1
|
Solé-Gil A, Sakai Y, Catarino B, Jones VAS, Youngstrom CE, Jordà-Segura J, Cheng CL, Dolan L, Ambrose BA, Ishizaki K, Blázquez MA, Agustí J. Divergent evolution of a thermospermine-dependent regulatory pathway in land plants. Dev Cell 2025; 60:1348-1358.e4. [PMID: 39793581 DOI: 10.1016/j.devcel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Bruno Catarino
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | - Joan Jordà-Segura
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Gregor Mendel Institute, Vienna 1030, Austria
| | | | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| |
Collapse
|
2
|
Moon S, Jiang X, Choi H, Ha SH, Jung KH. Decoding the transcriptional regulatory mechanisms of basic helix-loop-helix transcription factors for fine-tuning target genes in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109696. [PMID: 40058237 DOI: 10.1016/j.plaphy.2025.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/23/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND In the intricate landscape of gene regulation, basic helix-loop-helix (bHLH) transcription factors (TFs) play a pivotal role in controlling gene expression across various biological processes in plants. The bHLH domain, about 60 amino acids long, consists of a DNA-binding basic region and a dimerization helix-loop-helix region. In rice, 188 bHLH proteins are encoded and more than 90 functionally characterized. To finely regulate the expression of various target genes, bHLH TFs engage multiple transcriptional regulatory mechanisms. AIM OF REVIEW The aim of this review is to provide a comprehensive understanding of the diverse transcriptional regulatory mechanisms of bHLH TFs in rice. KEY SCIENTIFIC CONCEPTS OF REVIEW: bHLH TFs engage the diverse transcriptional regulatory mechanisms, including spatiotemporal expression, the formation of inhibitory complexes, and the integration multiple signaling pathways. Additionally, the ability to switch interaction partners provides flexibility in target site recognition, allowing bHLH proteins regulate a wide range of biological processes, from basic cellular functions to complex developmental pathways. Understanding of multiple transcriptional regulatory mechanisms of bHLH TFs can provide key insights for improving crop traits, such as stress resistance and growth efficiency, which are crucial for enhancing agricultural productivity in the future.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Heebak Choi
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Sun-Hwa Ha
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
3
|
Zhou C, Yang T, Cai M, Cui H, Yu F, Liu H, Fu J. Comprehensive analysis of the INDETERMINATE DOMAIN (IDD) gene family in Marchantia polymorpha brings new insight into evolutionary developmental biology. BMC Genomics 2025; 26:415. [PMID: 40301722 PMCID: PMC12039213 DOI: 10.1186/s12864-025-11609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of plant cell fate. An increasing number of studies have illustrated that the SHR-SCR pathway depends on some INDETERMINATE DOMAIN (IDD) family transcription factors in regulating genes involved in tissue and organ morphogenesis, nutrients transport and metabolism, photoperiodic flowering and stress response. Recent genome sequencing and analysis revealed that only seven IDDs exist in the liverwort Marchantia polymorpha, one of the early diverging extant land plant lineages. However, little is known concerning how the IDDs and the SHR/SCR-IDD pathway work in the ancestral land plants. RESULTS In this study, IDD gene family members of this liverwort and other classic model plants were classified into seven branches on the basis of phylogenetic analysis. Gene structure and protein motif analyses suggested that most of the MpIDDs are comparatively evolutionary conserved. Protein structure prediction showed that MpIDDs display similar core domain organization with the IDD proteins from the same branches. Cis-regulatory element prediction demonstrated that MpIDDs might be hormone and stress responsive. The expression levels of most MpIDDs display tissue specificities and could be changed by hormone treatment. All the MpIDDs are located in the nucleus, and most of them have autoactivation activity. Yeast two-hybrid assays confirmed the interactions between MpGRAS8/MpSHR and MpIDD3, MpIDD4 or MpIDD5, as well as MpGRAS3/MpSCR and MpIDD1 or MpIDD2. Taken together, our results provide comprehensive information on IDD gene family in M. polymorpha for further exploring their function in depth, and highlight the importance of the SHR/SCR-IDD pathway in plant development and evolution. CONCLUSIONS Through bioinformatics analysis and experimental determination of expression patterns, subcellular localization, autoactivation, and protein interaction, this study provided crucial information for a deeper understanding of the functions of MpIDDs in evolutionary developmental studies.
Collapse
Affiliation(s)
- Congye Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Manlei Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huawei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Urzúa Lehuedé T, Berdion Gabarain V, Ibeas MA, Salinas-Grenet H, Achá-Escobar R, Moyano TC, Ferrero L, Núñez-Lillo G, Pérez-Díaz J, Perotti MF, Miguel VN, Spies FP, Rosas MA, Kawamura A, Rodríguez-García DR, Kim AR, Nolan T, Moreno AA, Sugimoto K, Perrimon N, Sanguinet KA, Meneses C, Chan RL, Ariel F, Alvarez JM, Estevez JM. Two antagonistic gene regulatory networks drive Arabidopsis root hair growth at low temperature linked to a low-nutrient environment. THE NEW PHYTOLOGIST 2025; 245:2645-2664. [PMID: 39891516 DOI: 10.1111/nph.20406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low-temperature condition of 10°C causes increased RH growth in Arabidopsis and in several monocots, even when the development of the rest of the plant is halted. Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low-temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown. We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs) ROOT HAIR DEFECTIVE 6 (RHD6), HAIR DEFECTIVE 6-LIKE 2 and 4 (RSL2-RSL4) and a member of the homeodomain leucine zipper (HD-Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TF GT2-LIKE1 (GTL1) and the associated DF1, a previously unidentified MYB-like TF (AT2G01060) and several members of HD-Zip I group (AtHB3, AtHB13, AtHB20, AtHB23). Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.
Collapse
Affiliation(s)
- Tomás Urzúa Lehuedé
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Miguel Angel Ibeas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Romina Achá-Escobar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - Tomás C Moyano
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
| | - Lucia Ferrero
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Gerardo Núñez-Lillo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota, 2260000, Chile
| | - Jorge Pérez-Díaz
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
| | - María Florencia Perotti
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Fiorella Paola Spies
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Miguel A Rosas
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Ayako Kawamura
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Nolan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences and Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA, 99164, USA
| | - Claudio Meneses
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Santiago, 6904411, Chile
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral-CONICET, Facultad de Bioquímica y Ciencias Biológicas, CCT Santa Fe, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Jose M Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- ANID - Millenium Science Initiative Program - Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago, 8370186, Chile
| | - José M Estevez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
- ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
5
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2025; 245:2292-2308. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
6
|
Iwano M, Suetsugu N, Nishihama R, Ishida S, Horie T, Costa A, Katsuno T, Kimura M, Iida K, Iida H, Nagai T, Kohchi T. MID1-COMPLEMENTING ACTIVITY regulates cell proliferation and development via Ca2+ signaling in Marchantia polymorpha. PLANT PHYSIOLOGY 2024; 197:kiae613. [PMID: 39535860 PMCID: PMC11663713 DOI: 10.1093/plphys/kiae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
MID1-COMPLEMENTING ACTIVITY (MCA) is a land plant-specific, plasma membrane protein, and Ca2+ signaling component that responds to exogenous mechanical stimuli, such as touch, gravity, and hypotonic-osmotic stress, in various plant species. MCA is essential for cell proliferation and differentiation during growth and development in rice (Oryza sativa) and maize (Zea mays). However, the mechanism by which MCA mediates cell proliferation and differentiation via Ca2+ signaling remains unknown. Here, we address this question using the liverwort Marchantia polymorpha. We show that the M. polymorpha MCA ortholog, MpMCA, is highly expressed in actively dividing regions, such as apical notches in the thalli and developing gametangiophores, and that MpMCA is a plasma membrane protein. In vivo, Ca2+ imaging using a Ca2+ sensor (yellow cameleon) revealed that MpMCA is required for maintaining proper [Ca2+]cyt levels in the apical notch region, egg cells, and antheridium cells. Mpmca mutant plants showed severe cell proliferation and differentiation defects in the thalli, gametangiophores, and gametangia, resulting in abnormal development and unsuccessful fertilization. Furthermore, expression of the Arabidopsis MCA1 gene complemented most of the defects in the growth and development of the Mpmca mutant plants. Our findings indicate that MpMCA is an evolutionarily conserved Ca2+-signaling component that regulates cell proliferation and development across the life cycle of land plants.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Tatsuya Katsuno
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Midori Kimura
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Kazuko Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Ibaraki, Osaka 567-0047, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Ibeas MA, Salinas-Grenet H, Johnson NR, Pérez-Díaz J, Vidal EA, Alvarez JM, Estevez JM. Filling the gaps on root hair development under salt stress and phosphate starvation using current evidence coupled with a meta-analysis approach. PLANT PHYSIOLOGY 2024; 196:2140-2149. [PMID: 38918899 DOI: 10.1093/plphys/kiae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Population expansion is a global issue, especially for food production. Meanwhile, global climate change is damaging our soils, making it difficult for crops to thrive and lowering both production and quality. Poor nutrition and salinity stress affect plant growth and development. Although the impact of individual plant stresses has been studied for decades, the real stress scenario is more complex due to the exposure to multiple stresses at the same time. Here we investigate using existing evidence and a meta-analysis approach to determine molecular linkages between 2 contemporaneous abiotic stimuli, phosphate (Pi) deficiency and salinity, on a single plant cell model, the root hairs (RHs), which is the first plant cell exposed to them. Understanding how these 2 stresses work molecularly in RHs may help us build super-adaptable crops and sustainable agriculture in the face of global climate change.
Collapse
Affiliation(s)
- Miguel Angel Ibeas
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Hernán Salinas-Grenet
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - Nathan R Johnson
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Jorge Pérez-Díaz
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| | - Elena A Vidal
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - José Miguel Alvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
| | - José M Estevez
- ANID-Millennium Science Initiative Program, Millennium Nucleus for the DeveIopment of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
- ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 7500000, Chile
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
8
|
Lee K, Hyun JO, Cho HT. An inquiry into the radial patterning of root hair cell distribution in eudicots. THE NEW PHYTOLOGIST 2024; 244:1931-1946. [PMID: 39327901 DOI: 10.1111/nph.20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
The root epidermis of tracheophytes consists of hair-forming cells (HCs) and nonhair cells (NCs). The HC distribution pattern is classified into three types: random (Type I), vertically alternating (Type II), and radial (Type III). Type III is found only in core eudicots and is known to be position-dependent in superrosids with HCs positioned between two underlying cortical cells. However, the evolution of Type III and the universality of its position dependency in eudicots remain unclear. We surveyed the HC distribution in basal and Type III-exhibiting core eudicots and conducted genomic analyses to get insight into whether eudicots share the same genetic network to establish Type III. Our survey revealed no canonical Type III in basal eudicots but a reverse Type III, with NCs between two cortical cells and HCs on a single cortical cell, in Papaveraceae of basal eudicots. Type III-exhibiting species from both superrosids and superasterids showed the canonical position dependency of HCs. However, some key components for Type III determination were absent in the genomes of Papaveraceae and Type III-exhibiting superasterids. Our findings identify a novel position-dependent type of HC patterning, reverse Type III, and suggest that Type III emerged independently or diversified during eudicot evolution.
Collapse
Affiliation(s)
- Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin-Oh Hyun
- Northeastern Asia Biodiversity Institute, Gyeonggi-do, 12982, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
9
|
Fu J, Zhou C, Ma F, Zhao J, Yu F, Cui H. The PLETHORA Homolog in Marchantia polymorpha is Essential for Meristem Maintenance, Developmental Progression, and Redox Homeostasis. PLANT & CELL PHYSIOLOGY 2024; 65:1231-1244. [PMID: 38757817 DOI: 10.1093/pcp/pcae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.
Collapse
Affiliation(s)
- Jing Fu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Congye Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongchang Cui
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
10
|
Li X, Yang J, Zhang Q, Zhang L, Cheng F, Xu W. Phosphorus-Use-Efficiency Gene Identification in Fabaceae and RSL2 Expansion in Lupinus albus Is Associated with Low-Phosphorus Adaptation. Genes (Basel) 2024; 15:1049. [PMID: 39202409 PMCID: PMC11353381 DOI: 10.3390/genes15081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Phosphorus is critical for plant growth but often becomes less accessible due to its precipitation with cations in soil. Fabaceae, a diverse plant family, exhibits robust adaptability and includes species like Lupinus albus, known for its efficient phosphorus utilization via cluster roots. Here, we systematically identified phosphorus-utilization-efficiency (PUE) gene families across 35 Fabaceae species, highlighting significant gene amplification in PUE pathways in Fabaceae. Different PUE pathways exhibited variable amplification, evolution, and retention patterns among various Fabaceae crops. Additionally, the number of homologous genes of the root hair development gene RSL2 in L. albus was far more than that in other Fabaceae species. Multiple copies of the RSL2 gene were amplified and retained in L. albus after whole genome triplication. The gene structure and motifs specifically retained in L. albus were different from homologous genes in other plants. Combining transcriptome analysis under low-phosphorus treatment, it was found that most of the homologous genes of RSL2 in L. albus showed high expression in the cluster roots, suggesting that the RSL2 gene family plays an important role in the adaptation process of L. albus to low-phosphorus environments and the formation of cluster roots.
Collapse
Affiliation(s)
- Xing Li
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Jinyong Yang
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Provincial Key Laboratory of Plant Functional Biology and College of Resources and Environment, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.L.); (J.Y.); (Q.Z.)
| |
Collapse
|
11
|
Lopez LE, Chuah YS, Encina F, Carignani Sardoy M, Berdion Gabarain V, Mutwil M, Estevez JM. New molecular components that regulate the transcriptional hub in root hairs: coupling environmental signals with endogenous hormones to coordinate growth. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4171-4179. [PMID: 37875460 DOI: 10.1093/jxb/erad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Root hairs have become an important model system for studying plant growth, and in particular how plants modulate their growth in response to cell-intrinsic and environmental stimuli. In this review, we discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis root hairs in the interface between responses to environmental cues (e.g. nutrients such as nitrates and phosphate, and microorganisms) and hormonal stimuli (e.g. auxin). Growth of root hairs is under the control of several transcription factors that are also under strong regulation at different levels. We highlight recent new discoveries along these transcriptional pathways that might have the potential to increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We use the text-mining capacities of the PlantConnectome database to generate an up-to-date view of root hairs growth within these complex biological contexts.
Collapse
Affiliation(s)
- Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Yu Song Chuah
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Felipe Encina
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Mariana Carignani Sardoy
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- ANID-Millennium Science Initiative Program-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| |
Collapse
|
12
|
Cheng J, Wang J, Bi S, Li M, Wang L, Wang L, Li T, Zhang X, Gao Y, Zhu L, Wang C. GLABRA 2 regulates ETHYLENE OVERPRODUCER 1 accumulation during nutrient deficiency-induced root hair growth. PLANT PHYSIOLOGY 2024; 195:1906-1924. [PMID: 38497551 DOI: 10.1093/plphys/kiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Root hairs (RHs), extensive structures of root epidermal cells, are important for plant nutrient acquisition, soil anchorage, and environmental interactions. Excessive production of the phytohormone ethylene (ET) leads to substantial root hair growth, manifested as tolerance to plant nutrient deficiencies. However, the molecular basis of ET production during root hair growth in response to nutrient starvation remains unknown. Herein, we found that a critical transcription factor, GLABRA 2 (GL2), inhibits ET production during root hair growth in Arabidopsis (Arabidopsis thaliana). GL2 directly binds to the promoter of the gene encoding ET OVERPRODUCER 1 (ETO1), one of the most important ET-production-regulation factors, in vitro and in vivo, and then regulates the accumulation and function of ETO1 in root hair growth. The GL2-regulated-ETO1 module is required for promoting root hair growth under nitrogen, phosphorus, or potassium deficiency. Genome-wide analysis revealed numerous genes, such as ROOT HAIR DEFECTIVE 6-LIKE 4, ETHYLENE-INSENSITIVE 3-LIKE 2, ROOT HAIR SPECIFIC 13, are involved in the GL2-regulated-ETO1 module. Our work reveals a key transcription mechanism in the control of ET production during root hair growth under three major nutrient deficiencies.
Collapse
Affiliation(s)
- Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinshu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lina Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Wang
- Institute of Germplasm Resource and Biotechnology; Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300392, China
| | - Tong Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaolan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
13
|
Romani F, Sauret-Güeto S, Rebmann M, Annese D, Bonter I, Tomaselli M, Dierschke T, Delmans M, Frangedakis E, Silvestri L, Rever J, Bowman JL, Romani I, Haseloff J. The landscape of transcription factor promoter activity during vegetative development in Marchantia. THE PLANT CELL 2024; 36:2140-2159. [PMID: 38391349 PMCID: PMC11132968 DOI: 10.1093/plcell/koae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024]
Abstract
Transcription factors (TFs) are essential for the regulation of gene expression and cell fate determination. Characterizing the transcriptional activity of TF genes in space and time is a critical step toward understanding complex biological systems. The vegetative gametophyte meristems of bryophytes share some characteristics with the shoot apical meristems of flowering plants. However, the identity and expression profiles of TFs associated with gametophyte organization are largely unknown. With only ∼450 putative TF genes, Marchantia (Marchantia polymorpha) is an outstanding model system for plant systems biology. We have generated a near-complete collection of promoter elements derived from Marchantia TF genes. We experimentally tested reporter fusions for all the TF promoters in the collection and systematically analyzed expression patterns in Marchantia gemmae. This allowed us to build a map of expression domains in early vegetative development and identify a set of TF-derived promoters that are active in the stem-cell zone. The cell markers provide additional tools and insight into the dynamic regulation of the gametophytic meristem and its evolution. In addition, we provide an online database of expression patterns for all promoters in the collection. We expect that these promoter elements will be useful for cell-type-specific expression, synthetic biology applications, and functional genomics.
Collapse
Affiliation(s)
- Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Marius Rebmann
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Davide Annese
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Ignacy Bonter
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mihails Delmans
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | | | - Linda Silvestri
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - Jenna Rever
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ignacio Romani
- Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, Bernal, Buenos Aires 1876, Argentina
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB3 EA, UK
| |
Collapse
|
14
|
Lu YT, Loue-Manifel J, Bollier N, Gadient P, De Winter F, Carella P, Hoguin A, Grey-Switzman S, Marnas H, Simon F, Copin A, Fischer S, de Leau E, Schornack S, Nishihama R, Kohchi T, Depège Fargeix N, Ingram G, Nowack MK, Goodrich J. Convergent evolution of water-conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death. Curr Biol 2024; 34:793-807.e7. [PMID: 38295796 DOI: 10.1016/j.cub.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.
Collapse
Affiliation(s)
- Yen-Ting Lu
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Jeanne Loue-Manifel
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK; Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | | | - Philippe Gadient
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Antoine Hoguin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shona Grey-Switzman
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Hugo Marnas
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Francois Simon
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Alice Copin
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Shelby Fischer
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Nathalie Depège Fargeix
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon 69342, France
| | - Moritz K Nowack
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
15
|
Aggarwal B, Karlowski WM, Nuc P, Jarmolowski A, Szweykowska-Kulinska Z, Pietrykowska H. MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha - insights into their expression pattern, gene structures and function. RNA Biol 2024; 21:1-12. [PMID: 38303117 PMCID: PMC10841014 DOI: 10.1080/15476286.2024.2303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.
Collapse
Affiliation(s)
- Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
16
|
Pietrykowska H, Alisha A, Aggarwal B, Watanabe Y, Ohtani M, Jarmolowski A, Sierocka I, Szweykowska-Kulinska Z. Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development. PLANT MOLECULAR BIOLOGY 2023; 113:121-142. [PMID: 37991688 PMCID: PMC10721683 DOI: 10.1007/s11103-023-01392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
A wide variety of functional regulatory non-coding RNAs (ncRNAs) have been identified as essential regulators of plant growth and development. Depending on their category, ncRNAs are not only involved in modulating target gene expression at the transcriptional and post-transcriptional levels but also are involved in processes like RNA splicing and RNA-directed DNA methylation. To fulfill their molecular roles properly, ncRNAs must be precisely processed by multiprotein complexes. In the case of small RNAs, DICER-LIKE (DCL) proteins play critical roles in the production of mature molecules. Land plant genomes contain at least four distinct classes of DCL family proteins (DCL1-DCL4), of which DCL1, DCL3 and DCL4 are also present in the genomes of bryophytes, indicating the early divergence of these genes. The liverwort Marchantia polymorpha has become an attractive model species for investigating the evolutionary history of regulatory ncRNAs and proteins that are responsible for ncRNA biogenesis. Recent studies on Marchantia have started to uncover the similarities and differences in ncRNA production and function between the basal lineage of bryophytes and other land plants. In this review, we summarize findings on the essential role of regulatory ncRNAs in Marchantia development. We provide a comprehensive overview of conserved ncRNA-target modules among M. polymorpha, the moss Physcomitrium patens and the dicot Arabidopsis thaliana, as well as Marchantia-specific modules. Based on functional studies and data from the literature, we propose new connections between regulatory pathways involved in Marchantia's vegetative and reproductive development and emphasize the need for further functional studies to understand the molecular mechanisms that control ncRNA-directed developmental processes.
Collapse
Affiliation(s)
- Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Bharti Aggarwal
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192, Nara, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Kanagawa, Japan
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
17
|
Shimojo M, Nakamura M, Kitaura G, Ihara Y, Shimizu S, Hori K, Iwai M, Ohta H, Ishizaki K, Shimojima M. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions. PLANTA 2023; 258:92. [PMID: 37792042 PMCID: PMC10550880 DOI: 10.1007/s00425-023-04247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
MAIN CONCLUSION The phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha. The lipid composition and fatty acid profile during Pi starvation in M. polymorpha revealed a decrease in phospholipids and an increase in both galactolipids and betaine lipids. In Arabidopsis thaliana, phosphatidic acid phosphohydrolase (PAH) is involved in phospholipid degradation and is crucial for tolerance to both Pi and nitrogen starvation. We produced two M. polymorpha PAH (MpPAH) knockout mutants (Mppah-1 and Mppah-2) and found that, unlike Arabidopsis mutants, Mppah impaired plant growth with shorter rhizoids compared with wild-type plants even under nutrient-replete conditions. Mutation of MpPAH did not significantly affect the mole percent of each glycerolipid among total membrane glycerolipids from whole plants under both Pi-replete and Pi-deficient conditions. However, the fatty acid composition of monogalactosyldiacylglycerol indicated that the amount of plastid glycolipids produced through the endoplasmic reticulum pathway was suppressed in Mppah mutants. Phospholipids accumulated in the mutants under N starvation. These results reveal that MpPAH modulates plastid glycolipid synthesis through the endoplasmic reticulum pathway more so than what has been observed for Arabidopsis PAH; moreover, unlike Arabidopsis, MpPAH is crucial for M. polymorpha growth regardless of nutrient availability.
Collapse
Affiliation(s)
- Misao Shimojo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masashi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ginga Kitaura
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
18
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
19
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
20
|
Wang L, Wan MC, Liao RY, Xu J, Xu ZG, Xue HC, Mai YX, Wang JW. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev Cell 2023; 58:1429-1444.e6. [PMID: 37321217 DOI: 10.1016/j.devcel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Bryophytes represent a sister to the rest of land plants. Despite their evolutionary importance and relatively simple body plan, a comprehensive understanding of the cell types and transcriptional states that underpin the temporal development of bryophytes has not been achieved. Using time-resolved single-cell RNA sequencing, we define the cellular taxonomy of Marchantia polymorpha across asexual reproduction phases. We identify two maturation and aging trajectories of the main plant body of M. polymorpha at single-cell resolution: the gradual maturation of tissues and organs along the tip-to-base axis of the midvein and the progressive decline of meristem activities in the tip along the chronological axis. Specifically, we observe that the latter aging axis is temporally correlated with the formation of clonal propagules, suggesting an ancient strategy to optimize allocation of resources to producing offspring. Our work thus provides insights into the cellular heterogeneity that underpins the temporal development and aging of bryophytes.
Collapse
Affiliation(s)
- Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Mu-Chun Wan
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ren-Yu Liao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hao-Chen Xue
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; Core Facility Center of CEMPS, SIPPE, CAS, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Zhu Y, Schiefelbein J. A conserved gene regulatory network controls root epidermal cell patterning in superrosid species. THE NEW PHYTOLOGIST 2023; 238:2410-2426. [PMID: 36932734 DOI: 10.1111/nph.18885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Abstract
In superrosid species, root epidermal cells differentiate into root hair cells and nonhair cells. In some superrosids, the root hair cells and nonhair cells are distributed randomly (Type I pattern), and in others, they are arranged in a position-dependent manner (Type III pattern). The model plant Arabidopsis (Arabidopsis thaliana) adopts the Type III pattern, and the gene regulatory network (GRN) that controls this pattern has been defined. However, it is unclear whether the Type III pattern in other species is controlled by a similar GRN as in Arabidopsis, and it is not known how the different patterns evolved. In this study, we analyzed superrosid species Rhodiola rosea, Boehmeria nivea, and Cucumis sativus for their root epidermal cell patterns. Combining phylogenetics, transcriptomics, and cross-species complementation, we analyzed homologs of the Arabidopsis patterning genes from these species. We identified R. rosea and B. nivea as Type III species and C. sativus as Type I species. We discovered substantial similarities in structure, expression, and function of Arabidopsis patterning gene homologs in R. rosea and B. nivea, and major changes in C. sativus. We propose that in superrosids, diverse Type III species inherited the patterning GRN from a common ancestor, whereas Type I species arose by mutations in multiple lineages.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Luan J, Ju J, Li X, Wang X, Tan Y, Xia G. Functional identification of moss PpGATA1 provides insights into the evolution of LLM-domain B-GATA transcription factors in plants. Gene 2023; 855:147103. [PMID: 36513191 DOI: 10.1016/j.gene.2022.147103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
B-GATA transcription factors with the LLM domain (LLM-domain B-GATAs) play important roles in developmental processes and environmental responses in flowering plants. Their characterization can therefore provide insights into the structural and functional evolution of functional gene families. Phylogenetic and sequence analysis suggests that LLM-domain B-GATAs evolved from ancestral GATA transcription factors before the divergence of chlorophyte algae and Streptophyta. We compared the function of PpGATA1, a LLM-domain B-GATA gene in moss Physcomitrium patens, with Arabidopsis thaliana counterparts and showed that, in P. patens, PpGATA1 controls growth and greening in haploid gametophytes, while in transgenic Arabidopsis it affects germination, leaf development, flowering time, greening and light responses in diploid sporophytes. These PpGATA1 functions are similar to those of Arabidopsis counterparts, AtGNC, AtGNL and AtGATA17. PpGATA1 was able to complement the role of GNC and GNL in a gnc gnl double mutant, and the LLM domains of PpGATA1 and GNC behaved similarly. The functions of LLM-domain B-GATAs regulating hypocotyl elongation and cotyledon epinasty in flowering plants pre-exist before the divergence of mosses and the lineage leading to flowering plants. This study sheds light on adaption of PpGATA1 and its homologs to new developmental designs during the evolution.
Collapse
Affiliation(s)
- Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China; The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Jianfang Ju
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiuling Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Yufei Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong 266237, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
24
|
Komatsu A, Kodama K, Mizuno Y, Fujibayashi M, Naramoto S, Kyozuka J. Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway. Curr Biol 2023; 33:1196-1210.e4. [PMID: 36863344 DOI: 10.1016/j.cub.2023.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mizuki Fujibayashi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
25
|
Moriya KC, Shirakawa M, Loue-Manifel J, Matsuda Y, Lu YT, Tamura K, Oka Y, Matsushita T, Hara-Nishimura I, Ingram G, Nishihama R, Goodrich J, Kohchi T, Shimada T. Stomatal regulators are co-opted for seta development in the astomatous liverwort Marchantia polymorpha. NATURE PLANTS 2023; 9:302-314. [PMID: 36658391 DOI: 10.1038/s41477-022-01325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The evolution of special types of cells requires the acquisition of new gene regulatory networks controlled by transcription factors (TFs). In stomatous plants, a TF module formed by subfamilies Ia and IIIb basic helix-loop-helix TFs (Ia-IIIb bHLH) regulates stomatal formation; however, how this module evolved during land plant diversification remains unclear. Here we show that, in the astomatous liverwort Marchantia polymorpha, a Ia-IIIb bHLH module regulates the development of a unique sporophyte tissue, the seta, which is found in mosses and liverworts. The sole Ia bHLH gene, MpSETA, and a IIIb bHLH gene, MpICE2, regulate the cell division and/or differentiation of seta lineage cells. MpSETA can partially replace the stomatal function of Ia bHLH TFs in Arabidopsis thaliana, suggesting that a common regulatory mechanism underlies setal and stomatal formation. Our findings reveal the co-option of a Ia-IIIb bHLH TF module for regulating cell fate determination and/or cell division of distinct types of cells during land plant evolution.
Collapse
Affiliation(s)
- Kenta C Moriya
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Shirakawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Jeanne Loue-Manifel
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Yoriko Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yen-Ting Lu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCB Lyon 1, Lyon, France
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, UK
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
28
|
Maqbool S, Saeed F, Raza A, Rasheed A, He Z. Association of Root Hair Length and Density with Yield-Related Traits and Expression Patterns of TaRSL4 Underpinning Root Hair Length in Spring Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2235. [PMID: 36079617 PMCID: PMC9460385 DOI: 10.3390/plants11172235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Root hairs play an important role in absorbing water and nutrients in crop plants. Here we optimized high-throughput root hair length (RHL) and root hair density (RHD) phenotyping in wheat using a portable Dinolite™ microscope. A collection of 24 century wide spring wheat cultivars released between 1911 and 2016 were phenotyped for RHL and RHD. The results revealed significant variations for both traits with five and six-fold variation for RHL and RHD, respectively. RHL ranged from 1.01 mm to 1.77 mm with an average of 1.39 mm, and RHD ranged from 17.08 mm-2 to 20.8 mm-2 with an average of 19.6 mm-2. Agronomic and physiological traits collected from five different environments and their best linear unbiased predictions (BLUPs) were correlated with RHL and RHD, and results revealed that relative-water contents (RWC), biomass and grain per spike (GpS) were positively correlated with RHL in both water-limited and well-watered conditions. While RHD was negatively correlated with grain yield (GY) in four environments and their BLUPs. Both RHL and RHD had positive correlation indicating the possibility of simultaneous selection of both phenotypes during wheat breeding. The expression pattern of TaRSL4 gene involved in regulation of root hair length was determined in all 24 wheat cultivars based on RNA-seq data, which indicated the differentially higher expression of the A- and D- homeologues of the gene in roots, while B-homeologue was consistently expressed in both leaf and roots. The results were validated by qRT-PCR and the expression of TaRSL4 was consistently high in rainfed cultivars such as Chakwal-50, Rawal-87, and Margallah-99. Overall, the new phenotyping method for RHL and RHD along with correlations with morphological and physiological traits in spring wheat cultivars improved our understanding for selection of these phenotypes in wheat breeding.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fatima Saeed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Raza
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS) & CIMMYT-China Office, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
29
|
Shinkawa H, Kajikawa M, Furuya T, Nishihama R, Tsukaya H, Kohchi T, Fukuzawa H. Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:1063-1077. [PMID: 35674121 DOI: 10.1093/pcp/pcac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836 Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493 Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
30
|
Pietrykowska H, Sierocka I, Zielezinski A, Alisha A, Carrasco-Sanchez JC, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z. Biogenesis, conservation, and function of miRNA in liverworts. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4528-4545. [PMID: 35275209 PMCID: PMC9291395 DOI: 10.1093/jxb/erac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules, 18-24 nucleotides long, that control multiple gene regulatory pathways via post-transcriptional gene silencing in eukaryotes. To develop a comprehensive picture of the evolutionary history of miRNA biogenesis and action in land plants, studies on bryophyte representatives are needed. Here, we review current understanding of liverwort MIR gene structure, miRNA biogenesis, and function, focusing on the simple thalloid Pellia endiviifolia and the complex thalloid Marchantia polymorpha. We review what is known about conserved and non-conserved miRNAs, their targets, and the functional implications of miRNA action in M. polymorpha and P. endiviifolia. We note that most M. polymorpha miRNAs are encoded within protein-coding genes and provide data for 23 MIR gene structures recognized as independent transcriptional units. We identify M. polymorpha genes involved in miRNA biogenesis that are homologous to those identified in higher plants, including those encoding core microprocessor components and other auxiliary and regulatory proteins that influence the stability, folding, and processing of pri-miRNAs. We analyzed miRNA biogenesis proteins and found similar domain architecture in most cases. Our data support the hypothesis that almost all miRNA biogenesis factors in higher plants are also present in liverworts, suggesting that they emerged early during land plant evolution.
Collapse
Affiliation(s)
| | | | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Juan Carlo Carrasco-Sanchez
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | | | | |
Collapse
|
31
|
Wang QH, Zhang J, Liu Y, Jia Y, Jiao YN, Xu B, Chen ZD. Diversity, phylogeny, and adaptation of bryophytes: insights from genomic and transcriptomic data. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4306-4322. [PMID: 35437589 DOI: 10.1093/jxb/erac127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bryophytes including mosses, liverworts, and hornworts are among the earliest land plants, and occupy a crucial phylogenetic position to aid in the understanding of plant terrestrialization. Despite their small size and simple structure, bryophytes are the second largest group of extant land plants. They live ubiquitously in various habitats and are highly diversified, with adaptive strategies to modern ecosystems on Earth. More and more genomes and transcriptomes have been assembled to address fundamental questions in plant biology. Here, we review recent advances in bryophytes associated with diversity, phylogeny, and ecological adaptation. Phylogenomic studies have provided increasing supports for the monophyly of bryophytes, with hornworts sister to the Setaphyta clade including liverworts and mosses. Further comparative genomic analyses revealed that multiple whole-genome duplications might have contributed to the species richness and morphological diversity in mosses. We highlight that the biological changes through gene gain or neofunctionalization that primarily evolved in bryophytes have facilitated the adaptation to early land environments; among the strategies to adapt to modern ecosystems in bryophytes, desiccation tolerance is the most remarkable. More genomic information for bryophytes would shed light on key mechanisms for the ecological success of these 'dwarfs' in the plant kingdom.
Collapse
Affiliation(s)
- Qing-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Nian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Bin Rahman ANMR, Ding W, Zhang J. The absorption of water from humid air by grass embryos during germination. PLANT PHYSIOLOGY 2022; 189:1435-1449. [PMID: 35512056 PMCID: PMC9237686 DOI: 10.1093/plphys/kiac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Grass embryos possess structures that do not occur in any other flowering plants. Due to the specific embryo structure and position, grass embryo surfaces may be exposed to surrounding air under partial caryopsis-soil contact conditions, but whether caryopses of the grass family (Poaceae) can sense soil air humidity to initiate successful germination under partial caryopsis-soil contact conditions remain unknown. Here, we found that grass embryos have the unique ability to absorb water from atmospheric water vapor under partial caryopsis-soil contact conditions. To absorb atmospheric moisture, grass embryos developed profuse and highly elongated hairs on the embryo surface. These hairs, classically known as coleorhiza hairs, developed only on the embryo surface exposed to humid air, and submergence of the embryo surface inhibited their development. In addition to humid air-dependent development, almost all other developmental features of coleorhiza hairs were substantially different from root hairs. However, coleorhiza hair development was regulated by ROOTHAIRLESS 1. Besides the genetic control of coleorhiza hair development, we also identified how caryopses manage to keep the hairs turgid in natural open environments as the hairs were highly sensitive to dry air exposure. Moreover, we video-documented the regulation of developmental processes. The unique humid air-dependent coleorhiza hair development and their ability to absorb water from water vapor present in microsites or soil air give grasses advantages in germination and seedling establishment. Ultimately, coleorhiza hairs may have contributed to the ecological success of the grass family.
Collapse
Affiliation(s)
- A N M Rubaiyath Bin Rahman
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo 315211, People’s Republic of China
| | | |
Collapse
|
33
|
Abstract
The liverwort Marchantia polymorpha has been known to man for millennia due to its inclusion Greek herbals. Perhaps due to its familiarity and association with growth in, often, man-made disturbed habitats, it was readily used to address fundamental biological questions of the day, including elucidation of land plant life cycles in the late 18th century, the formulation of cell theory early in the 19th century and the discovery of the alternation of generations in land plants in the mid-19th century. Subsequently, Marchantia was used as model in botany classes. With the arrival of the molecular era, its organellar genomes, the chloroplast and mitochondrial, were some of the first to be sequenced from any plant. In the past two decades, molecular genetic tools have been applied such that genes may be manipulated seemingly at will. Here, are past, present, and some views to the future of Marchantia as a model.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
35
|
Sakamoto Y, Ishimoto A, Sakai Y, Sato M, Nishihama R, Abe K, Sano Y, Furuichi T, Tsuji H, Kohchi T, Matsunaga S. Improved clearing method contributes to deep imaging of plant organs. Commun Biol 2022; 5:12. [PMID: 35013509 PMCID: PMC8748589 DOI: 10.1038/s42003-021-02955-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue clearing methods are increasingly essential for the microscopic observation of internal tissues of thick biological organs. We previously developed TOMEI, a clearing method for plant tissues; however, it could not entirely remove chlorophylls nor reduce the fluorescent signal of fluorescent proteins. Here, we developed an improved TOMEI method (iTOMEI) to overcome these limitations. First, a caprylyl sulfobetaine was determined to efficiently remove chlorophylls from Arabidopsis thaliana seedlings without GFP quenching. Next, a weak alkaline solution restored GFP fluorescence, which was mainly lost during fixation, and an iohexol solution with a high refractive index increased sample transparency. These procedures were integrated to form iTOMEI. iTOMEI enables the detection of much brighter fluorescence than previous methods in tissues of A. thaliana, Oryza sativa, and Marchantia polymorpha. Moreover, a mouse brain was also efficiently cleared by the iTOMEI-Brain method within 48 h, and strong fluorescent signals were detected in the cleared brain. Sakamoto et al. demonstrate an improved optical clearing method, iTOMEI, for plant imaging. The new method can achieve fast clearing and effective removal of autofluorescence signals, and at the same time preserve signals from desired fluorescence proteins.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Anna Ishimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama, 244-0813, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Konami Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yoshitake Sano
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama, 244-0813, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Sachihiro Matsunaga
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
36
|
Kanazawa T, Nishihama R, Ueda T. Normal oil body formation in Marchantia polymorpha requires functional coat protein complex I proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:979066. [PMID: 36046592 PMCID: PMC9420845 DOI: 10.3389/fpls.2022.979066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 05/13/2023]
Abstract
Eukaryotic cells possess endomembrane organelles equipped with specific sets of proteins, lipids, and polysaccharides that are fundamental for realizing each organelle's specific function and shape. A tightly regulated membrane trafficking system mediates the transportation and localization of these substances. Generally, the secretory/exocytic pathway is responsible for transporting cargo to the plasma membrane and/or the extracellular space. However, in the case of oil body cells in the liverwort Marchantia polymorpha, the oil body, a liverwort-unique organelle, is thought to be formed by secretory vesicle fusion through redirection of the secretory pathway inside the cell. Although their formation mechanism remains largely unclear, oil bodies exhibit a complex and bumpy surface structure. In this study, we isolated a mutant with spherical oil bodies through visual screening of mutants with abnormally shaped oil bodies. This mutant harbored a mutation in a coat protein complex I (COPI) subunit MpSEC28, and a similar effect on oil body morphology was also detected in knockdown mutants of other COPI subunits. Fluorescently tagged MpSEC28 was localized to the periphery of the Golgi apparatus together with other subunits, suggesting that it is involved in retrograde transport from and/or in the Golgi apparatus as a component of the COPI coat. The Mpsec28 mutants also exhibited weakened stiffness of the thalli, suggesting impaired cell-cell adhesion and cell wall integrity. These findings suggest that the mechanism of cell wall biosynthesis is also involved in shaping the oil body in M. polymorpha, supporting the redirection of the secretory pathway inward the cell during oil body formation.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
37
|
Althoff F, Wegner L, Ehlers K, Buschmann H, Zachgo S. Developmental Plasticity of the Amphibious Liverwort Riccia fluitans. FRONTIERS IN PLANT SCIENCE 2022; 13:909327. [PMID: 35677239 PMCID: PMC9168770 DOI: 10.3389/fpls.2022.909327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/27/2022] [Indexed: 05/21/2023]
Abstract
The colonization of land by ancestors of embryophyte plants was one of the most significant evolutionary events in the history of life on earth. The lack of a buffering aquatic environment necessitated adaptations for coping with novel abiotic challenges, particularly high light intensities and desiccation as well as the formation of novel anchoring structures. Bryophytes mark the transition from freshwater to terrestrial habitats and form adaptive features such as rhizoids for soil contact and water uptake, devices for gas exchange along with protective and repellent surface layers. The amphibious liverwort Riccia fluitans can grow as a land form (LF) or water form (WF) and was employed to analyze these critical traits in two different habitats. A combination of light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies was conducted to characterize and compare WF and LF morphologies. A complete phenotypic adaptation of a WF plant to a terrestrial habitat is accomplished within 15 days after the transition. Stable transgenic R. fluitans lines expressing GFP-TUBULIN and mCherry proteins were generated to study cell division and differentiation processes and revealed a higher cell division activity in enlarged meristematic regions at LF apical notches. Morphological studies demonstrated that the R. fluitans WF initiates air pore formation. However, these pores are arrested at an early four cell stage and do not develop further into open pores that could mediate gas exchange. Similarly, also arrested rhizoid initial cells are formed in the WF, which exhibit a distinctive morphology compared to other ventral epidermal cells. Furthermore, we detected that the LF thallus has a reduced surface permeability compared to the WF, likely mediated by formation of thicker LF cell walls and a distinct cuticle compared to the WF. Our R. fluitans developmental plasticity studies can serve as a basis to further investigate in a single genotype the molecular mechanisms of adaptations essential for plants during the conquest of land.
Collapse
Affiliation(s)
- Felix Althoff
- Department of Botany, Osnabrück University, Osnabrück, Germany
| | - Linus Wegner
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Katrin Ehlers
- Department of Botany, Justus-Liebig University, Gießen, Germany
| | - Henrik Buschmann
- Department of Molecular Biotechnology, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Sabine Zachgo
- Department of Botany, Osnabrück University, Osnabrück, Germany
- *Correspondence: Sabine Zachgo,
| |
Collapse
|
38
|
Abstract
There can be no doubt that early land plant evolution transformed the planet but, until recently, how and when this was achieved was unclear. Coincidence in the first appearance of land plant fossils and formative shifts in atmospheric oxygen and CO2 are an artefact of the paucity of earlier terrestrial rocks. Disentangling the timing of land plant bodyplan assembly and its impact on global biogeochemical cycles has been precluded by uncertainty concerning the relationships of bryophytes to one another and to the tracheophytes, as well as the timescale over which these events unfolded. New genome and transcriptome sequencing projects, combined with the application of sophisticated phylogenomic modelling methods, have yielded increasing support for the Setaphyta clade of liverworts and mosses, within monophyletic bryophytes. We consider the evolution of anatomy, genes, genomes and of development within this phylogenetic context, concluding that many vascular plant (tracheophytes) novelties were already present in a comparatively complex last common ancestor of living land plants (embryophytes). Molecular clock analyses indicate that embryophytes emerged in a mid-Cambrian to early Ordovician interval, compatible with hypotheses on their role as geoengineers, precipitating early Palaeozoic glaciations.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jordi Paps
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| |
Collapse
|
39
|
Katayose A, Kanda A, Kubo Y, Takahashi T, Motose H. Distinct Functions of Ethylene and ACC in the Basal Land Plant Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2021; 62:858-871. [PMID: 33768225 DOI: 10.1093/pcp/pcab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 05/16/2023]
Abstract
Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.
Collapse
Affiliation(s)
- Asuka Katayose
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Asaka Kanda
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | | |
Collapse
|
40
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|
41
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
42
|
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. THE NEW PHYTOLOGIST 2021; 230:1345-1353. [PMID: 33368298 DOI: 10.1111/nph.17161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) are key components of the transcriptional regulation machinery. In plants, they accompanied the evolution from unicellular aquatic algae to complex flowering plants that dominate the land environment. The adaptations of the body plan and physiological responses required changes in the biological functions of TFs. Some ancestral gene regulatory networks are highly conserved, while others evolved more recently and only exist in particular lineages. The recent emergence of novel model organisms provided the opportunity for comparative studies, producing new insights to infer these evolutionary trajectories. In this review, we comprehensively revisit the recent literature on TFs of nonseed plants and algae, focusing on the molecular mechanisms driving their functional evolution. We discuss the particular contribution of changes in DNA-binding specificity, protein-protein interactions and cis-regulatory elements to gene regulatory networks. Current advances have shown that these evolutionary processes were shaped by changes in TF expression pattern, not through great innovation in TF protein sequences. We propose that the role of TFs associated with environmental and developmental regulation was unevenly conserved during land plant evolution.
Collapse
Affiliation(s)
- Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Javier E Moreno
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
43
|
Jaeger R, Moody LA. A fundamental developmental transition in Physcomitrium patens is regulated by evolutionarily conserved mechanisms. Evol Dev 2021; 23:123-136. [PMID: 33822471 DOI: 10.1111/ede.12376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/15/2023]
Abstract
One of the most defining moments in history was the colonization of land by plants approximately 470 million years ago. The transition from water to land was accompanied by significant changes in the plant body plan, from those than resembled filamentous representatives of the charophytes, the sister group to land plants, to those that were morphologically complex and capable of colonizing harsher habitats. The moss Physcomitrium patens (also known as Physcomitrella patens) is an extant representative of the bryophytes, the earliest land plant lineage. The protonema of P. patens emerges from spores from a chloronemal initial cell, which can divide to self-renew to produce filaments of chloronemal cells. A chloronemal initial cell can differentiate into a caulonemal initial cell, which can divide and self-renew to produce filaments of caulonemal cells, which branch extensively and give rise to three-dimensional shoots. The process by which a chloronemal initial cell differentiates into a caulonemal initial cell is tightly regulated by auxin-induced remodeling of the actin cytoskeleton. Studies have revealed that the genetic mechanisms underpinning this transition also regulate tip growth and differentiation in diverse plant taxa. This review summarizes the known cellular and molecular mechanisms underpinning the chloronema to caulonema transition in P. patens.
Collapse
Affiliation(s)
- Richard Jaeger
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Laura A Moody
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Frangedakis E, Shimamura M, Villarreal JC, Li FW, Tomaselli M, Waller M, Sakakibara K, Renzaglia KS, Szövényi P. The hornworts: morphology, evolution and development. THE NEW PHYTOLOGIST 2021; 229:735-754. [PMID: 32790880 PMCID: PMC7881058 DOI: 10.1111/nph.16874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/12/2023]
Abstract
Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts remains poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis, is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.
Collapse
Affiliation(s)
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739-8528, Japan
| | - Juan Carlos Villarreal
- Department of Biology, Laval University, Quebec City, Quebec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Balboa, Ancon, Panamá
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853-1801, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853-1801, USA
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB3 EA, UK
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Switzerland
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Illinois, 62901, USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Switzerland
- Zurich-Basel Plant Science Center, Zurich, 8092, Switzerland
| |
Collapse
|
46
|
Pitaloka MK, Harrison EL, Hepworth C, Wanchana S, Toojinda T, Phetluan W, Brench RA, Narawatthana S, Vanavichit A, Gray JE, Caine RS, Arikit S. Rice Stomatal Mega-Papillae Restrict Water Loss and Pathogen Entry. FRONTIERS IN PLANT SCIENCE 2021; 12:677839. [PMID: 34149777 PMCID: PMC8213340 DOI: 10.3389/fpls.2021.677839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 05/16/2023]
Abstract
Rice (Oryza sativa) is a water-intensive crop, and like other plants uses stomata to balance CO2 uptake with water-loss. To identify agronomic traits related to rice stomatal complexes, an anatomical screen of 64 Thai and 100 global rice cultivars was undertaken. Epidermal outgrowths called papillae were identified on the stomatal subsidiary cells of all cultivars. These were also detected on eight other species of the Oryza genus but not on the stomata of any other plant species we surveyed. Our rice screen identified two cultivars that had "mega-papillae" that were so large or abundant that their stomatal pores were partially occluded; Kalubala Vee had extra-large papillae, and Dharia had approximately twice the normal number of papillae. These were most accentuated on the flag leaves, but mega-papillae were also detectable on earlier forming leaves. Energy dispersive X-Ray spectrometry revealed that silicon is the major component of stomatal papillae. We studied the potential function(s) of mega-papillae by assessing gas exchange and pathogen infection rates. Under saturating light conditions, mega-papillae bearing cultivars had reduced stomatal conductance and their stomata were slower to close and re-open, but photosynthetic assimilation was not significantly affected. Assessment of an F3 hybrid population treated with Xanthomonas oryzae pv. oryzicola indicated that subsidiary cell mega-papillae may aid in preventing bacterial leaf streak infection. Our results highlight stomatal mega-papillae as a novel rice trait that influences gas exchange, stomatal dynamics, and defense against stomatal pathogens which we propose could benefit the performance of future rice crops.
Collapse
Affiliation(s)
- Mutiara K. Pitaloka
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Emily L. Harrison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Christopher Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| | - Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Robert A. Brench
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Supatthra Narawatthana
- Thailand Rice Science Institute, Rice Department, Ministry of Agriculture and Cooperatives (MOAC), Suphanburi, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Julie E. Gray,
| | - Robert S. Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Robert S. Caine,
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Siwaret Arikit,
| |
Collapse
|
47
|
Westermann J, Koebke E, Lentz R, Hülskamp M, Boisson-Dernier A. A Comprehensive Toolkit for Quick and Easy Visualization of Marker Proteins, Protein-Protein Interactions and Cell Morphology in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2020; 11:569194. [PMID: 33178238 PMCID: PMC7593560 DOI: 10.3389/fpls.2020.569194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
Even though stable genomic transformation of sporelings and thalli of Marchantia polymorpha is straightforward and efficient, numerous problems can arise during critical phases of the process such as efficient spore production, poor selection capacity of antibiotics or low transformation efficiency. It is therefore also desirable to establish quick methods not relying on stable transgenics to analyze the localization, interactions and functions of proteins of interest. The introduction of foreign DNA into living cells via biolistic mechanisms has been first reported roughly 30 years ago and has been commonly exploited in established plant model species such as Arabidopsis thaliana or Nicotiana benthamiana. Here, we report the fast and reliable transient biolistic transformation of Marchantia thallus epidermal cells using fluorescent protein fusions. We present a catalog of fluorescent markers which can be readily used for tagging of a variety of subcellular compartments. Moreover, we report the functionality of the bimolecular fluorescence complementation (BiFC) in M. polymorpha with the example of the p-body markers MpDCP1/2. Finally, we provide standard staining procedures for live cell imaging in M. polymorpha, applicable to visualize cell boundaries or cellular structures, to complement or support protein localizations and to understand how results gained by transient transformations can be embedded in cell architecture and dynamics. Taken together, we offer a set of easy and quick tools for experiments that aim at understanding subcellular localization, protein-protein interactions and thus functions of proteins of interest in the emerging early diverging land plant model M. polymorpha.
Collapse
Affiliation(s)
| | | | | | | | - Aurélien Boisson-Dernier
- Institute for Plant Sciences, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Kato H, Yasui Y, Ishizaki K. Gemma cup and gemma development in Marchantia polymorpha. THE NEW PHYTOLOGIST 2020; 228:459-465. [PMID: 32390245 DOI: 10.1111/nph.16655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/09/2020] [Indexed: 05/05/2023]
Abstract
The basal land plant Marchantia polymorpha efficiently propagates in favourable environments through clonal progeny called gemmae. Gemmae develop in cup-shaped receptacles known as gemma cups, which are formed on the gametophyte body. Anatomical studies have described the developmental processes involved over a century ago; however, little is known about the underlying molecular mechanisms. Recent studies have started to unravel the mechanism underlying genetic and hormonal regulation of gemma cup and gemma development, showing that it shares some regulatory mechanisms with several sporophytic organs in angiosperms. Further study of these specialized organs will contribute to our understanding of the core regulatory modules underlying organ development in land plants and how these became so diversified morphologically over the course of evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | | |
Collapse
|
49
|
Delaux PM, Hetherington AJ, Coudert Y, Delwiche C, Dunand C, Gould S, Kenrick P, Li FW, Philippe H, Rensing SA, Rich M, Strullu-Derrien C, de Vries J. Reconstructing trait evolution in plant evo-devo studies. Curr Biol 2020; 29:R1110-R1118. [PMID: 31689391 DOI: 10.1016/j.cub.2019.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function - the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler traits, such as the resistance to pathogens or the ability to recruit symbiotic microbes from the environment. Plant traits can also be highly conserved - at the cellular and metabolic levels, entire biosynthetic pathways are present in all plant groups, and morphological characteristics such as vascular tissues have been conserved for hundreds of millions of years. The research community that seeks to understand these traits - both the diverse and the conserved - by taking an evolutionary point-of-view on plant biology is growing. Here, we summarize a subset of the different aspects of plant evolutionary biology, provide a guide for structuring comparative biology approaches and discuss the pitfalls that (plant) researchers should avoid when embarking on such studies.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France.
| | | | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, 46 Allée d'Italie, Lyon, 69007, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sven Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA; Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Écologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France; Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University Freiburg, Germany; SYNMIKRO Research Center, University of Marburg, 35043 Marburg, Germany
| | - Mélanie Rich
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; Institut de Systématique, Évolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Institute of Microbiology, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany; Institute for Microbiology and Genetics, Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|
50
|
Monte I. Plant Evolution: Divergent Plants, Divergent Functions for C1HDZ Orthologs. Curr Biol 2020; 30:R817-R819. [PMID: 32693077 DOI: 10.1016/j.cub.2020.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ortholog identification inferred by phylogenetic analyses does not always correlate with functional conservation. The recent functional characterization of the C1HDZ transcription factor in the early-diverging land plant Marchantia polymorpha reveals its role in biotic stress responses, contrary to its orthologs in flowering plants.
Collapse
Affiliation(s)
- Isabel Monte
- HFSP Fellow, Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|