1
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
2
|
Hayes WK, Gren ECK, Nelsen DR, Corbit AG, Cooper AM, Fox GA, Streit MB. It's a Small World After All: The Remarkable but Overlooked Diversity of Venomous Organisms, with Candidates Among Plants, Fungi, Protists, Bacteria, and Viruses. Toxins (Basel) 2025; 17:99. [PMID: 40137872 PMCID: PMC11945383 DOI: 10.3390/toxins17030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Numerous organisms, including animals, plants, fungi, protists, and bacteria, rely on toxins to meet their needs. Biological toxins have been classified into three groups: poisons transferred passively without a delivery mechanism; toxungens delivered to the body surface without an accompanying wound; and venoms conveyed to internal tissues via the creation of a wound. The distinctions highlight the evolutionary pathways by which toxins acquire specialized functions. Heretofore, the term venom has been largely restricted to animals. However, careful consideration reveals a surprising diversity of organisms that deploy toxic secretions via strategies remarkably analogous to those of venomous animals. Numerous plants inject toxins and pathogenic microorganisms into animals through stinging trichomes, thorns, spines, prickles, raphides, and silica needles. Some plants protect themselves via ants as venomous symbionts. Certain fungi deliver toxins via hyphae into infected hosts for nutritional and/or defensive purposes. Fungi can possess penetration structures, sometimes independent of the hyphae, that create a wound to facilitate toxin delivery. Some protists discharge harpoon-like extrusomes (toxicysts and nematocysts) that penetrate their prey and deliver toxins. Many bacteria possess secretion systems or contractile injection systems that can introduce toxins into targets via wounds. Viruses, though not "true" organisms according to many, include a group (the bacteriophages) which can inject nucleic acids and virion proteins into host cells that inflict damage rivaling that of conventional venoms. Collectively, these examples suggest that venom delivery systems-and even toxungen delivery systems, which we briefly address-are much more widespread than previously recognized. Thus, our understanding of venom as an evolutionary novelty has focused on only a small proportion of venomous organisms. With regard to this widespread form of toxin deployment, the words of the Sherman Brothers in Disney's iconic tune, It's a Small World, could hardly be more apt: "There's so much that we share, that it's time we're aware, it's a small world after all".
Collapse
Affiliation(s)
- William K. Hayes
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Eric C. K. Gren
- Bitterroot College, University of Montana, Hamilton, MT 59840, USA;
| | - David R. Nelsen
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Aaron G. Corbit
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Allen M. Cooper
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Gerad A. Fox
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - M. Benjamin Streit
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| |
Collapse
|
3
|
Napitupulu TP. Agricultural relevance of fungal mycelial growth-promoting bacteria: Mutual interaction and application. Microbiol Res 2025; 290:127978. [PMID: 39591743 DOI: 10.1016/j.micres.2024.127978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Bacterial-fungal interaction (BFI) is found ubiquitously and plays important roles in various environmental settings, thus being responsible for numerous biophysical and chemical processes in nature. In terms of BFI, the capacity of the bacterium to enhance the growth of fungal mycelia is an indication of the roles of the bacterium in mutualistic interaction, since increasing mycelial growth results in higher changes for fungal establishment. In this review, the interaction between mycelial growth-promoting bacterium (MGPB) and its fungal counterpart in agricultural settings and the promotion of mycelial growth as an outcome of mutual interactions in various environmental niches were evaluated. The beneficial relationships included endohyphal interaction, association of bacteria with mushrooms, bacteria-mycorrhizae symbiosis, and geomicrobiology. Furthermore, the mode of interaction between MGPB and their fungal counterparts was also explained. There are two fundamental modes of interaction involved, namely physical interaction and chemical interaction. The first involved endosymbiosis and bacterial attachment, while the latter comprised quorum sensing, volatile metabolites, enzymatic activity, and chemotaxis. Particularly, the growth stimulants secreted by the bacteria, which promote the growth of hyphae, are discussed thoroughly. Moreover, the chance of trade-off metabolites between fungi and their MGPBs as a consequence of mutualistic interaction will also be observed. Finally, the agricultural relevance of BFI, particularly the relation between fungi and MGPBs, will also be provided, including key technologies and future bioprospects for optimum application.
Collapse
Affiliation(s)
- Toga Pangihotan Napitupulu
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Km.46, Cibinong 16911, Indonesia.
| |
Collapse
|
4
|
Grzyb T, Szulc J. Deciphering Molecular Mechanisms and Diversity of Plant Holobiont Bacteria: Microhabitats, Community Ecology, and Nutrient Acquisition. Int J Mol Sci 2024; 25:13601. [PMID: 39769364 PMCID: PMC11677812 DOI: 10.3390/ijms252413601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
While gaining increasing attention, plant-microbiome-environment interactions remain insufficiently understood, with many aspects still underexplored. This article explores bacterial biodiversity across plant compartments, including underexplored niches such as seeds and flowers. Furthermore, this study provides a systematic dataset on the taxonomic structure of the anthosphere microbiome, one of the most underexplored plant niches. This review examines ecological processes driving microbial community assembly and interactions, along with the discussion on mechanisms and diversity aspects of processes concerning the acquisition of nitrogen, phosphorus, potassium, and iron-elements essential in both molecular and ecological contexts. These insights are crucial for advancing molecular biology, microbial ecology, environmental studies, biogeochemistry, and applied studies. Moreover, the authors present the compilation of molecular markers for discussed processes, which will find application in (phylo)genetics, various (meta)omic approaches, strain screening, and monitoring. Such a review can be a valuable source of information for specialists in the fields concerned and for applied researchers, contributing to developments in sustainable agriculture, environmental protection, and conservation biology.
Collapse
Affiliation(s)
| | - Justyna Szulc
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland;
| |
Collapse
|
5
|
Li TP, Wang CH, Xie JC, Wang MK, Chen J, Zhu YX, Hao DJ, Hong XY. Microbial changes and associated metabolic responses modify host plant adaptation in Stephanitis nashi. INSECT SCIENCE 2024; 31:1789-1809. [PMID: 38369568 DOI: 10.1111/1744-7917.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Giger GH, Ernst C, Richter I, Gassler T, Field CM, Sintsova A, Kiefer P, Gäbelein CG, Guillaume-Gentil O, Scherlach K, Bortfeld-Miller M, Zambelli T, Sunagawa S, Künzler M, Hertweck C, Vorholt JA. Inducing novel endosymbioses by implanting bacteria in fungi. Nature 2024; 635:415-422. [PMID: 39358514 PMCID: PMC11560845 DOI: 10.1038/s41586-024-08010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification1,2. Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect3-5. Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits.
Collapse
Affiliation(s)
- Gabriel H Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christoph G Gäbelein
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Whitehead Institute, Cambridge, MA, USA
| | | | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | | | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Partida-Martínez LP. Fungal holobionts as blueprints for synthetic endosymbiotic systems. PLoS Biol 2024; 22:e3002587. [PMID: 38607980 PMCID: PMC11014430 DOI: 10.1371/journal.pbio.3002587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Rhizopus microsporus is an example of a fungal holobiont. Strains of this species can harbor bacterial and viral endosymbionts inherited by the next generation. These microbial allies increase pathogenicity and defense and control asexual and sexual reproduction.
Collapse
|
9
|
Liu XL, Zhao H, Wang YX, Liu XY, Jiang Y, Tao MF, Liu XY. Detecting and characterizing new endofungal bacteria in new hosts: Pandoraea sputorum and Mycetohabitans endofungorum in Rhizopus arrhizus. Front Microbiol 2024; 15:1346252. [PMID: 38486702 PMCID: PMC10939042 DOI: 10.3389/fmicb.2024.1346252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhao
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Xin Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin-Ye Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yang Jiang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meng-Fei Tao
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Hammer TJ. Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction. Trends Microbiol 2024; 32:132-141. [PMID: 37652785 DOI: 10.1016/j.tim.2023.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Microbes are widely recognized to be vital to host health. This new consensus rests, in part, on experiments showing how hosts malfunction when microbes are removed. More and more microbial dependencies are being discovered, even in fundamental processes such as development, immunity, physiology, and behavior. But why do they exist? The default explanation is that microbes are beneficial; when hosts lose microbes, they also lose benefits. Here I call attention to evolutionary addiction, whereby a host trait evolves a need for microbes without having been improved by them. Evolutionary addiction should be considered when interpreting microbe-removal experiments, as it is a distinct and potentially common process. Further, it may have unique implications for the evolution and stability of host-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
11
|
Richter I, Hasan M, Kramer JW, Wein P, Krabbe J, Wojtas KP, Stinear TP, Pidot SJ, Kloss F, Hertweck C, Lackner G. Deazaflavin metabolite produced by endosymbiotic bacteria controls fungal host reproduction. THE ISME JOURNAL 2024; 18:wrae074. [PMID: 38691425 PMCID: PMC11104420 DOI: 10.1093/ismejo/wrae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Johannes W Kramer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - K Philip Wojtas
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Bavaria, Germany
| |
Collapse
|
12
|
Liu L, Yin Q, Hou Y, Ma R, Li Y, Wang Z, Yang G, Liu Y, Wang H. Fungus reduces tetracycline-resistant genes in manure treatment by predation of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167462. [PMID: 37783436 DOI: 10.1016/j.scitotenv.2023.167462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
New strategies to remove antibiotic resistance genes (ARGs), one of the most pressing threats to public health, are urgently needed. This study showed that the fungus Phanerochaete chrysosporium seeded to a composting reactor (CR) could remarkably reduce tetracycline-resistant genes (TRGs). The reduction efficiencies for the five main TRGs (i.e., tetW, tetO, tetM, tetPA, and tet(32)) increased by 8 to 100 folds compared with the control without P. chrysosporium, and this could be attributed to the decrease in the quantity of bacteria. Enumeration based on green fluorescence protein labeling further showed that P. chrysosporium became dominant in the CR. Meanwhile, the bacteria in the CR invaded the fungal cells via the cell wall defect of chlamydospore or active invasion. Most of the invasive bacteria trapped inside the fungus could not survive, resulting in bacterial death and the degradation of their TRGs by the fungal nucleases. As such, the predation of tetracycline-resistant bacteria by P. chrysosporium was mainly responsible for the enhanced removal of TRGs in the swine manure treatment. This study offers new insights into the microbial control of ARGs.
Collapse
Affiliation(s)
- Lei Liu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qianxi Yin
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Hou
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Rui Ma
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ganggang Yang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
13
|
Valadez-Cano C, Olivares-Hernández R, Espino-Vázquez AN, Partida-Martínez LP. Genome-Scale Model of Rhizopus microsporus: Metabolic integration of a fungal holobiont with its bacterial and viral endosymbionts. Environ Microbiol 2024; 26:e16551. [PMID: 38072824 DOI: 10.1111/1462-2920.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Rhizopus microsporus often lives in association with bacterial and viral symbionts that alter its biology. This fungal model represents an example of the complex interactions established among diverse organisms in functional holobionts. We constructed a Genome-Scale Model (GSM) of the fungal-bacterial-viral holobiont (iHol). We employed a constraint-based method to calculate the metabolic fluxes to decipher the metabolic interactions of the symbionts with their host. Our computational analyses of iHol simulate the holobiont's growth and the production of the toxin rhizoxin. Analyses of the calculated fluxes between R. microsporus in symbiotic (iHol) versus asymbiotic conditions suggest that changes in the lipid and nucleotide metabolism of the host are necessary for the functionality of the holobiont. Glycerol plays a pivotal role in the fungal-bacterial metabolic interaction, as its production does not compromise fungal growth, and Mycetohabitans bacteria can efficiently consume it. Narnavirus RmNV-20S and RmNV-23S affected the nucleotide metabolism without impacting the fungal-bacterial symbiosis. Our analyses highlighted the metabolic stability of Mycetohabitans throughout its co-evolution with the fungal host. We also predicted changes in reactions of the bacterial metabolism required for the active production of rhizoxin. This iHol is the first GSM of a fungal holobiont.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, Mexico
| | - Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| |
Collapse
|
14
|
Liang P, Jiang J, Sun Z, Li Y, Yang C, Zhou Y. Klebsiella michiganensis: a nitrogen-fixing endohyphal bacterium from Ustilago maydis. AMB Express 2023; 13:146. [PMID: 38112810 PMCID: PMC10730499 DOI: 10.1186/s13568-023-01618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/03/2023] [Indexed: 12/21/2023] Open
Abstract
Ustilago maydis is a pathogenic fungus in Basidiomycota causing corn smut disease. A strain of U. maydis YZZF202006 was isolated from the tumor of corn smut collected from Jingzhou city in China. The intracellular bacteria were confirmed inner hyphal of the strain YZZF202006 by PCR amplification and fluorescence in situ hybridization (FISH) and SYTO-9. An endohyphal bacterium YZUMF202001 was isolated from the protoplasts of the strain YZZF202006. It was gram-negative, short rod-shaped with smooth light yellow colony. The endohyphal bacterium was genomic evidenced as Klebsiella michiganensis on the basis of average nucleotide identity (ANI) analysis and the phylogram. Then K. michiganensis was GFP-Labeled and reintroduced into U. maydis, which confirmed the bacterium can live in hyphae of U.maydis. The bacterium can grow on N-free culture media. Its nitrogenase activity was reached av. 646.25 ± 38.61 nmol·mL- 1·h- 1 C2H4 by acetylene reduction assay. A cluster of nitrogen fixation genes (nifJHDKTXENXUSVWZMFLABQ) was found from its genome. The endohyphal K. michiganensis may play an important role to help nitrogen fixation for fungi in the future.
Collapse
Affiliation(s)
- Pengyu Liang
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jianwei Jiang
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhengxiang Sun
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430000, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, 430000, China.
| | - Yi Zhou
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
15
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Wu Y, Wang M, Liu L. Advances on structure, bioactivity, and biosynthesis of amino acid-containing trans-AT polyketides. Eur J Med Chem 2023; 262:115890. [PMID: 37907023 DOI: 10.1016/j.ejmech.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Trans-AT polyketides represent a class of natural compounds utilizing independent acyltransferase during their biosynthesis. They are well known for their diverse chemical structures and potent bioactivities. Trans-AT polyketides are synthesized through biosynthetic gene clusters predominantly composed of polyketide synthases (PKS), but often found in hybrid with non-ribosomal peptide synthetases (NRPS). This genetic hybridization results in the incorporation of amino acid residues into polyketide structures, significantly enhancing their structural diversity. Numerous amino acid-containing trans-AT polyketides have been identified, drawing significant attention to the mechanisms underlying amino acid incorporation and their impact on the biological activity of polyketides. Here, we discussed their origins, structures, biological activities, and the specific roles of amino acids in modulating both the bioactivity and biosynthesis of 38 trans-AT polyketides containing amino acids for the first time. This comprehensive analysis will serve as a crucial reference for the exploration of novel compounds and the improvement of structures and activities.
Collapse
Affiliation(s)
- Yunqiang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Liwei Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
17
|
Kelliher JM, Robinson AJ, Longley R, Johnson LYD, Hanson BT, Morales DP, Cailleau G, Junier P, Bonito G, Chain PSG. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research. MICROBIOME 2023; 11:192. [PMID: 37626434 PMCID: PMC10463477 DOI: 10.1186/s40168-023-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023]
Abstract
As microbiome research has progressed, it has become clear that most, if not all, eukaryotic organisms are hosts to microbiomes composed of prokaryotes, other eukaryotes, and viruses. Fungi have only recently been considered holobionts with their own microbiomes, as filamentous fungi have been found to harbor bacteria (including cyanobacteria), mycoviruses, other fungi, and whole algal cells within their hyphae. Constituents of this complex endohyphal microbiome have been interrogated using multi-omic approaches. However, a lack of tools, techniques, and standardization for integrative multi-omics for small-scale microbiomes (e.g., intracellular microbiomes) has limited progress towards investigating and understanding the total diversity of the endohyphal microbiome and its functional impacts on fungal hosts. Understanding microbiome impacts on fungal hosts will advance explorations of how "microbiomes within microbiomes" affect broader microbial community dynamics and ecological functions. Progress to date as well as ongoing challenges of performing integrative multi-omics on the endohyphal microbiome is discussed herein. Addressing the challenges associated with the sample extraction, sample preparation, multi-omic data generation, and multi-omic data analysis and integration will help advance current knowledge of the endohyphal microbiome and provide a road map for shrinking microbiome investigations to smaller scales. Video Abstract.
Collapse
Affiliation(s)
| | | | - Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tsumori C, Matsuo S, Murai Y, Kai K. Quorum Sensing-Dependent Invasion of Ralstonia solanacearum into Fusarium oxysporum Chlamydospores. Microbiol Spectr 2023; 11:e0003623. [PMID: 37367297 PMCID: PMC10433826 DOI: 10.1128/spectrum.00036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Strains of the Ralstonia solanacearum species complex (RSSC), although known as the causative agent of bacterial wilt disease in plants, induce the chlamydospores of many fungal species and invade them through the spores. The lipopeptide ralstonins are the chlamydospore inducers produced by RSSC and are essential for this invasion. However, no mechanistic investigation of this interaction has been conducted. In this study, we report that quorum sensing (QS), which is a bacterial cell-cell communication, is important for RSSC to invade the fungus Fusarium oxysporum (Fo). ΔphcB, a deletion mutant of QS signal synthase, lost the ability to both produce ralstonins and invade Fo chlamydospores. The QS signal methyl 3-hydroxymyristate rescued these disabilities. In contrast, exogenous ralstonin A, while inducing Fo chlamydospores, failed to rescue the invasive ability. Gene-deletion and -complementation experiments revealed that the QS-dependent production of extracellular polysaccharide I (EPS I) is essential for this invasion. The RSSC cells adhered to Fo hyphae and formed biofilms there before inducing chlamydospores. This biofilm formation was not observed in the EPS I- or ralstonin-deficient mutant. Microscopic analysis showed that RSSC infection resulted in the death of Fo chlamydospores. Altogether, we report that the RSSC QS system is important for this lethal endoparasitism. Among the factors regulated by the QS system, ralstonins, EPS I, and biofilm are important parasitic factors. IMPORTANCE Ralstonia solanacearum species complex (RSSC) strains infect both plants and fungi. The phc quorum-sensing (QS) system of RSSC is important for parasitism on plants, because it allows them to invade and proliferate within the hosts by causing appropriate activation of the system at each infection step. In this study, we confirm that ralstonin A is important not only for Fusarium oxysporum (Fo) chlamydospore induction but also for RSSC biofilm formation on Fo hyphae. Extracellular polysaccharide I (EPS I) is also essential for biofilm formation, while the phc QS system controls these factors in terms of production. The present results advocate a new QS-dependent mechanism for the process by which a bacterium invades a fungus.
Collapse
Affiliation(s)
- Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Shoma Matsuo
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Yuta Murai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
19
|
Alder-Rangel A, Bailão AM, Herrera-Estrella A, Rangel AEA, Gácser A, Gasch AP, Campos CBL, Peters C, Camelim F, Verde F, Gadd GM, Braus G, Eisermann I, Quinn J, Latgé JP, Aguirre J, Bennett JW, Heitman J, Nosanchuk JD, Partida-Martínez LP, Bassilana M, Acheampong MA, Riquelme M, Feldbrügge M, Keller NP, Keyhani NO, Gunde-Cimerman N, Nascimento R, Arkowitz RA, Mouriño-Pérez RR, Naz SA, Avery SV, Basso TO, Terpitz U, Lin X, Rangel DEN. The IV International Symposium on Fungal Stress and the XIII International Fungal Biology Conference. Fungal Biol 2023; 127:1157-1179. [PMID: 37495306 PMCID: PMC11668258 DOI: 10.1016/j.funbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023]
Abstract
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.
Collapse
Affiliation(s)
| | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alfredo Herrera-Estrella
- Unidad de Genómica Avanzada-Langebio, Centro de Investigación y de Estudios Avanzados Del IPN, Irapuato, Guanajuato, Mexico
| | | | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, WI, USA
| | - Claudia B L Campos
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, SP, Brazil
| | - Christina Peters
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Francine Camelim
- German Academic Exchange Service (DAAD), DWIH, Sao Paulo, SP, Brazil
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich, England, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete Heraklion, Greece
| | - Jesus Aguirre
- Departamento de Biología Celular y Del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | | | - Martine Bassilana
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nancy P Keller
- Department of Medical Microbiology, Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Raquel Nascimento
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Robert A Arkowitz
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | - Rosa Reyna Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, Pakistan
| | - Simon V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham, England, UK
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
20
|
Richter I, Wein P, Uzum Z, Stanley CE, Krabbe J, Molloy EM, Moebius N, Ferling I, Hillmann F, Hertweck C. Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae. Curr Biol 2023:S0960-9822(23)00623-1. [PMID: 37301202 DOI: 10.1016/j.cub.2023.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Claire E Stanley
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
21
|
Kuo HY, Chiu MC, Chou JY. Bacillus predominates in the Ophiocordyceps pseudolloydii-infected ants, and it potentially improves protection and utilization of the host cadavers. Arch Microbiol 2023; 205:53. [PMID: 36602580 PMCID: PMC9816197 DOI: 10.1007/s00203-022-03385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
The bacterial communities that colonize the cadaver environment of insects infected and killed by parasitic fungi can be selected by the sympatric fungi and provide novel impacts. In this study, we found that Bacillus cereus/thuringiensis predominate the bacterial community in Dolichoderus thoracicus ant cadavers colonized by O. pseudolloydii. The most predominant bacterial strains in these ant cadavers were hemolytic and able to produce hydrolytic enzymes for digesting the ant tissue. A relatively intense lethal effect on the co-cultured nematode was displayed by a hemolytic strain. Moreover, the antagonistic effect against pathogenic fungi detected in the bacteria sympatric with O. pseudolloydii was reported here. Naphthoquinones have been shown to confer antibacterial activities and produced by the ant-pathogenic Ophiocordyceps fungi. However, our results did not show the naphthoquinone tolerance we expected to be detected in the bacteria from the ant infected by O. pseudolloydii. The bacterial diversity in the samples associated with O. pseudolloydii infected ants as revealed in this study will be a step forward to the understanding of the roles playing by the microbial community in the native habitats of O. pseudolloydii.
Collapse
Affiliation(s)
- Hao-Yu Kuo
- Department of Biology, National Changhua University of Education, 500, Changhua, Taiwan
| | - Ming-Chung Chiu
- Department of Biology, National Changhua University of Education, 500, Changhua, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, 500, Changhua, Taiwan.
| |
Collapse
|
22
|
Büttner H, Pidot SJ, Scherlach K, Hertweck C. Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin. Chem Sci 2022; 14:103-112. [PMID: 36605741 PMCID: PMC9769094 DOI: 10.1039/d2sc04167g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.
Collapse
Affiliation(s)
- Hannah Büttner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena07743 JenaGermany
| |
Collapse
|
23
|
Cabrera-Rangel JF, Mendoza-Servín JV, Córdova-López G, Alcalde-Vázquez R, García-Estrada RS, Winkler R, Partida-Martínez LP. Symbiotic and toxinogenic Rhizopus spp. isolated from soils of different papaya producing regions in Mexico. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:893700. [PMID: 37746220 PMCID: PMC10512248 DOI: 10.3389/ffunb.2022.893700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/10/2022] [Indexed: 09/26/2023]
Abstract
Mucoralean fungi from the genus Rhizopus are common inhabitants of terrestrial ecosystems, being some pathogens of animals and plants. In this study, we analyzed the symbiotic and toxinogenic potential of Rhizopus species derived from agricultural soils dedicated to the production of papaya (Carica papaya L.) in Mexico. Four representative strains of soil-derived Rhizopus spp. were analyzed employing molecular, microscopic, and metabolic methods. The ITS phylogenies identified the fungi as Rhizopus microsporus HP499, Rhizopus delemar HP475 and HP479, and Rhizopus homothallicus HP487. We discovered that R. microsporus HP499 and R. delemar HP475 harbor similar endofungal bacterial symbionts that belong to the genus Mycetohabitans (Burkholderia sensu lato) and that none of the four fungi were associated with Narnavirus RmNV-20S and RmNV-23S. Intriguingly, the interaction between R. delemar - Mycetohabitans showed different phenotypes from known R. microsporus - Mycetohabitans symbioses. Elimination of bacteria in R. delemar HP475 did not cause a detrimental effect on fungal growth or asexual reproduction. Moreover, metabolic and molecular analyses confirmed that, unlike symbiotic R. microsporus HP499, R. delemar HP475 does not produce rhizoxin, one of the best-characterized toxins produced by Mycetohabitans spp. The rhizoxin (rhi) biosynthetic gene cluster seems absent in this symbiotic bacterium. Our study highlights that the symbioses between Rhizopus and Mycetohabitans are more diverse than anticipated. Our findings contribute to expanding our understanding of the role bacterial symbionts have in the pathogenicity, biology and evolution of Mucorales.
Collapse
Affiliation(s)
| | | | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Raúl Alcalde-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | | | - Robert Winkler
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| | - Laila P. Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, Mexico
| |
Collapse
|
24
|
Abstract
The fungus Rhizopus microsporus harbors a bacterial endosymbiont (Mycetohabitans rhizoxinica) for the production of the antimitotic toxin rhizoxin. Although rhizoxin is the causative agent of rice seedling blight, the toxinogenic bacterial-fungal alliance is, not restricted to the plant disease. It has been detected in numerous environmental isolates from geographically distinct sites covering all five continents, thus raising questions regarding the ecological role of rhizoxin beyond rice seedling blight. Here, we show that rhizoxin serves the fungal host in fending off protozoan and metazoan predators. Fluorescence microscopy and coculture experiments with the fungivorous amoeba Protostelium aurantium revealed that ingestion of R. microsporus spores is toxic to P. aurantium. This amoebicidal effect is caused by the dominant bacterial rhizoxin congener rhizoxin S2, which is also lethal toward the model nematode Caenorhabditis elegans. By combining stereomicroscopy, automated image analysis, and quantification of nematode movement, we show that the fungivorous nematode Aphelenchus avenae actively feeds on R. microsporus that is lacking endosymbionts, whereas worms coincubated with symbiotic R. microsporus are significantly less lively. This study uncovers an unexpected ecological role of rhizoxin as shield against micropredators. This finding suggests that predators may function as an evolutionary driving force to maintain toxin-producing endosymbionts in nonpathogenic fungi.
Collapse
|
25
|
Niehs SP, Scherlach K, Dose B, Uzum Z, Stinear TP, Pidot SJ, Hertweck C. A highly conserved gene locus in endofungal bacteria codes for the biosynthesis of symbiosis-specific cyclopeptides. PNAS NEXUS 2022; 1:pgac152. [PMID: 36714835 PMCID: PMC9802438 DOI: 10.1093/pnasnexus/pgac152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
The tight association of the pathogenic fungus Rhizopus microsporus and its toxin-producing, bacterial endosymbionts (Mycetohabitans spp.) is distributed worldwide and has significance for agriculture, food production, and human health. Intriguingly, the endofungal bacteria are essential for the propagation of the fungal host. Yet, little is known about chemical mediators fostering the symbiosis, and universal metabolites that support the mutualistic relationship have remained elusive. Here, we describe the discovery of a complex of specialized metabolites produced by endofungal bacteria under symbiotic conditions. Through full genome sequencing and comparative genomics of eight endofungal symbiont strains from geographically distant regions, we discovered a conserved gene locus (hab) for a nonribosomal peptide synthetase as a unifying trait. Bioinformatics analyses, targeted gene deletions, and chemical profiling uncovered unprecedented depsipeptides (habitasporins) whose structures were fully elucidated. Computational network analysis and labeling experiments granted insight into the biosynthesis of their nonproteinogenic building blocks (pipecolic acid and β-phenylalanine). Deletion of the hab gene locus was shown to impair the ability of the bacteria to enter their fungal host. Our study unveils a common principle of the endosymbiotic lifestyle of Mycetohabitans species and expands the repertoire of characterized chemical mediators of a globally occurring mutualistic association.
Collapse
Affiliation(s)
| | | | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | | |
Collapse
|
26
|
Zhou Y, Wang H, Xu S, Liu K, Qi H, Wang M, Chen X, Berg G, Ma Z, Cernava T, Chen Y. Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. STRESS BIOLOGY 2022; 2:22. [PMID: 37676347 PMCID: PMC10442017 DOI: 10.1007/s44154-022-00046-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 09/08/2023]
Abstract
Bacteria and fungi are dominant members of environmental microbiomes. Various bacterial-fungal interactions (BFIs) and their mutual regulation are important factors for ecosystem functioning and health. Such interactions can be highly dynamic, and often require spatiotemporally resolved assessments to understand the interplay which ranges from antagonism to mutualism. Many of these interactions are still poorly understood, especially in terms of the underlying chemical and molecular interplay, which is crucial for inter-kingdom communication and interference. BFIs are highly relevant under agricultural settings; they can be determinative for crop health. Advancing our knowledge related to mechanisms underpinning the interactions between bacteria and fungi will provide an extended basis for biological control of pests and pathogens in agriculture. Moreover, it will facilitate a better understanding of complex microbial community networks that commonly occur in nature. This will allow us to determine factors that are crucial for community assembly under different environmental conditions and pave the way for constructing synthetic communities for various biotechnological applications. Here, we summarize the current advances in the field of BFIs with an emphasis on agriculture.
Collapse
Affiliation(s)
- Yaqi Zhou
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hao Qi
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyulong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria.
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Ying Y, Liu C, He R, Wang R, Qu L. Detection and Identification of Novel Intracellular Bacteria Hosted in Strains CBS 648.67 and CFCC 80795 of Biocontrol Fungi Metarhizium. Microbes Environ 2022; 37. [PMID: 35613876 PMCID: PMC9530730 DOI: 10.1264/jsme2.me21059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
"Endosymbiosis" is a cohesive form of a symbiotic association. Endobacteria exist in many fungi and play important roles in fungal host biology. Metarhizium spp. are important entomopathogenic fungi for insect pest control. In the present study, we performed comprehensive ana-lyses of strains of Metarhizium bibionidarum and M. anisopliae using PCR, phylogenetics, and fluorescent electron microscopy to identify endobacteria within hyphae and conidia. The results of the phylogenetic ana-lysis based on 16S rRNA gene sequences indicated that these endobacteria were the most closely related to Pelomonas puraquae and affiliated with Betaproteobacteria. Ultrastructural observations indicated that endobacteria were coccoid and less than 500 nm in diameter. The basic characteristics of endobacteria in M. bibionidarum and M. anisopliae were elucidated, and biological questions were raised regarding their biological functions in the Metarhizium hosts.
Collapse
Affiliation(s)
- Yue Ying
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| | - Chenglin Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| | - Ran He
- Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden
| | - Ruizhen Wang
- Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden
| | - Liangjian Qu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry
| |
Collapse
|
28
|
Cheng S, Jiang JW, Tan LT, Deng JX, Liang PY, Su H, Sun ZX, Zhou Y. Plant Growth-Promoting Ability of Mycorrhizal Fusarium Strain KB-3 Enhanced by Its IAA Producing Endohyphal Bacterium, Klebsiella aerogenes. Front Microbiol 2022; 13:855399. [PMID: 35495715 PMCID: PMC9051524 DOI: 10.3389/fmicb.2022.855399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Fusarium oxysporum KB-3 had been reported as a mycorrhizal fungus of Bletilla striata, which can promote the seed germination and vegetative growth. Endohyphal bacteria were demonstrated in the hyphae of the KB-3 by 16S rDNA PCR amplification and SYTO-9 fluorescent nucleic acid staining. A strain Klebsiella aerogenes KE-1 was isolated and identified based on the multilocus sequence analysis. The endohyphal bacterium was successfully removed from the wild strain KB-3 (KB-3−), and GFP-labeled KE-1 was also transferred to the cured strain KB-3− (KB-3+). The production of indole-3-acetic acid (IAA) in the culturing broths of strains of KE-1, KB-3, KB-3−, and KB-3+ was examined by HPLC. Their IAA productions were estimated using Salkowski colorimetric technique. The highest concentrations of IAA were 76.9 (at 48 h after inoculation), 31.4, 9.6, and 19.4 μg/ml (at 60 h after inoculation), respectively. Similarly, the three fungal cultural broths exhibited plant promoting abilities on the tomato root and stem growth. The results indicated that the ability of mycorrhizal Fusarium strain KB-3 to promote plant growth was enhanced because its endohyphal bacterium, Klebsiella aerogenes KE-1, produced a certain amount of IAA.
Collapse
|
29
|
Transcriptional Profiles of a Foliar Fungal Endophyte ( Pestalotiopsis, Ascomycota) and Its Bacterial Symbiont ( Luteibacter, Gammaproteobacteria) Reveal Sulfur Exchange and Growth Regulation during Early Phases of Symbiotic Interaction. mSystems 2022; 7:e0009122. [PMID: 35293790 PMCID: PMC9040847 DOI: 10.1128/msystems.00091-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbiosis with bacteria is widespread among eukaryotes, including fungi. Bacteria that live within fungal mycelia (endohyphal bacteria) occur in many plant-associated fungi, including diverse Mucoromycota and Dikarya. Pestalotiopsis sp. strain 9143 is a filamentous ascomycete isolated originally as a foliar endophyte of Platycladus orientalis (Cupressaceae). It is infected naturally with the endohyphal bacterium Luteibacter sp. strain 9143, which influences auxin and enzyme production by its fungal host. Previous studies have used transcriptomics to examine similar symbioses between endohyphal bacteria and root-associated fungi such as arbuscular mycorrhizal fungi and plant pathogens. However, currently there are no gene expression studies of endohyphal bacteria of Ascomycota, the most species-rich fungal phylum. To begin to understand such symbioses, we developed methods for assessing gene expression by Pestalotiopsis sp. and Luteibacter sp. when grown in coculture and when each was grown axenically. Our assays showed that the density of Luteibacter sp. in coculture was greater than in axenic culture, but the opposite was true for Pestalotiopsis sp. Dual-transcriptome sequencing (RNA-seq) data demonstrate that growing in coculture modulates developmental and metabolic processes in both the fungus and bacterium, potentially through changes in the balance of organic sulfur via methionine acquisition. Our analyses also suggest an unexpected, potential role of the bacterial type VI secretion system in symbiosis establishment, expanding current understanding of the scope and dynamics of fungal-bacterial symbioses. IMPORTANCE Interactions between microbes and their hosts have important outcomes for host and environmental health. Foliar fungal endophytes that infect healthy plants can harbor facultative endosymbionts called endohyphal bacteria, which can influence the outcome of plant-fungus interactions. These bacterial-fungal interactions can be influential but are poorly understood, particularly from a transcriptome perspective. Here, we report on a comparative, dual-RNA-seq study examining the gene expression patterns of a foliar fungal endophyte and a facultative endohyphal bacterium when cultured together versus separately. Our findings support a role for the fungus in providing organic sulfur to the bacterium, potentially through methionine acquisition, and the potential involvement of a bacterial type VI secretion system in symbiosis establishment. This work adds to the growing body of literature characterizing endohyphal bacterial-fungal interactions, with a focus on a model facultative bacterial-fungal symbiosis in two species-rich lineages, the Ascomycota and Proteobacteria.
Collapse
|
30
|
Itabangi H, Sephton-Clark PCS, Tamayo DP, Zhou X, Starling GP, Mahamoud Z, Insua I, Probert M, Correia J, Moynihan PJ, Gebremariam T, Gu Y, Ibrahim AS, Brown GD, King JS, Ballou ER, Voelz K. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr Biol 2022; 32:1115-1130.e6. [PMID: 35134329 PMCID: PMC8926845 DOI: 10.1016/j.cub.2022.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/04/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Opportunistic infections by environmental fungi are a growing clinical problem, driven by an increasing population of people with immunocompromising conditions. Spores of the Mucorales order are ubiquitous in the environment but can also cause acute invasive infections in humans through germination and evasion of the mammalian host immune system. How they achieve this and the evolutionary drivers underlying the acquisition of virulence mechanisms are poorly understood. Here, we show that a clinical isolate of Rhizopus microsporus contains a Ralstonia pickettii bacterial endosymbiont required for virulence in both zebrafish and mice and that this endosymbiosis enables the secretion of factors that potently suppress growth of the soil amoeba Dictyostelium discoideum, as well as their ability to engulf and kill other microbes. As amoebas are natural environmental predators of both bacteria and fungi, we propose that this tri-kingdom interaction contributes to establishing endosymbiosis and the acquisition of anti-phagocyte activity. Importantly, we show that this activity also protects fungal spores from phagocytosis and clearance by human macrophages, and endosymbiont removal renders the fungal spores avirulent in vivo. Together, these findings describe a new role for a bacterial endosymbiont in Rhizopus microsporus pathogenesis in animals and suggest a mechanism of virulence acquisition through environmental interactions with amoebas.
Collapse
Affiliation(s)
- Herbert Itabangi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy C S Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Diana P Tamayo
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina P Starling
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zamzam Mahamoud
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ignacio Insua
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mark Probert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Teclegiorgis Gebremariam
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yiyou Gu
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ashraf S Ibrahim
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Jason S King
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Elizabeth R Ballou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
31
|
Diversification by CofC and Control by CofD Govern Biosynthesis and Evolution of Coenzyme F 420 and Its Derivative 3PG-F 420. mBio 2022; 13:e0350121. [PMID: 35038903 PMCID: PMC8764529 DOI: 10.1128/mbio.03501-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme F420 is a microbial redox cofactor that mediates diverse physiological functions and is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-d-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive. Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule and revealing its binding mode. The CofD enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. These results imply the need to change the design of combined CofC/D activity assays. Taken together, this work presents novel mechanistic and structural insights into 3PG-F420 biosynthesis and evolution and opens perspectives for the discovery and enhanced biotechnological production of coenzyme F420 derivatives in the future. IMPORTANCE The microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts. By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative. Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far. CofD was shown to provide another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.
Collapse
|
32
|
Abstract
A tripartite interaction between soil fungi, soil bacteria that produce phenazines that are toxic to the fungi, and a second bacterium that sequesters and detoxifies phenazines illustrates the complexity of antagonistic and mutualistic bacterial-fungal interactions.
Collapse
Affiliation(s)
- N Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA; The Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Adriana M Rico-Ramírez
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Functional properties of Rhizopus oryzae strains isolated from agricultural soils as a potential probiotic for broiler feed fermentation. World J Microbiol Biotechnol 2022; 38:41. [PMID: 35018552 DOI: 10.1007/s11274-021-03225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
The most crucial and expensive fragment in the broiler chicken production industry is the feed. Because of the rising demand, finding a cheap and effective feed is an urgent necessity. Fermentation of broiler feed by probiotic fungal starters can enhance the nutrient's availability and digestibility while preventing pathogenic growth. In this study different Rhizopus spp. have been isolated from agricultural soils around Izmir, Turkey, and tested for their probiotic potential and fermentative capacity. The isolated Rhizopus strains first underwent microscopical fluorescent investigation to exclude endofungal bacterial presence, then, those without endofungal bacteria (totally 82) were tested for antimicrobial activity counter bacterial and fungal pathogens. The ones with wide-spectrum antimicrobial activity (totally 10) were tested for gastrointestinal tolerance and antioxidant ability. Upon phenotypic and genotypic identification, the 10 isolates were found to belong to Rhizopus oryzae species. While all 10 strains showed variable gastrointestinal tolerance and antioxidant activities, three of them (92/1, 236/2, and 284) had relatively high antioxidant activity. Upon fermentative capacity assay, compared to unfermented commercial feed, there was a general decrease in crude fiber content by 56% after fermentation by 92/1 isolate for 4 days and 236/2 isolate for 2 days. The highest increase in crude protein content (by 14.5%) occurred after a 4-day fermentation period by 236/2 isolate. The highest increase in metabolizable energy was 8.64%, by the 284 isolate after 2 days of fermentation. In conclusion, the three strains showed good probiotic properties and fermentative capacities hence can be beneficial for the poultry industry.
Collapse
|
34
|
Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M. Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles. THE ISME JOURNAL 2022; 16:247-256. [PMID: 34294881 PMCID: PMC8692619 DOI: 10.1038/s41396-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Adelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/Adelges tardus species complex containing betaproteobacterial ("Candidatus Vallotia tarda") and gammaproteobacterial ("Candidatus Profftia tarda") symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other's role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection, and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.
Collapse
Affiliation(s)
- Gitta Szabó
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Frederik Schulz
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- US Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, USA
| | - Alejandro Manzano-Marín
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena Rebecca Toenshoff
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
36
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
37
|
Bowers JR, Monroy-Nieto J, Gade L, Travis J, Refojo N, Abrantes R, Santander J, French C, Dignani MC, Hevia AI, Roe CC, Lemmer D, Lockhart SR, Chiller T, Litvintseva AP, Clara L, Engelthaler DM. Rhizopus microsporus Infections Associated with Surgical Procedures, Argentina, 2006-2014. Emerg Infect Dis 2021; 26:937-944. [PMID: 32310081 PMCID: PMC7181922 DOI: 10.3201/eid2605.191045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhizopus spp. fungi are ubiquitous in the environment and a rare but substantial cause of infection in immunosuppressed persons and surgery patients. During 2005–2017, an abnormally high number of Rhizopus infections in surgery patients, with no apparent epidemiologic links, were reported in Argentina. To determine the likelihood of a common source of the cluster, we performed whole-genome sequencing on samples collected during 2006–2014. Most isolates were separated by >60 single-nucleotide polymorphisms, and we found no evidence for recombination or nonneutral mutation accumulation; these findings do not support common source or patient-to-patient transmission. Assembled genomes of most isolates were ≈25 Mbp, and multiple isolates had substantially larger assembled genomes (43–51 Mbp), indicative of infections with strain types that underwent genome expansion. Whole-genome sequencing has become an essential tool for studying epidemiology of fungal infections. Less discriminatory techniques may miss true relationships, possibly resulting in inappropriate attribution of point source.
Collapse
|
38
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
39
|
Heydari S, Siavoshi F, Sarrafnejad A, Malekzadeh R. Coniochaeta fungus benefits from its intracellular bacteria to form biofilm and defend against other fungi. Arch Microbiol 2021; 203:1357-1366. [PMID: 33386870 DOI: 10.1007/s00203-020-02122-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022]
Abstract
During cultivation of a gastric fungus, Coniochaeta polymorpha, growth of Nocardia colonies on top of the fungal culture raised the question whether bacteria originated from inside of fungus. In this study, the likelihood of intracellular origin of bacteria as well as interaction of two microorganisms was assessed. Fluorescence and electron microscopy showed occurrence of several bacterial cells in fungal cytoplasm. A thick biofilm was observed on the surface of co-culture compared with thin one on bacterial and none on fungal monocultures. Field emission scanning electron microscopy (FESEM) micrographs of co-culture showed a dense network of fungal and bacterial cells embedded in a slime-like layer. Dual cultures revealed antagonistic activity of both fungus and bacteria against three Candida species. These findings indicate that Nocardia isolate identified in this study originated from the inside of fungus C. polymorpha. Intracellular bacteria could benefit the fungal host by producing a rigid biofilm and an antifungal compound.
Collapse
Affiliation(s)
- Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran.
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Grimm M, Grube M, Schiefelbein U, Zühlke D, Bernhardt J, Riedel K. The Lichens' Microbiota, Still a Mystery? Front Microbiol 2021; 12:623839. [PMID: 33859626 PMCID: PMC8042158 DOI: 10.3389/fmicb.2021.623839] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont's contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.
Collapse
Affiliation(s)
- Maria Grimm
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria
| | | | - Daniela Zühlke
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
41
|
Frenemies: Interactions between Rhizospheric Bacteria and Fungi from Metalliferous Soils. Life (Basel) 2021; 11:life11040273. [PMID: 33806067 PMCID: PMC8064463 DOI: 10.3390/life11040273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Is it possible to improve the efficiency of bioremediation technologies? The use of mixed cultures of bacteria and fungi inoculated at the rhizosphere level could promote the growth of the associated hyperaccumulating plant species and increase the absorption of metals in polluted soils, broadening new horizons on bioremediation purposes. This work investigates interactions between Ni-tolerant plant growth-promoting bacteria and fungi (BF) isolated from the rhizosphere of a hyperaccumulating plant. The aim is to select microbial consortia with synergistic activity to be used in integrated bioremediation protocols. Pseudomonas fluorescens (Pf), Streptomyces vinaceus (Sv) Penicillium ochrochloron (Po), and Trichoderma harzianum group (Th) were tested in mixes (Po-Sv, Po-Pf, Th-Pf, and Th-Sv). These strains were submitted to tests (agar overlay, agar plug, and distance growth co-growth tests), tailored for this aim, on Czapek yeast agar (CYA) and tryptic soy agar (TSA) media and incubated at 26 ± 1 °C for 10 days. BF growth, shape of colonies, area covered on plate, and inhibition capacity were evaluated. Most BF strains still exhibit their typical characters and the colonies separately persisted without inhibition (as Po-Sv) or with reciprocal confinement (as Th-Sv and Th-Pf). Even if apparently inhibited, the Po-Pf mix really merged, thus obtaining morphological traits representing a synergic co-growth, where both strains reached together the maturation phase and developed a sort of mixed biofilm. Indeed, bacterial colonies surround the mature fungal structures adhering to them without any growth inhibition. First data from in vivo experimentation with Po and Pf inocula in pot with metalliferous soils and hyperaccumulator plants showed their beneficial effect on plant growth. However, there is a lack of information regarding the effective co-growth between bacteria and fungi. Indeed, several studies, which directly apply the co-inoculum, do not consider suitable microorganisms consortia. Synergic rhizosphere BFs open new scenarios for plant growth promotion and soil bioremediation.
Collapse
|
42
|
Investigation of presence of endofungal bacteria in Rhizopus spp. ısolated from the different food samples. Arch Microbiol 2021; 203:2269-2277. [PMID: 33638021 DOI: 10.1007/s00203-021-02251-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Rhizopus species are opportunistic pathogens and cause infections which lead to deaths in individuals with the weakened immune system. Some strains of Rhizopus species have been detected to have a symbiotic relationship with bacteria. The toxicity of the Rhizopus species is important. Because strains harbouring endofungal bacteria are able to produce secondary metabolites and if endofungal bacteria are released from mycelium, serious problems can occur. We aimed to investigate the presence of endofungal bacteria in Rhizopus species isolated from food samples. Rhizopus species were isolated from different food samples. The presence of endofungal bacteria in the Rhizopus isolates was investigated. Rhizopus strains containing the endofungal bacteria were identified through phenotypic and genotypic methods. Universal primers amplifying bacterial 16S rRNA region were used to amplify 1.2-1.5-kb fragment from fungal metagenomic DNA. Sequence analysis of PCR products amplified from fungal metagenomic DNA was made. Fluorescence microscopy and scanning electron microscopy were used to visualize the presence of endofungal bacteria in fungal hyphae. According to our results, the Rhizopus strains is associated with Serratia marcescens, Pseudomonas fluorescens and Klebsiella pneumoniae. Until now there is no evidence that Pseudomonas fluorescens and Klebsiella pneumoniae were identified as endofungal. These species are opportunistic pathogen dangerous for humans. It is important for humans not only the presence of the fungi but also the presence of the endofungal bacteria in foods. Our work is important because it draws attention to the presence of endofungal bacteria in foods. Because there is danger releasing of a bacterium from the mycelium, it is likely to face sepsis or serious problems.
Collapse
|
43
|
Turnau K, Fiałkowska E, Ważny R, Rozpądek P, Tylko G, Bloch S, Nejman-Faleńczyk B, Grabski M, Węgrzyn A, Węgrzyn G. Extraordinary Multi-Organismal Interactions Involving Bacteriophages, Bacteria, Fungi, and Rotifers: Quadruple Microbial Trophic Network in Water Droplets. Int J Mol Sci 2021; 22:ijms22042178. [PMID: 33671687 PMCID: PMC7926626 DOI: 10.3390/ijms22042178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/01/2022] Open
Abstract
Our observations of predatory fungi trapping rotifers in activated sludge and laboratory culture allowed us to discover a complicated trophic network that includes predatory fungi armed with bacteria and bacteriophages and the rotifers they prey on. Such a network seems to be common in various habitats, although it remains mostly unknown due to its microscopic size. In this study, we isolated and identified fungi and bacteria from activated sludge. We also noticed abundant, virus-like particles in the environment. The fungus developed absorptive hyphae within the prey. The bacteria showed the ability to enter and exit from the hyphae (e.g., from the traps into the caught prey). Our observations indicate that the bacteria and the fungus share nutrients obtained from the rotifer. To narrow the range of bacterial strains isolated from the mycelium, the effects of bacteria supernatants and lysed bacteria were studied. Bacteria isolated from the fungus were capable of immobilizing the rotifer. The strongest negative effect on rotifer mobility was shown by a mixture of Bacillus sp. and Stenotrophomonas maltophilia. The involvement of bacteriophages in rotifer hunting was demonstrated based on molecular analyses and was discussed. The described case seems to be an extraordinary quadruple microbiological puzzle that has not been described and is still far from being understood.
Collapse
Affiliation(s)
- Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48-506-006-642
| | - Edyta Fiałkowska
- Institute of Environmental Sciences, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Rafał Ważny
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7a, 30-387 Krakow, Poland; (R.W.); (P.R.)
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7a, 30-387 Krakow, Poland; (R.W.); (P.R.)
| | - Grzegorz Tylko
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland; (S.B.); (A.W.)
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| | - Michał Grabski
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland; (S.B.); (A.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (B.N.-F.); (M.G.); (G.W.)
| |
Collapse
|
44
|
Muszewska A, Okrasińska A, Steczkiewicz K, Drgas O, Orłowska M, Perlińska-Lenart U, Aleksandrzak-Piekarczyk T, Szatraj K, Zielenkiewicz U, Piłsyk S, Malc E, Mieczkowski P, Kruszewska JS, Bernat P, Pawłowska J. Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina. Front Microbiol 2021; 12:636986. [PMID: 33679672 PMCID: PMC7928374 DOI: 10.3389/fmicb.2021.636986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Drgas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Katarzyna Szatraj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Malc
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Piotr Mieczkowski
- High Throughput Sequencing Facility of UNC, Chapel Hill, NC, United States
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
45
|
Pérez-Rodríguez F, González-Prieto JM, Vera-Núñez JA, Ruiz-Medrano R, Peña-Cabriales JJ, Ruiz-Herrera J. Wide distribution of the Ustilago maydis-bacterium endosymbiosis in naturally infected maize plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1855016. [PMID: 33356903 PMCID: PMC7849723 DOI: 10.1080/15592324.2020.1855016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
We have previously described that laboratory strains of Ustilago maydis, a fungal pathogen of maize and its ancestor teosinte, harbor an intracellular bacterium that enables the fungus to fix nitrogen. However, it is not clear whether other strains isolated from nature also harbor endosymbiotic bacteria, and whether these fix nitrogen for its host. In the present study, we isolated U. maydis strains from naturally infected maize. All the isolated strains harbored intracellular bacteria as determined by PCR amplification of the 16S rRNA gene, and some of them showed capacity to fix nitrogen. That these are truly bacterial endosymbionts were shown by the fact that, after thorough treatments with CuSO4 followed by serial incubations with antibiotics, the aforementioned bacterial gene was still amplified in treated fungi. In all, these data support the notion that U. maydis-bacterium endosymbiosis is a general phenomenon in this species.
Collapse
Affiliation(s)
- Fernando Pérez-Rodríguez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | | | - José Antonio Vera-Núñez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, México
| | - Juan José Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Irapuato Gto, México
| |
Collapse
|
46
|
Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm. PLANTS 2021; 10:plants10010125. [PMID: 33435275 PMCID: PMC7827841 DOI: 10.3390/plants10010125] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Plants are functional macrobes living in a close association with diverse communities of microbes and viruses as complex systems that continuously interact with the surrounding environment. The microbiota within the plant holobiont serves various essential and beneficial roles, such as in plant growth at different stages, starting from seed germination. Meanwhile, pathogenic microbes—differentiated from the rest of the plant microbiome based on their ability to damage the plant tissues through transient blooming under specific conditions—are also a part of the plant microbiome. Recent advances in multi-omics have furthered our understanding of the structure and functions of plant-associated microbes, and a pathobiome paradigm has emerged as a set of organisms (i.e., complex eukaryotic, microbial, and viral communities) within the plant’s biotic environment which interact with the host to deteriorate its health status. Recent studies have demonstrated that the one pathogen–one disease hypothesis is insufficient to describe the disease process in many cases, particularly when complex organismic communities are involved. The present review discusses the plant holobiont and covers the steady transition of plant pathology from the one pathogen–one disease hypothesis to the pathobiome paradigm. Moreover, previous reports on model plant diseases, in which more than one pathogen or co-operative interaction amongst pathogenic microbes is implicated, are reviewed and discussed.
Collapse
|
47
|
Steffan BN, Venkatesh N, Keller NP. Let's Get Physical: Bacterial-Fungal Interactions and Their Consequences in Agriculture and Health. J Fungi (Basel) 2020; 6:E243. [PMID: 33114069 PMCID: PMC7712096 DOI: 10.3390/jof6040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Fungi serve as a biological scaffold for bacterial attachment. In some specialized interactions, the bacteria will invade the fungal host, which in turn provides protection and nutrients for the bacteria. Mechanisms of the physical interactions between fungi and bacteria have been studied in both clinical and agricultural settings, as discussed in this review. Fungi and bacteria that are a part of these dynamic interactions can have altered growth and development as well as changes in microbial fitness as it pertains to antibiotic resistance, nutrient acquisition, and microbial dispersal. Consequences of these interactions are not just limited to the respective microorganisms, but also have major impacts in the health of humans and plants alike. Examining the mechanisms behind the physical interactions of fungi and bacteria will provide us with an understanding of multi-kingdom community processes and allow for the development of therapeutic approaches for disease in both ecological settings.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
| | - Nandhitha Venkatesh
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; (B.N.S.); (N.V.)
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
48
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
49
|
Shao M, Sun C, Liu X, Wang X, Li W, Wei X, Li Q, Ju J. Upregulation of a marine fungal biosynthetic gene cluster by an endobacterial symbiont. Commun Biol 2020; 3:527. [PMID: 32968175 PMCID: PMC7511336 DOI: 10.1038/s42003-020-01239-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Fungal-bacterial associations are present in nature, playing important roles in ecological, evolutionary and medicinal processes. Here we report a fungus-bacterial symbiont from marine sediment. The bacterium lives inside the fungal mycelium yet is robust enough to survive independent of its host; the independently grown bacterium can infect the fungal host in vitro and continue to grow progenitively. The bacterial symbiont modulates the fungal host to biosynthesize a polyketide antimicrobial, spiromarmycin. Spiromarmycin appears to endow upon the symbiont pair a protective/defensive means of warding off competitor organisms, be they prokaryotic or eukaryotic microorganisms. Genomic analyses revealed the spiromarmycin biosynthetic machinery to be encoded, not by the bacterium, but rather the fungal host. This unique fungal-bacterial symbiotic relationship and the molecule/s resulting from it dramatically expand our knowledge of marine microbial diversity and shed important insights into endosymbionts and fungal-bacterial relationships. Shao et al. show that a bacterial symbiont drives its fungal host to biosynthesize a polyketide antimicrobial, spiromarmycin, fending off their competitors. They find that the spiromarmycin biosynthetic machinery is encoded by the fungal host. This study provides insights into the evolution of marine microbial diversity.
Collapse
Affiliation(s)
- Mingwei Shao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Beijing, 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoxiao Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoxue Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, Beijing, 100049, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoyi Wei
- Key Laboratory of Plant Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,College of Oceanology, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
50
|
Lastovetsky OA, Krasnovsky LD, Qin X, Gaspar ML, Gryganskyi AP, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Pawlowska TE. Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism. mBio 2020; 11:e02088-20. [PMID: 32900811 PMCID: PMC7482071 DOI: 10.1128/mbio.02088-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.
Collapse
Affiliation(s)
- Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, New York, USA
| | - Lev D Krasnovsky
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Xiaotian Qin
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Maria L Gaspar
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | | | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Manoj Pillay
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | | | - Neha Varghese
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Natalia Mikhailova
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Dimitrios Stamatis
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - T B K Reddy
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Nicole Shapiro
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Nikos Kyrpides
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|