1
|
Petroll R, West JA, Ogden M, McGinley O, Craig RJ, Coelho SM, Borg M. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Curr Biol 2025:S0960-9822(25)00508-1. [PMID: 40345196 DOI: 10.1016/j.cub.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Red algae are an ancient eukaryotic lineage that were among the first to evolve multicellularity. Although they share a common origin with modern-day plants and display complex multicellular development, comprehensive genome data from the most highly evolved red algal groups remain scarce. Here, we present a chromosome-level genome assembly of Bostrychia moritziana, a complex red seaweed in the Rhodomelaceae family of the Ceramiales-the largest and most diverse order of red algae. Contrary to the view that red algal genomes are typically small, we report significant genome size expansion in Bostrychia and other Ceramiales, which represents one of at least three independent expansion events in red algal evolution. Our analyses suggest that these expansions do not involve polyploidy or ancient whole-genome duplications, but in Bostrychia rather stem from the proliferation of a single lineage of giant Plavaka DNA transposons. Consistent with its enlarged genome, Bostrychia has an increased gene content shaped by de novo gene emergence and amplified gene families in common with other Ceramiales, providing insight into the genetic adaptations underpinning this successful and species-rich order. Finally, our sex-specific assemblies resolve the UV sex chromosomes in Bostrychia, which feature expanded gene-rich sex-linked regions. Notably, each sex chromosome harbors a three amino acid loop extension homeodomain (TALE-HD) transcription factor orthologous to ancient regulators of haploid-diploid transitions in other multicellular lineages. Together, our findings offer a unique perspective of the genomic adaptations driving red algal diversity and demonstrate how this red seaweed lineage can provide insight into the evolutionary origins and universal principles underpinning complex multicellularity.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John A West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Owen McGinley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Charlesworth D. Sex chromosome evolution in haploid plants: Microchromosomes, disappearing chromosomes, and giant chromosomes. Proc Natl Acad Sci U S A 2025; 122:e2425050122. [PMID: 40232793 PMCID: PMC12037016 DOI: 10.1073/pnas.2425050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
As in many diploid organisms with genetic sex determination, haploid-dominant organisms have also evolved sex chromosomes or extensive genomic regions that lack genetic recombination. An understanding of sex chromosome evolution should explain the causes and consequences of such regions in both diploids and haploids. However, haploids have been little studied, even though differences from sex chromosomes in diploids carry implications concerning the evolution of suppressed recombination in diploid organisms, and make predictions about genome evolution in the sex-linked regions of haploids that can now be tested by approaches using genome sequences. I review these ideas, and the current empirical evidence concerning them, in more detail than recent reviews focusing on progress in understanding the mechanisms involved in sex determination. I also discuss evidence that one specific prediction, that genetic degeneration should be minor in haploids, is not upheld. I suggest that this prediction does not take account of all processes leading to gene loss from sex-linked regions and that profound degeneration may evolve if sex-linked genes become duplicated to autosomes, a process that also appears to occur in diploids. I emphasize types of data that are needed to make progress in testing several of the ideas described.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| |
Collapse
|
3
|
Liesner D, Cossard GG, Zheng M, Godfroy O, Barrera-Redondo J, Haas FB, Coelho SM. Developmental pathways underlying sexual differentiation in the U/V sex chromosome system of giant kelp. Dev Cell 2025; 60:1142-1152.e6. [PMID: 39793585 DOI: 10.1016/j.devcel.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development. We identify a key set of genes on the sex chromosomes involved in triggering sexual development and characterize autosomal effector genes underlying sexual differentiation. We show that male, but not female, development involves large-scale transcriptome reorganization with pervasive enrichment in regulatory genes, faster evolutionary rates, and high species-specificity of male-biased genes. Our observations imply that a female-like phenotype is the "ground state", which is complemented by the presence of a U-chromosome but overridden by a dominant male developmental program triggered by the V-chromosome.
Collapse
Affiliation(s)
- Daniel Liesner
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Guillaume G Cossard
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Olivier Godfroy
- Station Biologique de Roscoff CNRS, UMR8227 Laboratory of Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Guo L, Li X, Chen S, Li Y, Wang W, Luo S, Jiang L, Liu H, Pan X, Zong Y, Feng L, Liu F, Zhang L, Bi G, Yang G. Mechanisms underlining Kelp (Saccharina japonica) adaptation to relative high seawater temperature. BMC Genomics 2025; 26:186. [PMID: 39994530 PMCID: PMC11849318 DOI: 10.1186/s12864-025-11382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
Saccharina japonica has been cultivated in China for almost a century. From Dalian to Fujian, the lowest and the highest seawater temperatures in the period of cultivation increased by 14℃ and 8℃, respectively. Its adaptation to elevated seawater temperature is an example of securing the natural habitats of a species. To decipher the mechanisms underlining S. japonica adaptation to relative high seawater temperature, we assembled ~ 516.3 Mb female gametophyte genome and ~ 540.3 Mb of the male, respectively. The gametophytes isolated from southern China kelp cultivars acclimated to the relative high seawater temperature by transforming amino acids, glycosylating protein, maintaining osmotic pressure, intensifying the innate immune system, and exhausting energy and reduction power through the PEP-pyruvate-oxaloacetate node and the iodine cycle. They adapted to the relative high seawater temperature by transforming amino acids, changing sugar metabolism and intensifying innate immune system. The sex of S. japonica was determined by HMG-sex, and around this male gametophyte determiner the stress tolerant genes become linked to or associated with.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaojie Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shuxiu Chen
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Yan Li
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Weiwei Wang
- Provincial Key Laboratory of Marine Seed Industry of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Shiju Luo
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
| | - Liming Jiang
- Shandong Technology Innovation Center of Algae and Sea Cucumber, Shandong Oriental Ocean Sci-Tech Co., Ltd, Yantai, 264003, Shandong, P. R. China
- Yantai Marine Economic Research Institute, Yantai, 264006, Shandong, P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Xiaohui Pan
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Yanan Zong
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Leili Feng
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
| | - Fuli Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, 266109, P. R. China
| | - Guiqi Bi
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, P. R. China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, P. R. China.
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003, P. R. China.
- Provincial Key Laboratory of Marine Seed Industry of Shandong, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China.
- Institutes of Evolution and Marine Bioaffiliationersity, OUC, Qingdao, 266003, P. R. China.
| |
Collapse
|
5
|
Liu P, Vigneau J, Craig RJ, Barrera-Redondo J, Avdievich E, Martinho C, Borg M, Haas FB, Liu C, Coelho SM. 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization. Nat Commun 2024; 15:9590. [PMID: 39505852 PMCID: PMC11541908 DOI: 10.1038/s41467-024-53453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Nuclear three dimensional (3D) folding of chromatin structure has been linked to gene expression regulation and correct developmental programs, but little is known about the 3D architecture of sex chromosomes within the nucleus, and how that impacts their role in sex determination. Here, we determine the sex-specific 3D organization of the model brown alga Ectocarpus chromosomes at 2 kb resolution, by mapping long-range chromosomal interactions using Hi-C coupled with Oxford Nanopore long reads. We report that Ectocarpus interphase chromatin exhibits a non-Rabl conformation, with strong contacts among telomeres and among centromeres, which feature centromere-specific LTR retrotransposons. The Ectocarpus chromosomes do not contain large local interactive domains that resemble TADs described in animals, but their 3D genome organization is largely shaped by post-translational modifications of histone proteins. We show that the sex determining region (SDR) within the U and V chromosomes are insulated and span the centromeres and we link sex-specific chromatin dynamics and gene expression levels to the 3D chromatin structure of the U and V chromosomes. Finally, we uncover the unique conformation of a large genomic region on chromosome 6 harboring an endogenous viral element, providing insights regarding the impact of a latent giant dsDNA virus on the host genome's 3D chromosomal folding.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jeromine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Elena Avdievich
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- School of Life Sciences, Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Vigneau J, Martinho C, Godfroy O, Zheng M, Haas FB, Borg M, Coelho SM. Interactions between U and V sex chromosomes during the life cycle of Ectocarpus. Development 2024; 151:dev202677. [PMID: 38512707 PMCID: PMC11057875 DOI: 10.1242/dev.202677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
In many animals and flowering plants, sex determination occurs in the diploid phase of the life cycle with XX/XY or ZW/ZZ sex chromosomes. However, in early diverging plants and most macroalgae, sex is determined by female (U) or male (V) sex chromosomes in a haploid phase called the gametophyte. Once the U and V chromosomes unite at fertilization to produce a diploid sporophyte, sex determination no longer occurs, raising key questions about the fate of the U and V sex chromosomes in the sporophyte phase. Here, we investigate genetic and molecular interactions of the UV sex chromosomes in both the haploid and diploid phases of the brown alga Ectocarpus. We reveal extensive developmental regulation of sex chromosome genes across its life cycle and implicate the TALE-HD transcription factor OUROBOROS in suppressing sex determination in the diploid phase. Small RNAs may also play a role in the repression of a female sex-linked gene, and transition to the diploid sporophyte coincides with major reconfiguration of histone H3K79me2, suggesting a more intricate role for this histone mark in Ectocarpus development than previously appreciated.
Collapse
Affiliation(s)
| | | | - Olivier Godfroy
- Roscoff Biological Station, CNRS-Sorbonne University, Place Georges Teissier, Roscoff 29680, France
| | - Min Zheng
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Fabian B. Haas
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Michael Borg
- Max Planck Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
7
|
Batista RA, Wang L, Bogaert KA, Coelho SM. Insights into the molecular bases of multicellular development from brown algae. Development 2024; 151:dev203004. [PMID: 39302848 DOI: 10.1242/dev.203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The transition from simple to complex multicellularity represents a major evolutionary step that occurred in only a few eukaryotic lineages. Comparative analyses of these lineages provide insights into the molecular and cellular mechanisms driving this transition, but limited understanding of the biology of some complex multicellular lineages, such as brown algae, has hampered progress. This Review explores how recent advances in genetic and genomic technologies now allow detailed investigations into the molecular bases of brown algae development. We highlight how forward genetic techniques have identified mutants that enhance our understanding of pattern formation and sexual differentiation in these organisms. Additionally, the existence and nature of morphogens in brown algae and the potential influence of the microbiome in key developmental processes are examined. Outstanding questions, such as the identity of master regulators, the definition and characterization of cell types, and the molecular bases of developmental plasticity are discussed, with insights into how recent technical advances could provide answers. Overall, this Review highlights how brown algae are emerging as alternative model organisms, contributing to our understanding of the evolution of multicellular life and the diversity of body plans.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Liping Wang
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Kenny A Bogaert
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Hoshino M, Cossard G, Haas FB, Kane EI, Kogame K, Jomori T, Wakimoto T, Glemin S, Coelho SM. Parallel loss of sexual reproduction in field populations of a brown alga sheds light on the mechanisms underlying the emergence of asexuality. Nat Ecol Evol 2024; 8:1916-1932. [PMID: 39152327 PMCID: PMC11461277 DOI: 10.1038/s41559-024-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/18/2024] [Indexed: 08/19/2024]
Abstract
Sexual reproduction is widespread, but asexual lineages have repeatedly arisen from sexual ancestors across a wide range of eukaryotic taxa. The molecular changes underpinning the switch to asexuality remain elusive, particularly in organisms with haploid sexual systems. Here we explore independent events of loss of sex in the brown alga Scytosiphon, examine the proximate and evolutionary mechanisms involved, and test the importance of sexual conflict on gene expression changes following loss of sex. We find that asexual females ('Amazons') lose ability to produce sex pheromone and, consequently, are incapable of attracting males, whereas they gain rapid parthenogenic development from large, unfertilized eggs. These phenotypic changes are accompanied by convergent changes in gene expression. Decay of female functions, rather than relaxation of sexual antagonism, may be a dominant force at play during the emergence of asexuality in haploid sexual systems. Moreover, we show that haploid purifying selection plays a key role in limiting the accumulation of deleterious alleles in Amazons, and we identify an autosomal locus associated with the Amazon phenotype. The sex chromosome, together with this autosomal locus, may underlie the switch to obligate asexuality in the Amazon populations.
Collapse
Affiliation(s)
- Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Research Center for Inland Seas, Kobe University, Rokkodai 1-1, Nadaku, Kobe, Japan
| | - Guillaume Cossard
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Emma I Kane
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Sylvain Glemin
- Laboratoire ECOBIO (Ecosystèmes, biodiversité, évolution), UMR 6553, CNRS, Université de Rennes, Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Krueger-Hadfield SA. Let's talk about sex: Why reproductive systems matter for understanding algae. JOURNAL OF PHYCOLOGY 2024; 60:581-597. [PMID: 38743848 DOI: 10.1111/jpy.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Sex is a crucial process that has molecular, genetic, cellular, organismal, and population-level consequences for eukaryotic evolution. Eukaryotic life cycles are composed of alternating haploid and diploid phases but are constrained by the need to accommodate the phenotypes of these different phases. Critical gaps in our understanding of evolutionary drivers of the diversity in algae life cycles include how selection acts to stabilize and change features of the life cycle. Moreover, most eukaryotes are partially clonal, engaging in both sexual and asexual reproduction. Yet, our understanding of the variation in their reproductive systems is largely based on sexual reproduction in animals or angiosperms. The relative balance of sexual versus asexual reproduction not only controls but also is in turn controlled by standing genetic variability, thereby shaping evolutionary trajectories. Thus, we must quantitatively assess the consequences of the variation in life cycles on reproductive systems. Algae are a polyphyletic group spread across many of the major eukaryotic lineages, providing powerful models by which to resolve this knowledge gap. There is, however, an alarming lack of data about the population genetics of most algae and, therefore, the relative frequency of sexual versus asexual processes. For many algae, the occurrence of sexual reproduction is unknown, observations have been lost in overlooked papers, or data on population genetics do not yet exist. This greatly restricts our ability to forecast the consequences of climate change on algal populations inhabiting terrestrial, aquatic, and marine ecosystems. This perspective summarizes our extant knowledge and provides some future directions to pursue broadly across micro- and macroalgal species.
Collapse
|
11
|
Luthringer R, Raphalen M, Guerra C, Colin S, Martinho C, Zheng M, Hoshino M, Badis Y, Lipinska AP, Haas FB, Barrera-Redondo J, Alva V, Coelho SM. Repeated co-option of HMG-box genes for sex determination in brown algae and animals. Science 2024; 383:eadk5466. [PMID: 38513029 DOI: 10.1126/science.adk5466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.
Collapse
Affiliation(s)
- Rémy Luthringer
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Morgane Raphalen
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Carla Guerra
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Sébastien Colin
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Research Center for Inland Seas, Kobe University, Kobe 658-0022, Japan
| | - Yacine Badis
- Roscoff Biological Station, CNRS-Sorbonne University, Place Georges Teissier, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
13
|
Coelho SM. The brown seaweed Ectocarpus. Nat Methods 2024; 21:363-364. [PMID: 38472460 DOI: 10.1038/s41592-024-02198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Zhou X, Peng T, Zeng Y, Cai Y, Zuo Q, Zhang L, Dong S, Liu Y. Chromosome-level genome assembly of Niphotrichum japonicum provides new insights into heat stress responses in mosses. FRONTIERS IN PLANT SCIENCE 2023; 14:1271357. [PMID: 37920716 PMCID: PMC10619864 DOI: 10.3389/fpls.2023.1271357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.
Collapse
Affiliation(s)
- Xuping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Peng
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuying Zeng
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zuo
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| |
Collapse
|
15
|
Duhamel M, Hood ME, Rodríguez de la Vega RC, Giraud T. Dynamics of transposable element accumulation in the non-recombining regions of mating-type chromosomes in anther-smut fungi. Nat Commun 2023; 14:5692. [PMID: 37709766 PMCID: PMC10502011 DOI: 10.1038/s41467-023-41413-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
In the absence of recombination, the number of transposable elements (TEs) increases due to less efficient selection, but the dynamics of such TE accumulations are not well characterized. Leveraging a dataset of 21 independent events of recombination cessation of different ages in mating-type chromosomes of Microbotryum fungi, we show that TEs rapidly accumulated in regions lacking recombination, but that TE content reached a plateau at ca. 50% of occupied base pairs by 1.5 million years following recombination suppression. The same TE superfamilies have expanded in independently evolved non-recombining regions, in particular rolling-circle replication elements (Helitrons). Long-terminal repeat (LTR) retrotransposons of the Copia and Ty3 superfamilies also expanded, through transposition bursts (distinguished from gene conversion based on LTR divergence), with both non-recombining regions and autosomes affected, suggesting that non-recombining regions constitute TE reservoirs. This study improves our knowledge of genome evolution by showing that TEs can accumulate through bursts, following non-linear decelerating dynamics.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France.
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Michael E Hood
- Department of Biology, Amherst College, 01002-5000, Amherst, MA, USA
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Diesel J, Molano G, Montecinos GJ, DeWeese K, Calhoun S, Kuo A, Lipzen A, Salamov A, Grigoriev IV, Reed DC, Miller RJ, Nuzhdin SV, Alberto F. A scaffolded and annotated reference genome of giant kelp (Macrocystis pyrifera). BMC Genomics 2023; 24:543. [PMID: 37704968 PMCID: PMC10498591 DOI: 10.1186/s12864-023-09658-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Macrocystis pyrifera (giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp's economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.
Collapse
Affiliation(s)
- Jose Diesel
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gary Molano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Gabriel J Montecinos
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kelly DeWeese
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sara Calhoun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asaf Salamov
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Daniel C Reed
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Robert J Miller
- Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Sergey V Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Filipe Alberto
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Singh S, Davies KM, Chagné D, Bowman JL. The fate of sex chromosomes during the evolution of monoicy from dioicy in liverworts. Curr Biol 2023; 33:3597-3609.e3. [PMID: 37557172 DOI: 10.1016/j.cub.2023.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023]
Abstract
Liverworts comprise one of six primary land plant lineages, with the predicted origin of extant liverwort diversity dating to the Silurian. The ancestral liverwort has been inferred to have been dioicous (unisexual) with chromosomal sex determination in which the U chromosome of females and the V chromosome of males were dimorphic with an extensive non-recombining region. In liverworts, sex is determined by a U chromosomal "feminizer" gene that promotes female development, and in its absence, male development ensues. Monoicy (bisexuality) has independently evolved multiple times within liverworts. Here, we explore the evolution of monoicy, focusing on the monoicous species Ricciocarpos natans, and propose that the evolution of monoicy in R. natans involved the appearance of an aneuploid spore that possessed both U and V chromosomes. Chromosomal rearrangements involving the U chromosome resulted in distribution of essential U chromosome genes, including the feminizer, to several autosomal locations. By contrast, we infer that the ancestral V chromosome was inherited largely intact, probably because it carries numerous dispersed "motility" genes distributed across the chromosome. The genetic networks for sex differentiation in R. natans appear largely unchanged except that the feminizer is developmentally regulated, allowing for temporally separated differentiation of female and male reproductive organs on a single plant. A survey of other monoicous liverworts suggests that similar genomic rearrangements may have occurred repeatedly in lineages transitioning to monoicy from dioicy. These data provide a foundation for understanding how genetic networks controlling sex determination can be subtly rewired to produce profound changes in sexual systems.
Collapse
Affiliation(s)
- Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
18
|
Krasovec M, Hoshino M, Zheng M, Lipinska AP, Coelho SM. Low Spontaneous Mutation Rate in Complex Multicellular Eukaryotes with a Haploid-Diploid Life Cycle. Mol Biol Evol 2023; 40:msad105. [PMID: 37140022 PMCID: PMC10254074 DOI: 10.1093/molbev/msad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
20
|
Shan T, Li Y, Pang S. Identification of a genomic region linked with sex determination of Undaria pinnatifida (Alariaceae) through genomic resequencing and genetic linkage analyses of a segregating gametophyte family. JOURNAL OF PHYCOLOGY 2023; 59:193-203. [PMID: 36330991 DOI: 10.1111/jpy.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Different from the traditional knowledge about kelp, three sexual phenotypes (female, male, and monoecious) exist in the haploid gametophytes of Undaria pinnatifida. However, the sex-determining mechanisms remain unknown. Genetic linkage mapping is an efficient tool to identify sex-linked regions. In the present study, we resequenced a segregating gametophyte family based on the male genome of U. pinnatifida. A high-density genetic linkage map was constructed using 9887 SNPs, with an average distance of 0.41 cM between adjacent SNPs. On the basis of this genetic map and using the composite interval mapping method, we identified 62 SNPs significantly linked with the sexual phenotype. They were located at a position of 67.67 cM on the linkage group 23, corresponding to a physical range of 14.67 Mbp on the HiC_Scaffold_23 of the genome. Reanalysis of the previous specific length amplified fragment sequencing data according to the reference genome led to the identification of a sex-linked genomic region that encompassed the above-mentioned 14.67 Mbp region. Hence, this overlapped genomic range was likely the sex-determining region. Within this region, 129 genes were retrieved and 39 of them were annotated with explicit function, including the potential male sex-determining gene-encoding high mobility group (HMG) domain protein. Relative expression analysis of the HMG gene showed that its expression was higher in male gametophytes during the vegetative phase and monoecious gametophytes during both the vegetative and gametogenesis phases, but significantly lower in male gametophytes during the gametogenesis phase. These results provide a foundation for deciphering the sex-determining mechanism of U. pinnatifida.
Collapse
Affiliation(s)
- Tifeng Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yuqian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Pang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
21
|
|
22
|
The involvement of an HMG-box gene in germ cell genesis in Pyropia haitanensis. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Mank JE. Are plant and animal sex chromosomes really all that different? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210218. [PMID: 35306885 PMCID: PMC8935310 DOI: 10.1098/rstb.2021.0218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sex chromosomes in plants have often been contrasted with those in animals with the goal of identifying key differences that can be used to elucidate fundamental evolutionary properties. For example, the often homomorphic sex chromosomes in plants have been compared to the highly divergent systems in some animal model systems, such as birds, Drosophila and therian mammals, with many hypotheses offered to explain the apparent dissimilarities, including the younger age of plant sex chromosomes, the lesser prevalence of sexual dimorphism, or the greater extent of haploid selection. Furthermore, many plant sex chromosomes lack complete sex chromosome dosage compensation observed in some animals, including therian mammals, Drosophila, some poeciliids, and Anolis, and plant dosage compensation, where it exists, appears to be incomplete. Even the canonical theoretical models of sex chromosome formation differ somewhat between plants and animals. However, the highly divergent sex chromosomes observed in some animal groups are actually the exception, not the norm, and many animal clades are far more similar to plants in their sex chromosome patterns. This begs the question of how different are plant and animal sex chromosomes, and which of the many unique properties of plants would be expected to affect sex chromosome evolution differently than animals? In fact, plant and animal sex chromosomes exhibit more similarities than differences, and it is not at all clear that they differ in terms of sexual conflict, dosage compensation, or even degree of divergence. Overall, the largest difference between these two groups is the greater potential for haploid selection in plants compared to animals. This may act to accelerate the expansion of the non-recombining region at the same time that it maintains gene function within it. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Judith E. Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
25
|
Cronk Q. Some sexual consequences of being a plant. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210213. [PMID: 35306890 PMCID: PMC8935308 DOI: 10.1098/rstb.2021.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Plants have characteristic features that affect the expression of sexual function, notably the existence of a haploid organism in the life cycle, and in their development, which is modular, iterative and environmentally reactive. For instance, primary selection (the first filtering of the products of meiosis) is via gametes in diplontic animals, but via gametophyte organisms in plants. Intragametophytic selfing produces double haploid sporophytes which is in effect a form of clonal reproduction mediated by sexual mechanisms. In homosporous plants, the diploid sporophyte is sexless, sex being only expressed in the haploid gametophyte. However, in seed plants, the timing and location of gamete production is determined by the sporophyte, which therefore has a sexual role, and in dioecious plants has genetic sex, while the seed plant gametophyte has lost genetic sex. This evolutionary transition is one that E.J.H. Corner called 'the transference of sexuality'. The iterative development characteristic of plants can lead to a wide variety of patterns in the distribution of sexual function, and in dioecious plants poor canalization of reproductive development can lead to intrasexual mating and the production of YY supermales or WW superfemales. Finally, plant modes of asexual reproduction (agamospermy/apogamy) are also distinctive by subverting gametophytic processes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Quentin Cronk
- Department of Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
26
|
Bourdareau S, Godfroy O, Gueno J, Scornet D, Coelho SM, Tirichine L, Cock JM. An Efficient Chromatin Immunoprecipitation Protocol for the Analysis of Histone Modification Distributions in the Brown Alga Ectocarpus. Methods Protoc 2022; 5:mps5030036. [PMID: 35645344 PMCID: PMC9149930 DOI: 10.3390/mps5030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
The brown algae are an important but understudied group of multicellular marine organisms. A number of genetic and genomic tools have been developed for the model brown alga Ectocarpus; this includes, most recently, chromatin immunoprecipitation methodology, which allows genome-wide detection and analysis of histone post-translational modifications. Post-translational modifications of histone molecules have been shown to play an important role in gene regulation in organisms from other major eukaryotic lineages, and this methodology will therefore be a very useful tool to investigate genome function in the brown algae. This article provides a detailed, step-by-step description of the Ectocarpus ChIP protocol, which effectively addresses the difficult problem of efficiently extracting chromatin from cells protected by a highly resistant cell wall. The protocol described here will be an essential tool for the future application of chromatin analysis methodologies in brown algal research.
Collapse
Affiliation(s)
- Simon Bourdareau
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Olivier Godfroy
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Josselin Gueno
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Delphine Scornet
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Susana M. Coelho
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
- Correspondence: (L.T.); (J.M.C.); Tel.: +33-2-98-29-23-60 (J.M.C.)
| | - J. Mark Cock
- Algal Genetics Group, Integrative Biology of Marine Models Laboratory, CNRS, Sorbonne Université, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France; (S.B.); (O.G.); (J.G.); (D.S.); (S.M.C.)
- Correspondence: (L.T.); (J.M.C.); Tel.: +33-2-98-29-23-60 (J.M.C.)
| |
Collapse
|
27
|
Gueno J, Borg M, Bourdareau S, Cossard G, Godfroy O, Lipinska A, Tirichine L, Cock J, Coelho S. Chromatin landscape associated with sexual differentiation in a UV sex determination system. Nucleic Acids Res 2022; 50:3307-3322. [PMID: 35253891 PMCID: PMC8989524 DOI: 10.1093/nar/gkac145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In many eukaryotes, such as dioicous mosses and many algae, sex is determined by UV sex chromosomes and is expressed during the haploid phase of the life cycle. In these species, the male and female developmental programs are initiated by the presence of the U- or V-specific regions of the sex chromosomes but, as in XY and ZW systems, sexual differentiation is largely driven by autosomal sex-biased gene expression. The mechanisms underlying the regulation of sex-biased expression of genes during sexual differentiation remain elusive. Here, we investigated the extent and nature of epigenomic changes associated with UV sexual differentiation in the brown alga Ectocarpus, a model UV system. Six histone modifications were quantified in near-isogenic lines, leading to the identification of 16 chromatin signatures across the genome. Chromatin signatures correlated with levels of gene expression and histone PTMs changes in males versus females occurred preferentially at genes involved in sex-specific pathways. Despite the absence of chromosome scale dosage compensation and the fact that UV sex chromosomes recombine across most of their length, the chromatin landscape of these chromosomes was remarkably different to that of autosomes. Hotspots of evolutionary young genes in the pseudoautosomal regions appear to drive the exceptional chromatin features of UV sex chromosomes.
Collapse
Affiliation(s)
- Josselin Gueno
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Simon Bourdareau
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Guillaume Cossard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Olivier Godfroy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| | - Leila Tirichine
- Nantes Universite, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen72076, Tübingen, Germany
| |
Collapse
|
28
|
Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 2022; 375:663-666. [PMID: 35143289 DOI: 10.1126/science.abj1813] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current theory proposes that degenerated sex chromosomes-such as the mammalian Y-evolve through three steps: (i) recombination arrest, linking male-beneficial alleles to the Y chromosome; (ii) Y degeneration, resulting from the inefficacy of selection in the absence of recombination; and (iii) dosage compensation, correcting the resulting low expression of X-linked genes in males. We investigate a model of sex chromosome evolution that incorporates the coevolution of cis and trans regulators of gene expression. We show that the early emergence of dosage compensation favors the maintenance of Y-linked inversions by creating sex-antagonistic regulatory effects. This is followed by degeneration of these nonrecombining inversions caused by regulatory divergence between the X and Y chromosomes. In contrast to current theory, the whole process occurs without any selective pressure related to sexual dimorphism.
Collapse
Affiliation(s)
| | - Denis Roze
- CNRS, IRL 3614, Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
29
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 2021; 31:5522-5532.e7. [PMID: 34735792 PMCID: PMC8699743 DOI: 10.1016/j.cub.2021.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.
Collapse
Affiliation(s)
- Miyuki Iwasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Dierk Wanke
- Department Biologie I, Ludwig-Maximilians-University (LMU), München 80638, Germany
| | - Kenji Hashimoto
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
30
|
Coelho SM, Umen J. Switching it up: algal insights into sexual transitions. PLANT REPRODUCTION 2021; 34:287-296. [PMID: 34181073 PMCID: PMC8566403 DOI: 10.1007/s00497-021-00417-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
While the process of meiosis is highly conserved across eukaryotes, the sexual systems that govern life cycle phase transitions are surprisingly labile. Switches between sexual systems have profound evolutionary and ecological consequences, in particular for plants, but our understanding of the fundamental mechanisms and ultimate causes underlying these transitions is still surprisingly incomplete. We explore here the idea that brown and green algae may be interesting comparative models that can increase our understanding of relevant processes in plant reproductive biology, from evolution of gamete dimorphism, gametogenesis, sex determination and transitions in sex-determining systems.
Collapse
Affiliation(s)
- Susana M Coelho
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
31
|
Hoshino M, Hiruta SF, Croce ME, Kamiya M, Jomori T, Wakimoto T, Kogame K. Geographical parthenogenesis in the brown alga Scytosiphon lomentaria (Scytosiphonaceae): Sexuals in warm waters and parthenogens in cold waters. Mol Ecol 2021; 30:5814-5830. [PMID: 34437743 DOI: 10.1111/mec.16152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Geographical parthenogenesis, a phenomenon where parthenogens and their close sexual relatives inhabit distinct geographical areas, has been considered an interesting topic in evolutionary biology. Reports of geographical parthenogenesis from land and freshwater are numerous, but this occurrence has been rarely reported from the sea. Brown algae are mostly marine and are thought to include numerous obligate parthenogens; still, little is known about the distribution, origin and evolution of parthenogens in this group. Here we report a novel pattern of geographical parthenogenesis in the isogamous brown alga Scytosiphon lomentaria. Sex ratio investigation demonstrated that, in Japan, sexual populations grew in the coast along warm ocean currents, whereas female-dominant parthenogenetic populations grew mainly in the coast along a cold ocean current. In the two localities where sexual and parthenogenetic populations were parapatric, parthenogens grew in more wave-exposed areas than sexuals. Population genetic and phylogenetic analyses, including those based on genome-wide single nucleotide polymorphism data, indicated that parthenogens have initially evolved at least twice and subsequent hybridizations between the parthenogens and sexuals have generated multiple new parthenogenetic lineages. The origin of the initial parthenogens is not clear, except that it would not be interspecies hybridization. Interestingly, we found that the production of sex pheromones, which attract male gametes, has been independently lost in the initial two parthenogenetic lineages. This parallel loss of the sexual trait may represent the direct origin of parthenogens, or the regressive evolution of a useless trait under asexuality.
Collapse
Affiliation(s)
- Masakazu Hoshino
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shimpei F Hiruta
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Japan
| | - Maria Emilia Croce
- Instituto Argentino de Oceanografía, CONICET-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mitsunobu Kamiya
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Müller DG, Gaschet E, Godfroy O, Gueno J, Cossard G, Kunert M, Peters AF, Westermeier R, Boland W, Cock JM, Lipinska AP, Coelho SM. A partially sex-reversed giant kelp sheds light into the mechanisms of sexual differentiation in a UV sexual system. THE NEW PHYTOLOGIST 2021; 232:252-263. [PMID: 34166525 DOI: 10.1111/nph.17582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In UV sexual systems, sex is determined during the haploid phase of the life cycle and males have a V chromosome whereas females have a U chromosome. Previous work in the brown alga Ectocarpus revealed that the V chromosome has a dominant role in male sex determination and suggested that the female developmental programme may occur by 'default'. Here, we describe the identification of a genetically male giant kelp strain presenting phenotypic features typical of a female, despite lacking the U-specific region. The conversion to the female developmental programme is however incomplete, because gametes of this feminized male are unable to produce the sperm-attracting pheromone lamoxirene. We identify the transcriptomic patterns underlying the male and female specific developmental programmes, and show that the phenotypic feminization is associated with both feminization and de-masculinization of gene expression patterns. Importantly, the feminization phenotype was associated with dramatic downregulation of two V-specific genes including a candidate male-determining gene. Our results reveal the transcriptional changes associated with sexual differentiation in a UV system, and contribute to disentangling the role of sex-linked and autosomal gene expression in the initiation of sex-specific developmental programmes. Overall, the data presented here imply that the U-specific region is not required to initiate the female developmental programme, but is critical to produce fully functional eggs, arguing against the idea that female is the 'default' sex in this species.
Collapse
Affiliation(s)
- Dieter G Müller
- Fachbereich Biologie der Universität Konstanz, Konstanz, 78457, Germany
| | - Enora Gaschet
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Olivier Godfroy
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Josselin Gueno
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Guillaume Cossard
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | | | - Renato Westermeier
- Instituto de Acuicultura, Universidad Austral de Chile, Casilla 1327, Puerto Montt, Chile
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - J Mark Cock
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
| | - Agnieszka P Lipinska
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
- Max Plank Institute for Developmental Biology, Tübingen, Germany
| | - Susana M Coelho
- UPMC Univ Paris 06, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, Roscoff, CS 90074, F-29688, France
- Max Plank Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
33
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
34
|
Constable GWA, Kokko H. Parthenogenesis and the Evolution of Anisogamy. Cells 2021; 10:2467. [PMID: 34572116 PMCID: PMC8467976 DOI: 10.3390/cells10092467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, it was pointed out that classic models for the evolution of anisogamy do not take into account the possibility of parthenogenetic reproduction, even though sex is facultative in many relevant taxa (e.g., algae) that harbour both anisogamous and isogamous species. Here, we complement this recent analysis with an approach where we assume that the relationship between progeny size and its survival may differ between parthenogenetically and sexually produced progeny, favouring either the former or the latter. We show that previous findings that parthenogenesis can stabilise isogamy relative to the obligate sex case, extend to our scenarios. We additionally investigate two different ways for one mating type to take over the entire population. First, parthenogenesis can lead to biased sex ratios that are sufficiently extreme that one type can displace the other, leading to de facto asexuality for the remaining type that now lacks partners to fuse with. This process involves positive feedback: microgametes, being numerous, lack opportunities for syngamy, and should they proliferate parthenogenetically, the next generation makes this asexual route even more prominent for microgametes. Second, we consider mutations to strict asexuality in producers of micro- or macrogametes, and show that the prospects of asexual invasion depend strongly on the mating type in which the mutation arises. Perhaps most interestingly, we also find scenarios in which parthenogens have an intrinsic survival advantage yet facultatively sexual isogamous populations are robust to the invasion of asexuals, despite us assuming no genetic benefits of recombination. Here, equal contribution from both mating types to zygotes that are sufficiently well provisioned can outweigh the additional costs associated with syngamy.
Collapse
Affiliation(s)
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
35
|
Badis Y, Scornet D, Harada M, Caillard C, Godfroy O, Raphalen M, Gachon CMM, Coelho SM, Motomura T, Nagasato C, Cock JM. Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. THE NEW PHYTOLOGIST 2021; 231:2077-2091. [PMID: 34076889 DOI: 10.1111/nph.17525] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Brown algae are an important group of multicellular eukaryotes, phylogenetically distinct from both the animal and land plant lineages. Ectocarpus has emerged as a model organism to study diverse aspects of brown algal biology, but this system currently lacks an effective reverse genetics methodology to analyse the functions of selected target genes. Here, we report that mutations at specific target sites are generated following the introduction of CRISPR-Cas9 ribonucleoproteins into Ectocarpus cells, using either biolistics or microinjection as the delivery method. Individuals with mutations affecting the ADENINE PHOSPHORIBOSYL TRANSFERASE (APT) gene were isolated following treatment with 2-fluoroadenine, and this selection system was used to isolate individuals in which mutations had been introduced simultaneously at APT and at a second gene. This double mutation approach could potentially be used to isolate mutants affecting any Ectocarpus gene, providing an effective reverse genetics tool for this model organism. The availability of this tool will significantly enhance the utility of Ectocarpus as a model organism for this ecologically and economically important group of marine organisms. Moreover, the methodology described here should be readily transferable to other brown algal species.
Collapse
Affiliation(s)
- Yacine Badis
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
| | - Delphine Scornet
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Minori Harada
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Céline Caillard
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Olivier Godfroy
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Morgane Raphalen
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll,, PA37 1QA, UK
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, Paris, 75005, France
| | - Susana M Coelho
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Japan
| | - J Mark Cock
- Roscoff Biological Station, Place Georges Teissier, Roscoff, 29680, France
| |
Collapse
|
36
|
Zhang J, Li Y, Luo S, Cao M, Zhang L, Li X. Differential gene expression patterns during gametophyte development provide insights into sex differentiation in the dioicous kelp Saccharina japonica. BMC PLANT BIOLOGY 2021; 21:335. [PMID: 34261451 PMCID: PMC8278619 DOI: 10.1186/s12870-021-03117-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In brown algae, dioicy is the prevalent sexual system, and phenotypic differences between male and female gametophytes have been found in many dioicous species. Saccharina japonica show remarkable sexual dimorphism in gametophytes before gametogenesis. A higher level of phenotypic differentiation was also found in female and male gametes after gametogenesis. However, the patterns of differential gene expression throughout gametophyte development and how these changes might relate to sex-specific fitness at the gamete stage in S. japonica are not well known. RESULTS In this study, differences in gene expression between male and female gametophytes in different developmental stages were investigated using comparative transcriptome analysis. Among the 20,151 genes expressed in the haploid gametophyte generation, 37.53% were sex-biased. The abundance of sex-biased genes in mature gametophytes was much higher than that in immature gametophytes, and more male-biased than female-biased genes were observed in the mature stage. The predicted functions of most sex-biased genes were closely related to the sex-specific characteristics of gametes, including cell wall biosynthesis, sperm motility, and sperm and egg recognition. In addition, 51 genes were specifically expressed in males in both stages, showing great potential as candidate male sex-determining region (SDR) genes. CONCLUSIONS This study describes a thorough investigation into differential gene expression between male and female gametophytes in the dioicous kelp S. japonica. A large number of sex-biased genes in mature gametophytes may be associated with the divergence of phenotypic traits and physiological functions between female gametes (eggs) and male gametes (sperm) during sexual differentiation. These genes may mainly come from new sex-biased genes that have recently evolved in the S. japonica lineage. The duplication of sex-biased genes was detected, which may increase the number of sex-biased genes after gametogenesis in S. japonica to some extent. The excess of male-biased genes over female-biased genes in the mature stage may reflect the different levels of sexual selection across sexes. This study deepens our understanding of the regulation of sex development and differentiation in the dioicous kelp S. japonica.
Collapse
Affiliation(s)
- Jiaxun Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Shiju Luo
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai, 264003, China
| |
Collapse
|
37
|
Shan T, Pang S, Wang X, Li J. The Inheritable Characteristics of Monoecy and Parthenogenesis Provide A Means for Establishing A Doubled Haploid Population in the Economically Important Brown Alga Undaria pinnatifida (Laminariales, Alariaceae). JOURNAL OF PHYCOLOGY 2021; 57:1026-1034. [PMID: 33624318 DOI: 10.1111/jpy.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Monoecy and parthenogenesis exist in certain male and female gametophytes of the brown alga Undaria pinnatifida. The inheritance of these traits is not known. In this study, we made a cross between a male and a female gametophyte clone which could exhibit monoecy and parthenogenesis phenotypes, respectively, and obtained their next-generation gametophyte offspring. We found that under conditions suitable for gametogenesis, all of the male offspring (n = 100) exhibited monoecy phenotype and all of the female offspring (n = 100) only formed oogonia and underwent parthenogenesis, suggesting that monoecy and parthenogenesis phenotypes are inheritable. Then, we established a doubled haploid (DH) population through monoecious selfing and parthenogenesis, and evaluated the young sporophyte growth and the maximum quantum yield (Fv /Fm ) of 10 "male" and 10 "female" DH lines. On day 60, the average length of the "male" DH lines was significantly larger than that of the "female" DH lines, while their average Fv /Fm values were not significantly different. Monoecious selfing seemed superior to parthenogenesis as the sporophyte formation efficiency, and the young sporophyte growth was better in the former than in the latter. We also crossed two monoecious gametophytes with another male gametophyte, and a parentage analysis showed success of obtaining hybrid sporophytes, indicating that the female gametes released by the monoecious gametophyte can actually be fertilized by sperm. The approach of establishing a DH population proposed here will be useful in genetic breeding and quantitative trait loci mapping in U. pinnatifida and may be applicable to other kelp species.
Collapse
Affiliation(s)
- Tifeng Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Shaojun Pang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuemei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Jing Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
38
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
39
|
Horinouchi Y, Togashi T. Identification of genomic differences between the sexes and sex-specific molecular markers in Monostroma angicava (Ulvophyceae). JOURNAL OF PHYCOLOGY 2021; 57:447-453. [PMID: 33450042 DOI: 10.1111/jpy.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/05/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
There is little information available regarding genomic differences between sexes in ulvophycean green algae. The detection of these differences will enable the development of sex-discriminating molecular markers, which are useful for algae showing little apparent difference between sexes. In this study, we identified male- and female-specific DNA sequences in the ulvophycean marine green alga Monostroma angicava, which has a dioicous heteromorphic haplo-diplontic life cycle, via next-generation sequencing. Fluorescence in situ hybridization (FISH) showed that signals for the sex-specific sequences exist only in the nuclei of the corresponding sex, confirming the specificity of the sequences. Sex-specific molecular markers that targeted these sequences successfully distinguished the sex of gametophytes even in geographically distant populations, indicating that the sex-specific sequences are universal. These results consistently suggest that male and female gametophytes of M. angicava are genetically different, implying that sex may be determined genetically in this alga.
Collapse
Affiliation(s)
- Yusuke Horinouchi
- Marine Biosystems Research Center, Chiba University, Kamogawa, 299-5502, Japan
| | - Tatsuya Togashi
- Marine Biosystems Research Center, Chiba University, Kamogawa, 299-5502, Japan
| |
Collapse
|
40
|
Charlesworth D. When and how do sex-linked regions become sex chromosomes? Evolution 2021; 75:569-581. [PMID: 33592115 DOI: 10.1111/evo.14196] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
The attention given to heteromorphism and genetic degeneration of "classical sex chromosomes" (Y chromosomes in XY systems, and the W in ZW systems that were studied first and are best described) has perhaps created the impression that the absence of recombination between sex chromosomes is inevitable. I here argue that continued recombination is often to be expected, that absence of recombination is surprising and demands further study, and that the involvement of selection in reduced recombination is not yet well understood. Despite a long history of investigations of sex chromosome pairs, there is a need for more quantitative approaches to studying sex-linked regions. I describe a scheme to help understand the relationships between different properties of sex-linked regions. Specifically, I focus on their sizes (differentiating between small regions and extensive fully sex-linked ones), the times when they evolved, and their differentiation, and review studies using DNA sequencing in nonmodel organisms that are providing information about the processes causing these properties.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
41
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
42
|
Krueger-Hadfield SA, Flanagan BA, Godfroy O, Hill-Spanik KM, Nice CC, Murren CJ, Strand AE, Sotka EE. Using RAD-seq to develop sex-linked markers in a haplodiplontic alga. JOURNAL OF PHYCOLOGY 2021; 57:279-294. [PMID: 33098662 DOI: 10.1111/jpy.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35294, USA
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Kristina M Hill-Spanik
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, Texas, 78666, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Allan E Strand
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Erik E Sotka
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| |
Collapse
|
43
|
Abstract
Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.
Collapse
Affiliation(s)
- Susana M Coelho
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
- Current affiliation: Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - J Mark Cock
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, 29680 Roscoff, France;
| |
Collapse
|
44
|
Shearn R, Wright AE, Mousset S, Régis C, Penel S, Lemaitre JF, Douay G, Crouau-Roy B, Lecompte E, Marais GA. Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates. eLife 2020; 9:63650. [PMID: 33205751 PMCID: PMC7717902 DOI: 10.7554/elife.63650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here, we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.
Collapse
Affiliation(s)
- Rylan Shearn
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Sylvain Mousset
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Corinne Régis
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Simon Penel
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | | | | | - Brigitte Crouau-Roy
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Emilie Lecompte
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Gabriel Ab Marais
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,LEAF-Linking Landscape, Environment, Agriculture and Food Dept, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Coelho SM, Peters AF, Müller D, Cock JM. Ectocarpus: an evo-devo model for the brown algae. EvoDevo 2020; 11:19. [PMID: 32874530 PMCID: PMC7457493 DOI: 10.1186/s13227-020-00164-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Ectocarpus is a genus of filamentous, marine brown algae. Brown algae belong to the stramenopiles, a large supergroup of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context.
Collapse
Affiliation(s)
- Susana M. Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | | | - Dieter Müller
- Fachbereich Biologie der Universitat Konstanz, 78457 Konstanz, Germany
| | - J. Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| |
Collapse
|
46
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-pozo N, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, Mcbreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, Mcdaniel SF. The Ceratodon purpureus genome uncovers structurally complex, gene rich sex chromosomes.. [PMID: 0 DOI: 10.1101/2020.07.03.163634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractNon-recombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration1,2. The correlation between suppressed recombination and degeneration is clear in animal XY systems1,2, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions3,4. Here we test for degeneration in the bryophyte UV sex chromosome system through genomic comparisons with new female and male chromosome-scale reference genomes of the moss Ceratodon purpureus. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes show signs of weaker purifying selection than autosomes, we find suppressed recombination alone is insufficient to drive gene loss on sex-specific chromosomes. Instead, the U and V sex chromosomes harbor thousands of broadly-expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
|
47
|
instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biol 2020; 21:148. [PMID: 32552806 PMCID: PMC7386250 DOI: 10.1186/s13059-020-02041-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hi-C exploits contact frequencies between pairs of loci to bridge and order contigs during genome assembly, resulting in chromosome-level assemblies. Because few robust programs are available for this type of data, we developed instaGRAAL, a complete overhaul of the GRAAL program, which has adapted the latter to allow efficient assembly of large genomes. instaGRAAL features a number of improvements over GRAAL, including a modular correction approach that optionally integrates independent data. We validate the program using data for two brown algae, and human, to generate near-complete assemblies with minimal human intervention.
Collapse
|
48
|
Richardson N, Gillot I, Gregoire EP, Youssef SA, de Rooij D, de Bruin A, De Cian MC, Chaboissier MC. Sox8 and Sox9 act redundantly for ovarian-to-testicular fate reprogramming in the absence of R-spondin1 in mouse sex reversals. eLife 2020; 9:53972. [PMID: 32450947 PMCID: PMC7250573 DOI: 10.7554/elife.53972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, testicular differentiation is initiated by transcription factors SRY and SOX9 in XY gonads, and ovarian differentiation involves R-spondin1 (RSPO1) mediated activation of WNT/β-catenin signaling in XX gonads. Accordingly, the absence of RSPO1/Rspo1 in XX humans and mice leads to testicular differentiation and female-to-male sex reversal in a manner that does not requireSry or Sox9 in mice. Here we show that an alternate testis-differentiating factor exists and that this factor is Sox8. Specifically, genetic ablation of Sox8 and Sox9 prevents ovarian-to-testicular reprogramming observed in XX Rspo1 loss-of-function mice. Consequently, Rspo1 Sox8 Sox9 triple mutant gonads developed as atrophied ovaries. Thus, SOX8 alone can compensate for the loss of SOX9 for Sertoli cell differentiation during female-to-male sex reversal. In humans, mice and other mammals, genetic sex is determined by the combination of sex chromosomes that each individual inherits. Individuals with two X chromosomes (XX) are said to be chromosomally female, while individuals with one X and one Y chromosome (XY) are chromosomally males. One of the major differences between XX and XY individuals is that they have different types of gonads (the organs that make egg cells or sperm). In mice, for example, before males are born, a gene called Sox9 triggers a cascade of events that result in the gonads developing into testes. In females, on the other hand, another gene called Rspo1 stimulates the gonads to develop into ovaries. Loss of Sox9 in XY embryos, or Rspo1 in XX embryos, leads to mice developing physical characteristics that do not match their genetic sex, a phenomenon known as sex reversal. For example, in XX female mice lacking Rspo1, cells in the gonads reprogram into testis cells known as Sertoli cells just before birth and form male structures known as testis cords. The gonads of female mice missing both Sox9 and Rspo1 (referred to as “double mutants”) also develop Sertoli cells and testis cords, suggesting another gene may compensate for the loss of Sox9. Previous studies suggest that a gene known as Sox8, which is closely related to Sox9, may be able to drive sex reversal in female mice. However, it was not clear whether Sox8 is able to stimulate testis to form in female mice in the absence of Sox9. To address this question, Richardson et al. studied mutant female mice lacking Rspo1, Sox8 and Sox9, known as “triple mutants”. Just before birth, the gonads in the triple mutant mice showed some characteristics of sex reversal but lacked the Sertoli cells found in the double mutant mice. After the mice were born, the gonads of the triple mutant mice developed as rudimentary ovaries without testis cords, unlike the more testis-like gonads found in the double mutant mice. The findings of Richardson et al. show that Sox8 is able to trigger sex reversal in female mice in the absence of Rspo1 and Sox9. Differences in sexual development in humans affect the appearance of individuals and often cause infertility. Identifying Sox8 and other similar genes in mice may one day help to diagnose people with such conditions and lead to the development of new therapies.
Collapse
Affiliation(s)
| | | | | | - Sameh A Youssef
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department Pediatrics, Divisions Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dirk de Rooij
- Department of Biology, Faculty of Science, Division of Developmental Biology, Reproductive Biology Group, Utrecht University, Utrecht, Netherlands
| | - Alain de Bruin
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department Pediatrics, Divisions Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
49
|
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res 2020; 30:164-172. [PMID: 32033943 PMCID: PMC7050526 DOI: 10.1101/gr.251207.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Cannabissativa–derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia.,N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow 127276, Russia
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France.,Institut de Recherche pour le Développement, UMR DIADE, IRD, Université de Montpellier, F-34394 Montpellier, France
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Cong Feng
- Chongqing Medical University, Yuzhong District, Chongqing, 400016, China.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| |
Collapse
|
50
|
Prentout D, Razumova O, Rhoné B, Badouin H, Henri H, Feng C, Käfer J, Karlov G, Marais GAB. An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of Cannabis sativa. Genome Res 2020; 30:164-172. [PMID: 32033943 DOI: 10.1101/721324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/24/2020] [Indexed: 05/22/2023]
Abstract
Cannabis sativa-derived tetrahydrocannabinol (THC) production is increasing very fast worldwide. C. sativa is a dioecious plant with XY Chromosomes, and only females (XX) are useful for THC production. Identifying the sex chromosome sequence would improve early sexing and better management of this crop; however, the C. sativa genome projects have failed to do so. Moreover, as dioecy in the Cannabaceae family is ancestral, C. sativa sex chromosomes are potentially old and thus very interesting to study, as little is known about old plant sex chromosomes. Here, we RNA-sequenced a C. sativa family (two parents and 10 male and female offspring, 576 million reads) and performed a segregation analysis for all C. sativa genes using the probabilistic method SEX-DETector. We identified >500 sex-linked genes. Mapping of these sex-linked genes to a C. sativa genome assembly identified the largest chromosome pair being the sex chromosomes. We found that the X-specific region (not recombining between X and Y) is large compared to other plant systems. Further analysis of the sex-linked genes revealed that C. sativa has a strongly degenerated Y Chromosome and may represent the oldest plant sex chromosome system documented so far. Our study revealed that old plant sex chromosomes can have large, highly divergent nonrecombining regions, yet still be roughly homomorphic.
Collapse
Affiliation(s)
- Djivan Prentout
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Olga Razumova
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Moscow 127276, Russia
| | - Bénédicte Rhoné
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
- Institut de Recherche pour le Développement, UMR DIADE, IRD, Université de Montpellier, F-34394 Montpellier, France
| | - Hélène Badouin
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Cong Feng
- Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jos Käfer
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow 127550, Russia
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Lyon 1, CNRS, F-69622 Villeurbanne, France
| |
Collapse
|