1
|
Glazer I, Simões N, Eleftherianos I, Ramakrishnan J, Ment D, Toubarro D, Mallick S. Entomopathogenic nematodes: Survival, virulence and immunity. J Invertebr Pathol 2025; 212:108363. [PMID: 40412605 DOI: 10.1016/j.jip.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
As entomopathogenic nematodes (EPNs) are used as biological control agents, their survival and persistence are crucial to ensure success in application against insect pests. The survival of Heterorhabditis and Steinernema species is dependent on abiotic and biotic factors in the environment. Abiotic stress environments such as desiccation, temperature, and ultraviolet radiation (UV) severely impact their performance on field. EPNs produce and secrete effector molecules during the early stages of infection to interfere with the molecular mechanisms that control the insect innate immune function. Also, EPN effectors facilitate the subsequent release and spread of their symbiotic bacteria within the host. Hence, a comprehensive understanding of the underlying survival and virulence mechanisms enabling protection against environmental conditions and insect host immune responses is imperative to realistically enhance their performance on field. Thus, identifying key players regulating EPN survival, virulence and immunity could invariably contribute towards developing more robust, reliable solutions and application strategies including genetic tools and formulation technologies.
Collapse
Affiliation(s)
- Itamar Glazer
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Nelson Simões
- Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, University of the Azores, Açores 9500-321 Ponta Delgada, Portugal
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, United States.
| | - Jayashree Ramakrishnan
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel; The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Duarte Toubarro
- Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, University of the Azores, Açores 9500-321 Ponta Delgada, Portugal
| | - Sreeradha Mallick
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Marks RA, Ekwealor JTB, Artur MAS, Bondi L, Boothby TC, Carmo OMS, Centeno DC, Coe KK, Dace HJW, Field S, Hutt A, Porembski S, Thalhammer A, van der Pas L, Wood AJ, Alpert P, Bartels D, Boeynaems S, Datar MN, Giese T, Seidou WI, Kirchner SM, Köhler J, Kumara UGVSS, Kyung J, Lyall R, Mishler BD, Ndongmo JBVT, Otegui MS, Reddy V, Rexroth J, Tebele SM, VanBuren R, Verdier J, Vothknecht UC, Wittenberg MF, Zokov E, Oliver MJ, Rhee SY. Life on the dry side: a roadmap to understanding desiccation tolerance and accelerating translational applications. Nat Commun 2025; 16:3284. [PMID: 40189591 PMCID: PMC11973199 DOI: 10.1038/s41467-025-58656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
To thrive in extreme conditions, organisms have evolved a diverse arsenal of adaptations that confer resilience. These species, their traits, and the mechanisms underlying them comprise a valuable resource that can be mined for numerous conceptual insights and applied objectives. One of the most dramatic adaptations to water limitation is desiccation tolerance. Understanding the mechanisms underlying desiccation tolerance has important potential implications for medicine, biotechnology, agriculture, and conservation. However, progress has been hindered by a lack of standardization across sub-disciplines, complicating the integration of data and slowing the translation of basic discoveries into practical applications. Here, we synthesize current knowledge on desiccation tolerance across evolutionary, ecological, physiological, and cellular scales to provide a roadmap for advancing desiccation tolerance research. We also address critical gaps and technical roadblocks, highlighting the need for standardized experimental practices, improved taxonomic sampling, and the development of new tools for studying biology in a dry state. We hope that this perspective can serve as a roadmap to accelerating research breakthroughs and unlocking the potential of desiccation tolerance to address global challenges related to climate change, food security, and health.
Collapse
Affiliation(s)
- R A Marks
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, University of Illinois, Urbana, IL, USA.
| | - J T B Ekwealor
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - M A S Artur
- Laboratory of Plant Physiology, Wageningen Seed Science Centre, Wageningen University, Wageningen, The Netherlands
| | - L Bondi
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - T C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - O M S Carmo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - D C Centeno
- Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - K K Coe
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - H J W Dace
- Delft University of Technology, Delft, The Netherlands
| | - S Field
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - A Hutt
- University of Texas at Austin, Austin, TX, USA
| | - S Porembski
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - A Thalhammer
- Department of Physical Biochemistry, University of Potsdam, Potsdam, Germany
| | - L van der Pas
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - A J Wood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, USA
| | - P Alpert
- University of Massachusetts-Amherst, Amherst, MA, USA
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - D Bartels
- IMBIO, University of Bonn, Bonn, Germany
| | - S Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - M N Datar
- Agharkar Research Institute, Pune, India
| | - T Giese
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - W I Seidou
- WASCAL, Universite Felix Houphouet-Boigny, Abidjan, Côte d'Ivoire
| | - S M Kirchner
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - J Köhler
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - U G V S S Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - J Kyung
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - R Lyall
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - B D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - J B V T Ndongmo
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - M S Otegui
- University of Wisconsin-Madison, Madison, WI, USA
| | - V Reddy
- Botanic Gardens, Tissue Culture Laboratory, Parks Recreation and Culture Unit, eThekwini Municipality, Durban, South Africa
| | - J Rexroth
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - S M Tebele
- Forest Ecology and Management Department, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - J Verdier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - U C Vothknecht
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - M F Wittenberg
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - E Zokov
- Department of Botany, University of Rostock, Institute of Biosciences, Rostock, Germany
| | - M J Oliver
- Division of Plant Sciences and Technology, University of Missouri, Interdisciplinary Plant Group, Columbia, MO, USA.
| | - S Y Rhee
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Kotowska AM, Hiramatsu F, Alexander MR, Scurr DJ, Lightfoot JW, Chauhan VM. Surface Lipids in Nematodes are Influenced by Development and Species-specific Adaptations. J Am Chem Soc 2025; 147:6439-6449. [PMID: 39936408 PMCID: PMC11869268 DOI: 10.1021/jacs.4c12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
The surface of an organism is a dynamic interface that continually adapts to its environment. In nematodes, the cuticle forms a complex boundary that protects against the physicochemical pressures. However, the precise molecular composition and function of this surface remain largely unexplored. By utilizing 3D-OrbiSIMS, an advanced surface-sensitive mass spectrometry method, we directly characterized the molecular composition of the outermost regions (∼50 nm) of Caenorhabditis elegans and Pristionchus pacificus to improve the understanding of species-specific surface lipid composition and its potential roles in nematode biology. We found that nematode surfaces consist of a lipid-dominated landscape (>81% C. elegans and >69% P. pacificus of all surveyed chemistries) with distinct compositions, which enrich in granularity and complexity through development. The surface lipids are also species-specific, potentially highlighting distinct molecular compositions that are derived from diverging evolutionary paths. By exploring the effect of mutations on lipid production, we found the peroxisomal fatty acid β-oxidation component daf-22 is essential for defining the surface molecular fingerprint. This pathway is conserved across species in producing distinct chemical profiles, indicating its fundamental role in lipid metabolism and maintaining the surface integrity and function. Furthermore, we discovered that variations in surface lipids of C. elegans daf-22 larvae contribute to significantly increased susceptibility to predation by P. pacificus. Therefore, our findings reveal that nematode surface lipids are developmentally dependent, species-specific, and fundamental in interspecies interactions. These insights pave the way for further exploration into the physiological and behavioral significance of surface lipids.
Collapse
Affiliation(s)
- Anna M. Kotowska
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - Fumie Hiramatsu
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Morgan R. Alexander
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - David J. Scurr
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - James W. Lightfoot
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Veeren M. Chauhan
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| |
Collapse
|
4
|
Wen Z, Amu J, Aimulajiang K, Feng J, Chen C, Xu Y, Lu M, Xu L, Song X, Li X, Yan R. Enzymes involved in trehalose-chitin synthesis in Haemonchus contortus could be vaccine candidates for goats. Parasit Vectors 2025; 18:61. [PMID: 39980073 PMCID: PMC11841196 DOI: 10.1186/s13071-025-06703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Trehalose-6-phosphate synthase (HcTPS) and trehalose-6-phosphate phosphatase (HcGOB) are key enzymes for trehalose synthesis in Haemonchus contortus. In addition, previous studies have also demonstrated that HcTPS and HcGOB can regulate the function of host immune cells in vitro, and are important immunosuppressive molecules. Therefore, this study evaluated the potential of HcTPS and HcGOB as vaccine candidates through in vitro and in vivo experiments. METHODS To evaluate the inhibitory effects of polyclonal antibodies on egg hatching and larval development, anti-rHcTPS and anti-rHcGOB antibodies were incubated separately with eggs and first-stage larvae (L1s) under controlled in vitro conditions. For immunization studies, recombinant proteins (rHcTPS and rHcGOB) were formulated with Quil-A adjuvant, and administered to goats through subcutaneous injection. Vaccine efficacy against Haemonchus contortus infection was determined through comprehensive analysis of multiple parasitological parameters, including: (1) egg abnormality rate, (2) hatching success rate, (3) reduction egg output rates, and (4) reduction in adult worm burden. RESULTS The results of in vitro experiments showed that polyclonal antibodies against HcTPS and HcGOB had no effect on the hatching rate of eggs, but significantly affected the development from L1s to infectious third stage larvae (L3s). After immunization with recombinant HcTPS protein (rHcTPS) and recombinant HcGOB protein (rHcGOB), high levels of antigen-specific immunoglobulin G (IgG) were produced in goats, and remained till the end of the experiment. Compared with the Quil-A adjuvant control group, the number of deformed eggs in the rHcTPS protein- immunized group and the rHcGOB protein- immunized group were significantly increased. In the rHcTPS protein-immunized group and the rHcGOB protein-immunized group, the deformity rate of eggs was 9.59% and 17.30%, respectively, and the hatching rate of eggs was reduced by 11.27% and 13.71%, respectively. Moreover, compared with the Quil-A adjuvant control group, the number of eggs and adults in the HcTPS protein- immunized group decreased by 64.47% and 60.93%, respectively, and the number of eggs and adults in the rHcGOB protein- immunized group decreased by 63.97% and 69.54%, respectively. Furthermore, compared with the control group (Quil-A adjuvant), the trehalose content in the rHcTPS protein- immunized group and the rHcGOB protein- immunized group was also significantly reduced. CONCLUSIONS These findings indicate that rHcTPS and rHcGOB exhibit superior immune protective effects, rendering them promising candidates for vaccine development.
Collapse
Affiliation(s)
- Zhaohai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Jilata Amu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yongde Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Saigo T, Satoh K, Kunieda T. Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Zoolog Sci 2025; 42. [PMID: 39932749 DOI: 10.2108/zs240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025]
Abstract
Tardigrades are small metazoans renowned for their exceptional tolerance against various harsh environments in a dehydrated state. Some species exhibited an extraordinary tolerance against high-dose irradiation even in a hydrated state. Given that natural sources of high radiation are rare, the selective pressure to obtain such a high radiotolerance during evolution remains elusive. It has been postulated that high radiation tolerances could be derived from adaptation to dehydration, because both dehydration and radiation cause similar damage on biomolecules at least partly, e.g., DNA cleavage and oxidation of various biomolecules, and dehydration is a common environmental stress that terrestrial organisms should adapt to. Although tardigrades are known for high radiotolerance, the radiotolerance records have been reported only for desiccation-tolerant tardigrade species and nothing was known about the radiotolerance in desiccation-sensitive tardigrade species. Hence, the relationship between desiccation-tolerance and radiotolerance remained unexplored. To this end, we examined the radiotolerance of the desiccation-sensitive tardigrade Grevenius myrops (formerly known as Isohypsibius myrops) in comparison to the well-characterized desiccation-tolerant tardigrade, Ramazzottius varieornatus. The median lethal dose (LD50) of G. myrops was approximately 2240 Gy. This was much lower than those reported for desiccation tolerant eutardigrades. The effects of irradiation on the lifespan and the ovipositions were more severe in G. myrops compared to those in R. varieornatus. The present study provides precise records on the radiotolerance of a desiccation-sensitive tardigrade and the current data supported the correlation between desiccation tolerance and radiotolerance at least in eutardigrades.
Collapse
Affiliation(s)
- Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
| | - Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
6
|
Nicholson V, Nguyen K, Gollub E, McCoy M, Yu F, Holehouse AS, Sukenik S, Boothby TC. LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation. Protein Sci 2025; 34:e70028. [PMID: 39840786 PMCID: PMC11751883 DOI: 10.1002/pro.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase (CS), from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of CS during desiccation but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy. This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Kenny Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Mary McCoy
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
7
|
Nicholson V, Meese E, Boothby TC. Osmolyte-IDP interactions during desiccation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:39-61. [PMID: 39947753 DOI: 10.1016/bs.pmbts.2024.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Desiccation, the extreme loss of water, poses a significant challenge to living organisms. Desiccation-tolerant organisms combat this in part by accumulating desiccation tolerance intrinsically disordered proteins (DT-IDPs) and osmolytes within their cells. While both osmolytes and DT-IDPs help maintain cellular viability on their own, combinations of the two can work synergistically to provide enhanced protection and survival. This review summarises our understanding of the interactions between DT-IDPs and osmolytes during desiccation, and explores possible molecular mechanisms underlying them. Using recent literature on DT-IDPs and on the broader study of IDP-osmolyte interactions, we propose several hypotheses that explain interactions between DT-IDPs and osmolytes. Finally, we highlight several techniques from literature on DT-IDPs that we feel are useful to the study of IDPs in other contexts.
Collapse
Affiliation(s)
- Vincent Nicholson
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Emma Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
8
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Defense in the Toughest Animals on the Earth: Its Contribution to the Extreme Resistance of Tardigrades. Int J Mol Sci 2024; 25:8393. [PMID: 39125965 PMCID: PMC11313143 DOI: 10.3390/ijms25158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
9
|
Ru G, Liu X, Ge Y, Wang L, Jiang L, Pielak G, Liu M, Li C. Trimethylamine N-oxide (TMAO) doubly locks the hydrophobic core and surfaces of protein against desiccation stress. Protein Sci 2024; 33:e5107. [PMID: 38989549 PMCID: PMC11237552 DOI: 10.1002/pro.5107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry & Biophysics, Lineberger Cancer Center, Integrative Program for Biological and Genome Sciences of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Lu L, Kang Z, Sun S, Li T, Li H. The Life-History Traits of Soil-Dwelling Nematode (Acrobeloides sp.) Exhibit More Resilience to Water Restriction Than Caenorhabditis elegans. Integr Comp Biol 2024; 64:27-37. [PMID: 38070876 DOI: 10.1093/icb/icad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 07/28/2024] Open
Abstract
In the context of climate warming, the intensity and frequency of drought occurrences are progressively increasing. However, current research on the impacts of drought on the life-history traits and physiological activities of animals rarely encompasses soil animals that play crucial roles within soil ecosystems. Therefore, this study focused on a soil nematode species (Acrobeloides sp.) and a model nematode (Caenorhabditis elegans) to investigate whether nematodes adjust the trade-off of their life-history traits to confront arid environments, utilizing a Petri dish experiment. Subsequently, we assessed the resilience of the two nematode species to moisture variations by comparing the extent of changes in various indicators (i.e., life-history traits, physiological traits, and oxidative stress) of nematodes before and after drought and rehydration. The results revealed that both nematode species are capable of adapting to arid environments by altering the trade-off between life-history traits. Specifically, they reduce reproductive investment and body mass while maintaining life span, thus responding to drought conditions. Follow-up rehydration experiments post-drought stress highlighted that the soil-dwelling nematode exhibits a superior recovery capacity in response to moisture fluctuations in comparison to the model nematode. To the best of our knowledge, this is the first investigation into life history of drought adaptation within soil-dwelling nematodes. Moreover, the findings hold significant implications for the exploration of drought adaptation and its mechanisms in soil-dwelling animals.
Collapse
Affiliation(s)
- Leilei Lu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqing Kang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Teng Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Key Laboratory of Biological Interaction and Crop Health, Nanjing 210095, China
| |
Collapse
|
11
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
12
|
Galas S, Le Goff E, Cazevieille C, Tanaka A, Cuq P, Baghdiguian S, Kunieda T, Godefroy N, Richaud M. A comparative ultrastructure study of the tardigrade Ramazzottius varieornatus in the hydrated state, after desiccation and during the process of rehydration. PLoS One 2024; 19:e0302552. [PMID: 38843161 PMCID: PMC11156355 DOI: 10.1371/journal.pone.0302552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/07/2024] [Indexed: 06/09/2024] Open
Abstract
Tardigrades can survive hostile environments such as desiccation by adopting a state of anhydrobiosis. Numerous tardigrade species have been described thus far, and recent genome and transcriptome analyses revealed that several distinct strategies were employed to cope with harsh environments depending on the evolutionary lineages. Detailed analyses at the cellular and subcellular levels are essential to complete these data. In this work, we analyzed a tardigrade species that can withstand rapid dehydration, Ramazzottius varieornatus. Surprisingly, we noted an absence of the anhydrobiotic-specific extracellular structure previously described for the Hypsibius exemplaris species. Both Ramazzottius varieornatus and Hypsibius exemplaris belong to the same evolutionary class of Eutardigrada. Nevertheless, our observations reveal discrepancies in the anhydrobiotic structures correlated with the variation in the anhydrobiotic mechanisms.
Collapse
Affiliation(s)
- Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Emilie Le Goff
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Pierre Cuq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nelly Godefroy
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
13
|
Kondo K, Tanaka A, Kunieda T. Single-step generation of homozygous knockout/knock-in individuals in an extremotolerant parthenogenetic tardigrade using DIPA-CRISPR. PLoS Genet 2024; 20:e1011298. [PMID: 38870088 PMCID: PMC11175437 DOI: 10.1371/journal.pgen.1011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Tardigrades are small aquatic invertebrates known for their remarkable tolerance to diverse extreme stresses. To elucidate the in vivo mechanisms underlying this extraordinary resilience, methods for genetically manipulating tardigrades have long been desired. Despite our prior success in somatic cell gene editing by microinjecting Cas9 ribonucleoproteins (RNPs) into the body cavity of tardigrades, the generation of gene-edited individuals remained elusive. In this study, employing an extremotolerant parthenogenetic tardigrade species, Ramazzottius varieornatus, we established conditions that led to the generation of gene-edited tardigrade individuals. Drawing inspiration from the direct parental CRISPR (DIPA-CRISPR) technique employed in several insects, we simply injected a concentrated Cas9 RNP solution into the body cavity of parental females shortly before their initial oviposition. This approach yielded gene-edited G0 progeny. Notably, only a single allele was predominantly detected at the target locus for each G0 individual, indicative of homozygous mutations. By co-injecting single-stranded oligodeoxynucleotides (ssODNs) with Cas9 RNPs, we achieved the generation of homozygously knocked-in G0 progeny, and these edited alleles were inherited by G1/G2 progeny. This is the first example of heritable gene editing in the entire phylum of Tardigrada. This establishment of a straightforward method for generating homozygous knockout/knock-in individuals not only facilitates in vivo analyses of the molecular mechanisms underpinning extreme tolerance, but also opens up avenues for exploring various topics, including Evo-Devo, in tardigrades.
Collapse
Affiliation(s)
- Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Tsudanuma, Narashino, Chiba, Japan
| | - Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Lapointe MR, Laframboise T, Pirkkanen J, Tai TC, Lees SJ, Santa Maria SR, Tharmalingam S, Boreham DR, Thome C. Protracted Exposure to a Sub-background Radiation Environment Negatively Impacts the Anhydrobiotic Recovery of Desiccated Yeast Sentinels. HEALTH PHYSICS 2024; 126:397-404. [PMID: 38568172 DOI: 10.1097/hp.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.
Collapse
Affiliation(s)
| | | | | | | | - Simon J Lees
- Medical Sciences Division, NOSM University, Sudbury, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Chen Y, Jin B, Yu J, Wu L, Wang Y, Tang B, Chen H. The nematode Caenorhabditis elegans enhances tolerance to landfill leachate stress by increasing trehalose synthesis. PeerJ 2024; 12:e17332. [PMID: 38799059 PMCID: PMC11127639 DOI: 10.7717/peerj.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
The burgeoning issue of landfill leachate, exacerbated by urbanization, necessitates evaluating its biological impact, traditionally overshadowed by physical and chemical assessments. This study harnesses Caenorhabditis elegans, a model organism, to elucidate the physiological toxicity of landfill leachate subjected to different treatment processes: nanofiltration reverse osmosis tail water (NFRO), membrane bioreactor (MBR), and raw leachate (RAW). Our investigation focuses on the modulation of sugar metabolism, particularly trehalose-a disaccharide serving dual functions as an energy source and an anti-adversity molecule in invertebrates. Upon exposure, C. elegans showcased a 60-70% reduction in glucose and glycogen levels alongside a significant trehalose increase, highlighting an adaptive response to environmental stress by augmenting trehalose synthesis. Notably, trehalose-related genes in the NFRO group were up-regulated, contrasting with the MBR and RAW groups, where trehalose synthesis genes outpaced decomposition genes by 20-30 times. These findings suggest that C. elegans predominantly counters landfill leachate-induced stress through trehalose accumulation. This research not only provides insights into the differential impact of leachate treatment methods on C. elegans but also proposes a molecular framework for assessing the environmental repercussions of landfill leachate, contributing to the development of novel strategies for pollution mitigation and environmental preservation.
Collapse
Affiliation(s)
- Yuru Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binsong Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liangwei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingying Wang
- National Wetland Museum of China, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huili Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Sanchez‐Martinez S, Nguyen K, Biswas S, Nicholson V, Romanyuk AV, Ramirez J, Kc S, Akter A, Childs C, Meese EK, Usher ET, Ginell GM, Yu F, Gollub E, Malferrari M, Francia F, Venturoli G, Martin EW, Caporaletti F, Giubertoni G, Woutersen S, Sukenik S, Woolfson DN, Holehouse AS, Boothby TC. Labile assembly of a tardigrade protein induces biostasis. Protein Sci 2024; 33:e4941. [PMID: 38501490 PMCID: PMC10949331 DOI: 10.1002/pro.4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS D's fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.
Collapse
Affiliation(s)
| | - K. Nguyen
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - V. Nicholson
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. V. Romanyuk
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
| | - J. Ramirez
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - S. Kc
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - A. Akter
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - C. Childs
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. K. Meese
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - E. T. Usher
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - G. M. Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - F. Yu
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - E. Gollub
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - M. Malferrari
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaBolognaItaly
| | - F. Francia
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
| | - G. Venturoli
- Laboratorio di Biochimica e Biofisica Molecolare, Dipartimento di Farmacia e Biotecnologie, FaBiTUniversità di BolognaBolognaItaly
- Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), c/o Dipartimento di Fisica e Astronomia (DIFA)Università di BolognaBolognaItaly
| | - E. W. Martin
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - F. Caporaletti
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. Giubertoni
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Sukenik
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
- Department of Chemistry and BiochemistryUniversity of California MercedMercedCaliforniaUSA
| | - D. N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- Max Planck‐Bristol Centre for Minimal BiologyUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Biomedical Sciences BuildingBristolUK
| | - A. S. Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - T. C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
17
|
Kang D, Yang MJ, Kim H, Park C. Protective roles of highly conserved motif 1 in tardigrade cytosolic-abundant heat soluble protein in extreme environments. Protein Sci 2024; 33:e4913. [PMID: 38358259 PMCID: PMC10868442 DOI: 10.1002/pro.4913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Tardigrades are remarkable microscopic animals that survive harsh conditions such as desiccation and extreme temperatures. Tardigrade-specific intrinsically disordered proteins (TDPs) play an essential role in the survival of tardigrades in extreme environments. Cytosolic-abundant heat soluble (CAHS) protein, a key TDP, is known to increase desiccation tolerance and to protect the activity of several enzymes under dehydrated conditions. However, the function and properties of each CAHS domain have not yet been elucidated in detail. Here, we aimed to elucidate the protective role of highly conserved motif 1 of CAHS in extreme environmental conditions. To examine CAHS domains, three protein constructs, CAHS Full (1-229), CAHS ∆Core (1-120_184-229), and CAHS Core (121-183), were engineered. The highly conserved CAHS motif 1 (124-142) in the CAHS Core formed an amphiphilic α helix, reducing the aggregate formation and protecting lactate dehydrogenase activity during dehydration-rehydration and freeze-thaw treatments, indicating that CAHS motif 1 in the CAHS Core was essential for maintaining protein solubility and stability. Aggregation assays and confocal microscopy revealed that the intrinsically disordered N- and C-terminal domains were more prone to aggregation under our experimental conditions. By explicating the functions of each domain in CAHS, our study proposes the possibility of using engineered proteins or peptides derived from CAHS as a potential candidate for biological applications in extreme environmental stress responses.
Collapse
Affiliation(s)
- Donguk Kang
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Min June Yang
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hwan Kim
- GIST Advanced Institute of Instrumental Analysis (GAIA), Bio Imaging LaboratoryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chin‐Ju Park
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| |
Collapse
|
18
|
Indong RA, Park JM, Hong JK, Lyou ES, Han T, Hong JK, Lee TK, Lee JI. A simple protocol for cultivating the bacterivorous soil nematode Caenorhabditis elegans in its natural ecology in the laboratory. Front Microbiol 2024; 15:1347797. [PMID: 38476935 PMCID: PMC10929012 DOI: 10.3389/fmicb.2024.1347797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
The complex interplay between an animal and its surrounding environment requires constant attentive observation in natural settings. Moreover, how ecological interactions are affected by an animal's genes is difficult to ascertain outside the laboratory. Genetic studies with the bacterivorous nematode Caenorhabditis elegans have elucidated numerous relationships between genes and functions, such as physiology, behaviors, and lifespan. However, these studies use standard laboratory culture that does not reflect C. elegans true ecology. C. elegans is found growing in nature and reproduced in large numbers in soils enriched with rotting fruit or vegetation, a source of abundant and diverse microbes that nourish the thriving populations of nematodes. We developed a simple mesocosm we call soil-fruit-natural-habitat that simulates the natural ecology of C. elegans in the laboratory. Apples were placed on autoclaved potted soils, and after a soil microbial solution was added, the mesocosm was subjected to day-night, temperature, and humidity cycling inside a growth chamber. After a period of apple-rotting, C elegans were added, and the growing worm population was observed. We determined optimal conditions for the growth of C. elegans and then performed an ecological succession experiment observing worm populations every few days. Our data showed that the mesocosm allows abundant growth and reproduction of C. elegans that resembles populations of the nematode found in rotting fruit in nature. Overall, our study presents a simple protocol that allows the cultivation of C. elegans in a natural habitat in the laboratory for a broad group of scientists to study various aspects of animal and microbial ecology.
Collapse
Affiliation(s)
- Rocel Amor Indong
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jong Min Park
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jin-Kyung Hong
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Taeman Han
- Korea National Park Research Insitute, Korea National Park Service, Wonju, Republic of Korea
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University Mirae Campus, Wonju, Republic of Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, Yonsei University Mirae Campus, Wonju, Republic of Korea
| |
Collapse
|
19
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
20
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
21
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BBA ADVANCES 2024; 5:100115. [PMID: 38318251 PMCID: PMC10840120 DOI: 10.1016/j.bbadva.2024.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis. Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. Protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Next, we examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. The dried desiccation tolerant life stage of all organisms had an increased glass transition temperature and reduced glass former fragility relative to its dried desiccation intolerant life stage. These results suggest in nature organismal desiccation tolerance relies on a combination of various material properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain. Statement of significance For the past three decades the anhydrobiosis field has lived with a paradox, while vitrification is necessary for survival in the dry state, it is not sufficient. Understanding what property(s) distinguishes a desiccation tolerant from an intolerant vitrified system and how anhydrobiotic organisms survive drying is one of the enduring mysteries of organismal physiology. Here we show in vitro the enzyme-protective capacity of different vitrifying sugars can be correlated with distinct material properties. However, in vivo, diverse desiccation tolerant organisms appear to combine these material properties to promote their survival in a dry state.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
22
|
Smythers AL, Joseph KM, O'Dell HM, Clark TA, Crislip JR, Flinn BB, Daughtridge MH, Stair ER, Mubarek SN, Lewis HC, Salas AA, Hnilica ME, Kolling DRJ, Hicks LM. Chemobiosis reveals tardigrade tun formation is dependent on reversible cysteine oxidation. PLoS One 2024; 19:e0295062. [PMID: 38232097 DOI: 10.1371/journal.pone.0295062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Tardigrades, commonly known as 'waterbears', are eight-legged microscopic invertebrates renowned for their ability to withstand extreme stressors, including high osmotic pressure, freezing temperatures, and complete desiccation. Limb retraction and substantial decreases to their internal water stores results in the tun state, greatly increasing their ability to survive. Emergence from the tun state and/or activity regain follows stress removal, where resumption of life cycle occurs as if stasis never occurred. However, the mechanism(s) through which tardigrades initiate tun formation is yet to be uncovered. Herein, we use chemobiosis to demonstrate that tardigrade tun formation is mediated by reactive oxygen species (ROS). We further reveal that tuns are dependent on reversible cysteine oxidation, and that this reversible cysteine oxidation is facilitated by the release of intracellular reactive oxygen species (ROS). We provide the first empirical evidence of chemobiosis and map the initiation and survival of tardigrades via osmobiosis, chemobiosis, and cryobiosis. In vivo electron paramagnetic spectrometry suggests an intracellular release of reactive oxygen species following stress induction; when this release is quenched through the application of exogenous antioxidants, the tardigrades can no longer survive osmotic stress. Together, this work suggests a conserved dependence of reversible cysteine oxidation across distinct tardigrade cryptobioses.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Kara M Joseph
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Hayden M O'Dell
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Trace A Clark
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Jessica R Crislip
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Brendin B Flinn
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Meredith H Daughtridge
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Saher N Mubarek
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hailey C Lewis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Abel A Salas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Megan E Hnilica
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Derrick R J Kolling
- Department of Chemistry, Marshall University, Huntington, WV, United States of America
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
23
|
Fuse H, Kikawada T, Cornette R. Effective methods for immobilization of non-adherent Pv11 cells while maintaining their desiccation tolerance. Cytotechnology 2023; 75:491-503. [PMID: 37841960 PMCID: PMC10575823 DOI: 10.1007/s10616-023-00592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Pv11 was derived from embryos of the sleeping chironomid Polypedilum vanderplanki, which displays an extreme form of desiccation tolerance known as anhydrobiosis. Pre-treatment with a high concentration of trehalose allows Pv11 cells to enter anhydrobiosis. In the dry state, Pv11 cells preserve transgenic luciferase while retaining its activity. Thus, these cells could be utilized for dry-preserving antibodies, enzymes, signaling proteins or other valuable biological materials without denaturation. However, Pv11 cells grow in suspension, which limits their applicability; for instance, they cannot be integrated into microfluidic devices or used in devices such as sensor chips. Therefore, in this paper, we developed an effective immobilization system for Pv11 cells that, crucially, allows them to maintain their anhydrobiotic potential even when immobilized. Pv11 cells exhibited a very high adhesion rate with both biocompatible anchor for membrane (BAM) and Cell-Tak coatings, which have been reported to be effective on other cultured cells. We also found that Pv11 cells immobilized well to uncoated glass if handled in serum-free medium. Interestingly, Pv11 cells showed desiccation tolerance when trehalose treatment was done prior to immobilization of the cells. In contrast, trehalose treatment after immobilization of Pv11 cells resulted in a significant decrease in desiccation tolerance. Thus, it is important to induce anhydrobiosis before immobilization. In summary, we report the successful development of a protocol for the dry preservation of immobilized Pv11 cells. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00592-0.
Collapse
Affiliation(s)
- Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| |
Collapse
|
24
|
Morita R, Okano S, Furukawa A, Ishii K, Teramoto C, Minami Y. Analysis of the trehalose synthesis pathway of Physarum polycehalum. Biochem Biophys Res Commun 2023; 682:299-307. [PMID: 37832387 DOI: 10.1016/j.bbrc.2023.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Desiccation is a severe survival problem for organisms. We have been studying the desiccation tolerance mechanisms in the true slime mold Physarum polycephalum. We measured the trehalose content of P. polycephalum vegetative cells (plasmodia) and drought cells (sclerotia). Surprisingly, we found that the content in sclerotia was about 473-fold greater than in the plasmodia. We then examined trehalose metabolism-related genes via RNAseq, and consequently found that trehalose 6-phosphate phosphorylase (T6pp) expression levels increased following desiccation. Next, we cloned and expressed the genes for T6pp, trehalose 6-phosphate synthase/phosphatase (Tps/Tpp), maltooligosyltrehalose trehalohydrolase (TreZ), and maltooligosyltrehalose synthase (TreY) in E. coli. Incidentally, TreY and TreZ clones have been reported in several prokaryotes, but not in eukaryotes. This report in P. polycephalum is the first evidence of their presence in a eukaryote species. Recombinant T6pp, TreY, and TreZ were purified and confirmed to be active. Our results showed that these enzymes catalyze reactions related to trehalose production, and their reaction kinetics follow the Michaelis-Menten equation. The t6pp mRNA levels of the sclerotia were about 15-fold higher than in the plasmodia. In contrast, the expression levels of TreZ and TreY showed no significant change between the sclerotia and plasmodia. Thus, T6pp is probably related to desiccation tolerance, whereas the contribution of TreY and TreZ is insufficient to account for the considerable accumulation of trehalose in sclerotia.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Shohei Okano
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Atsushi Furukawa
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Kazuo Ishii
- Department of Applied Information Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino-shi, Nagano, 391-0292, Japan
| | - Chise Teramoto
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yoshiko Minami
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| |
Collapse
|
25
|
Ramirez JF, Kumara U, Arulsamy N, Boothby TC. Water content, transition temperature and fragility influence protection and anhydrobiotic capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547256. [PMID: 38014150 PMCID: PMC10680572 DOI: 10.1101/2023.06.30.547256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis (Greek for "life without water"). Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and varying amounts of glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. We find that protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Extending on this, we have examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. In all cases, the dried desiccation tolerant life stage of an organism had an increased glass transition temperature relative to its dried desiccation intolerant life stage, and this trend is also seen in all three organisms when considering reduced glass former fragility. These results suggest that while drying of different protective sugars in vitro results in vitrified systems with distinct material properties that correlate with their enzyme-protective capacity, in nature organismal desiccation tolerance relies on a combination of these properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain.
Collapse
Affiliation(s)
- John F. Ramirez
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| | - U.G.V.S.S. Kumara
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| | | | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming. Laramie, WY 82071
| |
Collapse
|
26
|
Prasad A, Sreedharan S, Bakthavachalu B, Laxman S. Eggs of the mosquito Aedes aegypti survive desiccation by rewiring their polyamine and lipid metabolism. PLoS Biol 2023; 21:e3002342. [PMID: 37874799 PMCID: PMC10597479 DOI: 10.1371/journal.pbio.3002342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Upon water loss, some organisms pause their life cycles and escape death. While widespread in microbes, this is less common in animals. Aedes mosquitoes are vectors for viral diseases. Aedes eggs can survive dry environments, but molecular and cellular principles enabling egg survival through desiccation remain unknown. In this report, we find that Aedes aegypti eggs, in contrast to Anopheles stephensi, survive desiccation by acquiring desiccation tolerance at a late developmental stage. We uncover unique proteome and metabolic state changes in Aedes embryos during desiccation that reflect reduced central carbon metabolism, rewiring towards polyamine production, and enhanced lipid utilisation for energy and polyamine synthesis. Using inhibitors targeting these processes in blood-fed mosquitoes that lay eggs, we infer a two-step process of desiccation tolerance in Aedes eggs. The metabolic rewiring towards lipid breakdown and dependent polyamine accumulation confers resistance to desiccation. Furthermore, rapid lipid breakdown is required to fuel energetic requirements upon water reentry to enable larval hatching and survival upon rehydration. This study is fundamental to understanding Aedes embryo survival and in controlling the spread of these mosquitoes.
Collapse
Affiliation(s)
- Anjana Prasad
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| | - Sreesa Sreedharan
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society (TIGS) Centre at inStem, Bangalore, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), Bangalore, India
| |
Collapse
|
27
|
Shatilovich A, Gade VR, Pippel M, Hoffmeyer TT, Tchesunov AV, Stevens L, Winkler S, Hughes GM, Traikov S, Hiller M, Rivkina E, Schiffer PH, Myers EW, Kurzchalia TV. A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. PLoS Genet 2023; 19:e1010798. [PMID: 37498820 PMCID: PMC10374039 DOI: 10.1371/journal.pgen.1010798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/29/2023] Open
Abstract
Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.
Collapse
Affiliation(s)
- Anastasia Shatilovich
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
- Zoological Institute RAS, St. Petersburg, Russia
| | - Vamshidhar R. Gade
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | | | - Alexei V. Tchesunov
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sylke Winkler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sofia Traikov
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Center for Systems Biology, Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Society for Nature Research & Goethe University, Frankfurt am Main, Germany
| | - Elizaveta Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
| | | | | | | |
Collapse
|
28
|
Sanchez-Martinez S, Ramirez JF, Meese EK, Childs CA, Boothby TC. The tardigrade protein CAHS D interacts with, but does not retain, water in hydrated and desiccated systems. Sci Rep 2023; 13:10449. [PMID: 37369754 DOI: 10.1038/s41598-023-37485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Tardigrades are a group of microscopic animals renowned for their ability to survive near complete desiccation. A family of proteins, unique to tardigrades, called Cytoplasmic Abundant Heat Soluble (CAHS) proteins are necessary to mediate robust desiccation tolerance in these animals. However, the mechanism(s) by which CAHS proteins help to protect tardigrades during water-loss have not been fully elucidated. Here we use thermogravimetric analysis to empirically test the proposed hypothesis that tardigrade CAHS proteins, due to their propensity to form hydrogels, help to retain water during desiccation. We find that regardless of its gelled state, both in vitro and in vivo, a model CAHS protein (CAHS D) retains no more water than common proteins and control cells in the dry state. However, we find that while CAHS D proteins do not increase the total amount of water retained in a dry system, they interact with the small amount of water that does remain. Our study indicates that desiccation tolerance mediated by CAHS D cannot be simply ascribed to water retention and instead implicates its ability to interact more tightly with residual water as a possible mechanism underlying its protective capacity. These results advance our fundamental understanding of tardigrade desiccation tolerance which could provide potential avenues for new technologies to aid in the storage of dry shelf-stable pharmaceuticals and the generation of stress tolerant crops to ensure food security in the face of global climate change.
Collapse
Affiliation(s)
| | - John F Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Emma K Meese
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Charles A Childs
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
29
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
30
|
Perez R, Aron S. Protective role of trehalose in the Namib desert ant, Ocymyrmex robustior. J Exp Biol 2023; 226:286983. [PMID: 36695637 DOI: 10.1242/jeb.245149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.
Collapse
Affiliation(s)
- Rémy Perez
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
31
|
Laurent A, Scaletta C, Abdel-Sayed P, Raffoul W, Hirt-Burri N, Applegate LA. Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms. BIOTECH 2023; 12:biotech12010015. [PMID: 36810442 PMCID: PMC9944097 DOI: 10.3390/biotech12010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Applied Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
32
|
Chen A, Tapia H, Goddard JM, Gibney PA. Trehalose and its applications in the food industry. Compr Rev Food Sci Food Saf 2022; 21:5004-5037. [PMID: 36201393 DOI: 10.1111/1541-4337.13048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Trehalose is a nonreducing disaccharide composed of two glucose molecules linked by α, α-1,1-glycosidic bond. It is present in a wide variety of organisms, including bacteria, fungi, insects, plants, and invertebrate animals. Trehalose has distinct physical and chemical properties that have been investigated for their biological importance in a range of prokaryotic and eukaryotic species. Emerging research on trehalose has identified untapped opportunities for its application in the food, medical, pharmaceutical, and cosmetics industries. This review summarizes the chemical and biological properties of trehalose, its occurrence and metabolism in living organisms, its protective role in molecule stabilization, and natural and commercial production methods. Utilization of trehalose in the food industry, in particular how it stabilizes protein, fat, carbohydrate, and volatile compounds, is also discussed in depth. Challenges and opportunities of its application in specific applications (e.g., diagnostics, bioprocessing, ingredient technology) are described. We conclude with a discussion on the potential of leveraging the unique molecular properties of trehalose in molecular stabilization for improving the safety, quality, and sustainability of our food systems.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Hugo Tapia
- Biology Program, California State University - Channel Islands, Camarillo, California, USA
| | - Julie M Goddard
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Nguyen K, Kc S, Gonzalez T, Tapia H, Boothby TC. Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance. Commun Biol 2022; 5:1046. [PMID: 36182981 PMCID: PMC9526748 DOI: 10.1038/s42003-022-04015-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Tardigrades are microscopic animals renowned for their ability to survive extreme desiccation. Unlike many desiccation-tolerant organisms that accumulate high levels of the disaccharide trehalose to protect themselves during drying, tardigrades accumulate little or undetectable levels. Using comparative metabolomics, we find that despite being enriched at low levels, trehalose is a key biomarker distinguishing hydration states of tardigrades. In vitro, naturally occurring stoichiometries of trehalose and CAHS proteins, intrinsically disordered proteins with known protective capabilities, were found to produce synergistic protective effects during desiccation. In vivo, this synergistic interaction is required for robust CAHS-mediated protection. This demonstrates that trehalose acts not only as a protectant, but also as a synergistic cosolute. Beyond desiccation tolerance, our study provides insights into how the solution environment tunes intrinsically disordered proteins’ functions, many of which are vital in biological contexts such as development and disease that are concomitant with large changes in intracellular chemistry. The disaccharide trehalose is a synergistic cosolute and key biomarker of desiccation tolerance in tardigrades.
Collapse
Affiliation(s)
- Kenny Nguyen
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Shraddha Kc
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Tyler Gonzalez
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
| | - Hugo Tapia
- California State University-Channel Islands, Biology Program, Camarillo, CA, USA
| | - Thomas C Boothby
- University of Wyoming, Department of Molecular Biology, Laramie, WY, USA.
| |
Collapse
|
34
|
Tanaka A, Nakano T, Watanabe K, Masuda K, Honda G, Kamata S, Yasui R, Kozuka-Hata H, Watanabe C, Chinen T, Kitagawa D, Sawai S, Oyama M, Yanagisawa M, Kunieda T. Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel. PLoS Biol 2022; 20:e3001780. [PMID: 36067153 PMCID: PMC9592077 DOI: 10.1371/journal.pbio.3001780] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.
Collapse
Affiliation(s)
- Akihiro Tanaka
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomomi Nakano
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kento Watanabe
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazutoshi Masuda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shuichi Kamata
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Reitaro Yasui
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical
Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, The
University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The
University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The
University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
36
|
Kim K, Gade VR, Kurzchalia TV, Guck J. Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophys J 2022; 121:1219-1229. [PMID: 35192842 PMCID: PMC9034246 DOI: 10.1016/j.bpj.2022.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/02/2022] Open
Abstract
Upon starvation or overcrowding, the nematode Caenorhabditis elegans enters diapause by forming a dauer larva, which can then further survive harsh desiccation in an anhydrobiotic state. We have previously identified the genetic and biochemical pathways essential for survival-but without detailed knowledge of their material properties, the mechanistic understanding of this intriguing phenomenon remains incomplete. Here we employed optical diffraction tomography (ODT) to quantitatively assess the internal mass density distribution of living larvae in the reproductive and diapause stages. ODT revealed that the properties of the dauer larvae undergo a dramatic transition upon harsh desiccation. Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that could not be observed by conventional microscopy. Our advance opens a door to quantitatively assessing the transitions in material properties and structure necessary to fully understand an organism on the verge of life and death.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| |
Collapse
|
37
|
Ramakrishnan J, Salame L, Nasser A, Glazer I, Ment D. Survival and efficacy of entomopathogenic nematodes on exposed surfaces. Sci Rep 2022; 12:4629. [PMID: 35301390 PMCID: PMC8931053 DOI: 10.1038/s41598-022-08605-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Entomopathogenic nematodes (EPN) species differ in their capability to withstand rapid desiccation (RD). Infective juveniles of Steinernema carpocapsae are a better adaptable and tolerant than Steinernema feltiae or Heterorhabditis bacteriophora as, an optimal RH of > 90% is required by S. feltiae and H. bacteriophora while maintaining RH equivalent to 74% could sustain survival of S. carpocapsae under RD. Our findings from infectivity suggest that following application, shrunk IJs are acquired passively by the larvae, probably rehydrate and resume infection within the insect gut. Water loss rate is a key factor affecting survival of S. carpocapsae on exposed surfaces. The present study provides the foundation for characterizing mechanism of rapid rate of water loss in EPN. ATR-FTIR is a rapid and reliable method for analysis of water loss. Changes in peak intensity was observed at 3100-3600 cm-1 (OH bonds of water), 2854 cm-1 (CH stretching of symmetric CH2, acyl chains), 2924 cm-1 (CH stretching of anti-symmetric CH2, lipid packing heterogeneity), 1634 cm-1 (amide I bonds) indicate major regions for hydration dependent changes in all EPN species. FTIR data also indicates that, S. carpocapsae contains strong water interacting regions in their biochemical profile, which could be an influencing factor in their water holding capacity under RD. ATR-FTIR were correlated to water content determined gravimetrically by using Partial Least square -Regression and FTIR multivariate method, which could be used to screen a formulation's potential to maintain or delay the rate of water loss in a rapid and efficient manner.
Collapse
Affiliation(s)
- Jayashree Ramakrishnan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Liora Salame
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Ahmed Nasser
- Inter-Institutional Analytical Unit, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Itamar Glazer
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Institute, 7505101, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
38
|
Wen Z, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. The GT1-TPS Structural Domain Protein From Haemonchus contortus Could Be Suppressive Antigen of Goat PBMCs. Front Immunol 2022; 12:787091. [PMID: 35058927 PMCID: PMC8764253 DOI: 10.3389/fimmu.2021.787091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Trehalose phosphate synthase (TPS), a key enzyme in trehalose synthesis, is not present in mammals but critical to the viability of a wide range of lower organisms. However, almost nothing is known about the function of Hc-TPS (GT1-TPS structural domain protein from Haemonchus contortus). In this study, Hc-TPS gene was cloned and the recombinant protein (rHc-TPS) was expressed and purified. The quantitative real-time PCR (qPCR) results showed that Hc-TPS was transcribed at different stages of H. contortus, with higher levels of transcription at the molting and embryo stages. Immunofluorescence analysis showed that Hc-TPS was widely distributed in adults, but the expression was mainly localized on the mucosal surface of the intestine as well as in the embryos of female worms. The impacts of rHc-TPS on peripheral blood mononuclear cell (PBMC) proliferation, nitric oxide (NO) generation, transcriptional expression of cytokines, and related pathways were examined by co-incubating rHc-TPS with goat PBMCs. The results showed that rHc-TPS significantly inhibited PBMC proliferation and NO secretion in a dose-dependent manner. We also found that rHc-TPS activated the interleukin (IL)-10/signal transducer and activator of transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) axis and significantly promoted SOCS3 expression, while inhibiting interferon-gamma (INF-γ), IL-4, IL-9, and IL-2 pathways. Our findings may contribute to understanding the immune evasion mechanism for the parasite during host-parasite interactions and also help to provide ideas for discovering new drug targets.
Collapse
Affiliation(s)
- Zhaohai Wen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tahir Aleem
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kalibixiati Aimulajiang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| | - Cheng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaokai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lixin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruofeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
39
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
40
|
Chovsepian A, Berchtold D, Winek K, Mamrak U, Ramírez Álvarez I, Dening Y, Golubczyk D, Weitbrecht L, Dames C, Aillery M, Fernandez‐Sanz C, Gajewski Z, Dieterich M, Janowski M, Falkai P, Walczak P, Plesnila N, Meisel A, Pan‐Montojo F. A Primeval Mechanism of Tolerance to Desiccation Based on Glycolic Acid Saves Neurons in Mammals from Ischemia by Reducing Intracellular Calcium-Mediated Excitotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103265. [PMID: 34904402 PMCID: PMC8811841 DOI: 10.1002/advs.202103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Indexed: 06/09/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Current treatments, such as pharmacological thrombolysis or mechanical thrombectomy, reopen occluded arteries but do not protect against ischemia-induced damage that occurs before reperfusion or neuronal damage induced by ischemia/reperfusion. It has been shown that disrupting the conversion of glyoxal to glycolic acid (GA) results in a decreased tolerance to anhydrobiosis in Caenorhabditis elegans dauer larva and that GA itself can rescue this phenotype. During the process of desiccation/rehydration, a metabolic stop/start similar to the one observed during ischemia/reperfusion occurs. In this study, the protective effect of GA is tested in different ischemia models, i.e., in commonly used stroke models in mice and swine. The results show that GA, given during reperfusion, strongly protects against ischemic damage and improves functional outcome. Evidence that GA exerts its effect by counteracting the glutamate-dependent increase in intracellular calcium during excitotoxicity is provided. These results suggest that GA treatment has the potential to reduce mortality and disability in stroke patients.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Daniel Berchtold
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Katarzyna Winek
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: Edmond and Lily Safra Center for Brain SciencesHebrew University of JerusalemJerusalem9190401Israel
| | - Uta Mamrak
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
| | - Inés Ramírez Álvarez
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Yanina Dening
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
| | | | - Luis Weitbrecht
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Claudia Dames
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Marine Aillery
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
- Present address:
Present address: SeppicÎle‐de‐FranceLa Garenne‐Colombes92250France
| | - Celia Fernandez‐Sanz
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
- Present address:
Present address: Center for Translational MedicineDepartment of MedicineThomas Jefferson UniversityPhiladelphiaPA19107USA
| | - Zdzislaw Gajewski
- Center for Translational MedicineWarsaw University of Life SciencesWarsaw02‐787Poland
| | - Marianne Dieterich
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Miroslaw Janowski
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Peter Falkai
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
| | - Piotr Walczak
- Program in Image Guided NeurointerventionsDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMD21201USA
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke ResearchInstitute for Stroke and Dementia Research (ISD)University of Munich Medical CenterFeodor‐Lynen‐Strasse 1781377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| | - Andreas Meisel
- Department of NeurologyNeuroCure Clinical Research CenterCenter for Stroke ResearchCharité University MedicineCharitéplatz 110117BerlinGermany
| | - Francisco Pan‐Montojo
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian University HospitalNussbaumstrasse. 780336MunichGermany
- Department of NeurologyLudwig‐Maximilian University HospitalMarchioninstrasse. 1581377MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilian University Munich81377MunichGermany
| |
Collapse
|
41
|
Zečić A, Dhondt I, Braeckman BP. Accumulation of Glycogen and Upregulation of LEA-1 in C. elegans daf-2(e1370) Support Stress Resistance, Not Longevity. Cells 2022; 11:245. [PMID: 35053361 PMCID: PMC8773926 DOI: 10.3390/cells11020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.
Collapse
Affiliation(s)
| | | | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (A.Z.); (I.D.)
| |
Collapse
|
42
|
Wen Z, Xie X, Aleem MT, Aimulajiang K, Chen C, Liang M, Song X, Xu L, Li X, Yan R. In vitro characterization of Haemonchus contortus trehalose-6-phosphate phosphatase and its immunomodulatory effects on peripheral blood mononuclear cells (PBMCs). Parasit Vectors 2021; 14:611. [PMID: 34930417 PMCID: PMC8685816 DOI: 10.1186/s13071-021-05115-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Trehalose-6-phosphate phosphatase (TPP6) is a key enzyme in the trehalose biosynthesis pathway. The accumulation of TPP6 inside the body is harmful to the pathogen, but almost nothing is currently known about the function of TPP6 from Haemonchus contortus (CRE-GOB-1). Methods The H. contortus CRE-GOB-1 (HcGOB) gene was cloned and recombinant protein of GOB (rHcGOB) was expressed; transcription of the HcGOB gene at different developmental stages of H. contortus was then studied. The spatial expression pattern of the HcGOB gene in adult female and male worms was determined by both quantitative real-time PCR (qPCR) and immunofluorescence. The binding of the rHcGOB protein to goat PBMCs was assessed by immunofluorescence assay. The immunomodulatory impacts of rHcGOB on cell proliferation, nitric oxide generation and cytokine secretion were assessed by co-culture of rHcGOB protein with goat PBMCs. Results The HcGOB protein was transcribed in eggs, infective third-stage larvae (iL3s) and adults of H. contortus, with the highest transcript levels found in the egg stage. The transcript levels were significantly elevated in iL3s after manual desheathing. HcGOB was widely distributed in adult worms where it was mainly localized in the gut and gonads. rHcGOB was observed to bind to PBMCs and also to be recognized by sera collected from a goat infected with H. contortus. rHcGOB significantly activated the interleukin-10/transforming growth factor β/signal transducer and activator of transcription 3 (IL-10/TGF-β/STAT3) pathway in PBMCs while suppressing the transcription and expression of IL-4 and IL-17. Conclusions These results suggest that the HcGOB gene plays an important role in the development, parasitism and reproduction of H. contortus. The rHcGOB protein affected the immunomodulatory function of PBMCs in the in vitro study, suggesting that this protein would be a promising vaccine target. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05115-4.
Collapse
Affiliation(s)
- ZhaoHai Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XinRan Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
43
|
Hibshman JD, Goldstein B. LEA motifs promote desiccation tolerance in vivo. BMC Biol 2021; 19:263. [PMID: 34903234 PMCID: PMC8670023 DOI: 10.1186/s12915-021-01176-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematode C. elegans as a model to study the endogenous function of an LEA protein in an animal. RESULTS We created a null mutant of C. elegans LEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed that C. elegans lacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs within C. elegans LEA-1 that were sufficient to increase desiccation survival of E. coli. To test whether such motifs are central to LEA-1's in vivo functions, we then replaced the sequence of lea-1 with these minimal motifs and found that C. elegans dauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. CONCLUSIONS Our results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Varahan S, Laxman S. Bend or break: how biochemically versatile molecules enable metabolic division of labor in clonal microbial communities. Genetics 2021; 219:iyab109. [PMID: 34849891 PMCID: PMC8633146 DOI: 10.1093/genetics/iyab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
In fluctuating nutrient environments, isogenic microbial cells transition into "multicellular" communities composed of phenotypically heterogeneous cells, showing functional specialization. In fungi (such as budding yeast), phenotypic heterogeneity is often described in the context of cells switching between different morphotypes (e.g., yeast to hyphae/pseudohyphae or white/opaque transitions in Candida albicans). However, more fundamental forms of metabolic heterogeneity are seen in clonal Saccharomyces cerevisiae communities growing in nutrient-limited conditions. Cells within such communities exhibit contrasting, specialized metabolic states, and are arranged in distinct, spatially organized groups. In this study, we explain how such an organization can stem from self-organizing biochemical reactions that depend on special metabolites. These metabolites exhibit plasticity in function, wherein the same metabolites are metabolized and utilized for distinct purposes by different cells. This in turn allows cell groups to function as specialized, interdependent cross-feeding systems which support distinct metabolic processes. Exemplifying a system where cells exhibit either gluconeogenic or glycolytic states, we highlight how available metabolites can drive favored biochemical pathways to produce new, limiting resources. These new resources can themselves be consumed or utilized distinctly by cells in different metabolic states. This thereby enables cell groups to sustain contrasting, even apparently impossible metabolic states with stable transcriptional and metabolic signatures for a given environment, and divide labor in order to increase community fitness or survival. We speculate on possible evolutionary implications of such metabolic specialization and division of labor in isogenic microbial communities.
Collapse
Affiliation(s)
- Sriram Varahan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru 560065, India
| |
Collapse
|
45
|
Lourenço AB, Artal-Sanz M. The Mitochondrial Prohibitin (PHB) Complex in C. elegans Metabolism and Ageing Regulation. Metabolites 2021; 11:metabo11090636. [PMID: 34564452 PMCID: PMC8472356 DOI: 10.3390/metabo11090636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.
Collapse
Affiliation(s)
- Artur B. Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| |
Collapse
|
46
|
Pees B, Johnke J, Möhl M, Hamerich IK, Leippe M, Petersen C. Microbes to-go: slugs as source for Caenorhabditis elegans microbiota acquisition. Environ Microbiol 2021; 23:6721-6733. [PMID: 34414649 DOI: 10.1111/1462-2920.15730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Julia Johnke
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Michelle Möhl
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Inga K Hamerich
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Matthias Leippe
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Carola Petersen
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
47
|
Pan L, Cui R, Li Y, Zhang W, Bai J, Li J, Zhang X. Third-Stage Dispersal Juveniles of Bursaphelenchus xylophilus Can Resist Low-Temperature Stress by Entering Cryptobiosis. BIOLOGY 2021; 10:biology10080785. [PMID: 34440018 PMCID: PMC8389570 DOI: 10.3390/biology10080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pine wilt disease caused by the nematode Bursaphelenchus xylophilus causes significant harm to China’s forests, but there are currently no effective prevention and control measures. Additionally, this devastating disease is currently spreading northward. We determined that third-stage dispersal juveniles of B. xylophilus can resist low-temperature stress by cryptobiosis, allowing these nematodes to tolerate a greater range of temperatures. These results facilitate the prediction of potential areas at risk for B. xylophilus in the mid-temperature and cold temperature zones of China. Abstract Nematodes can enter cryptobiosis by dehydration as an adaptation to low-temperature environments and recover from cryptobiosis by rehydration after environmental improvement. In this work, the survival of Bursaphelenchusxylophilus third-stage dispersal juveniles was studied in response to low-temperature treatment. The average survival rates were 1.7% after −80 °C treatment for 30 d and 82.2% after −20 °C treatment for 30 d. The changes of water content and inorganic salt ions that occur in pine trees during winter gradually alter the osmotic pressure in the liquid environment to dehydrate B. xylophilus juveniles, resulting in improved survival after low-temperature treatment. The survival rate at −20 °C improved to 92.1% when the juveniles entered cryptobiosis by osmotic regulation. The results of this study demonstrate that B. xylophilus third-stage dispersal juveniles can resist low-temperature stress through cryptobiosis, providing the theoretical basis for the identification of areas potentially vulnerable to B. xylophilus in the mid-temperature and cold temperature zones of China.
Collapse
Affiliation(s)
- Long Pan
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
| | - Rong Cui
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Research Centre of Sub-Frigid Zone Forestry, Chinese Academy of Forestry, Harbin 150080, China
| | - Yongxia Li
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence:
| | - Wei Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
| | - Jianwei Bai
- Chongqing Forestry Investment Development Company Limited, Chongqing 401120, China;
| | - Juewen Li
- Graduate Department, Chinese Academy of Forestry, Beijing 100091, China;
| | - Xingyao Zhang
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; (L.P.); (R.C.); (W.Z.); (X.Z.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
48
|
Hara Y, Shibahara R, Kondo K, Abe W, Kunieda T. Parallel evolution of trehalose production machinery in anhydrobiotic animals via recurrent gene loss and horizontal transfer. Open Biol 2021; 11:200413. [PMID: 34255978 PMCID: PMC8277472 DOI: 10.1098/rsob.200413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trehalose is a versatile non-reducing sugar. In some animal groups possessing its intrinsic production machinery, it is used as a potent protectant against environmental stresses, as well as blood sugar. However, the trehalose biosynthesis genes remain unidentified in the large majority of metazoan phyla, including vertebrates. To uncover the evolutionary history of trehalose production machinery in metazoans, we scrutinized the available genome resources and identified bifunctional trehalose-6-phosphate synthase-trehalose-6-phosphate phosphatase (TPS–TPP) genes in various taxa. The scan included our newly sequenced genome assembly of a desiccation-tolerant tardigrade Paramacrobiotus sp. TYO, revealing that this species retains TPS–TPP genes activated upon desiccation. Phylogenetic analyses identified a monophyletic group of the many of the metazoan TPS–TPP genes, namely ‘pan-metazoan’ genes, that were acquired in the early ancestors of metazoans. Furthermore, coordination of our results with the previous horizontal gene transfer studies illuminated that the two tardigrade lineages, nematodes and bdelloid rotifers, all of which include desiccation-tolerant species, independently acquired the TPS–TPP homologues via horizontal transfer accompanied with loss of the ‘pan-metazoan’ genes. Our results indicate that the parallel evolution of trehalose synthesis via recurrent loss and horizontal transfer of the biosynthesis genes resulted in the acquisition and/or augmentation of anhydrobiotic lives in animals.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Reira Shibahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Abe
- Department of Biology, Dokkyo Medical University, Tochigi, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Xie Y, Zhang P, Zhang L. Genome-Wide Transcriptional Responses of Marine Nematode Litoditis marina to Hyposaline and Hypersaline Stresses. Front Physiol 2021; 12:672099. [PMID: 34017268 PMCID: PMC8129518 DOI: 10.3389/fphys.2021.672099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of osmotic homeostasis is essential for all organisms, especially for marine animals in the ocean with 3% salinity or higher. However, the underlying molecular mechanisms that how marine animals adapt to high salinity environment compared to their terrestrial relatives, remain elusive. Here, we investigated marine animal’s genome-wide transcriptional responses to salinity stresses using an emerging marine nematode model Litoditis marina. We found that the transthyretin-like family genes were significantly increased in both hyposaline and hypersaline conditions, while multiple neurotransmitter receptor and ion transporter genes were down-regulated in both conditions, suggesting the existence of conserved strategies for response to stressful salinity environments in L. marina. Unsaturated fatty acids biosynthesis related genes, neuronal related tubulins and intraflagellar transport genes were specifically up-regulated in hyposaline treated worms. By contrast, cuticle related collagen genes were enriched and up-regulated for hypersaline response. Given a wide range of salinity tolerance of the marine nematodes, this study and further genetic analysis of key gene(s) of osmoregulation in L. marina will likely provide important insights into biological evolution and environmental adaptation mechanisms in nematodes and other invertebrate animals in general.
Collapse
Affiliation(s)
- Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
50
|
Chen H, Wu G, Zhou H, Dai X, Steeghs NWF, Dong X, Zheng L, Zhai Y. Hormonal Regulation of Reproductive Diapause That Occurs in the Year-Round Mass Rearing of Bombus terrestris Queens. J Proteome Res 2021; 20:2240-2250. [PMID: 33779174 DOI: 10.1021/acs.jproteome.0c00776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult reproductive diapause is an adaptive strategy under adverse environments for insects and other arthropod species, including bumblebees, which enables queens to survive through a harsh winter and then build new colonies in the following spring. Little research has been done on the molecular regulatory mechanism of reproductive diapause in Bombus terrestris, which is an important pollinator of wild plants and crops. Our previous research identified the conditions that induced reproductive diapause during the year-round mass rearing of B. terrestris. Here, we performed combined transcriptomics and proteomics analyses of reproductive diapause in B. terrestris during and after diapause at three different ecophysiological phases, diapause, postdiapause, and founder postdiapause. The analyses showed that differentially expressed proteins/genes acted in the citrate cycle, insect hormone biosynthesis, insulin and mTOR signaling pathway. To further understand the mechanisms that regulated the reproductive diapause, genes involved in the regulation of JH synthesis, insulin/TOR signal pathway were determined. The BtRheb, BtTOR, BtVg, and BtJHAMT had lower expression levels in diapause queens. The JH III titer levels and the activities of the metabolic enzymes were significantly up-regulated in postdiapause queens. Also, after the microinjection of insulin-like peptides (ILPs) and JH analogue (JHA), hormones, cold-tolerance metabolites, metabolic enzymes, and reproduction showed significant changes. Together with results from other related research, a model of the regulation of reproductive diapause during the year-round mass rearing of B. terrestris was proposed. This study contributes to a comprehensive insight into the molecular regulatory mechanism of reproductive diapause in eusocial insects.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guang'an Wu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.,College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Hao Zhou
- Shandong Lubao Technology Co. Ltd., Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | | | - Xiaolin Dong
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.,College of Agriculture, Yangtze University, Jingzhou 434000, China.,College of Life Sciences, Shandong Normal University, Jinan 250100, China
| |
Collapse
|