1
|
Elder E, Lemieux A, Legault LM, Caron M, Bertrand-Lehouillier V, Dupas T, Raynal NM, Bourque G, Sinnett D, Gévry N, McGraw S. Rescuing DNMT1 fails to fully reverse the molecular and functional repercussions of its loss in mouse embryonic stem cells. Nucleic Acids Res 2025; 53:gkaf130. [PMID: 39997223 PMCID: PMC11851107 DOI: 10.1093/nar/gkaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetic mechanisms are crucial for developmental programming and can be disrupted by environmental stressors, increasing susceptibility to disease. This has sparked interest in therapies for restoring epigenetic balance, but it remains uncertain whether disordered epigenetic mechanisms can be fully corrected. Disruption of DNA methyltransferase 1 (DNMT1), responsible for DNA methylation maintenance, has particularly devastating biological consequences. Therefore, here we explored if rescuing DNMT1 activity is sufficient to reverse the effects of its loss utilizing mouse embryonic stem cells. However, only partial reversal could be achieved. Extensive changes in DNA methylation, histone modifications, and gene expression were detected, along with transposable element derepression and genomic instability. Reduction of cellular size, complexity, and proliferation rate were observed, as well as lasting effects in germ layer lineages and embryoid bodies. Interestingly, by analyzing the impact on imprinted regions, we uncovered 20 regions exhibiting imprinted-like signatures. Notably, while many permanent effects persisted throughout Dnmt1 inactivation and rescue, others arose from the rescue intervention. Lastly, rescuing DNMT1 after differentiation initiation worsened outcomes, reinforcing the need for early intervention. Our findings highlight the far-reaching functions of DNMT1 and provide valuable perspectives on the repercussions of epigenetic perturbations during early development and the challenges of rescue interventions.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Anthony Lemieux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Maxime Caron
- University of Montreal Hospital Research Centre, Montreal, Quebec, H2X 0A9, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Thomas Dupas
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Noël J-M Raynal
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1Y2, Canada
- McGill Genome Centre, Montreal, Quebec, H3A 0G1, Canada
| | - Daniel Sinnett
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
2
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
3
|
Waldvogel SM, Posey JE, Goodell MA. Human embryonic genetic mosaicism and its effects on development and disease. Nat Rev Genet 2024; 25:698-714. [PMID: 38605218 PMCID: PMC11408116 DOI: 10.1038/s41576-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.
Collapse
Affiliation(s)
- Sarah M Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
5
|
Ito T, Kubiura-Ichimaru M, Miura F, Tajima S, Surani MA, Ito T, Yamaguchi S, Tada M. DNMT1 can induce primary germ layer differentiation through de novo DNA methylation. Genes Cells 2024; 29:549-566. [PMID: 38811355 PMCID: PMC11447926 DOI: 10.1111/gtc.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.
Collapse
Affiliation(s)
- Takamasa Ito
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Musashi Kubiura-Ichimaru
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics Institute for Protein Research, Osaka University, Suita, Japan
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shinpei Yamaguchi
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Masako Tada
- Stem Cells & Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| |
Collapse
|
6
|
Huang W, Chen ACH, Wei X, Fong SW, Yeung WSB, Lee YL. Uncovering the role of TET2-mediated ENPEP activation in trophoblast cell fate determination. Cell Mol Life Sci 2024; 81:270. [PMID: 38886218 PMCID: PMC11335190 DOI: 10.1007/s00018-024-05306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Early trophoblast differentiation is crucial for embryo implantation, placentation and fetal development. Dynamic changes in DNA methylation occur during preimplantation development and are critical for cell fate determination. However, the underlying regulatory mechanism remains unclear. Recently, we derived morula-like expanded potential stem cells from human preimplantation embryos (hEPSC-em), providing a valuable tool for studying early trophoblast differentiation. Data analysis on published datasets showed differential expressions of DNA methylation enzymes during early trophoblast differentiation in human embryos and hEPSC-em derived trophoblastic spheroids. We demonstrated downregulation of DNA methyltransferase 3 members (DNMT3s) and upregulation of ten-eleven translocation methylcytosine dioxygenases (TETs) during trophoblast differentiation. While DNMT inhibitor promoted trophoblast differentiation, TET inhibitor hindered the process and reduced implantation potential of trophoblastic spheroids. Further integrative analysis identified that glutamyl aminopeptidase (ENPEP), a trophectoderm progenitor marker, was hypomethylated and highly expressed in trophoblast lineages. Concordantly, progressive loss of DNA methylation in ENPEP promoter and increased ENPEP expression were detected in trophoblast differentiation. Knockout of ENPEP in hEPSC-em compromised trophoblast differentiation potency, reduced adhesion and invasion of trophoblastic spheroids, and impeded trophoblastic stem cell (TSC) derivation. Importantly, TET2 was involved in the loss of DNA methylation and activation of ENPEP expression during trophoblast differentiation. TET2-null hEPSC-em failed to produce TSC properly. Collectively, our results illustrated the crucial roles of ENPEP and TET2 in trophoblast fate commitments and the unprecedented TET2-mediated loss of DNA methylation in ENPEP promoter.
Collapse
Affiliation(s)
- Wen Huang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xujin Wei
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
- Centre for Translational Stem Cell Biology, Science Park, Sha Tin , Hong Kong, Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Yao S, Prates K, Freydenzon A, Assante G, McRae AF, Morris MJ, Youngson NA. Liver-specific deletion of de novo DNA methyltransferases protects against glucose intolerance in high-fat diet-fed male mice. FASEB J 2024; 38:e23690. [PMID: 38795327 DOI: 10.1096/fj.202301546rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024]
Abstract
Alterations to gene transcription and DNA methylation are a feature of many liver diseases including fatty liver disease and liver cancer. However, it is unclear whether the DNA methylation changes are a cause or a consequence of the transcriptional changes. It is even possible that the methylation changes are not required for the transcriptional changes. If DNA methylation is just a minor player in, or a consequence of liver transcriptional change, then future studies in this area should focus on other systems such as histone tail modifications. To interrogate the importance of de novo DNA methylation, we generated mice that are homozygous mutants for both Dnmt3a and Dnmt3b in post-natal liver. These mice are viable and fertile with normal sized livers. Males, but not females, showed increased adipose depots, yet paradoxically, improved glucose tolerance on both control diet and high-fat diets (HFD). Comparison of the transcriptome and methylome with RNA sequencing and whole-genome bisulfite sequencing in adult hepatocytes revealed that widespread loss of methylation in CpG-rich regions in the mutant did not induce loss of homeostatic transcriptional regulation. Similarly, extensive transcriptional changes induced by HFD did not require de novo DNA methylation. The improved metabolic phenotype of the Dnmt3a/3b mutant mice may be mediated through the dysregulation of a subset of glucose and fat metabolism genes which increase both glucose uptake and lipid export by the liver. However, further work is needed to confirm this.
Collapse
Affiliation(s)
- S Yao
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - K Prates
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - A Freydenzon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - G Assante
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M J Morris
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - N A Youngson
- Department of Pharmacology, School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
8
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Cai B, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 controls transcriptional and epigenetic changes promoting mouse pluripotent state transitions via DNMT3 and TET1. Dev Cell 2024; 59:465-481.e6. [PMID: 38237590 PMCID: PMC10923053 DOI: 10.1016/j.devcel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/04/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Schulz M, Teissandier A, De La Mata Santaella E, Armand M, Iranzo J, El Marjou F, Gestraud P, Walter M, Kinston S, Göttgens B, Greenberg MVC, Bourc'his D. DNA methylation restricts coordinated germline and neural fates in embryonic stem cell differentiation. Nat Struct Mol Biol 2024; 31:102-114. [PMID: 38177678 DOI: 10.1038/s41594-023-01162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/26/2023] [Indexed: 01/06/2024]
Abstract
As embryonic stem cells (ESCs) transition from naive to primed pluripotency during early mammalian development, they acquire high DNA methylation levels. During this transition, the germline is specified and undergoes genome-wide DNA demethylation, while emergence of the three somatic germ layers is preceded by acquisition of somatic DNA methylation levels in the primed epiblast. DNA methylation is essential for embryogenesis, but the point at which it becomes critical during differentiation and whether all lineages equally depend on it is unclear. Here, using culture modeling of cellular transitions, we found that DNA methylation-free mouse ESCs with triple DNA methyltransferase knockout (TKO) progressed through the continuum of pluripotency states but demonstrated skewed differentiation abilities toward neural versus other somatic lineages. More saliently, TKO ESCs were fully competent for establishing primordial germ cell-like cells, even showing temporally extended and self-sustained capacity for the germline fate. By mapping chromatin states, we found that neural and germline lineages are linked by a similar enhancer dynamic upon exit from the naive state, defined by common sets of transcription factors, including methyl-sensitive ones, that fail to be decommissioned in the absence of DNA methylation. We propose that DNA methylation controls the temporality of a coordinated neural-germline axis of the preferred differentiation route during early development.
Collapse
Affiliation(s)
- Mathieu Schulz
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | | | - Mélanie Armand
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Julian Iranzo
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Fatima El Marjou
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Pierre Gestraud
- INSERM U900, MINES ParisTech, Institut Curie, PSL Research University, Paris, France
| | | | - Sarah Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Deborah Bourc'his
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Ishiuchi T, Sakamoto M. Molecular mechanisms underlying totipotency. Life Sci Alliance 2023; 6:e202302225. [PMID: 37666667 PMCID: PMC10480501 DOI: 10.26508/lsa.202302225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Numerous efforts to understand pluripotency in mammals, using pluripotent stem cells in culture, have enabled the generation of artificially induced pluripotent stem cells, which serve as a valuable source for regenerative medicine and the creation of disease models. In contrast to these tremendous successes in the pluripotency field in the past few decades, our understanding of totipotency, which is highlighted by its broader plasticity than pluripotency, is still limited. This is largely attributable to the scarcity of available materials and the lack of in vitro models. However, recent technological advances have unveiled molecular features that characterize totipotent cells. Single-cell or low-input sequencing technologies allow the dissection of pre- and post-fertilization developmental processes at the molecular level with high resolution. In this review, we describe some of the key findings in understanding totipotency and discuss how totipotency is acquired at the beginning of life.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
11
|
Li Q, Lu J, Yin X, Chang Y, Wang C, Yan M, Feng L, Cheng Y, Gao Y, Xu B, Zhang Y, Wang Y, Cui G, Xu L, Sun Y, Zeng R, Li Y, Jing N, Xu GL, Wu L, Tang F, Li J. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat Commun 2023; 14:2922. [PMID: 37217538 PMCID: PMC10203112 DOI: 10.1038/s41467-023-38528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
12
|
Liu S, Zhao S, Zhang C, Tian C, Wang D, Yu H, Li Z, Liu L, Liu N. Dppa3 Improves the Germline Competence of Pluripotent Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10552-y. [PMID: 37171679 DOI: 10.1007/s12015-023-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chimera formation and germline competence are critical features of mouse pluripotent stem cells (PSCs). However, the factors that contribute to germline competence in the chimeras remain to be understood. METHODS To determine the role of Dppa3 in PSCs, we first constructed Dppa3 knockout (Dppa3 KO) and Dppa3 overexpression (Dppa3 OE) PSCs, respectively. Using Dppa3 KO and Dppa3 OE PSCs, we then investigated the role of Dppa3 in PSCs by evaluating the chimera generation, DNA methylation, and pluripotent state conversion. RESULTS We show that Dppa3 plays an important role in chimera formation and germline competence of mouse PSCs. PSC lines with high expression of Dppa3 show high germline competence. In contrast, Dppa3 deficiency reduces chimera formation and abrogates the germline transmission capacity of PSCs. Molecularly, Dppa3 facilitates establishing global DNA hypomethylation in PSCs. High levels of Dppa3 in PSCs reduce the expression of Dnmt3a/b and impede Uhrf1-Dnmt1 complex binding to DNA replication forks, maintaining DNA hypomethylation. Additionally, Dppa3 facilitates two-cell-stage (2C) genes expression and promotes conversion to a 2C-like state. CONCLUSION These data show that Dppa3 is involved in maintaining DNA hypomethylation homeostasis and is required for high chimera formation and germline competence of PSCs.
Collapse
Affiliation(s)
- Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Weigert R, Hetzel S, Bailly N, Haggerty C, Ilik IA, Yung PYK, Navarro C, Bolondi A, Kumar AS, Anania C, Brändl B, Meierhofer D, Lupiáñez DG, Müller FJ, Aktas T, Elsässer SJ, Kretzmer H, Smith ZD, Meissner A. Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nat Cell Biol 2023; 25:579-591. [PMID: 37024684 PMCID: PMC10104784 DOI: 10.1038/s41556-023-01114-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
DNA and Histone 3 Lysine 27 methylation typically function as repressive modifications and operate within distinct genomic compartments. In mammals, the majority of the genome is kept in a DNA methylated state, whereas the Polycomb repressive complexes regulate the unmethylated CpG-rich promoters of developmental genes. In contrast to this general framework, the extra-embryonic lineages display non-canonical, globally intermediate DNA methylation levels, including disruption of local Polycomb domains. Here, to better understand this unusual landscape's molecular properties, we genetically and chemically perturbed major epigenetic pathways in mouse trophoblast stem cells. We find that the extra-embryonic epigenome reflects ongoing and dynamic de novo methyltransferase recruitment, which is continuously antagonized by Polycomb to maintain intermediate, locally disordered methylation. Despite its disorganized molecular appearance, our data point to a highly controlled equilibrium between counteracting repressors within extra-embryonic cells, one that can seemingly persist indefinitely without bistable features typically seen for embryonic forms of epigenetic regulation.
Collapse
Affiliation(s)
- Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Medical Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nina Bailly
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Chuck Haggerty
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ibrahim A Ilik
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Yuk Kwong Yung
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Navarro
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chiara Anania
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - David Meierhofer
- Mass Spectrometry Joint Facilities Scientific Service, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Universitätsklinikum Schleswig-Holstein Campus Kiel, Zentrum für Integrative Psychiatrie gGmbH, Kiel, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, US.
| |
Collapse
|
14
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 coordinates DNMT3 and TET1 for transcriptional and epigenetic control in pluripotent state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534143. [PMID: 36993548 PMCID: PMC10055359 DOI: 10.1101/2023.03.24.534143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates the development of the epiblast in vivo during the peri-implantation period of mammalian development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events occurring during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knock-in cell models, we uncover the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, dependent on the formation of R loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naïive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
15
|
Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol Cell 2023; 83:787-802.e9. [PMID: 36758546 DOI: 10.1016/j.molcel.2023.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Collapse
Affiliation(s)
- Elisa Kreibich
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarah Kaspar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arnaud R Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Clark SJ, Argelaguet R, Lohoff T, Krueger F, Drage D, Göttgens B, Marioni JC, Nichols J, Reik W. Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis. Genome Biol 2022; 23:202. [PMID: 36163261 PMCID: PMC9511790 DOI: 10.1186/s13059-022-02762-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood. RESULTS Here we report a single-cell transcriptomic atlas from Dnmt and Tet mutant mouse embryos during early organogenesis. We show that both the maintenance and de novo methyltransferase enzymes are dispensable for the formation of all major cell types at E8.5. However, DNA methyltransferases are required for silencing of prior or alternative cell fates such as pluripotency and extraembryonic programmes. Deletion of all three TET enzymes produces substantial lineage biases, in particular, a failure to generate primitive erythrocytes. Single-cell multi-omics profiling moreover reveals that this is linked to a failure to demethylate distal regulatory elements in Tet triple-knockout embryos. CONCLUSIONS This study provides a detailed analysis of the effects of perturbing DNA methylation on mouse organogenesis at a whole organism scale and affords new insights into the regulatory mechanisms of cell fate decisions.
Collapse
Affiliation(s)
- Stephen J Clark
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Ricard Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
| | - Tim Lohoff
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Felix Krueger
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
- Bioinformatics Group, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Deborah Drage
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK
| | - Berthold Göttgens
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EG, UK
- Current address: MRC Human Genetics Unit, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
- Altos Labs Cambridge Institute of Science, Granta Park, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
18
|
Nishio M, Matsuura T, Hibi S, Ohta S, Oka C, Sasai N, Ishida Y, Matsuda E. Heterozygous loss of Zbtb38 leads to early embryonic lethality via the suppression of Nanog and Sox2 expression. Cell Prolif 2022; 55:e13215. [PMID: 35297517 PMCID: PMC9055898 DOI: 10.1111/cpr.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES Mammalian DNA methyltransferases are essential to re-establish global DNA methylation patterns during implantation, which is critical for transmitting epigenetic information to the next generation. In contrast, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains almost unknown at this stage. We previously demonstrated that Zbtb38 (also known as CIBZ)-a zinc finger type of MBP-is required for mouse embryonic stem (ES) cell proliferation by positively regulating Nanog expression. However, the physiological function of Zbtb38 in vivo remains unclear. MATERIALS AND METHODS This study used the Cre-loxP system to generate conditional Zbtb38 knockout mice. Cell proliferation and apoptosis were studied by immunofluorescence staining. Quantitative real-time PCR, immunoblotting and immunofluorescence were performed to investigate the molecular mechanisms. RESULTS Germline loss of the Zbtb38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. Heterozygous loss of Zbtb38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Although this early lethal phenotype, Zbtb38 is dispensable for ES cell establishment and identity. CONCLUSIONS These findings indicate that Zbtb38 is essential for early embryonic development via the suppression of Nanog and Sox2 expression.
Collapse
Affiliation(s)
- Miki Nishio
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
- Cosmo Bio Co., Ltd.TokyoJapan
| | - Takuya Matsuura
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shunya Hibi
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Shiomi Ohta
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Chio Oka
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Noriaki Sasai
- Development Biomedical ScienceNara Institute of Science and TechnologyIkomaJapan
| | - Yasumasa Ishida
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| | - Eishou Matsuda
- Functional Genomics and MedicineNara Institute of Science and TechnologyIkomaJapan
| |
Collapse
|
19
|
Al-Mousawi J, Boskovic A. Transcriptional and epigenetic control of early life cell fate decisions. Curr Opin Oncol 2022; 34:148-154. [PMID: 35025815 DOI: 10.1097/cco.0000000000000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Global epigenetic reprogramming of the parental genomes after fertilization ensures the establishment of genome organization permissive for cell specialization and differentiation during development. In this review, we highlight selected, well-characterized relationships between epigenetic factors and transcriptional cell fate regulators during the initial stages of mouse development. RECENT FINDINGS Blastomeres of the mouse embryo are characterized by atypical and dynamic histone modification arrangements, noncoding RNAs and DNA methylation profiles. Moreover, asymmetries in epigenomic patterning between embryonic cells arise as early as the first cleavage, with potentially instructive roles during the first lineage allocations in the mouse embryo. Although it is widely appreciated that transcription factors and developmental signaling pathways play a crucial role in cell fate specification at the onset of development, it is increasingly clear that their function is tightly connected to the underlying epigenetic status of the embryonic cells in which they act. SUMMARY Findings on the interplay between genetic, epigenetic and environmental factors during reprogramming and differentiation in the embryo are crucial for understanding the molecular underpinnings of disease processes, particularly tumorigenesis, which is characterized by global epigenetic rewiring and progressive loss of cellular identity.
Collapse
Affiliation(s)
- Jasmina Al-Mousawi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | | |
Collapse
|
20
|
DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLoS One 2022; 17:e0262277. [PMID: 34986190 PMCID: PMC8730390 DOI: 10.1371/journal.pone.0262277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.
Collapse
|
21
|
Pastor WA, Kwon SY. Distinctive aspects of the placental epigenome and theories as to how they arise. Cell Mol Life Sci 2022; 79:569. [PMID: 36287261 PMCID: PMC9606139 DOI: 10.1007/s00018-022-04568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low global DNA methylation, extensive “partially methylated domains” packed in dense heterochromatin and methylation of hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in placentation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual placental epigenetic state may arise. Nonetheless, key questions remain unresolved.
Collapse
Affiliation(s)
- William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
22
|
Yang M, Tao X, Titus S, Zhao T, Scott RT, Seli E. Analysis of accessible chromatin landscape in the inner cell mass and trophectoderm of human blastocysts. Mol Hum Reprod 2021; 26:702-711. [PMID: 32663300 DOI: 10.1093/molehr/gaaa048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Early embryonic development is characterized by drastic changes in chromatin structure that affects the accessibility of the chromatin. In human, the chromosome reorganization and its involvement in the first linage segregation are poorly characterized due to the difficulties in obtaining human embryonic material and limitation on low input technologies. In this study, we aimed to explore the chromatin remodeling pattern in human preimplantation embryos and gain insight into the epigenetic regulation of inner cell mass (ICM) and trophectoderm (TE) differentiation. We optimized ATAC-seq (an assay for transposase-accessible chromatin using sequencing) to analyze the chromatin accessibility landscape for low DNA input. Sixteen preimplantation human blastocysts frozen on Day 6 were used. Our data showed that ATAC peak distributions of the promoter regions (<1 kb) and distal regions versus other regions were significantly different between ICM versus TE samples (P < 0.01). We detected that a higher percentage of accessible binding loci were located within 1 kb of the transcription start site in ICM compared to TE (P < 0.01). However, a higher percentage of accessible regions was detected in the distal region of TE compared to ICM (P < 0.01). In addition, eight differential peaks with a false discovery rate <0.05 between ICM and TE were detected. This is the first study to compare the landscape of the accessible chromatin between ICM and TE of human preimplantation embryos, which unveiled chromatin-level epigenetic regulation of cell lineage specification in early embryo development.
Collapse
Affiliation(s)
- Min Yang
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Xin Tao
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Shiny Titus
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | | | - Richard T Scott
- IVI-RMA, New Jersey, Basking Ridge, NJ, USA.,Department of Obstetrics and Gynecology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emre Seli
- IVI-RMA, New Jersey, Basking Ridge, NJ, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
24
|
Sönmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schübeler D, Benes V, Molina N, Krebs AR. Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity In Vivo. Mol Cell 2020; 81:255-267.e6. [PMID: 33290745 DOI: 10.1016/j.molcel.2020.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023]
Abstract
Gene activation requires the cooperative activity of multiple transcription factors at cis-regulatory elements (CREs). Yet, most transcription factors have short residence time, questioning the requirement of their physical co-occupancy on DNA to achieve cooperativity. Here, we present a DNA footprinting method that detects individual molecular interactions of transcription factors and nucleosomes with DNA in vivo. We apply this strategy to quantify the simultaneous binding of multiple transcription factors on single DNA molecules at mouse CREs. Analysis of the binary occupancy patterns at thousands of motif combinations reveals that high DNA co-occupancy occurs for most types of transcription factors, in the absence of direct physical interaction, at sites of competition with nucleosomes. Perturbation of pairwise interactions demonstrates the function of molecular co-occupancy in binding cooperativity. Our results reveal the interactions regulating CREs at molecular resolution and identify DNA co-occupancy as a widespread cooperativity mechanism used by transcription factors to remodel chromatin.
Collapse
Affiliation(s)
- Can Sönmezer
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), GeneCore, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg-CNRS-INSERM, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Arnaud Regis Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
25
|
Shukla R, Mjoseng HK, Thomson JP, Kling S, Sproul D, Dunican DS, Ramsahoye B, Wongtawan T, Treindl F, Templin MF, Adams IR, Pennings S, Meehan RR. Activation of transcription factor circuity in 2i-induced ground state pluripotency is independent of repressive global epigenetic landscapes. Nucleic Acids Res 2020; 48:7748-7766. [PMID: 32585002 PMCID: PMC7641322 DOI: 10.1093/nar/gkaa529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) cultured with MEK/ERK and GSK3β (2i) inhibitors transition to ground state pluripotency. Gene expression changes, redistribution of histone H3K27me3 profiles and global DNA hypomethylation are hallmarks of 2i exposure, but it is unclear whether epigenetic alterations are required to achieve and maintain ground state or occur as an outcome of 2i signal induced changes. Here we show that ESCs with three epitypes, WT, constitutively methylated, or hypomethylated, all undergo comparable morphological, protein expression and transcriptome changes independently of global alterations of DNA methylation levels or changes in H3K27me3 profiles. Dazl and Fkbp6 expression are induced by 2i in all three epitypes, despite exhibiting hypermethylated promoters in constitutively methylated ESCs. We identify a number of activated gene promoters that undergo 2i dependent loss of H3K27me3 in all three epitypes, however genetic and pharmaceutical inhibition experiments show that H3K27me3 is not required for their silencing in non-2i conditions. By separating and defining their contributions, our data suggest that repressive epigenetic systems play minor roles in mESC self-renewal and naïve ground state establishment by core sets of dominant pluripotency associated transcription factor networks, which operate independently from these epigenetic processes.
Collapse
Affiliation(s)
- Ruchi Shukla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
- Newcastle University Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon Kling
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Donncha S Dunican
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Bernard Ramsahoye
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tuempong Wongtawan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Fridolin Treindl
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
- Pharmaceutical Biotechnology, Tübingen University, Tübingen, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
- Pharmaceutical Biotechnology, Tübingen University, Tübingen, Germany
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
26
|
D'Anna F, Van Dyck L, Xiong J, Zhao H, Berrens RV, Qian J, Bieniasz-Krzywiec P, Chandra V, Schoonjans L, Matthews J, De Smedt J, Minnoye L, Amorim R, Khorasanizadeh S, Yu Q, Zhao L, De Borre M, Savvides SN, Simon MC, Carmeliet P, Reik W, Rastinejad F, Mazzone M, Thienpont B, Lambrechts D. DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biol 2020; 21:182. [PMID: 32718321 PMCID: PMC7384226 DOI: 10.1186/s13059-020-02087-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is pervasive in cancer and other diseases. Cells sense and adapt to hypoxia by activating hypoxia-inducible transcription factors (HIFs), but it is still an outstanding question why cell types differ in their transcriptional response to hypoxia. RESULTS We report that HIFs fail to bind CpG dinucleotides that are methylated in their consensus binding sequence, both in in vitro biochemical binding assays and in vivo studies of differentially methylated isogenic cell lines. Based on in silico structural modeling, we show that 5-methylcytosine indeed causes steric hindrance in the HIF binding pocket. A model wherein cell-type-specific methylation landscapes, as laid down by the differential expression and binding of other transcription factors under normoxia, control cell-type-specific hypoxia responses is observed. We also discover ectopic HIF binding sites in repeat regions which are normally methylated. Genetic and pharmacological DNA demethylation, but also cancer-associated DNA hypomethylation, expose these binding sites, inducing HIF-dependent expression of cryptic transcripts. In line with such cryptic transcripts being more prone to cause double-stranded RNA and viral mimicry, we observe low DNA methylation and high cryptic transcript expression in tumors with high immune checkpoint expression, but not in tumors with low immune checkpoint expression, where they would compromise tumor immunotolerance. In a low-immunogenic tumor model, DNA demethylation upregulates cryptic transcript expression in a HIF-dependent manner, causing immune activation and reducing tumor growth. CONCLUSIONS Our data elucidate the mechanism underlying cell-type-specific responses to hypoxia and suggest DNA methylation and hypoxia to underlie tumor immunotolerance.
Collapse
Affiliation(s)
- Flora D'Anna
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Laurien Van Dyck
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Jieyi Xiong
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Hui Zhao
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Rebecca V Berrens
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- The Old Schools, University of Cambridge, Trinity Lane Cambridge, CB2 1TN, UK
| | - Junbin Qian
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Pawel Bieniasz-Krzywiec
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Vikas Chandra
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luc Schoonjans
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
| | - Julie De Smedt
- Laboratory of Dermatology, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Liesbeth Minnoye
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Ricardo Amorim
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Sepideh Khorasanizadeh
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Qian Yu
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Liyun Zhao
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Marie De Borre
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Carmeliet
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongsan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000, Leuven, Belgium
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000, Leuven, Belgium
| | - Massimiliano Mazzone
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Bernard Thienpont
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium.
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium.
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium.
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
27
|
Senner CE, Chrysanthou S, Burge S, Lin HY, Branco MR, Hemberger M. TET1 and 5-Hydroxymethylation Preserve the Stem Cell State of Mouse Trophoblast. Stem Cell Reports 2020; 15:1301-1316. [PMID: 32442533 PMCID: PMC7724466 DOI: 10.1016/j.stemcr.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The ten-eleven translocation factor TET1 and its conferred epigenetic modification 5-hydroxymethylcytosine (5hmC) have important roles in maintaining the pluripotent state of embryonic stem cells (ESCs). We previously showed that TET1 is also essential to maintain the stem cell state of trophoblast stem cells (TSCs). Here, we establish an integrated panel of absolute 5hmC levels, genome-wide DNA methylation and hydroxymethylation patterns, transcriptomes, and TET1 chromatin occupancy in TSCs and differentiated trophoblast cells. We show that the combined presence of 5-methylcytosine (5mC) and 5hmC correlates with transcriptional activity of associated genes. Hypoxia can slow down the global loss of 5hmC that occurs upon differentiation of TSCs. Notably, unlike in ESCs and epiblast cells, most TET1-bound regions overlap with active chromatin marks and TFAP2C binding sites and demarcate putative trophoblast enhancer regions. These chromatin modification and occupancy patterns are highly informative to identify novel candidate regulators of the TSC state. 5hmC to 5mC ratios correlate with gene activity in TS cells TS cell differentiation-associated loss of 5hmC is slowed down in hypoxia TET1 binding in TS cells forms long-range interactions with key trophoblast genes Intergenic TET1 binding sites in TS cells demarcate putative trophoblast enhancers
Collapse
Affiliation(s)
- Claire E Senner
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - Stephanie Chrysanthou
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah Burge
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miguel R Branco
- Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
28
|
Senft AD, Costello I, King HW, Mould AW, Bikoff EK, Robertson EJ. Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Rep 2020; 24:1977-1985.e7. [PMID: 30134160 PMCID: PMC6113931 DOI: 10.1016/j.celrep.2018.07.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/31/2018] [Accepted: 07/22/2018] [Indexed: 11/29/2022] Open
Abstract
Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterized Smad2/3-deficient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in naive and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory elements. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ layers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation. Smad2/3 alters the transcriptome and activity of distal regulatory elements in EpiLCs Smad2 prevents expression of extra-embryonic genes during priming and differentiation Smad2/3 is essential for mesoderm and definitive endoderm cell fate allocation Smad2/3 signaling balances Bmp signaling during neural precursor differentiation
Collapse
Affiliation(s)
- Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Arne W Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
29
|
Kribelbauer JF, Lu XJ, Rohs R, Mann RS, Bussemaker HJ. Toward a Mechanistic Understanding of DNA Methylation Readout by Transcription Factors. J Mol Biol 2019:S0022-2836(19)30617-5. [PMID: 31689433 DOI: 10.1016/j.jmb.2019.10.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
Abstract
Epigenetic DNA modification impacts gene expression, but the underlying molecular mechanisms are only partly understood. Adding a methyl group to a cytosine base locally modifies the structural features of DNA in multiple ways, which may change the interaction with DNA-binding transcription factors (TFs) and trigger a cascade of downstream molecular events. Cells can be probed using various functional genomics assays, but it is difficult to disentangle the confounded effects of DNA modification on TF binding, chromatin accessibility, intranuclear variation in local TF concentration, and rate of transcription. Here we discuss how high-throughput in vitro profiling of protein-DNA interactions has enabled comprehensive characterization and quantification of the methylation sensitivity of TFs. Despite the limited structural data for DNA containing methylated cytosine, automated analysis of structural information in the Protein Data Bank (PDB) shows how 5-methylcytosine (5mC) can be recognized in various ways by amino acid side chains. We discuss how a context-dependent effect of methylation on DNA groove geometry can affect DNA binding by homeodomain proteins and how principled modeling of ChIP-seq data can overcome the confounding that makes the interpretation of in vivo data challenging. The emerging picture is that epigenetic modifications affect TF binding in a highly context-specific manner, with a direction and effect size that depend critically on their position within the TF binding site and the amino acid sequence of the TF. With this improved mechanistic knowledge, we have come closer to understanding how cells use DNA modification to acquire, retain, and change their identity.
Collapse
Affiliation(s)
- Judith F Kribelbauer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Remo Rohs
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA; Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
31
|
Rissi VB, Glanzner WG, De Macedo MP, Gutierrez K, Baldassarre H, Gonçalves PBD, Bordignon V. The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos. Epigenetics 2019; 14:1088-1101. [PMID: 31216927 DOI: 10.1080/15592294.2019.1633864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that histone lysine demethylases (KDMs) play critical roles in the regulation of embryo development. This study investigated if KDM7A, a lysine demethylase known to act on mono-(me1) and di-(me2) methylation of H3K9 and H3K27, participates in the regulation of early embryo development. Knockdown of KDM7A mRNA reduced blastocyst formation by 69.2% in in vitro fertilized (IVF), 48.4% in parthenogenetically activated (PA), and 48.1% in somatic cell nuclear transfer (SCNT) embryos compared to controls. Global immunofluorescence (IF) signal in KDM7A knockdown compared to control embryos was increased for H3K27me1 on D7, for H3K27me2 on D3 and D5, for H3K9me1 on D5 and D7, and for H3K9me2 on D5 embryos, but decreased for H3K9me1, me2 and me3 on D3. Moreover, KDM7A knockdown altered mRNA expression, including the downregulation of KDM3C on D3, NANOG on D5 and D7, and OCT4 on D7 embryos, and the upregulation of CDX2, KDM4B and KDM6B on D5 embryos. On D3 and D5 embryos, total cell number and mRNA expression of embryo genome activation (EGA) markers (EIF1AX and PPP1R15B) were not affected by KDM7A knockdown. However, the ratio of inner cell mass (ICM)/total number of cells in D7 blastocysts was reduced by 45.5% in KDM7A knockdown compared to control embryos. These findings support a critical role for KDM7A in the regulation of early development and cell lineage specification in porcine embryos, which is likely mediated through the modulation of H3K9me1/me2 and H3K27me1/me2 levels, and changes in the expression of other KDMs and pluripotency genes.
Collapse
Affiliation(s)
- Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | | | - Karina Gutierrez
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM) , Santa Maria , RS , Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Sainte Anne de Bellevue , QC , Canada
| |
Collapse
|
32
|
Schüle KM, Leichsenring M, Andreani T, Vastolo V, Mallick M, Musheev MU, Karaulanov E, Niehrs C. GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells. Genes Dev 2019; 33:782-798. [PMID: 31171699 PMCID: PMC6601511 DOI: 10.1101/gad.325696.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
In this study, Schüle et al. report an unexpected role of GADD45 proteins in regulation of the cycling of ESCs in the 2C state. Using methylome analysis of Gadd45 triple-mutant ESCs, they found a role for GADD45 in demethylation of specific TET targets and partial deregulation of ZGA genes at the two-cell stage. Mouse embryonic stem cell (ESC) cultures contain a rare cell population of “2C-like” cells resembling two-cell embryos, the key stage of zygotic genome activation (ZGA). Little is known about positive regulators of the 2C-like state and two-cell stage embryos. Here we show that GADD45 (growth arrest and DNA damage 45) proteins, regulators of TET (TET methylcytosine dioxygenase)-mediated DNA demethylation, promote both states. Methylome analysis of Gadd45a,b,g triple-knockout (TKO) ESCs reveal locus-specific DNA hypermethylation of ∼7000 sites, which are enriched for enhancers and loci undergoing TET–TDG (thymine DNA glycosylase)-mediated demethylation. Gene expression is misregulated in TKOs, notably upon differentiation, and displays signatures of DNMT (DNA methyltransferase) and TET targets. TKOs manifest impaired transition into the 2C-like state and exhibit DNA hypermethylation and down-regulation of 2C-like state-specific genes. Gadd45a,b double-mutant mouse embryos display embryonic sublethality, deregulated ZGA gene expression, and developmental arrest. Our study reveals an unexpected role of GADD45 proteins in embryonic two-cell stage regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center (DKFZ), Division of Molecular Embryology, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Abstract
Minority subpopulations within embryonic stem cell cultures display an expanded developmental potential similar to that of early embryo blastomeres or the early inner cell mass. The ability to isolate and culture totipotent cells capable of giving rise to the entire conceptus would enhance our capacity to study early embryo development, and might enable more efficient generation of chimeric animals for research and organ production for transplantation. Here we review the biological and molecular characterization of cultured cells with developmental potential similar to totipotent blastomeres, and assess recent progress toward the capture and stabilization of the totipotent state in vitro.
Collapse
|
34
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
35
|
Tatsumi D, Hayashi Y, Endo M, Kobayashi H, Yoshioka T, Kiso K, Kanno S, Nakai Y, Maeda I, Mochizuki K, Tachibana M, Koseki H, Okuda A, Yasui A, Kono T, Matsui Y. DNMTs and SETDB1 function as co-repressors in MAX-mediated repression of germ cell-related genes in mouse embryonic stem cells. PLoS One 2018; 13:e0205969. [PMID: 30403691 PMCID: PMC6221296 DOI: 10.1371/journal.pone.0205969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
In embryonic stem cells (ESCs), the expression of development-related genes, including germ cell-related genes, is globally repressed. The transcription factor MAX represses germ cell-related gene expression in ESCs via PCGF6-polycomb repressive complex 1 (PRC1), which consists of several epigenetic factors. However, we predicted that MAX represses germ cell-related gene expression through several additional mechanisms because PCGF6-PRC1 regulates the expression of only a subset of genes repressed by MAX. Here, we report that MAX associated with DNA methyltransferases (DNMTs) and the histone methyltransferase SETDB1 cooperatively control germ cell-related gene expression in ESCs. Both DNA methylation and histone H3 lysine 9 tri-methylation of the promoter regions of several germ cell-related genes were not affected by knockout of the PRC1 components, indicating that the MAX-DNMT and MAX-SETDB1 pathways are independent of the PCGF6-PRC1 pathway. Our findings provide insights into our understanding of MAX-based repressive mechanisms of germ cell-related genes in ESCs.
Collapse
Affiliation(s)
- Daiki Tatsumi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
| | - Mai Endo
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takumi Yoshioka
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kohei Kiso
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shinichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Ikuma Maeda
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Center for Environmental Conservation and Research Safety, Tohoku University, Sendai, Miyagi, Japan
| | - Makoto Tachibana
- Department of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Shinkura-cho, Tokushima, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology, Yokohama, Kanagawa, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
36
|
Transcriptional Regulation and Genes Involved in First Lineage Specification During Preimplantation Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:31-46. [PMID: 29177763 DOI: 10.1007/978-3-319-63187-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The successful development from a single-cell zygote into a complex multicellular organism requires precise coordination of multiple cell-fate decisions. The very first of these is lineage specification into the inner cell mass (ICM) and trophectoderm (TE) during mammalian preimplantation development. In mouse embryos, transcription factors (TFs) such as Oct4, Sox2, and Nanog are enriched in cells of ICM, which gives rise to the fetus and yolk sac. Conversely, TFs such as Cdx2 and Eomes become highly upregulated in TE, which contribute to the placenta. Here, we review the current understanding of key transcriptional control mechanisms and genes responsible for these distinct differences during the first cell lineage specification. In particular, we highlight recent insights gained through advances in genome manipulation, live imaging, single-cell transcriptomics, and loss-of-function studies.
Collapse
|
37
|
Lee BK, Uprety N, Jang YJ, Tucker SK, Rhee C, LeBlanc L, Beck S, Kim J. Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells. Stem Cell Res 2017; 26:95-102. [PMID: 29272857 PMCID: PMC5899959 DOI: 10.1016/j.scr.2017.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022] Open
Abstract
During early development in placental mammals, proper trophoblast lineage development is essential for implantation and placentation. Defects in this lineage can cause early pregnancy failures and other pregnancy disorders. However, transcription factors controlling trophoblast development remain poorly understood. Here, we utilize Fosl1, previously implicated in trophoblast giant cell development as a member of the AP-1 complex, to trans-differentiate embryonic stem (ES) cells to trophoblast lineage-like cells. We first show that the ectopic expression of Fosl1 is sufficient to induce trophoblast-specific gene expression programs in ES cells. Surprisingly, we find that this transcriptional reprogramming occurs independently of changes in levels of ES cell core factors during the cell fate change. This suggests that Fosl1 acts in a novel way to orchestrate the ES to trophoblast cell fate conversion compared to previously known reprogramming factors. Mapping of Fosl1 targets reveals that Fosl1 directly activates TE lineage-specific genes as a pioneer factor. Our work suggests Fosl1 may be used to reprogram ES cells into differentiated cell types in trophoblast lineage, which not only enhances our knowledge of global trophoblast gene regulation but also may provide a future therapeutic tool for generating induced trophoblast cells from patient-derived pluripotent stem cells.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nadima Uprety
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Yu Jin Jang
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Scott K Tucker
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lucy LeBlanc
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Samuel Beck
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States; Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
38
|
Negrón-Pérez VM, Zhang Y, Hansen PJ. Single-cell gene expression of the bovine blastocyst. Reproduction 2017; 154:627-644. [PMID: 28814615 PMCID: PMC5630521 DOI: 10.1530/rep-17-0345] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
The first two differentiation events in the embryo result in three cell types - epiblast, trophectoderm (TE) and hypoblast. The purpose here was to identify molecular markers for each cell type in the bovine and evaluate the differences in gene expression among individual cells of each lineage. The cDNA from 67 individual cells of dissociated blastocysts was used to determine transcript abundance for 93 genes implicated as cell lineage markers in other species or potentially involved in developmental processes. Clustering analysis indicated that the cells belonged to two major populations (clades A and B) with two subpopulations of clade A and four of clade B. Use of lineage-specific markers from other species indicated that the two subpopulations of clade A represented epiblast and hypoblast respectively while the four subpopulations of clade B were TE. Among the genes upregulated in epiblast were AJAP1, DNMT3A, FGF4, H2AFZ, KDM2B, NANOG, POU5F1, SAV1 and SLIT2 Genes overexpressed in hypoblast included ALPL, FGFR2, FN1, GATA6, GJA1, HDAC1, MBNL3, PDGFRA and SOX17, while genes overexpressed in all four TE populations were ACTA2, CDX2, CYP11A1, GATA2, GATA3, IFNT, KRT8, RAC1 and SFN The subpopulations of TE varied among each other for multiple genes including the prototypical TE marker IFNT. New markers for each cell type in the bovine blastocyst were identified. Results also indicate heterogeneity in gene expression among TE cells. Further studies are needed to confirm whether subpopulations of TE cells represent different stages in the development of a committed TE phenotype.
Collapse
Affiliation(s)
- Verónica M. Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Yanping Zhang
- Gene Expression and Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Peter J. Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
39
|
Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc Natl Acad Sci U S A 2017; 114:E7479-E7488. [PMID: 28827343 DOI: 10.1073/pnas.1703170114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the posttranscriptional regulation of Clock subsequent to the cellular differentiation for the emergence of circadian clock oscillation in mouse fetal hearts and mouse embryonic stem cells (ESCs). In mouse fetal hearts, no apparent oscillation of cell-autonomous molecular clock was detectable around E10, whereas oscillation was clearly visible in E18 hearts. Temporal RNA-sequencing analysis using mouse fetal hearts reveals many fewer rhythmic genes in E10-12 hearts (63, no core circadian genes) than in E17-19 hearts (483 genes), suggesting the lack of functional circadian transcriptional/translational feedback loops (TTFLs) of core circadian genes in E10 mouse fetal hearts. In both ESCs and E10 embryos, CLOCK protein was absent despite the expression of Clock mRNA, which we showed was due to Dicer/Dgcr8-dependent translational suppression of CLOCK. The CLOCK protein is required for the discernible molecular oscillation in differentiated cells, and the posttranscriptional regulation of Clock plays a role in setting the timing for the emergence of the circadian clock oscillation during mammalian development.
Collapse
|
40
|
Abstract
DNA methylation is a major epigenetic modification of vertebrate genomes that is mostly associated with transcriptional repression. During embryogenesis, DNA methylation together with other epigenetic factors plays an essential role in selecting and maintaining cell identity. Recent technological advances are now allowing for the exploration of this mark at unprecedented resolution. This has resulted in a wealth of studies describing the developmental roles of DNA methylation in various vertebrate model systems. It is now evident that in certain contexts DNA methylation can act as a key regulator of cell identity establishment, whereas in many other cases the quantity of DNA methylation will merely reflect other upstream regulatory changes. For example, a number of studies have indicated that DNA methylation might be dispensable for pluripotency stages of embryonic development. Nevertheless, targeted deposition and removal of DNA methylation by DNMTs and TET proteins, respectively, appears to be required for vertebrate gastrulation. Here we review the roles of DNA methylation in the establishment and maintenance of cell identity during development, with a special emphasis on insights obtained from in vivo studies.
Collapse
|
41
|
Graf U, Casanova EA, Wyck S, Dalcher D, Gatti M, Vollenweider E, Okoniewski M, Weber FA, Patel SS, Schmid MW, Li J, Sharif J, Wanner G, Koseki H, Wong J, Pelczar P, Penengo L, Santoro R, Cinelli P. Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nat Cell Biol 2017; 19:763-773. [DOI: 10.1038/ncb3554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
|
42
|
Ambrosi C, Manzo M, Baubec T. Dynamics and Context-Dependent Roles of DNA Methylation. J Mol Biol 2017; 429:1459-1475. [PMID: 28214512 DOI: 10.1016/j.jmb.2017.02.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/26/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes.
Collapse
Affiliation(s)
- Christina Ambrosi
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Massimiliano Manzo
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Molecular Life Sciences PhD Program of the Life Sciences Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
43
|
Lo Nigro A, de Jaime-Soguero A, Khoueiry R, Cho DS, Ferlazzo GM, Perini I, Abon Escalona V, Aranguren XL, Chuva de Sousa Lopes SM, Koh KP, Conaldi PG, Hu WS, Zwijsen A, Lluis F, Verfaillie CM. PDGFRα + Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports 2017; 8:318-333. [PMID: 28089671 PMCID: PMC5311469 DOI: 10.1016/j.stemcr.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
In early mouse pre-implantation development, primitive endoderm (PrE) precursors are platelet-derived growth factor receptor alpha (PDGFRα) positive. Here, we demonstrated that cultured mouse embryonic stem cells (mESCs) express PDGFRα heterogeneously, fluctuating between a PDGFRα+ (PrE-primed) and a platelet endothelial cell adhesion molecule 1 (PECAM1)-positive state (epiblast-primed). The two surface markers can be co-detected on a third subpopulation, expressing epiblast and PrE determinants (double-positive). In vitro, these subpopulations differ in their self-renewal and differentiation capability, transcriptional and epigenetic states. In vivo, double-positive cells contributed to epiblast and PrE, while PrE-primed cells exclusively contributed to PrE derivatives. The transcriptome of PDGFRα+ subpopulations differs from previously described subpopulations and shows similarities with early/mid blastocyst cells. The heterogeneity did not depend on PDGFRα but on leukemia inhibitory factor and fibroblast growth factor signaling and DNA methylation. Thus, PDGFRα+ cells represent the in vitro counterpart of in vivo PrE precursors, and their selection from cultured mESCs yields pure PrE precursors. Three subpopulations can be purified from mESC cultures by using PECAM1 and PDGFRα Expression of PDGFRα is associated with a molecular and epigenetic PrE signature PDGFRα+ cells are committed toward PrE derivatives in vitro and in vivo
Collapse
Affiliation(s)
- Antonio Lo Nigro
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium; Ri.Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via Tricomi 5, 90127 Palermo, Italy.
| | - Anchel de Jaime-Soguero
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Dong Seong Cho
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA
| | - Giorgia Maria Ferlazzo
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Ilaria Perini
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Vanesa Abon Escalona
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Xabier Lopez Aranguren
- Cell Therapy Program, Foundation for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Pier Giulio Conaldi
- Ri.Med Foundation, Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via Tricomi 5, 90127 Palermo, Italy
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, MN 55455, USA
| | - An Zwijsen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, 3000 Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Herestraat 49, Onderwijs en Navorsing 4, Box 804, 3000 Leuven, Belgium
| |
Collapse
|
44
|
Schwämmle V, Sidoli S, Ruminowicz C, Wu X, Lee CF, Helin K, Jensen ON. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Mol Cell Proteomics 2016; 15:2715-29. [PMID: 27302890 DOI: 10.1074/mcp.m115.054460] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Histones are abundant chromatin constituents carrying numerous post-translational modifications (PTMs). Such PTMs mediate a variety of biological functions, including recruitment of enzymatic readers, writers and erasers that modulate DNA replication, transcription and repair. Individual histone molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embryonic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12(-/-)), PRC1 (Ring1A/B(-/-)) and (Dnmt1/3a/3b(-/-)) we performed comprehensive PTM analysis of histone H3 tails (50 aa) by utilizing quantitative middle-down proteome analysis by tandem mass spectrometry. We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37me. Integration of the H3 data with RNAseq data by coabundance clustering analysis of histone PTMs and histone modifying enzymes revealed correlations between PTM and enzyme levels. We conclude that middle-down proteomics is a powerful tool to determine conserved or dynamic interdependencies between histone marks, which paves the way for detailed investigations of the histone code. Histone H3 PTM data is publicly available in the CrossTalkDB repository at http://crosstalkdb.bmb.sdu.dk.
Collapse
Affiliation(s)
- Veit Schwämmle
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Simone Sidoli
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Chrystian Ruminowicz
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Xudong Wu
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Chung-Fan Lee
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kristian Helin
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark; ¶The Danish Stem Cell Centre (Danstem), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ole N Jensen
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
45
|
He Q, Kim H, Huang R, Lu W, Tang M, Shi F, Yang D, Zhang X, Huang J, Liu D, Songyang Z. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell 2016; 17:273-86. [PMID: 26340527 DOI: 10.1016/j.stem.2015.07.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/14/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.
Collapse
Affiliation(s)
- Quanyuan He
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengtao Shi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dong Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
46
|
Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell 2016; 36:152-63. [PMID: 26812015 PMCID: PMC4729543 DOI: 10.1016/j.devcel.2015.12.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. Oocyte-derived DNA methylation is an important regulator of trophoblast transcription DNA methylation controls trophoblast cell adhesion Silencing of Polycomb gene Scml2 is necessary for normal trophoblast development
Collapse
Affiliation(s)
- Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK.
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Vicente Perez-Garcia
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Caley
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Elena Fineberg
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Louis Lefebvre
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Simon J Cook
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
47
|
Prudhomme J, Morey C. Epigenesis and plasticity of mouse trophoblast stem cells. Cell Mol Life Sci 2016; 73:757-74. [PMID: 26542801 PMCID: PMC11108370 DOI: 10.1007/s00018-015-2086-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022]
Abstract
The critical role of the placenta in supporting a healthy pregnancy is mostly ensured by the extraembryonic trophoblast lineage that acts as the interface between the maternal and the foetal compartments. The diverse trophoblast cell subtypes that form the placenta originate from a single layer of stem cells that emerge from the embryo when the earliest cell fate decisions are occurring. Recent studies show that these trophoblast stem cells exhibit extensive plasticity as they are capable of differentiating down multiple pathways and are easily converted into embryonic stem cells in vitro. In this review, we discuss current knowledge of the mechanisms and control of the epigenesis of mouse trophoblast stem cells through a comparison with the corresponding mechanisms in pluripotent embryonic stem cells. To illustrate some of the more striking manifestations of the epigenetic plasticity of mouse trophoblast stem cells, we discuss them within the context of two paradigms of epigenetic regulation of gene expression: the imprinted gene expression of specific loci and the process of X-chromosome inactivation.
Collapse
Affiliation(s)
- Julie Prudhomme
- Laboratoire de Génétique Moléculaire Murine, Institut Pasteur, 75015, Paris, France
| | - Céline Morey
- CNRS, UMR7216 Epigenetics and Cell Fate, 75013, Paris, France.
| |
Collapse
|
48
|
Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh Migr 2016; 10:126-35. [PMID: 26745760 PMCID: PMC4853046 DOI: 10.1080/19336918.2015.1098800] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies.
Collapse
Affiliation(s)
- Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chandni Jain
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
49
|
Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction 2015; 150:R109-20. [PMID: 26031750 DOI: 10.1530/rep-15-0180] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular, we highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation.
Collapse
Affiliation(s)
- Chelsea Marcho
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Wei Cui
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal ScienceUniversity of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts 01003, USA
| |
Collapse
|
50
|
Varmuza S, Miri K. What does genetics tell us about imprinting and the placenta connection? Cell Mol Life Sci 2015; 72:51-72. [PMID: 25194419 PMCID: PMC11114082 DOI: 10.1007/s00018-014-1714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 01/07/2023]
Abstract
Genomic imprinting is an epigenetic gene silencing phenomenon that is specific to eutherians in the vertebrate lineage. The acquisition of both placentation and genomic imprinting has spurred interest in the possible evolutionary link for many years. In this review we examine the genetic evidence and find that while many imprinted domains are anchored by genes required for proper placenta development in a parent of origin fashion, an equal number of imprinted genes have no apparent function that depends on imprinting. Examination of recent data from studies of molecular and genetic mechanisms points to a maternal control of the selection and maintenance of imprint marks, reinforcing the importance of the oocyte in the healthy development of the placenta and fetus.
Collapse
Affiliation(s)
- Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, 611-25 Harbord Street, Toronto, M5S 3G5, Canada,
| | | |
Collapse
|