1
|
Wharton TH, Marhabaie M, Wharton RP. Significant roles in RNA-binding for the amino-terminal regions of Drosophila Pumilio and Nanos. PLoS Genet 2025; 21:e1011616. [PMID: 40163518 PMCID: PMC11981137 DOI: 10.1371/journal.pgen.1011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/09/2025] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
The Drosophila Pumilio (Pum) and Nanos (Nos) RNA-binding proteins govern abdominal segmentation in the early embryo, as well as a variety of other events during development. They bind together to a compound Nanos Response Element (NRE) present in thousands of maternal mRNAs in the ovary and embryo, including hunchback (hb) mRNA, thereby regulating poly-adenylation, translation, and stability. Many studies support a model in which mRNA recognition and effector recruitment are carried out by distinct regions of each protein. The well-ordered Pum and Nos RNA-binding domains (RBDs) are sufficient to specifically recognize NREs; the larger intrinsically disordered N-terminal regions (NTRs) of each protein have been thought to act by recruiting mRNA regulators. Here we use yeast interaction assays and experiments testing the regulation of hb mRNA in vivo to show that the NTRs play a significant role in recognition of the NRE, acting via two mechanisms. First, the Pum and Nos NTRs interact in trans to promote assembly of the Pum/Nos/NRE ternary complex. Second, the Pum NTR acts via an unknown mechanism in cis, modifying NRE recognition by its RBD. The ability of the NTR to alter binding to the NRE is conserved in human Pum2.
Collapse
Affiliation(s)
- Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- Current address: The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Cohen IJ, Zhu T, Ng M, Wu H, Dictenberg J. Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics. FRONT BIOSCI-LANDMRK 2024; 29:430. [PMID: 39735972 DOI: 10.31083/j.fbl2912430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 12/31/2024]
Abstract
BACKGROUND Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although FISH is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging. METHODS In this study, we optimized existing RNA visualization techniques (MS2-tagging and microinjection of fluorescently-labeled mRNAs) to observe novel behaviors of dendritic mRNAs. RESULTS We found that the signal-to-noise ratio (SNR) of MS2-tagged mRNAs was greatly improved by maximizing the ratio of the MS2-RNA to MS2 coat protein-fluorescent protein (MCP-FP) constructs, as well as by the choice of promoter. Our observations also showed that directly fluorescently labeled mRNAs result in brighter granules compared to other methods. Importantly, we visualized the dynamic movement of co-labeled mRNA/protein complexes in dendrites and within dendritic spines. In addition, we observed the simultaneous movement of three distinct mRNAs within a single neuron. Surprisingly, we observed splitting of these complexes within dendritic spines. CONCLUSIONS Using highly optimized RNA-labeling methods for live-cell imaging, one can now visualize the dynamics of multiple RNA / protein complexes within the context of diverse cellular events. Newly observed RNA movements in dendrites and synapses may shed light on the complexities of spatio-temporal control of gene expression in neurons.
Collapse
Affiliation(s)
- Ivan J Cohen
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Tianhui Zhu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
| | - Marcus Ng
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hao Wu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
| | - Jason Dictenberg
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
- SUNY Downstate Medical Center and AccelBio Labs, Brooklyn, NY 11226, USA
| |
Collapse
|
3
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Sirois CL, Guo Y, Li M, Wolkoff NE, Korabelnikov T, Sandoval S, Lee J, Shen M, Contractor A, Sousa AMM, Bhattacharyya A, Zhao X. CGG repeats in the human FMR1 gene regulate mRNA localization and cellular stress in developing neurons. Cell Rep 2024; 43:114330. [PMID: 38865241 PMCID: PMC11240841 DOI: 10.1016/j.celrep.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.
Collapse
Affiliation(s)
- Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoun Lee
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Wharton TH, Marhabaie M, Wharton RP. Significant roles in RNA-binding for the amino-terminal domains of Drosophila Pumilio and Nanos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563753. [PMID: 37961211 PMCID: PMC10634786 DOI: 10.1101/2023.10.24.563753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The Drosophila Pumilio (Pum) and Nanos (Nos) RNA-binding proteins govern abdominal segmentation in the early embryo, as well as a variety of other events during development. They bind together to a compound Nanos Response Element (NRE) present in thousands of maternal mRNAs in the ovary and embryo, including hunchback ( hb ) mRNA, thereby regulating poly-adenylation, translation, and stability. Many studies support a model in which mRNA recognition and effector recruitment are achieved by distinct regions of each protein. The well-ordered Pum and Nos RNA-binding domains (RBDs) are sufficient to specifically recognize NREs; the relatively larger low-complexity N-terminal domains (NTDs) of each protein have been thought to act by recruiting mRNA regulators. Here we use yeast interaction assays to show that the NTDs also play a significant role in recognition of the NRE, acting via two mechanisms. First, the Pum and Nos NTDs interact in trans to promote assembly of the Pum/Nos/NRE ternary complex. Second, the Pum NTD acts via an unknown mechanism in cis, modifying base recognition by its RBD. These activities of the Pum NTD are important for its regulation of maternal hb mRNA in vivo.
Collapse
|
6
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
7
|
Roles for the RNA-Binding Protein Caper in Reproductive Output in Drosophila melanogaster. J Dev Biol 2022; 11:jdb11010002. [PMID: 36648904 PMCID: PMC9844462 DOI: 10.3390/jdb11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
RNA binding proteins (RBPs) play a fundamental role in the post-transcriptional regulation of gene expression within the germline and nervous system. This is underscored by the prevalence of mutations within RBP-encoding genes being implicated in infertility and neurological disease. We previously described roles for the highly conserved RBP Caper in neurite morphogenesis in the Drosophila larval peripheral system and in locomotor behavior. However, caper function has not been investigated outside the nervous system, although it is widely expressed in many different tissue types during embryogenesis. Here, we describe novel roles for Caper in fertility and mating behavior. We find that Caper is expressed in ovarian follicles throughout oogenesis but is dispensable for proper patterning of the egg chamber. Additionally, reduced caper function, through either a genetic lesion or RNA interference-mediated knockdown of caper in the female germline, results in females laying significantly fewer eggs than their control counterparts. Moreover, this phenotype is exacerbated with age. caper dysfunction also results in partial embryonic and larval lethality. Given that caper is highly conserved across metazoa, these findings may also be relevant to vertebrates.
Collapse
|
8
|
Li H, Gavis ER. The Drosophila fragile X mental retardation protein modulates the neuronal cytoskeleton to limit dendritic arborization. Development 2022; 149:275257. [DOI: 10.1242/dev.200379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/21/2022] [Indexed: 01/02/2023]
Abstract
ABSTRACT
Dendritic arbor development is a complex, highly regulated process. Post-transcriptional regulation mediated by RNA-binding proteins plays an important role in neuronal dendrite morphogenesis by delivering on-site, on-demand protein synthesis. Here, we show how the Drosophila fragile X mental retardation protein (FMRP), a conserved RNA-binding protein, limits dendrite branching to ensure proper neuronal function during larval sensory neuron development. FMRP knockdown causes increased dendritic terminal branch growth and a resulting overelaboration defect due, in part, to altered microtubule stability and dynamics. FMRP also controls dendrite outgrowth by regulating the Drosophila profilin homolog chickadee (chic). FMRP colocalizes with chic mRNA in dendritic granules and regulates its dendritic localization and protein expression. Whereas RNA-binding domains KH1 and KH2 are both crucial for FMRP-mediated dendritic regulation, KH2 specifically is required for FMRP granule formation and chic mRNA association, suggesting a link between dendritic FMRP granules and FMRP function in dendrite elaboration. Our studies implicate FMRP-mediated modulation of both the neuronal microtubule and actin cytoskeletons in multidendritic neuronal architecture, and provide molecular insight into FMRP granule formation and its relevance to FMRP function in dendritic patterning.
Collapse
Affiliation(s)
- Hui Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Niu F, Han P, Zhang J, She Y, Yang L, Yu J, Zhuang M, Tang K, Shi Y, Yang B, Liu C, Peng B, Ji SJ. The m 6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells. eLife 2022; 11:75827. [PMID: 35179492 PMCID: PMC8906807 DOI: 10.7554/elife.75827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N6-methyladenosine (m6A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Collapse
Affiliation(s)
- Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuanchu She
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lixin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kezhen Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuwei Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Baisheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunqiao Liu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Department of Neurosurgery, Fudan University, Shanghai, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
10
|
Titus MB, Chang AW, Olesnicky EC. Exploring the Diverse Functional and Regulatory Consequences of Alternative Splicing in Development and Disease. Front Genet 2021; 12:775395. [PMID: 34899861 PMCID: PMC8652244 DOI: 10.3389/fgene.2021.775395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.
Collapse
Affiliation(s)
- M Brandon Titus
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W Chang
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C Olesnicky
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
11
|
Nawalpuri B, Sharma A, Chattarji S, Muddashetty RS. Distinct temporal expression of the GW182 paralog TNRC6A in neurons regulates dendritic arborization. J Cell Sci 2021; 134:271120. [PMID: 34328181 DOI: 10.1242/jcs.258465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023] Open
Abstract
Precise development of the dendritic architecture is a critical determinant of mature neuronal circuitry. MicroRNA (miRNA)-mediated regulation of protein synthesis plays a crucial role in dendritic morphogenesis, but the role of miRNA-induced silencing complex (miRISC) protein components in this process is less studied. Here, we show an important role of a key miRISC protein, the GW182 paralog TNRC6A, in the regulation of dendritic growth. We identified a distinct brain region-specific spatiotemporal expression pattern of GW182 during rat postnatal development. We found that the window of peak GW182 expression coincides with the period of extensive dendritic growth, both in the hippocampus and cerebellum. Perturbation of GW182 function during a specific temporal window resulted in reduced dendritic growth of cultured hippocampal neurons. Mechanistically, we show that GW182 modulates dendritic growth by regulating global somatodendritic translation and actin cytoskeletal dynamics of developing neurons. Furthermore, we found that GW182 affects dendritic architecture by regulating the expression of actin modulator LIMK1. Taken together, our data reveal a previously undescribed neurodevelopmental expression pattern of GW182 and its role in dendritic morphogenesis, which involves both translational control and actin cytoskeletal rearrangement. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur 613401, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Arpita Sharma
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bangalore 560065, India.,Simons Initiative for the Developing Brain and Centre for Discovery Brain Sciences, University of Edinburgh EH8 9XD, Edinburgh, UK
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (InStem), Bangalore 560065, India.,Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Na H, Park J, Jeon H, Jin S, Choe CP. Pharyngeal endoderm expression of nanos1 is dispensable for craniofacial development. Gene Expr Patterns 2021; 41:119202. [PMID: 34389512 DOI: 10.1016/j.gep.2021.119202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Nanos proteins are essential for developing primordial germ cells (PGCs) in both invertebrates and vertebrates. In invertebrates, also contribute to the patterning of the anterior-posterior axis of the embryo and the neural development. In vertebrates, however, besides the role of Nanos proteins in PGC development, the biological functions of the proteins in normal development have not yet been identified. Here, we analyzed the expression and function of nanos1 during craniofacial development in zebrafish. nanos1 was expressed in the pharyngeal endoderm and endodermal pouches essential for the development of facial skeletons and endocrine glands in the vertebrate head. However, no craniofacial defects, such as abnormal pouches, hypoplasia of the thymus, malformed facial skeletons, have been found in nanos1 knockout animals. The normal craniofacial development of nanos1 knockout animals is unlikely a consequence of the genetic redundancy of Nanos1 with Nanos2 or Nanos3 or a result of the genetic compensation for the loss of Nanos1 by Nanos2 or Nanos3 because the expression of nanos2 and nanos3 was rarely seen in the pharyngeal endoderm and endodermal pouches in wild-type and nanos1 mutant animals during craniofacial development. Our findings suggest that nanos1 expression in the pharyngeal endoderm might be dispensable for craniofacial development in zebrafish.
Collapse
Affiliation(s)
- Hyejee Na
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jangwon Park
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Haewon Jeon
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sil Jin
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Chong Pyo Choe
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea; Division of Life Science, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
13
|
Loss of Pseudouridine Synthases in the RluA Family Causes Hypersensitive Nociception in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:4425-4438. [PMID: 33028630 PMCID: PMC7718762 DOI: 10.1534/g3.120.401767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nociceptive neurons of Drosophila melanogaster larvae are characterized by highly branched dendritic processes whose proper morphogenesis relies on a large number of RNA-binding proteins. Post-transcriptional regulation of RNA in these dendrites has been found to play an important role in their function. Here, we investigate the neuronal functions of two putative RNA modification genes, RluA-1 and RluA-2, which are predicted to encode pseudouridine synthases. RluA-1 is specifically expressed in larval sensory neurons while RluA-2 expression is ubiquitous. Nociceptor-specific RNAi knockdown of RluA-1 caused hypersensitive nociception phenotypes, which were recapitulated with genetic null alleles. These were rescued with genomic duplication and nociceptor-specific expression of UAS- RluA-1 -cDNA As with RluA-1, RluA-2 loss of function mutants also displayed hyperalgesia. Interestingly, nociceptor neuron dendrites showed a hyperbranched morphology in the RluA-1 mutants. The latter may be a cause or a consequence of heightened sensitivity in mutant nociception behaviors.
Collapse
|
14
|
Trcek T, Douglas TE, Grosch M, Yin Y, Eagle WVI, Gavis ER, Shroff H, Rothenberg E, Lehmann R. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Mol Cell 2020; 78:941-950.e12. [PMID: 32464092 DOI: 10.1016/j.molcel.2020.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| | - Tyler E Douglas
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Markus Grosch
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Whitby V I Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Wu H, Zhou J, Zhu T, Cohen I, Dictenberg J. A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice. J Biol Chem 2020; 295:6605-6628. [PMID: 32111743 DOI: 10.1074/jbc.ra118.005616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 08/19/2019] [Indexed: 11/06/2022] Open
Abstract
Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two-hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1-ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065 .,Biology Program, Graduate School and University Center, City University of New York, New York, New York 10016
| | - Jing Zhou
- Biology Program, Graduate School and University Center, City University of New York, New York, New York 10016.,Biology Department, Lehman College, City University of New York, Bronx, New York 10468
| | - Tianhui Zhu
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065.,Biology Program, Graduate School and University Center, City University of New York, New York, New York 10016
| | - Ivan Cohen
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York 10065
| | - Jason Dictenberg
- Cell Biology, State University of New York Downstate, Brooklyn, New York 11226 .,Biotechnology Incubator, AccelBio, Brooklyn, New York 11226
| |
Collapse
|
16
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Abstract
Proper neuronal wiring is central to all bodily functions, sensory perception, cognition, memory, and learning. Establishment of a functional neuronal circuit is a highly regulated and dynamic process involving axonal and dendritic branching and navigation toward appropriate targets and connection partners. This intricate circuitry includes axo-dendritic synapse formation, synaptic connections formed with effector cells, and extensive dendritic arborization that function to receive and transmit mechanical and chemical sensory inputs. Such complexity is primarily achieved by extensive axonal and dendritic branch formation and pruning. Fundamental to neuronal branching are cytoskeletal dynamics and plasma membrane expansion, both of which are regulated via numerous extracellular and intracellular signaling mechanisms and molecules. This review focuses on recent advances in understanding the biology of neuronal branching.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
18
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
19
|
Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules. Curr Biol 2018; 28:1872-1881.e3. [PMID: 29861136 DOI: 10.1016/j.cub.2018.04.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/22/2022]
Abstract
The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold.
Collapse
|
20
|
Toret CP, Shivakumar PC, Lenne PF, Le Bivic A. The elmo-mbc complex and rhogap19d couple Rho family GTPases during mesenchymal-to-epithelial-like transitions. Development 2018:dev.157495. [PMID: 29437779 DOI: 10.1242/dev.157495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Many metazoan developmental processes require cells to transition between migratory mesenchymal- and adherent epithelial-like states. These transitions require Rho GTPase-mediated actin rearrangements downstream of integrin and cadherin pathways. A regulatory toolbox of GEF and GAP proteins precisely coordinates Rho protein activities, yet defining the involvement of specific regulators within a cellular context remains a challenge due to overlapping and coupled activities. Here we demonstrate that Drosophila dorsal closure is a powerful model for Rho GTPase regulation during transitions from leading edges to cadherin contacts. During these transitions a Rac GEF elmo-mbc complex regulates both lamellipodia and Rho1-dependent, actomyosin-mediated tension at initial cadherin contacts. Moreover, the Rho GAP Rhogap19d controls Rac and Rho GTPases during the same processes and genetically regulates the elmo-mbc complex. This study presents a fresh framework to understand the inter-relationship between GEF and GAP proteins that tether Rac and Rho cycles during developmental processes.
Collapse
Affiliation(s)
| | | | | | - Andre Le Bivic
- Aix-Marseille Univ, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| |
Collapse
|
21
|
Han K, Chen S, Cai M, Jiang Y, Zhang Z, Wang Y. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:13-22. [PMID: 29331522 DOI: 10.1016/j.cbpb.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022]
Abstract
In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis.
Collapse
Affiliation(s)
- Kunhuang Han
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shihai Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
22
|
Lerit DA, Shebelut CW, Lawlor KJ, Rusan NM, Gavis ER, Schedl P, Deshpande G. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation. Cell Rep 2017; 18:831-839. [PMID: 28122234 DOI: 10.1016/j.celrep.2016.12.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Conrad W Shebelut
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen J Lawlor
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
23
|
Olesnicky EC, Bono JM, Bell L, Schachtner LT, Lybecker MC. The RNA-binding protein caper is required for sensory neuron development in Drosophila melanogaster. Dev Dyn 2017; 246:610-624. [PMID: 28543982 DOI: 10.1002/dvdy.24523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alternative splicing mediated by RNA-binding proteins (RBPs) is emerging as a fundamental mechanism for the regulation of gene expression. Alternative splicing has been shown to be a widespread phenomenon that facilitates the diversification of gene products in a tissue-specific manner. Although defects in alternative splicing are rooted in many neurological disorders, only a small fraction of splicing factors have been investigated in detail. RESULTS We find that the splicing factor Caper is required for the development of multiple different mechanosensory neuron subtypes at multiple life stages in Drosophila melanogaster. Disruption of Caper function causes defects in dendrite morphogenesis of larval dendrite arborization neurons and neuronal positioning of embryonic proprioceptors, as well as the development and maintenance of adult mechanosensory bristles. Additionally, we find that Caper dysfunction results in aberrant locomotor behavior in adult flies. Transcriptome-wide analyses further support a role for Caper in alternative isoform regulation of genes that function in neurogenesis. CONCLUSIONS Our results provide the first evidence for a fundamental and broad requirement for the highly conserved splicing factor Caper in the development and maintenance of the nervous system and provide a framework for future studies on the detailed mechanism of Caper-mediated RNA regulation. Developmental Dynamics 246:610-624, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Laura Bell
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Logan T Schachtner
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| |
Collapse
|
24
|
Misra M, Edmund H, Ennis D, Schlueter MA, Marot JE, Tambasco J, Barlow I, Sigurbjornsdottir S, Mathew R, Vallés AM, Wojciech W, Roth S, Davis I, Leptin M, Gavis ER. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis. G3 (BETHESDA, MD.) 2016; 6:2397-405. [PMID: 27260999 PMCID: PMC4978894 DOI: 10.1534/g3.116.030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
Abstract
Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.
Collapse
Affiliation(s)
- Mala Misra
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Hendia Edmund
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Darragh Ennis
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | | | - Jessica E Marot
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Janet Tambasco
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Ida Barlow
- Department of Molecular Biology, Princeton University, NJ 08544
| | | | - Renjith Mathew
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ana Maria Vallés
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | - Waldemar Wojciech
- Biocenter, Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Siegfried Roth
- Biocenter, Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | - Maria Leptin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany Institute of Genetics, University of Cologne, 50674 Germany
| | | |
Collapse
|
25
|
Bhogal B, Plaza-Jennings A, Gavis ER. Nanos-mediated repression of hid protects larval sensory neurons after a global switch in sensitivity to apoptotic signals. Development 2016; 143:2147-59. [PMID: 27256879 DOI: 10.1242/dev.132415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023]
Abstract
Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues.
Collapse
Affiliation(s)
- Balpreet Bhogal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Abbaszadeh EK, Gavis ER. Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 2016; 98:34-41. [PMID: 26827935 PMCID: PMC4808400 DOI: 10.1016/j.ymeth.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/21/2022] Open
Abstract
The ability to visualize RNA in situ is essential to dissect mechanisms for the temporal and spatial regulation of gene expression that drives development. Although considerable attention has been focused on transcriptional control, studies in model organisms like Drosophila have highlighted the importance of post-transcriptional mechanisms - most notably intracellular mRNA localization - in the formation and patterning of the body axes, specification of cell fates, and polarized cell functions. Our understanding of both types of regulation has been greatly advanced by technological innovations that enable a combination of highly quantitative and dynamic analysis of RNA. This review presents two methods, single molecule fluorescence in situ hybridization for high resolution quantitative RNA detection in fixed Drosophila oocytes and embryos and genetically encoded fluorescent RNA labeling for detection in live cells.
Collapse
Affiliation(s)
- Evan K Abbaszadeh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
27
|
Wang ZH, Clark C, Geisbrecht ER. Analysis of mitochondrial structure and function in the Drosophila larval musculature. Mitochondrion 2015; 26:33-42. [PMID: 26611999 DOI: 10.1016/j.mito.2015.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are dynamic organelles that change their architecture in normal physiological conditions. Mutations in genes that control mitochondrial fission or fusion, such as dynamin-related protein (Drp1), Mitofusins 1 (Mfn1) and 2 (Mfn2), and Optic atrophy 1 (Opa1), result in neuropathies or neurodegenerative diseases. It is increasingly clear that altered mitochondrial dynamics also underlie the pathology of other degenerative diseases, including Parkinson's disease (PD). Thus, understanding mitochondrial distribution, shape, and dynamics in all cell types is a prerequisite for developing and defining treatment regimens that may differentially affect tissues. The majority of Drosophila genes implicated in mitochondrial dynamics have been studied in the adult indirect flight muscle (IFM). Here, we discuss the utility of Drosophila third instar larvae (L3) as an alternative model to analyze and quantify mitochondrial behaviors. Advantages include large muscle cell size, a stereotyped arrangement of mitochondria that is conserved in mammalian muscles, and the ability to analyze muscle-specific gene function in mutants that are lethal prior to adult stages. In particular, we highlight methods for sample preparation and analysis of mitochondrial morphological features.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
28
|
Copf T. Importance of gene dosage in controlling dendritic arbor formation during development. Eur J Neurosci 2015; 42:2234-49. [PMID: 26108333 DOI: 10.1111/ejn.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Proper dendrite morphology is crucial for normal nervous system functioning. While a number of genes have been implicated in dendrite morphogenesis in both invertebrates and mammals, it remains unclear how developing dendrites respond to changes in gene dosage and what type of patterns their responses may follow. To understand this, I review here evidence from the recent literature, focusing on the genetic studies performed in the Drosophila larval dendritic arborization class IV neuron, an excellent cell type to understand dendrite morphogenesis. I summarize how class IV arbors change morphology in response to developmental fluctuations in the expression levels of 47 genes, studied by means of genetic manipulations such as loss-of-function and gain-of-function, and for which sufficient information is available. I find that arbors can respond to changing gene dosage in several distinct ways, each characterized by a singular dose-response curve. Interestingly, in 72% of cases arbors are sensitive, and thus adjust their morphology, in response to both decreases and increases in the expression of a given gene, indicating that dendrite morphogenesis is a process particularly sensitive to gene dosage. By summarizing the parallels between Drosophila and mammals, I show that many Drosophila dendrite morphogenesis genes have orthologs in mammals, and that some of these are associated with mammalian dendrite outgrowth and human neurodevelopmental disorders. One notable disease-related molecule is kinase Dyrk1A, thought to be a causative factor in Down syndrome. Both increases and decreases in Dyrk1A gene dosage lead to impaired dendrite morphogenesis, which may contribute to Down syndrome pathoetiology.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, PO Box 1385, Heraklion, GR-70013, Crete, Greece
| |
Collapse
|
29
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
30
|
Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER. Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 2015; 17:558-68. [PMID: 25848747 PMCID: PMC4417036 DOI: 10.1038/ncb3143] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/20/2015] [Indexed: 11/24/2022]
Abstract
mRNA localization is a conserved mechanism for spatial control of protein synthesis, with key roles in generating cellular and developmental asymmetry. While different transcripts may be targeted to the same subcellular domain, the extent to which their localization is coordinated is unclear. Using quantitative single molecule imaging, we analyzed the assembly of Drosophila germ plasm mRNA granules inherited by nascent germ cells. We find that the germ cell-destined transcripts nanos, cyclin B, and polar granule component travel within the oocyte as ribonucleoprotein particles containing single mRNA molecules but co-assemble into multi-copy heterogeneous granules selectively at the posterior of the oocyte. The stoichiometry and dynamics of assembly indicate a defined stepwise sequence. Our data suggest that co-packaging of these transcripts ensures their effective segregation to germ cells. In contrast, compartmentalization of the germline determinant oskar mRNA into different granules limits its entry into germ cells. This exclusion is required for proper germline development.
Collapse
Affiliation(s)
- Shawn C Little
- 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Eric F Wieschaus
- 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
31
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
32
|
Thomas MG, Pascual ML, Maschi D, Luchelli L, Boccaccio GL. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci 2014; 71:2219-39. [PMID: 24212248 PMCID: PMC11113725 DOI: 10.1007/s00018-013-1506-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/18/2022]
Abstract
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Malena Lucía Pascual
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Darío Maschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- Present Address: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO USA
| | - Luciana Luchelli
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
33
|
Extensive use of RNA-binding proteins in Drosophila sensory neuron dendrite morphogenesis. G3-GENES GENOMES GENETICS 2014; 4:297-306. [PMID: 24347626 PMCID: PMC3931563 DOI: 10.1534/g3.113.009795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The large number of RNA-binding proteins and translation factors encoded in the Drosophila and other metazoan genomes predicts widespread use of post-transcriptional regulation in cellular and developmental processes. Previous studies identified roles for several RNA-binding proteins in dendrite branching morphogenesis of Drosophila larval sensory neurons. To determine the larger contribution of post-transcriptional gene regulation to neuronal morphogenesis, we conducted an RNA interference screen to identify additional Drosophila proteins annotated as either RNA-binding proteins or translation factors that function in producing the complex dendritic trees of larval class IV dendritic arborization neurons. We identified 88 genes encoding such proteins whose knockdown resulted in aberrant dendritic morphology, including alterations in dendritic branch number, branch length, field size, and patterning of the dendritic tree. In particular, splicing and translation initiation factors were associated with distinct and characteristic phenotypes, suggesting that different morphogenetic events are best controlled at specific steps in post-transcriptional messenger RNA metabolism. Many of the factors identified in the screen have been implicated in controlling the subcellular distributions and translation of maternal messenger RNAs; thus, common post-transcriptional regulatory strategies may be used in neurogenesis and in the generation of asymmetry in the female germline and embryo.
Collapse
|
34
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
35
|
Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar. J Neurosci 2013; 33:14791-800. [PMID: 24027279 DOI: 10.1523/jneurosci.5864-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.
Collapse
|
36
|
Sinsimer KS, Lee JJ, Thiberge SY, Gavis ER. Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep 2013; 5:1169-77. [PMID: 24290763 DOI: 10.1016/j.celrep.2013.10.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/11/2013] [Accepted: 10/28/2013] [Indexed: 01/14/2023] Open
Abstract
Localized cytoplasmic determinants packaged as ribonucleoprotein (RNP) particles direct embryonic patterning and cell fate specification in a wide range of organisms. Once established, the asymmetric distributions of such RNP particles must be maintained, often over considerable developmental time. A striking example is the Drosophila germ plasm, which contains RNP particles whose localization to the posterior of the egg during oogenesis results in their asymmetric inheritance and segregation of germline from somatic fates in the embryo. Although actin-based anchoring mechanisms have been implicated, high-resolution live imaging revealed persistent trafficking of germ plasm RNP particles at the posterior cortex of the Drosophila oocyte. This motility relies on cortical microtubules, is mediated by kinesin and dynein motors, and requires coordination between the microtubule and actin cytoskeletons. Finally, we show that RNP particle motility is required for long-term germ plasm retention. We propose that anchoring is a dynamic state that renders asymmetries robust to developmental time and environmental perturbations.
Collapse
Affiliation(s)
- Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stephan Y Thiberge
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
37
|
Kanska J, Frank U. New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 2013; 126:3192-203. [PMID: 23659997 DOI: 10.1242/jcs.127233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Collapse
Affiliation(s)
- Justyna Kanska
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | |
Collapse
|
38
|
Oulhen N, Yoshida T, Yajima M, Song JL, Sakuma T, Sakamoto N, Yamamoto T, Wessel GM. The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin. Dev Biol 2013; 377:275-83. [PMID: 23357540 DOI: 10.1016/j.ydbio.2013.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Abstract
Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3' UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA that contains the GFP open reading frame followed by Sp nanos2 3'UTR leads to selective reporter enrichment in the small micromeres in blastulae. The same result was seen with nanos2 from the sea urchin Hemicentrotus pulcherrimus (Hp). In both species, the 5'UTR alone is not sufficient for the sMic localization but it always increased the sMic reporter enrichment when present with the 3'UTR. We defined an element conserved between Hp and Sp in the nanos2 3'UTR which is necessary and sufficient for protein enrichment in the sMic, and refer to it as GNARLE (Global Nanos Associated RNA Lability Element). We also found that the nanos2 3'UTR is essential for the selective RNA retention in the small micromeres; GNARLE is required but not sufficient for this process. These results show that a combination of selective RNA retention and translational control mechanisms instills nanos accumulation uniquely in the sMic lineage.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development 2012; 139:3263-76. [PMID: 22912410 DOI: 10.1242/dev.078626] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, University of Nice-Sophia Antipolis/UMR7277 CNRS/UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
40
|
Pascual ML, Luchelli L, Habif M, Boccaccio GL. Synaptic activity regulated mRNA-silencing foci for the fine tuning of local protein synthesis at the synapse. Commun Integr Biol 2012; 5:388-92. [PMID: 23060966 PMCID: PMC3460847 DOI: 10.4161/cib.20257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulated synthesis of specific proteins at the synapse is important for neuron plasticity, and several localized mRNAs are translated upon specific stimulus. Repression of mRNA translation is linked to the formation of mRNA-silencing foci, including Processing Bodies (PBs) and Stress Granules (SGs), which are macromolecular aggregates that harbor silenced messengers and associated proteins. In a recent work, we identified a kind of mRNA-silencing foci unique to neurons, termed S-foci, that contain the post-transcriptional regulator Smaug1/SAMD4. Upon specific synaptic stimulation, the S-foci dissolve and release mRNAs to allow their translation, paralleling the cycling of mRNAs between PBs and polysomes in other cellular contexts. Smaug 1 and other proteins involved in mRNA regulation in neurons contain aggregation domains distinct from their RNA binding motifs, and we speculate that self-aggregation helps silencing and transport. In addition to S-foci and PBs, other foci formed by distinct RNA binding proteins, such as TDP-43 and FMRP among others, respond dynamically to specific synaptic stimuli. We propose the collective name of synaptic activity-regulated mRNA silencing (SyAS) foci for these RNP aggregates that selectively respond to distinct stimulation patterns and contribute to the fine-tuning of local protein synthesis at the synapse.
Collapse
Affiliation(s)
- Malena Lucia Pascual
- Instituto Leloir; IIBBA-CONICET and Facultad de Ciencias Exactas y Naturales; University of Buenos Aires; Buenos Aires, Argentina
| | | | | | | |
Collapse
|
41
|
Ye H, Chen X, Wei Q, Zhou L, Liu T, Gui J, Li C, Cao H. Molecular and expression characterization of a nanos1 homologue in Chinese sturgeon, Acipenser sinensis. Gene 2012; 511:285-92. [PMID: 23010197 DOI: 10.1016/j.gene.2012.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/20/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
The nanos gene family was essential for germ line development in diverse organisms. In the present study, the full-length cDNA of a nanos1 homologue in A. sinensis, Asnanos1, was isolated and characterized. The cDNA sequence of Asnanos1 was 1489 base pairs (bp) in length and encoded a peptide of 228 amino acid residues. Multiple sequence alignment showed that the zinc-finger motifs of Nanos1 were highly conserved in vertebrates. By RT-PCR analysis, Asnanos1 mRNAs were ubiquitously detected in all tissues examined except for the fat, including liver, spleen, heart, ovary, kidney, muscle, intestines, pituitary, hypothalamus, telencephalon, midbrain, cerebellum, and medulla oblongata. Moreover, a specific polyclonal antibody was prepared from the in vitro expressed partial AsNanos1 protein. Western blot analysis revealed that the tissue expression pattern of AsNanos1 was not completely coincided with that of its mRNAs, which was not found in fat, muscle and intestines. Additionally, by immunofluoresence localization, it was observed that AsNanos1 protein was in the cytoplasm of primary oocytes and spermatocytes. The presented results indicated that the expression pattern of Asnanos1 was differential conservation and divergence among diverse species.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Olesnicky EC, Bhogal B, Gavis ER. Combinatorial use of translational co-factors for cell type-specific regulation during neuronal morphogenesis in Drosophila. Dev Biol 2012; 365:208-18. [PMID: 22391052 DOI: 10.1016/j.ydbio.2012.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 11/26/2022]
Abstract
The translational regulators Nanos (Nos) and Pumilio (Pum) work together to regulate the morphogenesis of dendritic arborization (da) neurons of the Drosophila larval peripheral nervous system. In contrast, Nos and Pum function in opposition to one another in the neuromuscular junction to regulate the morphogenesis and the electrophysiological properties of synaptic boutons. Neither the cellular functions of Nos and Pum nor their regulatory targets in neuronal morphogenesis are known. Here we show that Nos and Pum are required to maintain the dendritic complexity of da neurons during larval growth by promoting the outgrowth of new dendritic branches and the stabilization of existing dendritic branches, in part by regulating the expression of cut and head involution defective. Through an RNA interference screen we uncover a role for the translational co-factor Brain Tumor (Brat) in dendrite morphogenesis of da neurons and demonstrate that Nos, Pum, and Brat interact genetically to regulate dendrite morphogenesis. In the neuromuscular junction, Brat function is most likely specific for Pum in the presynaptic regulation of bouton morphogenesis. Our results reveal how the combinatorial use of co-regulators like Nos, Pum and Brat can diversify their roles in post-transcriptional regulation of gene expression for neuronal morphogenesis.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
43
|
Baez MV, Luchelli L, Maschi D, Habif M, Pascual M, Thomas MG, Boccaccio GL. Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. ACTA ACUST UNITED AC 2012; 195:1141-57. [PMID: 22201125 PMCID: PMC3246892 DOI: 10.1083/jcb.201108159] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-foci, the first reported mRNA-silencing foci specific to neurons, may control local mRNA translation in response to NMDA receptor stimulation and synaptic plasticity. Mammalian Smaug1/Samd4A is a translational repressor. Here we show that Smaug1 forms mRNA-silencing foci located at postsynapses of hippocampal neurons. These structures, which we have named S-foci, are distinct from P-bodies, stress granules, or other neuronal RNA granules hitherto described, and are the first described mRNA-silencing foci specific to neurons. RNA binding was not required for aggregation, which indicates that S-foci formation is not a consequence of mRNA silencing. N-methyl-d-aspartic acid (NMDA) receptor stimulation provoked a rapid and reversible disassembly of S-foci, transiently releasing transcripts (the CaMKIIα mRNA among others) to allow their translation. Simultaneously, NMDA triggered global translational silencing, which suggests the specific activation of Smaug1-repressed transcripts. Smaug1 is expressed during synaptogenesis, and Smaug1 knockdown affected the number and size of synapses, and also provoked an impaired response to repetitive depolarizing stimuli, as indicated by a reduced induction of Arc/Arg3.1. Our results suggest that S-foci control local translation, specifically responding to NMDA receptor stimulation and affecting synaptic plasticity.
Collapse
|
44
|
A genetic in vivo system to detect asymmetrically distributed RNA. EMBO Rep 2011; 12:1167-74. [PMID: 21921935 DOI: 10.1038/embor.2011.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 11/08/2022] Open
Abstract
Many RNAs show polarized or otherwise non-random subcellular distributions. To create a method for genome-wide genetic screens for RNAs with asymmetric subcellular distributions, we have combined methods for gene tagging and live imaging of messenger RNA (mRNA). A pilot screen in a highly polarized, differentiated cell in the Drosophila larva, the branched terminal cell of the tracheal system, demonstrates the feasibility of the method for identifying new asymmetrically localized mRNAs in vivo.
Collapse
|
45
|
Abstract
Drosophila neurons have identifiable axons and dendrites based on cell shape, but it is only just starting to become clear how Drosophila neurons are polarized at the molecular level. Dendrite-specific components including the Golgi complex, GABA receptors, neurotransmitter receptor scaffolding proteins, and cell adhesion molecules have been described. Proteins involved in constructing presynaptic specializations are concentrated in axons of some neurons. A very simple model for how these components are distributed to axons and dendrites can be constructed based on the opposite polarity of microtubules in axons and dendrites: dynein carries cargo into dendrites, and kinesins carry cargo into axons. The simple model works well for multipolar neurons, but will likely need refinement for unipolar neurons, which are common in Drosophila.
Collapse
Affiliation(s)
- Melissa M Rolls
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO J 2011; 30:3540-52. [PMID: 21878995 DOI: 10.1038/emboj.2011.278] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022] Open
Abstract
The localization of RNAs critically contributes to many important cellular processes in an organism, such as the establishment of polarity, asymmetric division and migration during development. Moreover, in the central nervous system, the local translation of mRNAs is thought to induce plastic changes that occur at synapses triggered by learning and memory. Here, we will critically review the physiological functions of well-established dendritically localized mRNAs and their associated factors, which together form ribonucleoprotein particles (RNPs). Second, we will discuss the life of a localized transcript from transcription in the nucleus to translation at the synapse and introduce the concept of the 'RNA signature' that is characteristic for each transcript. Finally, we present the 'sushi belt model' of how localized RNAs within neuronal RNPs may dynamically patrol multiple synapses rather than being anchored at a single synapse. This new model integrates our current understanding of synaptic function ranging from synaptic tagging and capture to functional and structural reorganization of the synapse upon learning and memory.
Collapse
|
47
|
Sinsimer KS, Jain RA, Chatterjee S, Gavis ER. A late phase of germ plasm accumulation during Drosophila oogenesis requires lost and rumpelstiltskin. Development 2011; 138:3431-40. [PMID: 21752933 DOI: 10.1242/dev.065029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asymmetric mRNA localization is an effective mechanism for establishing cellular and developmental polarity. Posterior localization of oskar in the Drosophila oocyte targets the synthesis of Oskar to the posterior, where Oskar initiates the assembly of the germ plasm. In addition to harboring germline determinants, the germ plasm is required for localization and translation of the abdominal determinant nanos. Consequently, failure of oskar localization during oogenesis results in embryos lacking germ cells and abdominal segments. oskar accumulates at the oocyte posterior during mid-oogenesis through a well-studied process involving kinesin-mediated transport. Through live imaging of oskar mRNA, we have uncovered a second, mechanistically distinct phase of oskar localization that occurs during late oogenesis and results in amplification of the germ plasm. Analysis of two newly identified oskar localization factors, Rumpelstiltskin and Lost, that are required specifically for this late phase of oskar localization shows that germ plasm amplification ensures robust abdomen and germ cell formation during embryogenesis. In addition, our results indicate the importance of mechanisms for adapting mRNAs to utilize multiple localization pathways as necessitated by the dramatic changes in ovarian physiology that occur during oogenesis.
Collapse
Affiliation(s)
- Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
48
|
Branco T, Häusser M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 2010; 20:494-502. [DOI: 10.1016/j.conb.2010.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
|
49
|
Dendritically localized transcripts are sorted into distinct ribonucleoprotein particles that display fast directional motility along dendrites of hippocampal neurons. J Neurosci 2010; 30:4160-70. [PMID: 20237286 DOI: 10.1523/jneurosci.3537-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Localization of mRNAs to postsynaptic sites and their subsequent translation is thought to contribute to synapse-specific plasticity. However, the direct visualization of dendritic RNA transport in living neurons remains a major challenge. Here, we analyze the transport of Alexa-labeled RNAs microinjected into mature hippocampal neurons. We show that microinjected MAP2 and CaMKIIalpha RNAs form particles that localize into dendrites as their endogenous counterparts. In contrast, nonlocalizing RNAs or truncated CaMKIIalpha, lacking the dendritic targeting element, remain in the cell body. Furthermore, our microinjection approach allowed us to identify a novel dendritically localized RNA, Septin7. Time-lapse videomicroscopy of neurons injected with CaMKIIalpha and Septin7 RNAs demonstrates fast directional movement along the dendrites of hippocampal neurons, with similar kinetics to Staufen1 ribonucleoprotein particles (RNPs). Coinjection and simultaneous visualization of two RNAs, as well as double detection of the corresponding endogenous RNAs, reveal that neuronal transcripts are differentially sorted in dendritic RNPs.
Collapse
|
50
|
Abstract
Type-specific dendrite morphology is a hallmark of the neuron and has important functional implications in determining what signals a neuron receives and how these signals are integrated. During the past two decades, studies on dendritic arborization neurons in Drosophila melanogaster have started to identify mechanisms of dendrite morphogenesis that may have broad applicability to vertebrate species. Transcription factors, receptor-ligand interactions, various signalling pathways, local translational machinery, cytoskeletal elements, Golgi outposts and endosomes have been identified as contributors to the organization of dendrites of individual neurons and the placement of these dendrites in the neuronal circuitry. Further insight into these mechanisms will improve our understanding of how the nervous system functions and might help to identify the underlying causes of some neurological and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, 1550 4th Street, San Francisco 94158, USA.
| | | |
Collapse
|