PMCID: PMC4845796 DOI: 10.1093/aob/mcv130] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensitivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. SCOPE This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimilation, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic, molecular and physiological levels and approaches that can improve our understanding of these mechanisms are described. The review concludes by outlining major challenges for future work. CONCLUSIONS Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and genetic assimilation promises to help advance our basic understanding of evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Mestek Boukhibar L, Barkoulas M. The developmental genetics of biological robustness. ANNALS OF BOTANY 2016; 117:699-707. [PMID: 26292993 PMCID: PMC4845795 DOI: 10.1093/aob/mcv128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype-phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. SCOPE AND CONCLUSIONS Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved.
Collapse
Affiliation(s)
- Lamia Mestek Boukhibar
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Imperial College London, Department of Life Sciences, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
29
|
Pieper B, Monniaux M, Hay A. The genetic architecture of petal number in Cardamine hirsuta. THE NEW PHYTOLOGIST 2016; 209:395-406. [PMID: 26268614 DOI: 10.1111/nph.13586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/04/2015] [Indexed: 05/22/2023]
Abstract
Invariant petal number is a characteristic of most flowers and is generally robust to genetic and environmental variation. We took advantage of the natural variation found in Cardamine hirsuta petal number to investigate the genetic basis of this trait in a case where robustness was lost during evolution. We used quantitative trait locus (QTL) analysis to characterize the genetic architecture of petal number. Αverage petal number showed transgressive variation from zero to four petals in five C. hirsuta mapping populations, and this variation was highly heritable. We detected 15 QTL at which allelic variation affected petal number. The effects of these QTL were relatively small in comparison with alleles induced by mutagenesis, suggesting that natural selection may act to maintain petal number within its variable range below four. Petal number showed a temporal trend during plant ageing, as did sepal trichome number, and multi-trait QTL analysis revealed that these age-dependent traits share a common genetic basis. Our results demonstrate that petal number is determined by many genes of small effect, some of which are age-dependent, and suggests a mechanism of trait evolution via the release of cryptic variation.
Collapse
Affiliation(s)
- Bjorn Pieper
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Marie Monniaux
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Angela Hay
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| |
Collapse
|
30
|
Transcriptional Derepression Uncovers Cryptic Higher-Order Genetic Interactions. PLoS Genet 2015; 11:e1005606. [PMID: 26484664 PMCID: PMC4618523 DOI: 10.1371/journal.pgen.1005606] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Disruption of certain genes can reveal cryptic genetic variants that do not typically show phenotypic effects. Because this phenomenon, which is referred to as ‘phenotypic capacitance’, is a potential source of trait variation and disease risk, it is important to understand how it arises at the genetic and molecular levels. Here, we use a cryptic colony morphology trait that segregates in a yeast cross to explore the mechanisms underlying phenotypic capacitance. We find that the colony trait is expressed when a mutation in IRA2, a negative regulator of the Ras pathway, co-occurs with specific combinations of cryptic variants in six genes. Four of these genes encode transcription factors that act downstream of the Ras pathway, indicating that the phenotype involves genetically complex changes in the transcriptional regulation of Ras targets. We provide evidence that the IRA2 mutation reveals the phenotypic effects of the cryptic variants by disrupting the transcriptional silencing of one or more genes that contribute to the trait. Supporting this role for the IRA2 mutation, deletion of SFL1, a repressor that acts downstream of the Ras pathway, also reveals the phenotype, largely due to the same cryptic variants that were detected in the IRA2 mutant cross. Our results illustrate how higher-order genetic interactions among mutations and cryptic variants can result in phenotypic capacitance in specific genetic backgrounds, and suggests these interactions might reflect genetically complex changes in gene expression that are usually suppressed by negative regulation. Some genetic polymorphisms have phenotypic effects that are masked under most conditions, but can be revealed by mutations or environmental change. The genetic and molecular mechanisms that suppress and uncover these cryptic genetic variants are important to understand. Here, we show that a single mutation in a yeast cross causes a major phenotypic change through its genetic interactions with two specific combinations of cryptic variants in six genes. This result suggests that in some cases cryptic variants themselves play roles in revealing their own phenotypic effects through their genetic interactions with each other and the mutations that reveal them. We also demonstrate that most of the genes harboring cryptic variation in our system are transcription factors, a finding that supports an important role for perturbation of gene regulatory networks in the uncovering of cryptic variation. As a final part of our study, we interrogate how a mutation exposes combinations of cryptic variants and obtain evidence that it does so by disrupting the silencing of one or more genes that must be expressed for the cryptic variants to exert their effects. To prove this point, we delete the transcriptional repressor that mediates this silencing and demonstrate that this deletion reveals a similar set of cryptic variants to the ones that were discovered in the initial mutant background. These findings advance our understanding of the genetic and molecular mechanisms that reveal cryptic variation.
Collapse
|
31
|
Paaby AB, White AG, Riccardi DD, Gunsalus KC, Piano F, Rockman MV. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation. eLife 2015; 4. [PMID: 26297805 PMCID: PMC4569889 DOI: 10.7554/elife.09178] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 12/28/2022] Open
Abstract
Embryogenesis is an essential and stereotypic process that nevertheless evolves
among species. Its essentiality may favor the accumulation of cryptic genetic
variation (CGV) that has no effect in the wild-type but that enhances or
suppresses the effects of rare disruptions to gene function. Here, we adapted a
classical modifier screen to interrogate the alleles segregating in natural
populations of Caenorhabditis elegans: we induced gene
knockdowns and used quantitative genetic methodology to examine how segregating
variants modify the penetrance of embryonic lethality. Each perturbation
revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers
that may have little effect individually but which in aggregate can dramatically
influence penetrance. Phenotypes were mediated by many modifiers, indicating
high polygenicity, but the alleles tend to act very specifically, indicating low
pleiotropy. Our findings demonstrate the extent of conditional functionality in
complex trait architecture. DOI:http://dx.doi.org/10.7554/eLife.09178.001 Individuals of the same species have similar, but generally not identical, DNA
sequences. This ‘genetic variation’ is due to random changes in the DNA—known as
mutations—that occur among individuals. These mutations may be passed on to
these individuals' offspring, who in turn pass them on to their descendants.
Some of these mutations may have a positive or negative effect on the ability of
the organisms to survive and reproduce, but others may have no effect at
all. The process by which an embryo forms (which is called embryogenesis) follows a
precisely controlled series of events. Within the same species, there is genetic
variation in the DNA that programs embryogenesis, but it is not clear what
effect this variation has on how the embryo develops. Here, Paaby et al. adapted
a genetics technique called a ‘modifier screen’ to study how genetic variation
affects the development of a roundworm known as Caenorhabditis
elegans. The experiments show that populations of worms harbor a lot of genetic variation
that affects how they tolerate the loss of an important gene. One by one, Paaby
et al. interrupted the activity of specific genes that embryos need in order to
develop. How this affected the embryo, and whether or not it was able to
survive, was due in large part to the naturally-occurring genetic variation in
other genes in these worms. Paaby et al.'s findings serve as a reminder that the effect of a mutation depends
on other DNA sequences in the organism. In humans, for example, a gene that
causes a genetic disease may produce severe symptoms in one patient but mild
symptoms in another. Future experiments will reveal the details of how genetic
variation affects embryogenesis, which may also provide new insights into how
complex processes in animals evolve over time. DOI:http://dx.doi.org/10.7554/eLife.09178.002
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Amelia G White
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - David D Riccardi
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Kristin C Gunsalus
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
32
|
Ping X, Tang C. An Atlas of Network Topologies Reveals Design Principles for Caenorhabditis elegans Vulval Precursor Cell Fate Patterning. PLoS One 2015; 10:e0131397. [PMID: 26114587 PMCID: PMC4482679 DOI: 10.1371/journal.pone.0131397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
The vulval precursor cell (VPC) fate patterning in Caenorhabditis elegans is a classic model experimental system for cell fate determination and patterning in development. Despite its apparent simplicity (six neighboring cells arranged in one dimension) and many experimental and computational efforts, the patterning strategy and mechanism remain controversial due to incomplete knowledge of the complex biology. Here, we carry out a comprehensive computational analysis and obtain a reservoir of all possible network topologies that are capable of VPC fate patterning under the simulation of various biological environments and regulatory rules. We identify three patterning strategies: sequential induction, morphogen gradient and lateral antagonism, depending on the features of the signal secreted from the anchor cell. The strategy of lateral antagonism, which has not been reported in previous studies of VPC patterning, employs a mutual inhibition of the 2° cell fate in neighboring cells. Robust topologies are built upon minimal topologies with basic patterning strategies and have more flexible and redundant implementations of modular functions. By simulated mutation, we find that all three strategies can reproduce experimental error patterns of mutants. We show that the topology derived by mapping currently known biochemical pathways to our model matches one of our identified functional topologies. Furthermore, our robustness analysis predicts a possible missing link related to the lateral antagonism strategy. Overall, we provide a theoretical atlas of all possible functional networks in varying environments, which may guide novel discoveries of the biological interactions in vulval development of Caenorhabditis elegans and related species.
Collapse
Affiliation(s)
- Xianfeng Ping
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Abstract
The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.
Collapse
Affiliation(s)
- Lise Frézal
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Anne Félix
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
34
|
Caenorhabditis elegans Models to Study the Molecular Biology of Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Huang RE, Ren X, Qiu Y, Zhao Z. Description of Caenorhabditis sinica sp. n. (Nematoda: Rhabditidae), a nematode species used in comparative biology for C. elegans. PLoS One 2014; 9:e110957. [PMID: 25375770 PMCID: PMC4222906 DOI: 10.1371/journal.pone.0110957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
Abstract
We re-isolated in China a relative of the nematode model Caenorhabditis elegans that was previously referred to informally as C. sp. 5. In spite of its importance for comparative biology, C. sp. 5 has remained morphologically uncharacterized. Therefore, we now provide detailed description of morphology and anatomy, assigning the name of Caenorhabditis sinica sp. n. to this nematode that is found frequently in China. C. sinica sp. n. belongs to the Elegans group in the genus Caenorhabditis, being phylogenetically close to C. briggsae although differing in reproductive mode. The gonochoristic C. sinica sp. n. displays two significantly larger distal parts of uteri filled with sperms in the female/hermaphroditic gonad than does the androdioecious C. briggsae. The new species can be differentiated morphologically from all known Caenorhabditis species within the Elegans group by presenting a uniquely shaped, three-pointed hook structure on the male precloacal lip. The lateral field of C. sinica sp. n. is marked by three ridges that are flanked by two additional incisures, sometimes appearing as five ridges in total. This study ends the prolonged period of the 'undescribed' anonymity for C. sinica sp. n. since its discovery and use in comparative biological research. Significant and crossing-direction dependent hybrid incompatibilities in F1 and F2 crossing progeny make C. sinica sp. n. an excellent model for studies of population and speciation genetics. The abundance of nematode species lacking detailed taxonomic characterization deserves renewed attention to address the species description gap for this important yet morphologically 'difficult' group of animals.
Collapse
Affiliation(s)
- Ren-E Huang
- School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Yifei Qiu
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
36
|
Abstract
Part of molecular and phenotypic differences between individual cells, between body parts, or between individuals can result from biological noise. This source of variation is becoming more and more apparent thanks to the recent advances in dynamic imaging and single-cell analysis. Some of these studies showed that the link between genotype and phenotype is not strictly deterministic. Mutations can change various statistical properties of a biochemical reaction, and thereby the probability of a trait outcome. The fact that they can modulate phenotypic noise brings up an intriguing question: how may selection act on these mutations? In this review, we approach this question by first covering the evidence that biological noise is under genetic control and therefore a substrate for evolution. We then sequentially inspect the possibilities of negative, neutral, and positive selection for mutations increasing biological noise. Finally, we hypothesize on the specific case of H2A.Z, which was shown to both buffer phenotypic noise and modulate transcriptional efficiency.
Collapse
Affiliation(s)
- Magali Richard
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique - Université de Lyon Lyon, France
| | - Gaël Yvert
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique - Université de Lyon Lyon, France
| |
Collapse
|
37
|
Grimbert S, Braendle C. Cryptic genetic variation uncovers evolution of environmentally sensitive parameters inCaenorhabditisvulval development. Evol Dev 2014; 16:278-91. [DOI: 10.1111/ede.12091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Stéphanie Grimbert
- Institut de Biologie Valrose; CNRS UMR7277, Parc Valrose; 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277, Parc Valrose; 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
38
|
Abstract
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| | - Matthew V Rockman
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| |
Collapse
|
39
|
Affiliation(s)
- Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Verster AJ, Ramani AK, McKay SJ, Fraser AG. Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 2014; 10:e1004077. [PMID: 24516395 PMCID: PMC3916228 DOI: 10.1371/journal.pgen.1004077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/18/2013] [Indexed: 01/27/2023] Open
Abstract
Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes.
Collapse
Affiliation(s)
- Adrian J. Verster
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arun K. Ramani
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon J. McKay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Causes and consequences of genetic background effects illuminated by integrative genomic analysis. Genetics 2014; 196:1321-36. [PMID: 24504186 DOI: 10.1534/genetics.113.159426] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scalloped(E3) allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines-two commonly used laboratory strains-to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well.
Collapse
|
42
|
Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 2013; 29:358-66. [PMID: 23453263 DOI: 10.1016/j.tig.2013.01.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/09/2013] [Accepted: 01/25/2013] [Indexed: 11/23/2022]
Abstract
The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. However, it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but are instead due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the underexplored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the 'wild type' genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs.
Collapse
|
43
|
RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics 2013; 14:5. [PMID: 23324472 PMCID: PMC3574008 DOI: 10.1186/1471-2164-14-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. Results Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. Conclusions These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.
Collapse
|
44
|
Robustness and Epistasis in the C. elegans Vulval Signaling Network Revealed by Pathway Dosage Modulation. Dev Cell 2013; 24:64-75. [DOI: 10.1016/j.devcel.2012.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 01/17/2023]
|
45
|
Sharanya D, Thillainathan B, Marri S, Bojanala N, Taylor J, Flibotte S, Moerman DG, Waterston RH, Gupta BP. Genetic control of vulval development in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2012; 2:1625-41. [PMID: 23275885 PMCID: PMC3516484 DOI: 10.1534/g3.112.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/19/2012] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis briggsae is an excellent model organism for the comparative analysis of gene function and developmental mechanisms. To study the evolutionary conservation and divergence of genetic pathways mediating vulva formation, we screened for mutations in C. briggsae that cause the egg-laying defective (Egl) phenotype. Here, we report the characterization of 13 genes, including three that are orthologs of Caenorhabditis elegans unc-84 (SUN domain), lin-39 (Dfd/Scr-related homeobox), and lin-11 (LIM homeobox). Based on the morphology and cell fate changes, the mutants were placed into four different categories. Class 1 animals have normal-looking vulva and vulva-uterine connections, indicating defects in other components of the egg-laying system. Class 2 animals frequently lack some or all of the vulval precursor cells (VPCs) due to defects in the migration of P-cell nuclei into the ventral hypodermal region. Class 3 animals show inappropriate fusion of VPCs to the hypodermal syncytium, leading to a reduced number of vulval progeny. Finally, class 4 animals exhibit abnormal vulval invagination and morphology. Interestingly, we did not find mutations that affect VPC induction and fates. Our work is the first study involving the characterization of genes in C. briggsae vulva formation, and it offers a basis for future investigations of these genes in C. elegans.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Sujatha Marri
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Jon Taylor
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
46
|
Félix MA. Evolution in developmental phenotype space. Curr Opin Genet Dev 2012; 22:593-9. [PMID: 22925969 DOI: 10.1016/j.gde.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022]
Abstract
Developmental systems can produce a variety of patterns and morphologies when the molecular and cellular activities within them are varied. With the advent of quantitative modeling, the range of phenotypic output of a developmental system can be assessed by exploring model parameter space. Here I review recent examples where developmental evolution is studied using quantitative models, which increasingly rely on empirically determined molecular signaling pathways and their crosstalk. Quantitative pathway evolution may result in dramatic morphological changes. Alternatively, in many developmental systems, the phenotypic output is robust to a range of parameter variation, and cryptic developmental evolution may occur without morphological change. Formalization and measurements of the relationship between genetic variation and parameter variation in developmental models remain in their infancy.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR8197, Inserm U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex 05, France.
| |
Collapse
|
47
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|
48
|
|
49
|
Pires-daSilva A, Parihar M. Evo-devo of the germline and somatic gonad in nematodes. Sex Dev 2012; 7:163-70. [PMID: 22516962 DOI: 10.1159/000337960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Due to recent progress in the development of genetic tools, nematodes have become excellent models to address the mechanistic basis of evolution of development. The gonad is one of the most variable structures in nematodes, reflecting the diverse modes of reproduction and lifestyle in this phylum. During larval development, the gonad primordium has a key role in organizing the neighboring tissues. Therefore, changes in the development of the gonad do not only influence the evolution of its morphology but also the overall body plan of the nematode. Here, we review recent progress on the evolution of development of the germline and somatic gonad in nematodes.
Collapse
Affiliation(s)
- A Pires-daSilva
- Department of Biology, University of Texas at Arlington, Arlington, Tex. 76019, USA.
| | | |
Collapse
|
50
|
Félix MA, Barkoulas M. Robustness and flexibility in nematode vulva development. Trends Genet 2012; 28:185-95. [DOI: 10.1016/j.tig.2012.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|