1
|
Hindmarsh Sten T, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. Cell 2025; 188:1486-1503.e25. [PMID: 39952248 PMCID: PMC11955089 DOI: 10.1016/j.cell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection-female choice and male-male competition-work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a "song" that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes-P1a and pC1x neurons-are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Shade Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
2
|
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, Liu XL, Wang L, Wang QQ, Zhou L. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). INSECT MOLECULAR BIOLOGY 2025; 34:162-173. [PMID: 39314071 DOI: 10.1111/imb.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.
Collapse
Affiliation(s)
- Xiao-Guang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qi-Qi Qiu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cong-Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Tian-Liang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qin-Qin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Yun M, Kim DH, Ha TS, Lee KM, Park E, Knaden M, Hansson BS, Kim YJ. Male cuticular pheromones stimulate removal of the mating plug and promote re-mating through pC1 neurons in Drosophila females. eLife 2024; 13:RP96013. [PMID: 39255004 PMCID: PMC11386958 DOI: 10.7554/elife.96013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
In birds and insects, the female uptakes sperm for a specific duration post-copulation known as the ejaculate holding period (EHP) before expelling unused sperm and the mating plug through sperm ejection. In this study, we found that Drosophila melanogaster females shortens the EHP when incubated with males or mated females shortly after the first mating. This phenomenon, which we termed male-induced EHP shortening (MIES), requires Or47b+ olfactory and ppk23+ gustatory neurons, activated by 2-methyltetracosane and 7-tricosene, respectively. These odorants raise cAMP levels in pC1 neurons, responsible for processing male courtship cues and regulating female mating receptivity. Elevated cAMP levels in pC1 neurons reduce EHP and reinstate their responsiveness to male courtship cues, promoting re-mating with faster sperm ejection. This study established MIES as a genetically tractable model of sexual plasticity with a conserved neural mechanism.
Collapse
Affiliation(s)
- Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Tal Soo Ha
- Department of Biomedical Science, College of Natural Science, Daegu University, Gyeongsan, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eungyu Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Next Generation Insect Chemical Ecology, Max Planck Centre, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
4
|
Hérault C, Pihl T, Hudry B. Cellular sex throughout the organism underlies somatic sexual differentiation. Nat Commun 2024; 15:6925. [PMID: 39138201 PMCID: PMC11322332 DOI: 10.1038/s41467-024-51228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Sex chromosomes underlie the development of male or female sex organs across species. While systemic signals derived from sex organs prominently contribute to sex-linked differences, it is unclear whether the intrinsic presence of sex chromosomes in somatic tissues has a specific function. Here, we use genetic tools to show that cellular sex is crucial for sexual differentiation throughout the body in Drosophila melanogaster. We reveal that every somatic cell converts the intrinsic presence of sex chromosomes into the active production of a sex determinant, a female specific serine- and arginine-rich (SR) splicing factor. This discovery dismisses the mosaic model which posits that only a subset of cells has the potential to sexually differentiate. Using cell-specific sex reversals, we show that this prevalence of cellular sex drives sex differences in organ size and body weight and is essential for fecundity. These findings demonstrate that cellular sex drives differentiation programs at an organismal scale and highlight the importance of cellular sex pathways in sex trait evolution.
Collapse
Affiliation(s)
- Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
5
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Venuto A, Baker CA. Developmental neuroscience: Building sex-specific adult circuitry from common larval origins. Curr Biol 2024; 34:R288-R291. [PMID: 38593775 DOI: 10.1016/j.cub.2024.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development of sex-specific neural circuitry is critical for reproductive behaviors. A new study traces the developmental origin of female-specific neurons that underlie an adult mating behavior to larval neurons common to both sexes in Drosophila.
Collapse
Affiliation(s)
- Alexandra Venuto
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Christa A Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
7
|
Cordero-Molina S, Fetter-Pruneda I, Contreras-Garduño J. Neural mechanisms involved in female mate choice in invertebrates. Front Endocrinol (Lausanne) 2024; 14:1291635. [PMID: 38269245 PMCID: PMC10807292 DOI: 10.3389/fendo.2023.1291635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.
Collapse
Affiliation(s)
- Sagrario Cordero-Molina
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingrid Fetter-Pruneda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Contreras-Garduño
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Yang YT, Hu SW, Zhu Y. A protocol for measuring the sexual receptivity of female Drosophila. STAR Protoc 2023; 4:102563. [PMID: 37703181 PMCID: PMC10507193 DOI: 10.1016/j.xpro.2023.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Female receptivity in mating is crucial for successful copulation, but protocols for quantifying female behaviors reflecting receptivity are scarce compared to the analysis of male behaviors. Here, we present a protocol for assessing the sexual receptivity of female Drosophila that considers behaviors from both sexes. We describe steps for preparing and loading flies into a courtship chamber, video recording the behaviors of the pairs, and analyzing their behavioral displays. This protocol includes behavior recognition criteria suitable for typical laboratory settings. For complete details on the use and execution of this protocol, please refer to Yang et al. (2023).1.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; Sino-Danish Center for Education and Research, Beijing 101408, China.
| | - Shao Wei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 101408, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China.
| |
Collapse
|
9
|
Sten TH, Li R, Hollunder F, Eleazer S, Ruta V. Male-male interactions shape mate selection in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565582. [PMID: 37961193 PMCID: PMC10635267 DOI: 10.1101/2023.11.03.565582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Males of many species have evolved behavioral traits to both attract females and repel rivals. Here, we explore mate selection in Drosophila from both the male and female perspective to shed light on how these key components of sexual selection - female choice and male-male competition - work in concert to guide reproductive strategies. We find that male flies fend off competing suitors by interleaving their courtship of a female with aggressive wing flicks, which both repel competitors and generate a 'song' that obscures the female's auditory perception of other potential mates. Two higher-order circuit nodes - P1a and pC1x neurons - are coordinately recruited to allow males to flexibly interleave these agonistic actions with courtship displays, assuring they persistently pursue females until their rival falters. Together, our results suggest that female mating decisions are shaped by male-male interactions, underscoring how a male's ability to subvert his rivals is central to his reproductive success.
Collapse
Affiliation(s)
- Tom Hindmarsh Sten
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
- Present address: Department of Biology, Stanford University, Stanford, CA
| | - Rufei Li
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Florian Hollunder
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Shadé Eleazer
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University and Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
10
|
Jovanoski KD, Duquenoy L, Mitchell J, Kapoor I, Treiber CD, Croset V, Dempsey G, Parepalli S, Cognigni P, Otto N, Felsenberg J, Waddell S. Dopaminergic systems create reward seeking despite adverse consequences. Nature 2023; 623:356-365. [PMID: 37880370 PMCID: PMC10632144 DOI: 10.1038/s41586-023-06671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Resource-seeking behaviours are ordinarily constrained by physiological needs and threats of danger, and the loss of these controls is associated with pathological reward seeking1. Although dysfunction of the dopaminergic valuation system of the brain is known to contribute towards unconstrained reward seeking2,3, the underlying reasons for this behaviour are unclear. Here we describe dopaminergic neural mechanisms that produce reward seeking despite adverse consequences in Drosophila melanogaster. Odours paired with optogenetic activation of a defined subset of reward-encoding dopaminergic neurons become cues that starved flies seek while neglecting food and enduring electric shock punishment. Unconstrained seeking of reward is not observed after learning with sugar or synthetic engagement of other dopaminergic neuron populations. Antagonism between reward-encoding and punishment-encoding dopaminergic neurons accounts for the perseverance of reward seeking despite punishment, whereas synthetic engagement of the reward-encoding dopaminergic neurons also impairs the ordinary need-dependent dopaminergic valuation of available food. Connectome analyses reveal that the population of reward-encoding dopaminergic neurons receives highly heterogeneous input, consistent with parallel representation of diverse rewards, and recordings demonstrate state-specific gating and satiety-related signals. We propose that a similar dopaminergic valuation system dysfunction is likely to contribute to maladaptive seeking of rewards by mammals.
Collapse
Affiliation(s)
| | - Lucille Duquenoy
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Jessica Mitchell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ishaan Kapoor
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | | | - Vincent Croset
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Department of Biosciences, Durham University, Durham, UK
| | - Georgia Dempsey
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sai Parepalli
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Paola Cognigni
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Northern Medical Physics and Clinical Engineering, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
13
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525544. [PMID: 36747836 PMCID: PMC9900824 DOI: 10.1101/2023.01.25.525544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
14
|
Nöbel S, Monier M, Fargeot L, Lespagnol G, Danchin E, Isabel G. Female fruit flies copy the acceptance, but not the rejection, of a mate. Behav Ecol 2022. [DOI: 10.1093/beheco/arac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Acceptance and avoidance can be socially transmitted, especially in the case of mate choice. When a Drosophila melanogaster female observes a conspecific female (called demonstrator female) choosing to mate with one of two males, the former female (called observer female) can memorize and copy the latter female’s choice. Traditionally in mate-copying experiments, demonstrations provide two types of information to observer females, namely, the acceptance (positive) of one male and the rejection of the other male (negative). To disentangle the respective roles of positive and negative information in Drosophila mate copying, we performed experiments in which demonstrations provided only one type of information at a time. We found that positive information alone is sufficient to trigger mate copying. Observer females preferred males of phenotype A after watching a female mating with a male of phenotype A in the absence of any other male. Contrastingly, negative information alone (provided by a demonstrator female actively rejecting a male of phenotype B) did not affect future observer females’ mate choice. These results suggest that the informative part of demonstrations in Drosophila mate-copying experiments lies mainly, if not exclusively, in the positive information provided by the copulation with a given male. We discuss the reasons for such a result and suggest that Drosophila females learn to prefer the successful males, implying that the underlying learning mechanisms may be shared with those of appetitive memory in non-social associative learning.
Collapse
Affiliation(s)
- Sabine Nöbel
- Université Toulouse 1 Capitole and Institute for Advanced Study in Toulouse (IAST) , Toulouse , France
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Magdalena Monier
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Laura Fargeot
- Centre de Recherches sur la Cognition Animale (CRCA) , Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Toulouse , France
| | - Guillaume Lespagnol
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB), UMR5174, CNRS, IRD, Université Toulouse III Paul Sabatier , 118 route de Narbonne, F-31062 Toulouse Cedex 9 , France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA) , Centre de Biologie Intégrative (CBI), CNRS UMR 5169, Toulouse , France
| |
Collapse
|
15
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Wang T, Jing B, Deng B, Shi K, Li J, Ma B, Wu F, Zhou C. Drosulfakinin signaling modulates female sexual receptivity in Drosophila. eLife 2022; 11:76025. [PMID: 35475782 PMCID: PMC9045819 DOI: 10.7554/elife.76025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Female sexual behavior as an innate behavior is of prominent biological importance for survival and reproduction. However, molecular and circuit mechanisms underlying female sexual behavior is not well understood. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) to promote female sexual behavior in Drosophila. Loss of DSK function reduces female receptivity while overexpressing DSK enhances female receptivity. We identify two pairs of Dsk-expressing neurons in the central brain to promote female receptivity. We find that the DSK peptide acts through one of its receptors, CCKLR-17D3, to modulate female receptivity. Manipulation of CCKLR-17D3 and its expressing neurons alters female receptivity. We further reveal that the two pairs of Dsk-expressing neurons receive input signal from pC1 neurons that integrate sex-related cues and mating status. These results demonstrate how a neuropeptide pathway interacts with a central neural node in the female sex circuitry to modulate sexual receptivity.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biyang Jing
- State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangcun Life Sciences Park, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
17
|
Meiselman MR, Alpert MH, Cui X, Shea J, Gregg I, Gallio M, Yapici N. Recovery from cold-induced reproductive dormancy is regulated by temperature-dependent AstC signaling. Curr Biol 2022; 32:1362-1375.e8. [PMID: 35176227 PMCID: PMC8969192 DOI: 10.1016/j.cub.2022.01.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022]
Abstract
Animals have evolved a variety of behaviors to cope with adverse environmental conditions. Similar to other insects, the fly, Drosophila melanogaster, responds to sustained cold by reducing its metabolic rate and arresting its reproduction. Here, we show that a subset of dorsal neurons (DN3s) that express the neuropeptide allatostatin C (AstC) facilitates recovery from cold-induced reproductive dormancy. The activity of AstC-expressing DN3s, as well as AstC peptide levels, are suppressed by cold. Cold temperature also impacts AstC levels in other Drosophila species and mosquitoes, Aedes aegypti, and Anopheles stephensi. The stimulatory effect of AstC on egg production is mediated by cholinergic AstC-R2 neurons. Our results demonstrate that DN3s coordinate female reproductive capacity with environmental temperature via AstC signaling. AstC/AstC-R2 is conserved across many insect species and their role in regulating female reproductive capacity makes them an ideal target for controlling the population of agricultural pests and human disease vectors.
Collapse
Affiliation(s)
- Matthew R Meiselman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jamien Shea
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ian Gregg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
19
|
Ahmed KA, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Population differences and domestication effects on mating and remating frequencies in Queensland fruit fly. Sci Rep 2022; 12:153. [PMID: 34997097 PMCID: PMC8741809 DOI: 10.1038/s41598-021-04198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Females of many insect species are unreceptive to remating for a period following their first mating. This inhibitory effect may be mediated by either the female or her first mate, or both, and often reflects the complex interplay of reproductive strategies between the sexes. Natural variation in remating inhibition and how this phenotype responds to captive breeding are largely unexplored in insects, including many pest species. We investigated genetic variation in remating propensity in the Queensland fruit fly, Bactrocera tryoni, using strains differing in source locality and degree of domestication. We found up to threefold inherited variation between strains from different localities in the level of intra-strain remating inhibition. The level of inhibition also declined significantly during domestication, which implied the existence of genetic variation for this trait within the starting populations as well. Inter-strain mating and remating trials showed that the strain differences were mainly due to the genotypes of the female and, to a lesser extent, the second male, with little effect of the initial male genotype. Implications for our understanding of fruit fly reproductive biology and population genetics and the design of Sterile Insect Technique pest management programs are discussed.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia. .,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia.
| | - Heng Lin Yeap
- CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| | - Siu Fai Lee
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia. .,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia.
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| |
Collapse
|
20
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
21
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
22
|
McKelvey EGZ, Gyles JP, Michie K, Barquín Pancorbo V, Sober L, Kruszewski LE, Chan A, Fabre CCG. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr Biol 2021; 31:3894-3904.e5. [PMID: 34174209 PMCID: PMC8445324 DOI: 10.1016/j.cub.2021.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
Substrate-borne vibratory signals are thought to be one of the most ancient and taxonomically widespread communication signals among animal species, including Drosophila flies.1-9 During courtship, the male Drosophila abdomen tremulates (as defined in Busnel et al.10) to generate vibrations in the courting substrate.8,9 These vibrations coincide with nearby females becoming immobile, a behavior that facilitates mounting and copulation.8,11-13 It was unknown how the Drosophila female detects these substrate-borne vibratory signals. Here, we confirm that the immobility response of the female to the tremulations is not dependent on any air-borne cue. We show that substrate-borne communication is used by wild Drosophila and that the vibrations propagate through those natural substrates (e.g., fruits) where flies feed and court. We examine transmission of the signals through a variety of substrates and describe how each of these substrates modifies the vibratory signal during propagation and affects the female response. Moreover, we identify the main sensory structures and neurons that receive the vibrations in the female legs, as well as the mechanically gated ion channels Nanchung and Piezo (but not Trpγ) that mediate sensitivity to the vibrations. Together, our results show that Drosophila flies, like many other arthropods, use substrate-borne communication as a natural means of communication, strengthening the idea that this mode of signal transfer is heavily used and reliable in the wild.3,4,7 Our findings also reveal the cellular and molecular mechanisms underlying the vibration-sensing modality necessary for this communication.
Collapse
Affiliation(s)
- Eleanor G Z McKelvey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - James P Gyles
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Kyle Michie
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Louisa Sober
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Laura E Kruszewski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Alice Chan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Caroline C G Fabre
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
23
|
Ishimoto H, Kamikouchi A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell Mol Life Sci 2021; 78:4805-4819. [PMID: 33837450 PMCID: PMC11071752 DOI: 10.1007/s00018-021-03820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
Collapse
Grants
- JP20H03355 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04997 Ministry of Education, Culture, Sports, Science and Technology
- 19H04933 Ministry of Education, Culture, Sports, Science and Technology
- 17K19450 Ministry of Education, Culture, Sports, Science and Technology
- 15K07147 Ministry of Education, Culture, Sports, Science and Technology
- 18K06332 Ministry of Education, Culture, Sports, Science and Technology
- Naito Foundation
- Inamori Foundation
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
24
|
Male courtship song drives escape responses that are suppressed for successful mating. Sci Rep 2021; 11:9227. [PMID: 33927291 PMCID: PMC8084941 DOI: 10.1038/s41598-021-88691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Persuasion is a crucial component of the courtship ritual needed to overcome contact aversion. In fruit flies, it is well established that the male courtship song prompts receptivity in female flies, in part by causing sexually mature females to slow down and pause, allowing copulation. Whether the above receptivity behaviours require the suppression of contact avoidance or escape remains unknown. Here we show, through genetic manipulation of neurons we identified as required for female receptivity, that male song induces avoidance/escape responses that are suppressed in wild type flies. First, we show that silencing 70A09 neurons leads to an increase in escape, as females increase their walking speed during courtship together with an increase in jumping and a reduction in pausing. The increase in escape response is specific to courtship, as escape to a looming threat is not intensified. Activation of 70A09 neurons leads to pausing, confirming the role of these neurons in escape modulation. Finally, we show that the escape displays by the female result from the presence of a courting male and more specifically from the song produced by a courting male. Our results suggest that courtship song has a dual role, promoting both escape and pause in females and that escape is suppressed by the activity of 70A09 neurons, allowing mating to occur.
Collapse
|
25
|
Ebrahim SAM, Talross GJS, Carlson JR. Sight of parasitoid wasps accelerates sexual behavior and upregulates a micropeptide gene in Drosophila. Nat Commun 2021; 12:2453. [PMID: 33907186 PMCID: PMC8079388 DOI: 10.1038/s41467-021-22712-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps inflict widespread death upon the insect world. Hundreds of thousands of parasitoid wasp species kill a vast range of insect species. Insects have evolved defensive responses to the threat of wasps, some cellular and some behavioral. Here we find an unexpected response of adult Drosophila to the presence of certain parasitoid wasps: accelerated mating behavior. Flies exposed to certain wasp species begin mating more quickly. The effect is mediated via changes in the behavior of the female fly and depends on visual perception. The sight of wasps induces the dramatic upregulation in the fly nervous system of a gene that encodes a 41-amino acid micropeptide. Mutational analysis reveals that the gene is essential to the behavioral response of the fly. Our work provides a foundation for further exploration of how the activation of visual circuits by the sight of a wasp alters both sexual behavior and gene expression.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Animals, Genetically Modified
- Carnivory/physiology
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila/parasitology
- Drosophila Proteins/deficiency
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/metabolism
- Drosophila melanogaster/parasitology
- Drosophila simulans/genetics
- Drosophila simulans/metabolism
- Drosophila simulans/parasitology
- Female
- Fertility/genetics
- Gene Expression Regulation
- Male
- Neurons/cytology
- Neurons/metabolism
- Pattern Recognition, Visual/physiology
- Receptors, Ionotropic Glutamate/deficiency
- Receptors, Ionotropic Glutamate/genetics
- Receptors, Odorant/deficiency
- Receptors, Odorant/genetics
- Sexual Behavior, Animal/physiology
- Wasps/pathogenicity
- Wasps/physiology
- beta-Carotene 15,15'-Monooxygenase/genetics
- beta-Carotene 15,15'-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Shimaa A M Ebrahim
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
26
|
Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 2020; 589:577-581. [PMID: 33239786 DOI: 10.1038/s41586-020-2972-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022]
Abstract
Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate1,2. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female3,4. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.
Collapse
Affiliation(s)
- Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
27
|
Deutsch D, Pacheco D, Encarnacion-Rivera L, Pereira T, Fathy R, Clemens J, Girardin C, Calhoun A, Ireland E, Burke A, Dorkenwald S, McKellar C, Macrina T, Lu R, Lee K, Kemnitz N, Ih D, Castro M, Halageri A, Jordan C, Silversmith W, Wu J, Seung HS, Murthy M. The neural basis for a persistent internal state in Drosophila females. eLife 2020; 9:e59502. [PMID: 33225998 PMCID: PMC7787663 DOI: 10.7554/elife.59502] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sustained changes in mood or action require persistent changes in neural activity, but it has been difficult to identify the neural circuit mechanisms that underlie persistent activity and contribute to long-lasting changes in behavior. Here, we show that a subset of Doublesex+ pC1 neurons in the Drosophila female brain, called pC1d/e, can drive minutes-long changes in female behavior in the presence of males. Using automated reconstruction of a volume electron microscopic (EM) image of the female brain, we map all inputs and outputs to both pC1d and pC1e. This reveals strong recurrent connectivity between, in particular, pC1d/e neurons and a specific subset of Fruitless+ neurons called aIPg. We additionally find that pC1d/e activation drives long-lasting persistent neural activity in brain areas and cells overlapping with the pC1d/e neural network, including both Doublesex+ and Fruitless+ neurons. Our work thus links minutes-long persistent changes in behavior with persistent neural activity and recurrent circuit architecture in the female brain.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Diego Pacheco
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Ramie Fathy
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Cyrille Girardin
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Adam Calhoun
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Elise Ireland
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Austin Burke
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Brain & Cognitive Science Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Chris Jordan
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - William Silversmith
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Computer Science, Princeton UniversityPrincetonUnited States
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| |
Collapse
|
28
|
Mezzera C, Brotas M, Gaspar M, Pavlou HJ, Goodwin SF, Vasconcelos ML. Ovipositor Extrusion Promotes the Transition from Courtship to Copulation and Signals Female Acceptance in Drosophila melanogaster. Curr Biol 2020; 30:3736-3748.e5. [PMID: 32795437 DOI: 10.1016/j.cub.2020.06.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Communication between male and female fruit flies during courtship is essential for successful mating, but, as with many other species, it is the female who decides whether to mate. Here, we show a novel role for ovipositor extrusion in promoting male copulation attempts in virgin and mated females and signaling acceptance in virgins. We first show that ovipositor extrusion is only displayed by sexually mature females, exclusively during courtship and in response to the male song. We identified a pair of descending neurons that controls ovipositor extrusion in mated females. Genetic silencing of the descending neurons shows that ovipositor extrusion stimulates the male to attempt copulation. A detailed behavioral analysis revealed that during courtship, the male repeatedly licks the female genitalia, independently of ovipositor extrusion, and that licking an extruded ovipositor prompts a copulation attempt. However, if the ovipositor is not subsequently retracted, copulation is prevented, as it happens with mated females. In this study, we reveal a dual function of the ovipositor: while its extrusion is necessary for initiating copulation by the male, its retraction signals female acceptance. We thus uncover the significance of the communication between male and female that initiates the transition from courtship to copulation.
Collapse
Affiliation(s)
- Cecilia Mezzera
- Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | | | - Miguel Gaspar
- Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Hania J Pavlou
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | |
Collapse
|
29
|
Abstract
Females communicate sexual receptivity in various ways. Drosophila signal that they are mated and ovulating, and resistive to mating again, by extruding their egg-laying organ (ovipositor). Connectome-aided circuit analysis reveals how this break up message is computed and differs from an acceptance response in virgins.
Collapse
|
30
|
Bakshi A, Sipani R, Ghosh N, Joshi R. Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system. PLoS Genet 2020; 16:e1008976. [PMID: 32866141 PMCID: PMC7485976 DOI: 10.1371/journal.pgen.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/11/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9–13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grainyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apoptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS. Two major characteristic features of bilaterian organisms are the head to tail axis and a complex central nervous system. The Hox family of transcription factors, which are expressed segmentally along the head to tail axis, plays a critical role in determining both of these features. One of the ways by which Hox factors do this is by mediating differential programmed cell death of the neural stem cells along the head to tail axis of the developing central nervous system, thereby regulating the numerical diversity of the neurons generated along this axis. Our study with a subpopulation of neural stem cells in the most terminal region of the Drosophila larval central nervous system highlights that region-specific Hox-dependent cell death of neural stem cells in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern the developing central nervous system.
Collapse
Affiliation(s)
- Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
31
|
Wang F, Wang K, Forknall N, Parekh R, Dickson BJ. Circuit and Behavioral Mechanisms of Sexual Rejection by Drosophila Females. Curr Biol 2020; 30:3749-3760.e3. [PMID: 32795445 DOI: 10.1016/j.cub.2020.07.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022]
Abstract
The mating decisions of Drosophila melanogaster females are primarily revealed through either of two discrete actions: opening of the vaginal plates to allow copulation, or extrusion of the ovipositor to reject the male. Both actions are triggered by the male courtship song, and both are dependent upon the female's mating status. Virgin females are more likely to open their vaginal plates in response to song; mated females are more likely to extrude their ovipositor. Here, we examine the neural cause and behavioral consequence of ovipositor extrusion. We show that the DNp13 descending neurons act as command-type neurons for ovipositor extrusion, and that ovipositor extrusion is an effective deterrent only when performed by females that have previously mated. The DNp13 neurons respond to male song via direct synaptic input from the pC2l auditory neurons. Mating status does not modulate the song responses of DNp13 neurons, but rather how effectively they can engage the motor circuits for ovipositor extrusion. We present evidence that mating status information is mediated by ppk+ sensory neurons in the uterus, which are activated upon ovulation. Vaginal plate opening and ovipositor extrusion are thus controlled by anatomically and functionally distinct circuits, highlighting the diversity of neural decision-making circuits even in the context of closely related behaviors with shared exteroceptive and interoceptive inputs.
Collapse
Affiliation(s)
- Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
32
|
Liu C, Zhang B, Zhang L, Yang T, Zhang Z, Gao Z, Zhang W. A neural circuit encoding mating states tunes defensive behavior in Drosophila. Nat Commun 2020; 11:3962. [PMID: 32770059 PMCID: PMC7414864 DOI: 10.1038/s41467-020-17771-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Social context can dampen or amplify the perception of touch, and touch in turn conveys nuanced social information. However, the neural mechanism behind social regulation of mechanosensation is largely elusive. Here we report that fruit flies exhibit a strong defensive response to mechanical stimuli to their wings. In contrast, virgin female flies being courted by a male show a compromised defensive response to the stimuli, but following mating the response is enhanced. This state-dependent switch is mediated by a functional reconfiguration of a neural circuit labelled with the Tmc-L gene in the ventral nerve cord. The circuit receives excitatory inputs from peripheral mechanoreceptors and coordinates the defensive response. While male cues suppress it via a doublesex (dsx) neuronal pathway, mating sensitizes it by stimulating a group of uterine neurons and consequently activating a leucokinin-dependent pathway. Such a modulation is crucial for the balance between defense against body contacts and sexual receptivity. Wing touching induces a defensive response in D. melanogaster. Here, the authors show that female flies change the defensive response during courtship and after mating. This switch is mediated by functional reconfiguration of a neural circuit in the ventral nerve cord.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Bei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Liwei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Zhewei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Zihua Gao
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
33
|
Hou X, Xu F, Zhang C, Shuai J, Huang Z, Liang Y, Xu X. Dexmedetomidine exerts neuroprotective effects during high glucose-induced neural injury by inhibiting miR-125b. Biosci Rep 2020; 40:BSR20200394. [PMID: 32538430 PMCID: PMC7322107 DOI: 10.1042/bsr20200394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy (DNP) is the most common complication of diabetes mellitus affecting approximately 50% of diabetes patients. Studying the effect of potential drugs with antioxidant properties and minimal toxicities on neural cells may lead to the development of new and safe pharmacotherapy. Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, is a clinically used sedative also known to have neural protection effect. In the present study, we aimed to investigate the protective role of DEX in high glucose (HG)-induced neural injury and its potential miRNA-related mechanisms. Our results showed that DEX exerted neuroprotective effects during high glucose-induced damage to PC12 cells in a dose-dependent manner. DEX restored cell viability and repressed LDH, Caspase-3 activity, ROS production, and cell apoptosis in HG-treated PC12 cells. MiR-125b-5p was significantly up-regulated in PC12 cells upon HG treatment and it was demonstrated as an target for DEX. The neuroprotective effects of DEX on HG-induced cellular injury were reversed through miR-125b-5p overexpression, and vitamin D receptor (VDR) is a direct targeted of the miR-125b-5p. Together, our results indicate that DEX displays neuroprotective effects on PC-12 cells under high glucose through regulating miR-125b-5p/VDR axis. Our findings might raise the possibility of potential therapeutic application of DEX for managing diabetic neuropathy neural injuries.
Collapse
Affiliation(s)
- Xiaolai Hou
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Fenlan Xu
- Department of Anesthesiology, The Public Health Clinical Center of Chengdu, Chengdu, China
| | - Cheng Zhang
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, Chengdu, China
| | - Jianzhong Shuai
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, Chengdu, China
| | - Zhenhua Huang
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, Chengdu, China
| | - Yu Liang
- Laboratory of Anesthesia and Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Xu
- Department of Anesthesiology, Chengdu Women’s and Children’s Central Hospital, Chengdu, China
| |
Collapse
|
34
|
miRNAs and Neural Alternative Polyadenylation Specify the Virgin Behavioral State. Dev Cell 2020; 54:410-423.e4. [PMID: 32579967 DOI: 10.1016/j.devcel.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
How are diverse regulatory strategies integrated to impose appropriately patterned gene expression that underlie in vivo phenotypes? Here, we reveal how coordinated miRNA regulation and neural-specific alternative polyadenylation (APA) of a single locus controls complex behaviors. Our entry was the unexpected observation that deletion of Bithorax complex (BX-C) miRNAs converts virgin female flies into a subjective post-mated behavioral state, normally induced by seminal proteins following copulation. Strikingly, this behavioral switch is directly attributable to misregulation of homothorax (hth). We localize specific CNS abdominal neurons where de-repressed Hth compromises virgin behavior in BX-C miRNA mutants. Moreover, we use genome engineering to demonstrate that precise mutation of hth 3' UTR sites for BX-C miRNAs or deletion of its neural 3' UTR extension containing most of these sites both induce post-mated behaviors in virgins. Thus, facilitation of miRNA-mediated repression by neural APA is required for virgin females to execute behaviors appropriate to their internal state.
Collapse
|
35
|
Abstract
A mature virgin female fruit fly will initially resist copulation, while she assesses the desirability of her suitor. A new study identifies a neural circuit that controls rejection and shows how it changes from rejection to acceptance and copulation.
Collapse
Affiliation(s)
- Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
36
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
37
|
A Feedforward Circuit Regulates Action Selection of Pre-mating Courtship Behavior in Female Drosophila. Curr Biol 2020; 30:396-407.e4. [PMID: 31902724 DOI: 10.1016/j.cub.2019.11.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
In the early phase of courtship, female fruit flies exhibit an acute rejection response to avoid unfavorable mating. This pre-mating rejection response is evolutionarily paralleled across species, but the molecular and neuronal basis of that behavior is unclear. Here, we show that a putative incoherent feedforward circuit comprising ellipsoid body neurons, cholinergic R4d, and its repressor GABAergic R2/R4m neurons regulates the pre-mating rejection response in the virgin female Drosophila melanogaster. Both R4d and R2/R4m are positively regulated, via specific dopamine receptors, by a subset of neurons in the dopaminergic PPM3 cluster. Genetic deprivation of GABAergic signal via GABAA receptor RNA interference in this circuit induces a massive rejection response, whereas activation of GABAergic R2/R4m or suppression of cholinergic R4d increases receptivity. Moreover, glutamatergic signaling via N-methyl-d-aspartate receptors induces NO-mediated retrograde regulation potentially from R4d to R2/R4m, likely providing flexible control of the behavioral switching from rejection to acceptance. Our study elucidates the molecular and neural mechanisms regulating the behavioral selection process of the pre-mating female.
Collapse
|
38
|
McKelvey EG, Fabre CC. Recent neurogenetic findings in insect courtship behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 36:103-110. [PMID: 31546094 DOI: 10.1016/j.cois.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Insect courtship parades consist of series of innate and stereotyped behaviours that become hardwired-in during the development of the nervous system. As such, insect courtship behaviour provides an excellent model for probing the principles of neuronal assembly, which underlie patterns of behaviour. Here, we present the main advances of recent studies - in species all the way from flies to planthoppers - and we envisage how these could lead to further propitious findings.
Collapse
Affiliation(s)
- Eleanor Gz McKelvey
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Caroline Cg Fabre
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
39
|
Szabad J, Peng J, Kubli E. Control of mating plug expelling and sperm storage in Drosophila: A gynandromorph- and mutation-based dissection. Biol Futur 2019; 70:301-311. [PMID: 34554542 DOI: 10.1556/019.70.2019.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In this study, we analyzed gynandromorphs with female terminalia, to dissect mating-related female behaviors in Drosophila. MATERIALS AND METHODS We used gynandromorphs, experimentally modified wild-type (Oregon-R) females, and mutant females that lacked different components of the female reproductive apparatus. RESULTS Many of the gynandromorphs mated but did not expel the mating plug (MP). Some of these - with thousands of sperm in the uterus - failed to take up sperm into the storage organs. There were gynandromorphs that stored plenty of sperm but failed to release them to fertilize eggs. Expelling the MP, sperm uptake into the storage organs, and the release of stored sperm along egg production are separate steps occurring during Drosophila female fertility. Cuticle landmarks of the gynandromorphs revealed that while the nerve foci that control MP expelling and also those that control sperm uptake reside in the abdominal, the sperm release foci derive from the thoracic region of the blastoderm. DISCUSSION AND CONCLUSION The gynandromorph study is confirmed by analyses of (a) mutations that cause female sterility: Fs(3)Avar (preventing egg deposition), Tm2gs (removing germline cells), and iab-4DB (eliminating gonad formation) and (b) by experimentally manipulated wild-type females: decapitated or cut through ventral nerve cord.
Collapse
Affiliation(s)
- János Szabad
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland. .,Department of Biology, University of Szeged, H-6720, Szeged, Hungary.
| | - Jing Peng
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland
| | - Eric Kubli
- Institute of Molecular Life Sciences, University of Zurich, Ch-8057, Zurich, Switzerland
| |
Collapse
|
40
|
Calhoun AJ, Pillow JW, Murthy M. Unsupervised identification of the internal states that shape natural behavior. Nat Neurosci 2019; 22:2040-2049. [PMID: 31768056 DOI: 10.1038/s41593-019-0533-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023]
Abstract
Internal states shape stimulus responses and decision-making, but we lack methods to identify them. To address this gap, we developed an unsupervised method to identify internal states from behavioral data and applied it to a dynamic social interaction. During courtship, Drosophila melanogaster males pattern their songs using feedback cues from their partner. Our model uncovers three latent states underlying this behavior and is able to predict moment-to-moment variation in song-patterning decisions. These states correspond to different sensorimotor strategies, each of which is characterized by different mappings from feedback cues to song modes. We show that a pair of neurons previously thought to be command neurons for song production are sufficient to drive switching between states. Our results reveal how animals compose behavior from previously unidentified internal states, which is a necessary step for quantitative descriptions of animal behavior that link environmental cues, internal needs, neuronal activity and motor outputs.
Collapse
Affiliation(s)
- Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
41
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
42
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
43
|
Issa AR, Picao-Osorio J, Rito N, Chiappe ME, Alonso CR. A Single MicroRNA-Hox Gene Module Controls Equivalent Movements in Biomechanically Distinct Forms of Drosophila. Curr Biol 2019; 29:2665-2675.e4. [PMID: 31327720 PMCID: PMC6710004 DOI: 10.1016/j.cub.2019.06.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. The fruit fly miRNA gene miR-iab4 controls the same behavior in the larva and adult miR-iab4 exerts its behavioral roles via repression of the Hox gene Ultrabithorax miRNA/Hox inputs affect the physiology and not the anatomy of specific motor neurons Conditional expression shows a novel role of the Hox genes in adult neural function
Collapse
Affiliation(s)
- A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - João Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Nuno Rito
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| |
Collapse
|
44
|
Wu SF, Ja YL, Zhang YJ, Yang CH. Sweet neurons inhibit texture discrimination by signaling TMC-expressing mechanosensitive neurons in Drosophila. eLife 2019; 8:46165. [PMID: 31184585 PMCID: PMC6559806 DOI: 10.7554/elife.46165] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
Integration of stimuli of different modalities is an important but incompletely understood process during decision making. Here, we show that Drosophila are capable of integrating mechanosensory and chemosensory information of choice options when deciding where to deposit their eggs. Specifically, females switch from preferring the softer option for egg-laying when both options are sugar free to being indifferent between them when both contain sucrose. Such sucrose-induced indifference between options of different hardness requires functional sweet neurons, and, curiously, the Transmembrane Channel-like (TMC)-expressing mechanosensitive neurons that have been previously shown to promote discrimination of substrate hardness during feeding. Further, axons of sweet neurons directly contact axons of TMC-expressing neurons in the brain and stimulation of sweet neurons increases Ca2+ influx into axons of TMC-expressing neurons. These results uncover one mechanism by which Drosophila integrate taste and tactile information when deciding where to deposit their eggs and reveal that TMC-expressing neurons play opposing roles in hardness discrimination in two different decisions.
Collapse
Affiliation(s)
- Shun-Fan Wu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Department of Neurobiology, Duke University, Durham, United States
| | - Ya-Long Ja
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Jie Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chung-Hui Yang
- Department of Neurobiology, Duke University, Durham, United States
| |
Collapse
|
45
|
Baker CA, Clemens J, Murthy M. Acoustic Pattern Recognition and Courtship Songs: Insights from Insects. Annu Rev Neurosci 2019; 42:129-147. [PMID: 30786225 DOI: 10.1146/annurev-neuro-080317-061839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects-crickets, grasshoppers, and fruit flies-reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| | - Jan Clemens
- University Medical Center Goettingen, Max-Planck-Society, European Neuroscience Institute, D-37077 Goettingen, Germany;
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
46
|
Batchelor AV, Wilson RI. Sound localization behavior in Drosophila melanogaster depends on inter-antenna vibration amplitude comparisons. ACTA ACUST UNITED AC 2019; 222:222/3/jeb191213. [PMID: 30733260 DOI: 10.1242/jeb.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Drosophila melanogaster hear with their antennae: sound evokes vibration of the distal antennal segment, and this vibration is transduced by specialized mechanoreceptor cells. The left and right antennae vibrate preferentially in response to sounds arising from different azimuthal angles. Therefore, by comparing signals from the two antennae, it should be possible to obtain information about the azimuthal angle of a sound source. However, behavioral evidence of sound localization has not been reported in Drosophila Here, we show that walking D. melanogaster do indeed turn in response to lateralized sounds. We confirm that this behavior is evoked by vibrations of the distal antennal segment. The rule for turning is different for sounds arriving from different locations: flies turn toward sounds in their front hemifield, but they turn away from sounds in their rear hemifield, and they do not turn at all in response to sounds from 90 or -90 deg. All of these findings can be explained by a simple rule: the fly steers away from the antenna with the larger vibration amplitude. Finally, we show that these behaviors generalize to sound stimuli with diverse spectro-temporal features, and that these behaviors are found in both sexes. Our findings demonstrate the behavioral relevance of the antenna's directional tuning properties. They also pave the way for investigating the neural implementation of sound localization, as well as the potential roles of sound-guided steering in courtship and exploration.
Collapse
Affiliation(s)
- Alexandra V Batchelor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
47
|
Asahina K. Sex differences in Drosophila behavior: Qualitative and Quantitative Dimorphism. CURRENT OPINION IN PHYSIOLOGY 2018; 6:35-45. [PMID: 30386833 PMCID: PMC6205217 DOI: 10.1016/j.cophys.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The importance of sex as a biological variable is being recognized by more and more researchers, including those using Drosophila melanogaster as a model organism. Differences between the two sexes are not confined to well-known reproductive behaviors, but include other behaviors and physiological characteristics that are considered "common" to both sexes. It is possible to categorize sexual dimorphisms into "qualitative" and "quantitative" differences, and this review focuses on recent advances in elucidating genetic and neurophysiological basis of both qualitative and quantitative sex differences in Drosophila behavior. While sex-specific behaviors are often mediated by sexually dimorphic neural circuits, quantitative sexual dimorphism is caused by sex-specific modulation of a common neuronal substrate.
Collapse
Affiliation(s)
- Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, MNL-KA, La Jolla, California 92037, United States of America
| |
Collapse
|
48
|
Miwa Y, Koganezawa M, Yamamoto D. Antennae sense heat stress to inhibit mating and promote escaping in Drosophila females. J Neurogenet 2018; 32:353-363. [PMID: 30231794 DOI: 10.1080/01677063.2018.1513507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Environmental stress is a major factor that affects courtship behavior and evolutionary fitness. Although mature virgin females of Drosophila melanogaster usually accept a courting male to mate, they may not mate under stressful conditions. Above the temperature optimal for mating (20-25 °C), copulation success of D. melanogaster declines with increasing temperature although we observed vigorous courtship attempts by males, and no copulation takes place at temperatures over 36 °C. We attempted to identify the sensory pathway for detecting heat threat that drives a female to escape rather than to engage in mating that detects hot temperature and suppresses courtship behavior. We found that the artificial activation of warmth-sensitive neurons ('hot cells') in the antennal arista of females completely abrogates female copulation success even at permissive temperatures below 32 °C. Moreover, mutational loss of the GR28b.d thermoreceptor protein caused females to copulate even at 36 °C. These results indicate that antennal hot cells provide the input channel for detecting the high ambient temperature in the control of virgin female mating under stressful conditions.
Collapse
Affiliation(s)
- Yusuke Miwa
- a Division of Neurogenetics, Tohoku University Graduate School of Life Sciences , Sendai , Japan.,b Neuro-Network Evolution Project , Advanced ICT Research Institute, National Institute of Information and Communications Technology , Kobe , Japan
| | - Masayuki Koganezawa
- a Division of Neurogenetics, Tohoku University Graduate School of Life Sciences , Sendai , Japan
| | - Daisuke Yamamoto
- a Division of Neurogenetics, Tohoku University Graduate School of Life Sciences , Sendai , Japan.,b Neuro-Network Evolution Project , Advanced ICT Research Institute, National Institute of Information and Communications Technology , Kobe , Japan
| |
Collapse
|
49
|
Chatterjee A, Lamaze A, De J, Mena W, Chélot E, Martin B, Hardin P, Kadener S, Emery P, Rouyer F. Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Curr Biol 2018; 28:2007-2017.e4. [PMID: 29910074 PMCID: PMC6039274 DOI: 10.1016/j.cub.2018.04.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023]
Abstract
The brain clock that drives circadian rhythms of locomotor activity relies on a multi-oscillator neuronal network. In addition to synchronizing the clock with day-night cycles, light also reformats the clock-driven daily activity pattern. How changes in lighting conditions modify the contribution of the different oscillators to remodel the daily activity pattern remains largely unknown. Our data in Drosophila indicate that light readjusts the interactions between oscillators through two different modes. We show that a morning s-LNv > DN1p circuit works in series, whereas two parallel evening circuits are contributed by LNds and other DN1ps. Based on the photic context, the master pacemaker in the s-LNv neurons swaps its enslaved partner-oscillator-LNd in the presence of light or DN1p in the absence of light-to always link up with the most influential phase-determining oscillator. When exposure to light further increases, the light-activated LNd pacemaker becomes independent by decoupling from the s-LNvs. The calibration of coupling by light is layered on a clock-independent network interaction wherein light upregulates the expression of the PDF neuropeptide in the s-LNvs, which inhibits the behavioral output of the DN1p evening oscillator. Thus, light modifies inter-oscillator coupling and clock-independent output-gating to achieve flexibility in the network. It is likely that the light-induced changes in the Drosophila brain circadian network could reveal general principles of adapting to varying environmental cues in any neuronal multi-oscillator system.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Angélique Lamaze
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Joydeep De
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Wilson Mena
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Béatrice Martin
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77845-3258, USA
| | | | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - François Rouyer
- Institut des Neurosciences Paris-Saclay, Univ. Paris Sud, CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
50
|
Deciphering Drosophila female innate behaviors. Curr Opin Neurobiol 2018; 52:139-148. [PMID: 29940518 DOI: 10.1016/j.conb.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 01/08/2023]
Abstract
Innate responses are often sexually dimorphic. Studies of female specific behaviors have remained niche, but the focus is changing as illustrated by the recent progress in understanding the female courtship responses and egg-laying decisions. In this review, we will cover our current knowledge about female behaviors in these two specific contexts. Recent studies elucidate on how females process the courtship song. They also show that egg-laying decisions are extremely complex, requiring the assessment of food, microbial, predator and social cues. Study of female responses will improve our understanding of how a nervous system processes different challenges.
Collapse
|