1
|
Yu RY, Jiang WG, Martin TA. The WASP/WAVE Protein Family in Breast Cancer and Their Role in the Metastatic Cascade. Cancer Genomics Proteomics 2025; 22:166-187. [PMID: 39993807 PMCID: PMC11880927 DOI: 10.21873/cgp.20495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASP) and the WASP family verprolin-homologous protein (WAVE) family are essential molecules that connect GTPases to the actin cytoskeleton, thereby controlling actin polymerisation through the actin-related protein 2/3 complex. This control is crucial for forming actin-based membrane protrusions necessary for cell migration and invasion. The elevated expression of WASP/WAVE proteins in invasive breast cancer cells highlights their significant role in promoting cell motility and invasion. This review summarises the discovery, structural properties, and activation mechanisms of WASP/WAVE proteins, focuses on the contribution of the WASP/WAVE family to breast cancer invasion and migration, particularly synthesises the results of nearly a decade of research in this field since 2015. By exploring promising therapeutic strategies for breast cancer, including small molecule inhibitors and biological agents, this review stresses the potential for developing anticancer drugs that target the WASP/WAVE family and associated pathways, intending to improve the prognosis for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Rhiannon Yannan Yu
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K
| | - Tracey A Martin
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K.
| |
Collapse
|
2
|
Li X, Zhu D. Role of disulfide death in cancer (Review). Oncol Lett 2025; 29:55. [PMID: 39606569 PMCID: PMC11600708 DOI: 10.3892/ol.2024.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The research field of regulated cell death is growing extensively. Following the recognition of ferroptosis, other unique and distinct forms of regulated cell death, including cuproptosis and disulfide death, have been identified. Disulfide death occurs due to the abnormal accumulation of disulfides within cells in environments lacking glucose, leading to contraction of the actin cytoskeleton, which ultimately triggers various signaling pathways and cell death. The induction of disulfide death in the treatment of cancer may exhibit significant therapeutic potential. Therefore, in the present review, a comprehensive and critical analysis of the current understanding of the molecular mechanisms and regulatory networks of disulfide death is presented. In addition, the potential physiological functions of disulfide death in tumor suppression and immune surveillance as well as its pathological roles and therapeutic potential are described. The core focus areas for future research into this form of cell death are also explored. Given the current lack of extensive clinical findings and well-defined key concepts, these may be regarded as pivotal points of interest in future studies.
Collapse
Affiliation(s)
- Xue Li
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Danxia Zhu
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
3
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
4
|
Buracco S, Döring H, Engelbart S, Singh SP, Paschke P, Whitelaw J, Thomason PA, Paul NR, Tweedy L, Lilla S, McGarry L, Corbyn R, Claydon S, Mietkowska M, Machesky LM, Rottner K, Insall RH. Scar/WAVE drives actin protrusions independently of its VCA domain using proline-rich domains. Curr Biol 2024; 34:4436-4451.e9. [PMID: 39332399 DOI: 10.1016/j.cub.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
Cell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. Fine-tuning of this process is critical to ensure new actin filaments are formed only at specific times and in defined regions of the cell. The Scar/WAVE complex is the main catalyst of pseudopod and lamellipodium formation during cell migration. It is a pentameric complex highly conserved through eukaryotic evolution and composed of Scar/WAVE, Abi, Nap1/NCKAP1, Pir121/CYFIP, and HSPC300/Brk1. Its function is usually attributed to activation of the Arp2/3 complex through Scar/WAVE's VCA domain, while other parts of the complex are expected to mediate spatial-temporal regulation and have no direct role in actin polymerization. Here, we show in both B16-F1 mouse melanoma and Dictyostelium discoideum cells that Scar/WAVE without its VCA domain still induces the formation of morphologically normal, actin-rich protrusions, extending at comparable speeds despite a drastic reduction of Arp2/3 recruitment. However, the proline-rich regions in Scar/WAVE and Abi subunits are essential, though either is sufficient for the generation of actin protrusions in B16-F1 cells. We further demonstrate that N-WASP can compensate for the absence of Scar/WAVE's VCA domain and induce lamellipodia formation, but it still requires an intact WAVE complex, even if without its VCA domain. We conclude that the Scar/WAVE complex does more than directly activating Arp2/3, with proline-rich domains playing a central role in promoting actin protrusions. This implies a broader function for the Scar/WAVE complex, concentrating and simultaneously activating many actin-regulating proteins as a lamellipodium-producing core.
Collapse
Affiliation(s)
- Simona Buracco
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefanie Engelbart
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Peggy Paschke
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Jamie Whitelaw
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Peter A Thomason
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Luke Tweedy
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Sophie Claydon
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| | - Robert H Insall
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
5
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
6
|
Mavrakis M, Juanes MA. The compass to follow: Focal adhesion turnover. Curr Opin Cell Biol 2023; 80:102152. [PMID: 36796142 DOI: 10.1016/j.ceb.2023.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, 13013 Marseille, France
| | - M Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough, TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Centro de Investigación Príncipe Felipe, Valencia, 46012, Spain.
| |
Collapse
|
7
|
Kage F, Döring H, Mietkowska M, Schaks M, Grüner F, Stahnke S, Steffen A, Müsken M, Stradal TEB, Rottner K. Lamellipodia-like actin networks in cells lacking WAVE regulatory complex. J Cell Sci 2022; 135:276259. [PMID: 35971979 PMCID: PMC9511706 DOI: 10.1242/jcs.260364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022] Open
Abstract
Cell migration frequently involves the formation of lamellipodia induced by Rac GTPases activating WAVE regulatory complex (WRC) to drive Arp2/3 complex-dependent actin assembly. Previous genome editing studies in B16-F1 melanoma cells solidified the view of an essential, linear pathway employing the aforementioned components. Here, disruption of the WRC subunit Nap1 (encoded by Nckap1) and its paralog Hem1 (encoded by Nckap1l) followed by serum and growth factor stimulation, or active GTPase expression, revealed a pathway to formation of Arp2/3 complex-dependent lamellipodia-like structures (LLS) that requires both Rac and Cdc42 GTPases, but not WRC. These phenotypes were independent of the WRC subunit eliminated and coincided with the lack of recruitment of Ena/VASP family actin polymerases. Moreover, aside from Ena/VASP proteins, LLS contained all lamellipodial regulators tested, including cortactin (also known as CTTN), the Ena/VASP ligand lamellipodin (also known as RAPH1) and FMNL subfamily formins. Rac-dependent but WRC-independent actin remodeling could also be triggered in NIH 3T3 fibroblasts by growth factor (HGF) treatment or by gram-positive Listeria monocytogenes usurping HGF receptor signaling for host cell invasion. Taken together, our studies thus establish the existence of a signaling axis to Arp2/3 complex-dependent actin remodeling at the cell periphery that operates without WRC and Ena/VASP. Summary: Rac-dependent actin remodeling can occur in the absence of WAVE regulatory complex, triggered by active Cdc42. WAVE regulatory complex-independent actin structures harbor Arp2/3 complex but not VASP.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Franziska Grüner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
10
|
Gautreau AM, Fregoso FE, Simanov G, Dominguez R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol 2021; 32:421-432. [PMID: 34836783 PMCID: PMC9018471 DOI: 10.1016/j.tcb.2021.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces that drive cellular processes ranging from membrane remodeling to cell and organelle motility. Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex and by stabilizing or disassembling branched networks. Here, we review recent advances in our understanding of Arp2/3 complex regulation, including high-resolution cryoelectron microscopy (cryo-EM) structures that illuminate the mechanisms of Arp2/3 complex activation and branch formation, and novel cellular pathways of branch formation, stabilization, and debranching. We also identify major gaps in our understanding of Arp2/3 complex inhibition and branch stabilization and disassembly.
Collapse
Affiliation(s)
- Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
12
|
Swaminathan K, Campbell A, Papalazarou V, Jaber-Hijazi F, Nixon C, McGhee E, Strathdee D, Sansom OJ, Machesky LM. The RAC1 Target NCKAP1 Plays a Crucial Role in the Progression of Braf;Pten-Driven Melanoma in Mice. J Invest Dermatol 2021; 141:628-637.e15. [PMID: 32777214 DOI: 10.1016/j.jid.2020.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
BRAFV600E is the most common driver mutation in human cutaneous melanoma and is frequently accompanied by loss of the tumor-suppressing phosphatase PTEN. Recent evidence suggests a co-operative role for RAC1 activity in BRAFV600E-driven melanoma progression and drug resistance. However, the underlying molecular mechanisms and the role of RAC1 downstream targets are not well-explored. In this study, we examine the role of the NCKAP1 subunit of the pentameric cytoskeletal SCAR/WAVE complex, a major downstream target of RAC1, in a mouse model of melanoma driven by BRAFV600E;PTEN loss. The SCAR/WAVE complex is the major driver of lamellipodia formation and cell migration downstream of RAC1 and depends on NCKAP1 for its integrity. Targeted deletion of Nckap1 in the melanocyte lineage delayed tumor onset and progression of a mutant Braf;Pten loss‒driven melanoma mouse model. Nckap1-depleted tumors displayed fibrotic stroma with increased collagen deposition concomitant with enhanced immune infiltration. Nckap1 loss slowed proliferation and tumor growth, highlighting a role in cell-cycle progression. Altogether, we propose that NCKAP1-orchestrated actin polymerization is essential for tumor progression and maintenance of tumor tissue integrity in a mutant Braf/Pten loss‒driven mouse model for melanoma.
Collapse
Affiliation(s)
- Karthic Swaminathan
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Andrew Campbell
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Farah Jaber-Hijazi
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Ewan McGhee
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | - Owen J Sansom
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
14
|
Whitelaw JA, Swaminathan K, Kage F, Machesky LM. The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells 2020; 9:E1635. [PMID: 32646006 PMCID: PMC7407199 DOI: 10.3390/cells9071635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cells migrating over 2D substrates are required to polymerise actin at the leading edge to form lamellipodia protrusions and nascent adhesions to anchor the protrusion to the substrate. The major actin nucleator in lamellipodia formation is the Arp2/3 complex, which is activated by the WAVE regulatory complex (WRC). Using inducible Nckap1 floxed mouse embryonic fibroblasts (MEFs), we confirm that the WRC is required for lamellipodia formation, and importantly, for generating the retrograde flow of actin from the leading cell edge. The loss of NCKAP1 also affects cell spreading and focal adhesion dynamics. In the absence of lamellipodium, cells can become elongated and move with a single thin pseudopod, which appears devoid of N-WASP. This phenotype was more prevalent on collagen than fibronectin, where we observed an increase in migratory speed. Thus, 2D cell migration on collagen is less dependent on branched actin.
Collapse
Affiliation(s)
| | - Karthic Swaminathan
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1PD, UK
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755-3844, USA;
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Laura M. Machesky
- CRUK Beatson Institute, Glasgow G61 1BD, UK; (K.S.); (L.M.M.)
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Biber G, Ben-Shmuel A, Sabag B, Barda-Saad M. Actin regulators in cancer progression and metastases: From structure and function to cytoskeletal dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:131-196. [PMID: 33066873 DOI: 10.1016/bs.ircmb.2020.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytoskeleton is a central factor contributing to various hallmarks of cancer. In recent years, there has been increasing evidence demonstrating the involvement of actin regulatory proteins in malignancy, and their dysregulation was shown to predict poor clinical prognosis. Although enhanced cytoskeletal activity is often associated with cancer progression, the expression of several inducers of actin polymerization is remarkably reduced in certain malignancies, and it is not completely clear how these changes promote tumorigenesis and metastases. The complexities involved in cytoskeletal induction of cancer progression therefore pose considerable difficulties for therapeutic intervention; it is not always clear which cytoskeletal regulator should be targeted in order to impede cancer progression, and whether this targeting may inadvertently enhance alternative invasive pathways which can aggravate tumor growth. The entire constellation of cytoskeletal machineries in eukaryotic cells are numerous and complex; the system is comprised of and regulated by hundreds of proteins, which could not be covered in a single review. Therefore, we will focus here on the actin cytoskeleton, which encompasses the biological machinery behind most of the key cellular functions altered in cancer, with specific emphasis on actin nucleating factors and nucleation-promoting factors. Finally, we discuss current therapeutic strategies for cancer which aim to target the cytoskeleton.
Collapse
Affiliation(s)
- G Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - A Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - B Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - M Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
16
|
Guo B, Hui Q, Xu Z, Chang P, Tao K. miR-495 inhibits the growth of fibroblasts in hypertrophic scars. Aging (Albany NY) 2020; 11:2898-2910. [PMID: 31085805 PMCID: PMC6535065 DOI: 10.18632/aging.101965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs are known to be importantly involved in a variety physiological and pathophysiolgical processes. Their role in the pathogenesis of hypertrophic scars remains unclear, however. After preliminary screening of the microRNA (miRNA) gene expression profiles, we explored the role of miR-495 in the development of hypertrophic scar by comparing expression of miR-495 and focal adhesion kinase (FAK) between hypertrophic scar and normal skin tissue. We also used 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and annexin V-fluorescein isothiocyanate/propidium iodide assays to assess the effect of miR-495 on the proliferation and apoptosis in human hypertrophic scar fibroblasts. Western blotting and real-time polymerase chain reaction were used to evaluate expression of miR-495, FAK, and related proteins in the FAK pathway. Our findings show that miR-495 inhibits FAK and its downstream mediators in vitro and vivo, and suggest that miR-495 may be a useful therapeutic target for the treatment of hypertrophic scar.
Collapse
Affiliation(s)
- Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater, PLA, Shenyang, P.R.China
| | - Qiang Hui
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater, PLA, Shenyang, P.R.China
| | - Zhishan Xu
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater, PLA, Shenyang, P.R.China
| | - Peng Chang
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater, PLA, Shenyang, P.R.China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater, PLA, Shenyang, P.R.China
| |
Collapse
|
17
|
Kabrawala S, Zimmer MD, Campellone KG. WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility. PLoS Genet 2020; 16:e1008694. [PMID: 32196488 PMCID: PMC7112243 DOI: 10.1371/journal.pgen.1008694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
Cell motility is governed by cooperation between the Arp2/3 complex and nucleation-promoting factors from the Wiskott-Aldrich Syndrome Protein (WASP) family, which together assemble actin filament networks to drive membrane protrusion. Here we identify WHIMP (WAVE Homology In Membrane Protrusions) as a new member of the WASP family. The Whimp gene is encoded on the X chromosome of a subset of mammals, including mice. Murine WHIMP promotes Arp2/3-dependent actin assembly, but is less potent than other nucleation factors. Nevertheless, WHIMP-mediated Arp2/3 activation enhances both plasma membrane ruffling and wound healing migration, whereas WHIMP depletion impairs protrusion and slows motility. WHIMP expression also increases Src-family kinase activity, and WHIMP-induced ruffles contain the additional nucleation-promoting factors WAVE1, WAVE2, and N-WASP, but not JMY or WASH. Perturbing the function of Src-family kinases, WAVE proteins, or Arp2/3 complex inhibits WHIMP-driven ruffling. These results suggest that WHIMP-associated actin assembly plays a direct role in membrane protrusion, but also results in feedback control of tyrosine kinase signaling to modulate the activation of multiple WASP-family members. The actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Sophisticated cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Several of the 8 known WASP-family proteins function in cell motility, but how the different factors collaborate with one another is not well understood. In this study, we identified WHIMP, a new WASP-family member that is encoded on the X chromosome of a variety of mammals. In mouse cells, WHIMP enhances cell motility by assembling actin filaments that push the plasma membrane forward. Unexpectedly, WHIMP also activates tyrosine kinases, enzymes that stimulate multiple WASP-family members during motility. Our results open new avenues of research into how nucleation factors cooperate during movement and how the molecular activities that underlie motility differ in distinct cell types and organisms.
Collapse
Affiliation(s)
- Shail Kabrawala
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Margaret D. Zimmer
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kenneth G. Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nath D, Li X, Mondragon C, Post D, Chen M, White JR, Hryniewicz-Jankowska A, Caza T, Kuznetsov VA, Hehnly H, Jamaspishvili T, Berman DM, Zhang F, Kung SHY, Fazli L, Gleave ME, Bratslavsky G, Pandolfi PP, Kotula L. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun Signal 2019; 17:120. [PMID: 31530281 PMCID: PMC6749699 DOI: 10.1186/s12964-019-0410-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Prostate cancer development involves various mechanisms, which are poorly understood but pointing to epithelial mesenchymal transition (EMT) as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, acts as tumor suppressor in prostate cancer but the role of ABI1 in EMT is not clear. Methods To investigate the molecular mechanism by which loss of ABI1 contributes to tumor progression, we disrupted the ABI1 gene in the benign prostate epithelial RWPE-1 cell line and determined its phenotype. Levels of ABI1 expression in prostate organoid tumor cell lines was evaluated by Western blotting and RNA sequencing. ABI1 expression and its association with prostate tumor grade was evaluated in a TMA cohort of 505 patients and metastatic cell lines. Results Low ABI1 expression is associated with biochemical recurrence, metastasis and death (p = 0.038). Moreover, ABI1 expression was significantly decreased in Gleason pattern 5 vs. pattern 4 (p = 0.0025) and 3 (p = 0.0012), indicating an association between low ABI1 expression and highly invasive prostate tumors. Disruption of ABI1 gene in RWPE-1 cell line resulted in gain of an invasive phenotype, which was characterized by a loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 spheroids. Through RNA sequencing and protein expression analysis, we discovered that ABI1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of ABI1. Furthermore, an increase in STAT3 phosphorylation upon ABI1 inactivation and the evidence of a high-affinity interaction between the FYN SH2 domain and ABI1 pY421 support a model in which ABI1 acts as a gatekeeper of non-canonical WNT-EMT pathway activation downstream of the FZD2 receptor. Conclusions ABI1 controls prostate tumor progression and epithelial plasticity through regulation of EMT-WNT pathway. Here we discovered that ABI1 inhibits EMT through suppressing FYN-STAT3 activation downstream from non-canonical WNT signaling thus providing a novel mechanism of prostate tumor suppression. Electronic supplementary material The online version of this article (10.1186/s12964-019-0410-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Disharee Nath
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiang Li
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Claudia Mondragon
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Dawn Post
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Present address: Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA
| | - Julie R White
- Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tiffany Caza
- Department of Pathology and Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Vladimir A Kuznetsov
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA.,Bioinformatics Institute, A-STAR, Singapore, 138671, Singapore
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine and Division of Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, 10 Stuart St, Kingston, ON, K7L 3N6, Canada
| | - Fan Zhang
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Sonia H Y Kung
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Gennady Bratslavsky
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Leszek Kotula
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210, USA. .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
19
|
Whitelaw JA, Lilla S, Paul NR, Fort L, Zanivan S, Machesky LM. CYRI/ Fam49 Proteins Represent a New Class of Rac1 Interactors. Commun Integr Biol 2019; 12:112-118. [PMID: 31413787 PMCID: PMC6682259 DOI: 10.1080/19420889.2019.1643665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Fam49 proteins, now referred to as CYRI (CYFIP-related Rac Interactor), are evolutionarily conserved across many phyla. Their closest relative by amino acid sequence is CYFIP, as both proteins contain a domain of unknown function DUF1394. We recently showed that CYRI and the DUF1394 can mediate binding to Rac1 and evidence is building to suggest that CYRI plays important roles in cell migration, chemotaxis and pathogen entry into cells. Here we discuss how CYRI proteins fit into the current framework of the control of actin dynamics by positive and negative feedback loops containing Rac1, the Scar/WAVE Complex, the Arp2/3 Complex and branched actin. We also provide data regarding the interaction between Rac1 and CYRI in an unbiassed mass spectrometry screen for interactors of an active mutant of Rac1.
Collapse
Affiliation(s)
| | - Sergio Lilla
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Nikki R. Paul
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Loic Fort
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sara Zanivan
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Laura M. Machesky
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Zhong XP, Kan A, Ling YH, Lu LH, Mei J, Wei W, Li SH, Guo RP. NCKAP1 improves patient outcome and inhibits cell growth by enhancing Rb1/p53 activation in hepatocellular carcinoma. Cell Death Dis 2019; 10:369. [PMID: 31068575 PMCID: PMC6506474 DOI: 10.1038/s41419-019-1603-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 02/05/2023]
Abstract
In our previous report, we identified miR-34c-3p as an independent factor contributing to the carcinogenesis of hepatocellular carcinoma (HCC) by targeting NCK Associated Protein 1 (NCKAP1). NCKAP1 has been known to promote the malignancy of cancer cells by disrupting the structural stability of WAS protein family member 1 (WASF1) and is correlated with poor prognosis of patients in several cancer types. Our results, however, show that NCKAP1 is correlated with a favorable outcome in HCC patients. The underlying mechanism of this contradictory phenomenon is unknown. The current study was designed to explore the mechanism of NCKAP1 in HCC. As a result, clinicopathological correlations and results from in vivo and in vitro models indicated that NCKAP1 was a tumor suppressor gene. Cell cycle analysis suggested that NCKAP1 inhibit cells from entering G2/M phase. Western blot analysis showed that WASF1 was barely expressed in HCC cell lines compared to that of breast cancer cell lines, which serve as positive controls. Furthermore, Rb1 and p53 expression was upregulated in cell lines overexpressing NCKAP1. Expression of several cell cycle regulating proteins also varied in the HCC cell lines. In conclusion, although previous studies have identified NCKAP1 as a cell invasion promoter by binding to WASF1, we found that NCKAP1 is a tumor suppress gene that modulates the cell cycle of HCC cell lines by targeting Rb1/p53 regulation.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yi-Hong Ling
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Liang-He Lu
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
21
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
22
|
Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2018; 93:16-25. [PMID: 30359779 DOI: 10.1016/j.semcdb.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Cells are dynamic structures that must respond to complex physical and chemical signals from their surrounding environment. The cytoskeleton is a key mediator of a cell's response to the signals of both the extracellular matrix and other cells present in the local microenvironment and allows it to tune its own mechanical properties in response to these cues. A growing body of evidence suggests that altered cellular viscoelasticity is a strong indicator of disease state; including cancer, laminopathy (genetic disorders of the nuclear lamina), infection, and aging. Here, we review recent work on the characterization of cell mechanics in disease and discuss the implications of altered viscoelasticity in regulation of immune responses. Finally, we provide an overview of techniques for measuring the mechanical properties of cells deeply embedded within tissues.
Collapse
Affiliation(s)
- Michael J Harris
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
24
|
Ganesan R, Henkels KM, Wrenshall LE, Kanaho Y, Di Paolo G, Frohman MA, Gomez-Cambronero J. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2-CD36 functional interdependence. J Leukoc Biol 2018; 103:867-883. [PMID: 29656494 DOI: 10.1002/jlb.2a1017-407rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
The uptake of cholesterol carried by low-density lipoprotein (LDL) is tightly controlled in the body. Macrophages are not well suited to counteract the cellular consequences of excess cholesterol leading to their transformation into "foam cells," an early step in vascular plaque formation. We have uncovered and characterized a novel mechanism involving phospholipase D (PLD) in foam cell formation. Utilizing bone marrow-derived macrophages from genetically PLD deficient mice, we demonstrate that PLD2 (but not PLD1)-null macrophages cannot fully phagocytose aggregated oxidized LDL (Agg-Ox-LDL), which was phenocopied with a PLD2-selective inhibitor. We also report a role for PLD2 in coupling Agg-oxLDL phagocytosis with WASP, Grb2, and Actin. Further, the clearance of LDL particles is mediated by both CD36 and PLD2, via mutual dependence on each other. In the absence of PLD2, CD36 does not engage in Agg-Ox-LDL removal and when CD36 is blocked, PLD2 cannot form protein-protein heterocomplexes with WASP or Actin. These results translated into humans using a GEO database of microarray expression data from atheroma plaques versus normal adjacent carotid tissue and observed higher values for NFkB, PLD2 (but not PLD1), WASP, and Grb2 in the atheroma plaques. Human atherectomy specimens confirmed high presence of PLD2 (mRNA and protein) as well as phospho-WASP in diseased arteries. Thus, PLD2 interacts in macrophages with Actin, Grb2, and WASP during phagocytosis of Agg-Ox-LDL in the presence of CD36 during their transformation into "foam cells." Thus, this study provides new molecular targets to counteract vascular plaque formation and atherogenesis.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Lucile E Wrenshall
- Department of Neuroscience, Cell Biology/Physiology, Wright State University, Dayton, Ohio, USA
| | - Yasunori Kanaho
- Department of Physiology, University of Tsukuba, Tsukuba, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Denali Therapeutics Inc., South San Francisco, California, USA
| | - Michael A Frohman
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
25
|
Davidson AJ, Amato C, Thomason PA, Insall RH. WASP family proteins and formins compete in pseudopod- and bleb-based migration. J Cell Biol 2018; 217:701-714. [PMID: 29191847 PMCID: PMC5800805 DOI: 10.1083/jcb.201705160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
Actin pseudopods induced by SCAR/WAVE drive normal migration and chemotaxis in eukaryotic cells. Cells can also migrate using blebs, in which the edge is driven forward by hydrostatic pressure instead of actin. In Dictyostelium discoideum, loss of SCAR is compensated by WASP moving to the leading edge to generate morphologically normal pseudopods. Here we use an inducible double knockout to show that cells lacking both SCAR and WASP are unable to grow, make pseudopods or, unexpectedly, migrate using blebs. Remarkably, amounts and dynamics of actin polymerization are normal. Pseudopods are replaced in double SCAR/WASP mutants by aberrant filopods, induced by the formin dDia2. Further disruption of the gene for dDia2 restores cells' ability to initiate blebs and thus migrate, though pseudopods are still lost. Triple knockout cells still contain near-normal F-actin levels. This work shows that SCAR, WASP, and dDia2 compete for actin. Loss of SCAR and WASP causes excessive dDia2 activity, maintaining F-actin levels but blocking pseudopod and bleb formation and migration.
Collapse
Affiliation(s)
| | - Clelia Amato
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | | | | |
Collapse
|
26
|
Molinie N, Gautreau A. The Arp2/3 Regulatory System and Its Deregulation in Cancer. Physiol Rev 2017; 98:215-238. [PMID: 29212790 DOI: 10.1152/physrev.00006.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
The Arp2/3 complex is an evolutionary conserved molecular machine that generates branched actin networks. When activated, the Arp2/3 complex contributes the actin branched junction and thus cross-links the polymerizing actin filaments in a network that exerts a pushing force. The different activators initiate branched actin networks at the cytosolic surface of different cellular membranes to promote their protrusion, movement, or scission in cell migration and membrane traffic. Here we review the structure, function, and regulation of all the direct regulators of the Arp2/3 complex that induce or inhibit the initiation of a branched actin network and that controls the stability of its branched junctions. Our goal is to present recent findings concerning novel inhibitory proteins or the regulation of the actin branched junction and place these in the context of what was previously known to provide a global overview of how the Arp2/3 complex is regulated in human cells. We focus on the human set of Arp2/3 regulators to compare normal Arp2/3 regulation in untransformed cells to the deregulation of the Arp2/3 system observed in patients affected by various cancers. In many cases, these deregulations promote cancer progression and have a direct impact on patient survival.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR 7654, Palaiseau, France; and Moscow Institute of Physics and Technology, Life Sciences Center, Dolgoprudny, Russia
| |
Collapse
|
27
|
Abundant Focal Adhesion Kinase Causes Aberrant Neuronal Migration Via Its Phosphorylation at Tyr925. J Mol Neurosci 2017; 64:102-110. [DOI: 10.1007/s12031-017-1010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/10/2023]
|
28
|
Lintz M, Muñoz A, Reinhart-King CA. The Mechanics of Single Cell and Collective Migration of Tumor Cells. J Biomech Eng 2017; 139:2580907. [PMID: 27814431 DOI: 10.1115/1.4035121] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process.
Collapse
Affiliation(s)
- Marianne Lintz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Adam Muñoz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Cynthia A Reinhart-King
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 302 Weill Hall, Ithaca, NY 14853 e-mail:
| |
Collapse
|
29
|
Molinie N, Gautreau A. WASP and WAVE Team Up at the Leading Edge. Dev Cell 2017; 39:135-136. [PMID: 27780037 DOI: 10.1016/j.devcel.2016.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arp2/3-dependent branched actin networks drive membrane protrusions, with WAVE being recognized as the critical Arp2/3 activator in this process. In this issue of Developmental Cell, Zhu et al. (2016) demonstrate that WASP, an Arp2/3 activator mostly involved in endocytosis, collaborates with WAVE to promote migration of neuroblasts in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Nicolas Molinie
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR7654, 91120 Palaiseau, France
| | - Alexis Gautreau
- Ecole Polytechnique, Université Paris-Saclay, CNRS UMR7654, 91120 Palaiseau, France.
| |
Collapse
|
30
|
Zhu Z, Chai Y, Jiang Y, Li W, Hu H, Li W, Wu JW, Wang ZX, Huang S, Ou G. Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration. Dev Cell 2017; 39:224-238. [PMID: 27780040 DOI: 10.1016/j.devcel.2016.09.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
Directional cell migration is critical for metazoan development. We define two molecular pathways that activate the Arp2/3 complex during neuroblast migration in Caenorhabditis elegans. The transmembrane protein MIG-13/Lrp12 is linked to the Arp2/3 nucleation-promoting factors WAVE or WASP through direct interactions with ABL-1 or SEM-5/Grb2, respectively. WAVE mutations partially impaired F-actin organization and decelerated cell migration, and WASP mutations did not inhibit cell migration but enhanced migration defects in WAVE-deficient cells. Purified SEM-5 and MIG-2 synergistically stimulated the F-actin branching activity of WASP-Arp2/3 in vitro. In GFP knockin animals, WAVE and WASP were largely organized into separate clusters at the leading edge, and the amount of WASP was less than WAVE but could be elevated by WAVE mutations. Our results indicate that the MIG-13-WAVE pathway provides the major force for directional cell motility, whereas MIG-13-WASP partially compensates for its loss, underscoring their coordinated activities in facilitating robust cell migration.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Yuxiang Jiang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Huifang Hu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Jia-Wei Wu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Zhi-Xin Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
32
|
King SJ, Asokan SB, Haynes EM, Zimmerman SP, Rotty JD, Alb JG, Tagliatela A, Blake DR, Lebedeva IP, Marston D, Johnson HE, Parsons M, Sharpless NE, Kuhlman B, Haugh JM, Bear JE. Lamellipodia are crucial for haptotactic sensing and response. J Cell Sci 2016; 129:2329-42. [PMID: 27173494 DOI: 10.1242/jcs.184507] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis - differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments.
Collapse
Affiliation(s)
- Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sreeja B Asokan
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth M Haynes
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth P Zimmerman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeremy D Rotty
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James G Alb
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alicia Tagliatela
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devon R Blake
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Irina P Lebedeva
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Marston
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Heath E Johnson
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Maddy Parsons
- King's College London, Randall Institute, London SE1 8RT, UK
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Kuhlman
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jason M Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Howard Hughes Medical Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Swaney KF, Li R. Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Curr Opin Cell Biol 2016; 42:63-72. [PMID: 27164504 DOI: 10.1016/j.ceb.2016.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
Abstract
As the first de novo actin nucleator discovered, the Arp2/3 complex has been a central player in models of protrusive force production via the dynamic actin network. Here, we review recent studies on the functional role of the Arp2/3 complex in the migration of diverse cell types in different migratory environments. These findings have revealed an unexpected level of plasticity, both in how cells rely on the Arp2/3 complex for migration and other physiological functions and in the intricate modulation of the Arp2/3 complex by other actin regulators and upstream signaling cascades.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA.
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 450 Rangos Building, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, 100 Croft Hall, Baltimore, MD 21218, USA
| |
Collapse
|
34
|
Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration. PLoS Biol 2016; 14:e1002381. [PMID: 26890004 PMCID: PMC4758609 DOI: 10.1371/journal.pbio.1002381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023] Open
Abstract
For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. Coupling of individual oscillators regulates biological functions ranging from crickets chirping in unison to the coordination of pacemaker cells of the heart. This study finds that a similar concept—coupling between actin oscillators—is at work within single slime mold cells to establish polarity and guide their direction of migration. The actin cytoskeleton of motile cells is comprised of highly dynamic structures. Recently, small oscillating actin foci have been discovered around the periphery of Dictyostelium cells. These oscillators are thought to enable pseudopod formation, but how their dynamics are regulated for this is unknown. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. Actin oscillators are weakly coupled to one another in wild-type cells, but they become strongly synchronized after acute inactivation of the signaling protein Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. Supported by a mathematical model, our data suggest that wild-type cells are tuned to an optimal coupling strength for patterning by upstream cues. These observations are only possible following acute inhibition of Gβ, which highlights the value of revisiting classical mutants with acute loss-of-function perturbations.
Collapse
|
35
|
Arpin downregulation in breast cancer is associated with poor prognosis. Br J Cancer 2016; 114:545-53. [PMID: 26867158 PMCID: PMC4782208 DOI: 10.1038/bjc.2016.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/08/2016] [Accepted: 01/06/2016] [Indexed: 01/28/2023] Open
Abstract
Background: The Arp2/3 complex is required for cell migration and invasion. The Arp2/3 complex and its activators, such as the WAVE complex, are deregulated in diverse cancers. Here we investigate the expression of Arpin, the Arp2/3 inhibitory protein that antagonises the WAVE complex. Methods: We used qRT–PCR and reverse phase protein arrays in a patient cohort with known clinical parameters and outcome, immunofluorescence in breast biopsy cryosections and breast cancer cell lines. Results: Arpin was downregulated at the mRNA and protein levels in mammary carcinoma cells. Arpin mRNA downregulation was associated with poor metastasis-free survival (MFS) on univariate analysis (P=0.022). High expression of the NCKAP1 gene that encodes a WAVE complex subunit was also associated with poor MFS on univariate analysis (P=0.0037) and was mutually exclusive with Arpin low. Arpin low or NCKAP1 high was an independent prognosis factor on multivariate analysis (P=0.0012) and was strongly associated with poor MFS (P=0.000064). Conclusions: Loss of the Arp2/3 inhibitory protein Arpin produces a similar poor outcome in breast cancer as high expression of the NCKAP1 subunit of the Arp2/3 activatory WAVE complex.
Collapse
|
36
|
Brüser L, Bogdan S. Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila. Handb Exp Pharmacol 2016; 235:285-310. [PMID: 27757759 DOI: 10.1007/164_2016_33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.
Collapse
Affiliation(s)
- Lena Brüser
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany
| | - Sven Bogdan
- Institute for Neurobiology, University of Muenster, Badestrasse 9, 48149, Muenster, Germany.
| |
Collapse
|
37
|
Ridley AJ. Rho GTPase signalling in cell migration. Curr Opin Cell Biol 2015; 36:103-12. [PMID: 26363959 PMCID: PMC4728192 DOI: 10.1016/j.ceb.2015.08.005] [Citation(s) in RCA: 576] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 01/15/2023]
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
38
|
Abstract
Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family.
Collapse
Affiliation(s)
- Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
39
|
Frugtniet B, Jiang WG, Martin TA. Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. BREAST CANCER-TARGETS AND THERAPY 2015; 7:99-109. [PMID: 25941446 PMCID: PMC4416637 DOI: 10.2147/bctt.s59006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE) family are a group of molecules that form a key link between GTPases and the actin cytoskeleton. The role of WASP/WAVE family proteins in the control of actin polymerization through activation of the actin-related protein 2/3 complex is critical in the formation of the actin-based membrane protrusions seen in cell migration and invasion. For this reason, the activity of the WASP/WAVE family in cancer cell invasion and migration has been of great interest in recent years. Many reports have highlighted the potential of targeting the WASP/WAVE family as a therapy for the prevention of cancer progression, in particular breast cancer. This review focuses on the role of the WASP/WAVE family in breast cancer cell invasion and migration and how this relates to the molecular mechanisms of WASP/WAVE activity, their exact contributions to the stages of cancer progression, and how this can lead to the development of anticancer drugs that target the WASP/WAVE family and related pathways.
Collapse
Affiliation(s)
- Bethan Frugtniet
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Tracey A Martin
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
40
|
Wu PH, Giri A, Wirtz D. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc 2015; 10:517-27. [PMID: 25719270 PMCID: PMC4911638 DOI: 10.1038/nprot.2015.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell migration through 3D extracellular matrices (ECMs) is crucial to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. The motility of eukaryotic cells on 2D substrates in the absence of gradients has long been described using persistent random walks (PRWs). Recent work shows that 3D migration is anisotropic and features an exponential mean cell velocity distribution, rendering the PRW model invalid. Here we present a protocol for the analysis of 3D cell motility using the anisotropic PRW model. The software, which is implemented in MATLAB, enables statistical profiling of experimentally observed 2D and 3D cell trajectories, and it extracts the persistence and speed of cells along primary and nonprimary directions and an anisotropic index of migration. Basic computer skills and experience with MATLAB software are recommended for successful use of the protocol. This protocol is highly automated and fast, taking <30 min to analyze trajectory data per biological condition.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Science Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Anjil Giri
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Science Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Science Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Pathology, Department of Oncology, and Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Maryland 21205, USA
| |
Collapse
|
41
|
Markwell SM, Weed SA. Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers (Basel) 2015; 7:382-406. [PMID: 25734659 PMCID: PMC4381264 DOI: 10.3390/cancers7010382] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| | - Scott A Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
42
|
Chakraborty S, Lakshmanan M, Swa HLF, Chen J, Zhang X, Ong YS, Loo LS, Akıncılar SC, Gunaratne J, Tergaonkar V, Hui KM, Hong W. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 2015; 6:6184. [PMID: 25630468 PMCID: PMC4317502 DOI: 10.1038/ncomms7184] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 12/30/2014] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The identity and role of cell surface molecules driving complex biological events leading to HCC progression are poorly understood, hence representing major lacunae in HCC therapies. Here, combining SILAC quantitative proteomics and biochemical approaches, we uncover a critical oncogenic role of Agrin, which is overexpressed and secreted in HCC. Agrin enhances cellular proliferation, migration and oncogenic signalling. Mechanistically, Agrin’s extracellular matrix sensor activity provides oncogenic cues to regulate Arp2/3-dependent ruffling, invadopodia formation and epithelial–mesenchymal transition through sustained focal adhesion integrity that drives liver tumorigenesis. Furthermore, Agrin signalling through Lrp4-muscle-specific tyrosine kinase (MuSK) forms a critical oncogenic axis. Importantly, antibodies targeting Agrin reduced oncogenic signalling and tumour growth in vivo. Together, we demonstrate that Agrin is frequently upregulated and important for oncogenic property of HCC, and is an attractive target for antibody therapy. The proteoglycan Agrin is known to be expressed in neurons and muscle and to bind ECM protein laminin. Here the authors report that Agrin promotes hepatocellular carcinoma by stimulating proliferation, decreasing focal adhesion, increasing invasiveness and promoting an epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Hannah L F Swa
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jianxiang Chen
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Xiaoqian Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Yan Shan Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Li Shen Loo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Semih Can Akıncılar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kam M Hui
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore [2] Laboratory of Cancer Genomics, Cellular and Molecular Research Division, National Cancer Center Singapore, 11, Hospital drive, Singapore 169610, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61, Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
43
|
Rainero E, Howe JD, Caswell PT, Jamieson NB, Anderson K, Critchley DR, Machesky L, Norman JC. Ligand-Occupied Integrin Internalization Links Nutrient Signaling to Invasive Migration. Cell Rep 2015; 10:398-413. [PMID: 25600874 DOI: 10.1016/j.celrep.2014.12.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Integrin trafficking is key to cell migration, but little is known about the spatiotemporal organization of integrin endocytosis. Here, we show that α5β1 integrin undergoes tensin-dependent centripetal movement from the cell periphery to populate adhesions located under the nucleus. From here, ligand-engaged α5β1 integrins are internalized under control of the Arf subfamily GTPase, Arf4, and are trafficked to nearby late endosomes/lysosomes. Suppression of centripetal movement or Arf4-dependent endocytosis disrupts flow of ligand-bound integrins to late endosomes/lysosomes and their degradation within this compartment. Arf4-dependent integrin internalization is required for proper lysosome positioning and for recruitment and activation of mTOR at this cellular subcompartment. Furthermore, nutrient depletion promotes subnuclear accumulation and endocytosis of ligand-engaged α5β1 integrins via inhibition of mTORC1. This two-way regulatory interaction between mTORC1 and integrin trafficking in combination with data describing a role for tensin in invasive cell migration indicate interesting links between nutrient signaling and metastasis.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jonathan D Howe
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK; Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Patrick T Caswell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK; Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Nigel B Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow G31 2ER, UK
| | - Kurt Anderson
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK.
| |
Collapse
|
44
|
Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:940-52. [PMID: 25601713 DOI: 10.1016/j.bbamcr.2015.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.
Collapse
|
45
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
46
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
47
|
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
Collapse
Affiliation(s)
- Florian J. Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - David D. Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
- Address correspondence to: David D. Schlaepfer, Ph.D., University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Dr., MC0803, La Jolla, CA 92093,
| |
Collapse
|
48
|
Graziano BR, Weiner OD. Self-organization of protrusions and polarity during eukaryotic chemotaxis. Curr Opin Cell Biol 2014; 30:60-7. [PMID: 24998184 DOI: 10.1016/j.ceb.2014.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022]
Abstract
Many eukaryotic cells regulate their polarity and motility in response to external chemical cues. While we know many of the linear connections that link receptors with downstream actin polymerization events, we have a much murkier understanding of the higher order positive and negative feedback loops that organize these processes in space and time. Importantly, physical forces and actin polymerization events do not simply act downstream of chemotactic inputs but are rather involved in a web of reciprocal interactions with signaling components to generate self-organizing pseudopods and cell polarity. Here we focus on recent progress and open questions in the field, including the basic unit of actin organization, how cells regulate the number and speed of protrusions, and 2D versus 3D migration.
Collapse
Affiliation(s)
- Brian R Graziano
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Berginski ME, Creed SJ, Cochran S, Roadcap DW, Bear JE, Gomez SM. Automated analysis of invadopodia dynamics in live cells. PeerJ 2014; 2:e462. [PMID: 25071988 PMCID: PMC4103095 DOI: 10.7717/peerj.462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/09/2014] [Indexed: 01/07/2023] Open
Abstract
Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.
Collapse
Affiliation(s)
- Matthew E Berginski
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Sarah J Creed
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Shelly Cochran
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - David W Roadcap
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA ; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA ; Howard Hughes Medical Institute , Chevy Chase, MD , USA
| | - Shawn M Gomez
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA ; Department of Computer Science, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA ; Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|
50
|
Sadok A, Marshall CJ. Rho GTPases: masters of cell migration. Small GTPases 2014; 5:e29710. [PMID: 24978113 PMCID: PMC4107589 DOI: 10.4161/sgtp.29710] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
Since their discovery in the late eighties, the role of Rho GTPases in the regulation of cell migration has been extensively studied and has mainly focused on the hallmark family members Rho, Rac, and Cdc42. Recent technological advances in cell biology, such as Rho-family GTPase activity biosensors, studies in 3D, and unbiased RNAi-based screens, have revealed an increasingly complex role for Rho GTPases during cell migration, with many inter-connected functions and a strong dependency on the physical and chemical properties of the surrounding environment. This review aims to give an overview of recent studies on the role of Rho-family GTPase members in the modulation of cell migration in different environments, and discuss future directions.
Collapse
Affiliation(s)
- Amine Sadok
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| | - Chris J Marshall
- The Institute of Cancer Research; Division of Cancer Biology; London, UK
| |
Collapse
|