1
|
Maleszka R. Reminiscences on the honeybee genome project and the rise of epigenetic concepts in insect science. INSECT MOLECULAR BIOLOGY 2024; 33:444-456. [PMID: 38196200 DOI: 10.1111/imb.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
The sequencing of the honeybee genome in 2006 was an important technological and logistic achievement experience. But what benefits have flown from the honeybee genome project? What does the annotated genomic assembly mean for the study of behavioural complexity and organismal function in honeybees? Here, I discuss several lines of research that have arisen from this project and highlight the rapidly expanding studies on insect epigenomics, emergent properties of royal jelly, the mechanism of nutritional control of development and the contribution of epigenomic regulation to the evolution of sociality. I also argue that the term 'insect epigenetics' needs to be carefully redefined to reflect the diversity of epigenomic toolkits in insects and the impact of lineage-specific innovations on organismal outcomes. The honeybee genome project helped pioneer advances in social insect molecular biology, and fuelled breakthrough research into the role of flexible epigenomic control systems in linking genotype to phenotype.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Yusuf AA, Pirk CWW, Buttstedt A. Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:627-641. [PMID: 38567629 DOI: 10.1002/jez.2813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.
Collapse
Affiliation(s)
- Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Anja Buttstedt
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Liu B, Xu Y, Zhang W. Transcriptome analysis of Apis mellifera antennae reveals molecular divergence underlying the division of labour in worker bees. INSECT MOLECULAR BIOLOGY 2024; 33:101-111. [PMID: 37864451 DOI: 10.1111/imb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
The olfactory system plays a fundamental role in mediating insect behaviour. Worker bees exhibit an age-dependent division of labour, performing discrete sets of behaviours throughout their lifespan. The behavioural states of bees rely on their sense of the environment and chemical communication via their olfactory system, the antennae. However, the olfactory adaptation mechanism of worker bees during their behavioural development remains unclear. In this study, we conducted a comprehensive and quantitative analysis of antennal gene expression in the Apis mellifera of newly emerged workers, nurses, foragers and defenders using RNA-seq. We found that the antenna tissues of honey bees continued developing after transformation from newly emerged workers to adults. Additionally, we identified differentially expressed genes associated with bee development and division of labour. We validated that major royal jelly protein genes are highly and specifically expressed in nurse honey bee workers. Furthermore, we identified and validated significant alternative splicing events correlated with the development and division of labour. These findings provide a comprehensive transcriptome profile and a new perspective on the molecular mechanisms that may underlie the worker honey bee division of labour.
Collapse
Affiliation(s)
- Bairu Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Buttstedt A, Pirk CWW, Yusuf AA. Mandibular glands secrete 24-methylenecholesterol into honey bee (Apis mellifera) food jelly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 161:104011. [PMID: 37716535 DOI: 10.1016/j.ibmb.2023.104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Honey bee (Apis mellifera) workers feed their larvae with food jelly that is secreted by specialized glands in their heads - the hypopharyngeal and the mandibular glands. Food jelly contains all the nutrients the larvae need to develop into adult honey bees, including essential dietary sterols. The main sterol in food jelly, 24-methylenecholesterol (24MC), is pollen-derived and delivered in food jelly to the larvae in a complex with two proteins, major royal jelly protein 1 (MRJP1) and apisim. Whereas the proteins are synthesized in the hypopharyngeal glands, the sterol-secreting gland has not been identified. We here identified the mandibular glands as sterol-secreting gland for food jelly production by direct detection of the four main honey bee sterols (24MC, campesterol, β-sitosterol and isofucosterol). Furthermore, 24MC seems to be specifically enriched in the mandibular glands, thereby ensuring that food jelly contains the amounts of 24MC necessary for complex formation with MRJP1 and apisimin.
Collapse
Affiliation(s)
- Anja Buttstedt
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, 0028, Hatfield, Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, 0028, Hatfield, Pretoria, South Africa
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, 0028, Hatfield, Pretoria, South Africa
| |
Collapse
|
6
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
7
|
Paget BW, Kleffmann T, Whiteman KE, Thomas MF, McMahon CD. Quantitative comparison of manuka and clover honey proteomes with royal jelly. PLoS One 2023; 18:e0272898. [PMID: 36763642 PMCID: PMC9916596 DOI: 10.1371/journal.pone.0272898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Royal jelly and honey are two substances produced successively by the worker bee caste. Modern proteomics approaches have been used to explore the protein component of each substance independently, but to date none have quantitatively compared the protein profile of honey and royal jelly directly. Sequential window acquisition of all theoretical fragment-ion spectra mass spectrometry (SWATH-MS) was used to compare protein quantities of bee origin in mānuka and clover honey to royal jelly. Two analysis techniques identified 76 proteins in total. Peptide intensity was directly compared for a subset of 31 proteins that were identified with high confidence, and the relative changes in protein abundance were compared between each honey type and royal jelly. Major Royal Jelly Proteins (MRJPs) had similar profiles in both honeys, except MRJP6, which was significantly more abundant in clover honey. Proteins involved in nectar metabolism were more abundant in honey than in royal jelly as expected. However, the trend revealed a potential catalytic role for MRJP6 in clover honey and a nectar- or honey-specific role for uncharacterised protein LOC408608. The abundance of MRJP6 in mānuka honey was equivalent to royal jelly suggesting a potential effect of nectar type on expression of this protein. Data are available via ProteomeXchange with identifier PXD038889.
Collapse
Affiliation(s)
- Blake W. Paget
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
- * E-mail:
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | | | - Mark F. Thomas
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
| | | |
Collapse
|
8
|
Botezan S, Baci GM, Bagameri L, Pașca C, Dezmirean DS. Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. Molecules 2023; 28:1510. [PMID: 36771175 PMCID: PMC9921556 DOI: 10.3390/molecules28031510] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Royal jelly (RJ) has been one of the most widely used natural products in alternative medicine for centuries. Being produced by both hypopharyngeal and mandibular glands, RJ exhibits an extraordinary complexity in terms of its composition, including proteins, lipids, carbohydrates, polyphenols, vitamins, and hormones. Due to its heterogeneous structure, RJ displays various functional roles for honeybees, including being involved in nutrition, learning, memory, and social behavior. Furthermore, a wide range of studies reported its therapeutic properties, including anticancer, anti-inflammatory, and antioxidant activities, to name a few. In this direction, there is a wide range of health-related problems for which the medical area specialists and researchers are continuously trying to find a cure, such as cancer, atherosclerosis, or infertility. For the mentioned diseases and more, it has been proven that RJ is a key player in finding a valuable treatment. In this review, the great impact of RJ as an alternative medicine agent is highlighted, with a focus on its anticancer, anti-inflammatory, and antioxidant activities. Moreover, we link it to its apitherapeutic potential by discussing its composition. Herein, we discuss a wide range of novel studies and present the latest research work.
Collapse
Affiliation(s)
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | | |
Collapse
|
9
|
Miryan M, Moradi S, Soleimani D, Pasdar Y, Jangjoo A, Bagherniya M, Guest PC, Ashari S, Sahebkar A. The Potential Effect of Royal Jelly on Biomarkers Related to COVID-19 Infection and Severe Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:443-455. [PMID: 37378782 DOI: 10.1007/978-3-031-28012-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Royal jelly is a yellowish to white gel-like substance that is known as a "superfood" and consumed by queen bees. There are certain compounds in royal jelly considered to have health-promoting properties, including 10-hydroxy-2-decenoic acid and major royal jelly proteins. Royal jelly has beneficial effects on some disorders such as cardiovascular disease, dyslipidemia, multiple sclerosis, and diabetes. Antiviral, anti-inflammatory, antibacterial, antitumor, and immunomodulatory properties have been ascribed to this substance. This chapter describes the effects of royal jelly on COVID-19 disease.
Collapse
Affiliation(s)
- Mahsa Miryan
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Moradi
- Student Research Committee, Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Jangjoo
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Sorour Ashari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Mureşan CI, Dezmirean DS, Marc BD, Suharoschi R, Pop OL, Buttstedt A. Biological properties and activities of major royal jelly proteins and their derived peptides. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
11
|
Parish AJ, Rice DW, Tanquary VM, Tennessen JM, Newton ILG. Honey bee symbiont buffers larvae against nutritional stress and supplements lysine. THE ISME JOURNAL 2022; 16:2160-2168. [PMID: 35726020 PMCID: PMC9381588 DOI: 10.1038/s41396-022-01268-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.
Collapse
Affiliation(s)
- Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vicki M Tanquary
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
12
|
da Silva JA, Barchuk AR, Wolowski M. Protocol for the in vitro rearing of Frieseomelitta varia workers (Hymenoptera: Apidae: Meliponini). ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Wedd L, Kucharski R, Maleszka R. DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:159-176. [DOI: 10.1007/978-3-031-11454-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Li S, Tao L, Yu X, Zheng H, Wu J, Hu F. Royal Jelly Proteins and Their Derived Peptides: Preparation, Properties, and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14415-14427. [PMID: 34807598 DOI: 10.1021/acs.jafc.1c05942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Royal jelly, also called bee milk, is a source of high-quality proteins. Royal jelly proteins serve as not only a rich source of essential amino acids and functional donors but also an excellent substrate for preparing bioactive peptides. Most naturally occurring bioactive peptides in royal jelly are antibacterial, while peptides derived from proteolytic reactions are shown to exert antihypertensive, antioxidative, and anti-aging activities. Further studies are warranted to characterize the functional properties of major royal jelly proteins and peptides, to explore the preparation of bioactive peptides and the potential novel activities, to improve their bioavailability, to enhance the production efficiency for commercial availability, and finally to open up new applications for royal jelly as a functional food and potential therapeutic agent.
Collapse
Affiliation(s)
- Shanshan Li
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Lingchen Tao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xinyu Yu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta T6G 2P5, Canada
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
15
|
Strachecka A, Olszewski K, Kuszewska K, Paleolog J, Woyciechowski M. Reproductive Potential Accelerates Preimaginal Development of Rebel Workers in Apis mellifera. Animals (Basel) 2021; 11:ani11113245. [PMID: 34827977 PMCID: PMC8614343 DOI: 10.3390/ani11113245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary All female honeybee larvae may develop into workers or queens, depending on the food they receive. During this period, queen mandibular pheromones (QMP) perform a regulatory function in inhibiting ovarian development in adult workers. These pheromones are transmitted (via trophallaxis) by workers to pass information to larvae on the presence or absence of the queen. Queen-less conditions are conducive to the emergence of rebel workers that are set to reproduce, and do not participate in the rearing of successive bee generations in contrast to the sterile, normal workers. We posited that rebels are not only similar to queens in some anatomical features, but also develop in a shorter time in comparison to normal workers. Therefore, the aim of this study was to compare the duration of preimaginal development in rebel and normal workers. Our results confirmed that the workers who develop in a queen-less colony undergo a shorter preimaginal development than those in a queen-right colony. Abstract Rebel workers develop from eggs laid by the previous queen, before it went swarming and left the colony orphaned, until the emergence of a new queen. In contrast to normal workers developing in the queen’s presence, rebels are set to reproduce and avoid rearing of successive bee generations. They have more ovarioles in their ovaries, as well as more developed mandibular glands and underdeveloped hypopharyngeal glands, just like the queen. We posited that rebels are not only similar to queens in some anatomical features, but also develop in a shorter time in comparison to normal workers. Therefore, the aim of this study was to compare preimaginal development duration in rebel and normal workers. The results show that rebels, i.e., workers with a higher reproductive potential, had a significantly shorter preimaginal development period (mean ± SD, 19.24 ± 0.07 days) than normal workers (22.29 ± 0.32 days). Our result confirmed that workers who develop in a queen-less colony undergo a shorter preimaginal development than those in a queen-right colony.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence:
| | - Krzysztof Olszewski
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
16
|
Yang S, Deng S, Kuang H, Zhou D, Gong X, Dong K. Evaluating and Comparing the Natural Cell Structure and Dimensions of Honey Bee Comb Cells of Chinese Bee, Apis cerana cerana (Hymenoptera: Apidae) and Italian Bee, Apis mellifera ligustica (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6313200. [PMID: 34214154 PMCID: PMC8253300 DOI: 10.1093/jisesa/ieab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/25/2023]
Abstract
The hexagonal structure of the honey bee comb cell has been the source of many studies attempting to understand its structure and function. In the storage area of the comb, only honey is stored and no brood is reared. We predicted that honey bees may construct different hexagonal cells for brood rearing and honey storage. We used quantitative analyses to evaluate the structure and function of the natural comb cell in the Chinese bee, Apis cerana cerana and the Italian bee, A. mellifera ligustica. We made cell molds using a crystal glue solution and measured the structure and inclination of cells. We found that the comb cells of A. c. cerana had both upward-sloping and downward-sloping cells; while the A. m. ligustica cells all tilted upwards. Interestingly, the cells did not conform to the regular hexagonal prism structure and showed irregular diameter sizes. In both species, comb cells also were differentiated into worker, drone and honey cells, differing in their diameter and depth. This study revealed unique differences in the structure and function of comb cells and showed that honey bees design their cells with precise engineering to increase storage capacity, and to create adequate growing room for their brood.
Collapse
Affiliation(s)
- Shunhua Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shangkao Deng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Haiou Kuang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Danyin Zhou
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
17
|
Perminaite K, Marksa M, Stančiauskaitė M, Juknius T, Grigonis A, Ramanauskiene K. Formulation of Ocular In Situ Gels with Lithuanian Royal Jelly and Their Biopharmaceutical Evaluation In Vitro. Molecules 2021; 26:3552. [PMID: 34200887 PMCID: PMC8230528 DOI: 10.3390/molecules26123552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.
Collapse
Affiliation(s)
- Kristina Perminaite
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania;
| | - Monika Stančiauskaitė
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
| | - Tadas Juknius
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilzes Str. 18, 47181 Kaunas, Lithuania;
| | - Aidas Grigonis
- Dr. L. Kriaučeliūnas Small Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, 47181 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliai Ave. 13, 50162 Kaunas, Lithuania; (M.S.); (K.R.)
| |
Collapse
|
18
|
Chen WF, Wang Y, Zhang WX, Liu ZG, Xu BH, Wang HF. Methionine as a methyl donor regulates caste differentiation in the European honey bee (Apis mellifera). INSECT SCIENCE 2021; 28:746-756. [PMID: 32277579 DOI: 10.1111/1744-7917.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Nutrition contributes to honey bee caste differentiation, but the role of individual nutrients is still unclear. Most essential amino acid contents, except that of methionine (Met), are greater in royal jelly than worker jelly. After ∼3.5 d, the Met content in the latter was slightly greater than in the former. Met is the major raw material used in the synthesis of S-adenosyl-L-methionine, an active methyl donor for DNA methylation, which is an epigenetic driver of caste differentiation. Here, we tested whether Met regulates caste differentiation in honey bees by determining its effects on the caste development of bees receiving four diets: the basic, basic + 0.2% Met, basic + 0.2% Met + 20 mg/kg 5-azacytidine, and basic + 20 mg/kg 5-azacytidine. The presence of Met decreased the adult bee body length and the numbers of ovarioles, indicating that Met may direct the development of female larvae toward worker bees. The upregulated expression of SAMS, Dnmt1, and Dnmt3 caused by Met exposure in 4-d-old larvae indicated that the worker-inductive effects of Met may occur through the promotion of DNA methylation. We investigated the co-effects of Met and glucose on bee development, and found that the effects of an increased glucose level on the number of ovarioles and body length did not strengthen the worker-inductive effects caused by Met. Our results contribute to caste development theory and suggest that Met-as a methyl donor-plays a regulatory, but not decisive, role in caste differentiation.
Collapse
Affiliation(s)
- Wen-Feng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Wei-Xing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Zhen-Guo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
19
|
Mining the Royal Jelly Proteins: Combinatorial Hexapeptide Ligand Library Significantly Improves the MS-Based Proteomic Identification in Complex Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092762. [PMID: 34067143 PMCID: PMC8125745 DOI: 10.3390/molecules26092762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Royal jelly (RJ) is a complex, creamy secretion produced by the glands of worker bees. Due to its health-promoting properties, it is used by humans as a dietary supplement. However, RJ compounds are not fully characterized yet. Hence, in this research, we aimed to broaden the knowledge of the proteomic composition of fresh RJ. Water extracts of the samples were pre-treated using combinatorial hexapeptide ligand libraries (ProteoMinerTM kit), trypsin-digested, and analyzed by a nanoLC-MALDI-TOF/TOF MS system. To check the ProteoMinerTM performance in the MS-based protein identification, we also examined RJ extracts that were not prepared with the ProteoMinerTM kit. We identified a total of 86 proteins taxonomically classified to Apis spp. (bees). Among them, 74 proteins were detected in RJ extracts pre-treated with ProteoMinerTM kit, and only 50 proteins were found in extracts non-enriched with this technique. Ten of the identified features were hypothetical proteins whose existence has been predicted, but any experimental evidence proves their in vivo expression. Additionally, we detected four uncharacterized proteins of unknown functions. The results of this research indicate that the ProteoMinerTM strategy improves proteomic identification in complex biological samples. Broadening the knowledge of RJ composition may contribute to the development of standards and regulations, enhancing the quality of RJ, and consequently, the safety of its supplementation.
Collapse
|
20
|
Brudzynski K, Sjaarda CP. Colloidal structure of honey and its influence on antibacterial activity. Compr Rev Food Sci Food Saf 2021; 20:2063-2080. [PMID: 33569893 DOI: 10.1111/1541-4337.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Honey colloidal structure emerges as a new trend in research on honey functions since it became recognized as a major factor altering bioactivity of honey compounds. In honey complex matrix, macromolecules self-associate to colloidal particles at the critical concentration, driven by honey viscosity. Sequestration of macromolecules into colloids changes their activities and affects honey antibacterial function. This review fills the 80-year-old gap in research on honey colloidal structure. It summarizes past and current status of the research on honey colloids and describes physicochemical properties and the mechanisms of colloid formation and their dissociation upon honey dilution. The experimental observations are explained in the context of theoretical background of colloidal science. The functional changes and bioactivity of honey macromolecules bound to colloidal particles are illustrated here by the production of H2 O2 by glucose oxidase and the effect they have on antibacterial activity of honey. The changes in the production of H2 O2 and antibacterial activity of honey were coordinated with the changes in the aggregation-dissociation states of honey colloidal particles upon dilution. In all cases, these changes were nonlinear, assuming an inverted U-shaped dose-response curve. At the curve maximum, the production of H2 O2 and antibacterial activity reached the peak. The curve maximum signaled the minimum honey concentration required for the phase separation. With phase transition from two-phase colloidal condense state to dilute state dispersion, the change to opposite effects of dilution on these honey's activities occurred. Thus, the colloidal structure strongly influences bioactivity of honey compounds and affects its antibacterial activity.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Bimedical Inc., St. Catharines, Ontario, Canada.,Department of Biological Sciences, Brock University and Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, Ontario, Canada
| | - Calvin P Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Kingston, Ontario, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021; 13:543. [PMID: 33562330 PMCID: PMC7915653 DOI: 10.3390/nu13020543] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Royal jelly (RJ) demand is growing every year and so is the market for functional foods in general. RJ is formed by different substances, mainly carbohydrates, proteins, and lipids, but also vitamins, minerals, and phenolic or volatile compounds in lower proportion. Major royal jelly proteins (MRJP) are, together with 10-hydroxy-2-decenoic acid (10-HDA), key substances of RJ due to their different biological properties. In particular, 10-HDA is a unique substance in this product. RJ has been historically employed as health enhancer and is still very relevant in China due to the traditional medicine and the apitherapy. Nowadays, it is mainly consumed as a functional food or is found in supplements and other formulations for its health-beneficial properties. Within these properites, anti-lipidemic, antioxidant, antiproliferative, antimicrobial, neuroprotective, anti-inflammatory, immunomodulatory, antiaging, and estrogenic activities have been reported for RJ or its specific components. This manuscript is aimed at reviewing the current knowledge on RJ components, their assessment in terms of authenticity, their biological activities, and related health applications.
Collapse
Affiliation(s)
- Nicolas Collazo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Bernabe Nuñez-Estevez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
22
|
Structure of native glycolipoprotein filaments in honeybee royal jelly. Nat Commun 2020; 11:6267. [PMID: 33293513 PMCID: PMC7722742 DOI: 10.1038/s41467-020-20135-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023] Open
Abstract
Royal jelly (RJ) is produced by honeybees (Apis mellifera) as nutrition during larval development. The high viscosity of RJ originates from high concentrations of long lipoprotein filaments that include the glycosylated major royal jelly protein 1 (MRJP1), the small protein apisimin and insect lipids. Using cryo-electron microscopy we reveal the architecture and the composition of RJ filaments, in which the MRJP1 forms the outer shell of the assembly, surrounding stacked apisimin tetramers harbouring tightly packed lipids in the centre. The structural data rationalize the pH-dependent disassembly of RJ filaments in the gut of the larvae.
Collapse
|
23
|
Mokaya HO, Njeru LK, Lattorff HMG. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
de Paula Freitas FC, Lourenço AP, Nunes FMF, Paschoal AR, Abreu FCP, Barbin FO, Bataglia L, Cardoso-Júnior CAM, Cervoni MS, Silva SR, Dalarmi F, Del Lama MA, Depintor TS, Ferreira KM, Gória PS, Jaskot MC, Lago DC, Luna-Lucena D, Moda LM, Nascimento L, Pedrino M, Oliveira FR, Sanches FC, Santos DE, Santos CG, Vieira J, Barchuk AR, Hartfelder K, Simões ZLP, Bitondi MMG, Pinheiro DG. The nuclear and mitochondrial genomes of Frieseomelitta varia - a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 2020; 21:386. [PMID: 32493270 PMCID: PMC7268684 DOI: 10.1186/s12864-020-06784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.
Collapse
Affiliation(s)
- Flávia C. de Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Anete P. Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG Brazil
| | - Francis M. F. Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Fabiano C. P. Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fábio O. Barbin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Carlos A. M. Cardoso-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Mário S. Cervoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| | - Fernanda Dalarmi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Marco A. Del Lama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Thiago S. Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Kátia M. Ferreira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Paula S. Gória
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Michael C. Jaskot
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Denyse C. Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Livia M. Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Leonardo Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Matheus Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Franciene Rabiço Oliveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fernanda C. Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Douglas E. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Carolina G. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Joseana Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Angel R. Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| |
Collapse
|
25
|
Slater GP, Yocum GD, Bowsher JH. Diet quantity influences caste determination in honeybees ( Apis mellifera). Proc Biol Sci 2020; 287:20200614. [PMID: 32453984 PMCID: PMC7287363 DOI: 10.1098/rspb.2020.0614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
In species that care for their young, provisioning has profound effects on offspring fitness. Provisioning is important in honeybees because nutritional cues determine whether a female becomes a reproductive queen or sterile worker. A qualitative difference between the larval diets of queens and workers is thought to drive this divergence; however, no single compound seems to be responsible. Diet quantity may have a role during honeybee caste determination yet has never been formally studied. Our goal was to determine the relative contributions of diet quantity and quality to queen development. Larvae were reared in vitro on nine diets varying in the amount of royal jelly and sugars, which were fed to larvae in eight different quantities. For the middle diet, an ad libitum quantity treatment was included. Once adults eclosed, the queenliness was determined using principal component analysis on seven morphological measurements. We found that larvae fed an ad libitum quantity of diet were indistinguishable from commercially reared queens, and that queenliness was independent of the proportion of protein and carbohydrate in the diet. Neither protein nor carbohydrate content had a significant influence on the first principle component 1 (PC1), which explained 64.4% of the difference between queens and workers. Instead, the total quantity of diet explained a significant amount of the variation in PC1. Large amounts of diet in the final instar were capable of inducing queen traits, contrary to the received wisdom that queen determination can only occur in the third instar. These results indicate that total diet quantity fed to larvae may regulate the difference between queen and worker castes in honeybees.
Collapse
Affiliation(s)
- Garett P. Slater
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - George D. Yocum
- Biosciences Research Laboratory, USDA-ARS Edward T. Schafer Agricultural Research Center, 1605 Albrecht Boulevard, Fargo, ND 58102-2765, USA
| | - Julia H. Bowsher
- Department of Biological Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
26
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
27
|
Mumoki FN, Yusuf AA, Pirk CWW, Crewe RM. Hydroxylation patterns associated with pheromone synthesis and composition in two honey bee subspecies Apis mellifera scutellata and A. m. capensis laying workers. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103230. [PMID: 31470083 DOI: 10.1016/j.ibmb.2019.103230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Colony losses due to social parasitism in the form of reproductive workers of the Apis mellifera capensis clones results from the production of queen-like pheromonal signals coupled with ovarian activation in these socially parasitic honey bees. While the behavioral attributes of these social parasites have been described, their genetic attributes require more detailed exploration. Here, we investigate the production of mandibular gland pheromones in queenless workers of two sub-species of African honey bees; A. m. scutellata (low reproductive potential) and A. m. capensis clones (high reproductive potential). We used standard techniques in gas chromatography to assess the amounts of various pheromone components present, and qPCR to assess the expression of cytochrome P450 genes cyp6bd1 and cyp6as8, thought to be involved in the caste-dependent hydroxylation of acylated stearic acid in queens and workers, respectively. We found that, for both subspecies, the quality and quantity of the individual pheromone components vary with age, and that from the onset, A. m. capensis parasites make use of gene pathways typically upregulated in queens in achieving reproductive dominance. Due to the high production of 9-hydroxy-decenoic acid (9-HDA) the precursor to the queen substance 9-oxo-decenoic acid (9-ODA) in newly emerged capensis clones, we argue that clones are primed for parasitism upon emergence and develop into fully fledged parasites depending on the colony's social environment.
Collapse
Affiliation(s)
- Fiona N Mumoki
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Robin M Crewe
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
28
|
De Souza DA, Hartfelder KH, Tarpy DR. Effects of larval Age at Grafting and Juvenile Hormone on Morphometry and Reproductive Quality Parameters of in Vitro Reared Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2030-2039. [PMID: 31145456 DOI: 10.1093/jee/toz148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The honey bee queen plays a central role in the Apis mellifera L. (Hymenoptera: Apidae) colony, and her high reproductive capacity is fundamental for building up the workforce of a colony. Caste development in honey bee females involves elaborate physiological pathways unleashed at the beginning of the first larval instars, with juvenile hormone (JH) playing a crucial role. Here we took advantage of established in vitro rearing techniques to conduct a 2 × 2 experimental design and test initial rearing age (young vs old) and JH treatment (JH III vs solvent control) to enlighten the role of nutrient quality and JH in shaping honey bee female fertility, morphological features related to queenliness, and key physiological parameters (hemolymph vitellogenin/Vg, sugar levels, and Vg transcript levels). Our results show that while the age at initial larval rearing had major impacts on external morphology development, where younger larvae exhibited a higher probability to develop into queen-like adults morphotypes, the JH application during the larval stage improved physiological pathways related to ovary development and metabolism during the ontogenic development. We detected that the supplementation of queen larvae with JH promoted important benefits regarding queen fertility as the increase of ovariole number and vg levels at hemolymph, both crucial factors at eggs production. The data presented here provide guidance in efforts to improve honey bee queen quality, especially in light of frequent episodes of queen failures in the beekeeping industry.
Collapse
Affiliation(s)
- Daiana A De Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
| | - Klaus H Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Campus, Raleigh, NC
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
29
|
Yang X, Li Y, Wang L, Li L, Guo L, Huang F, Zhao H. Determination of 10-Hydroxy-2-Decenoic Acid of Royal Jelly Using Near-Infrared Spectroscopy Combined with Chemometrics. J Food Sci 2019; 84:2458-2466. [PMID: 31483872 DOI: 10.1111/1750-3841.14748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
A rapid quantitative analysis model for determining the hydroxy-2-decenoic acid (10-HDA) content of royal jelly based on near-infrared spectroscopy combining with PLS has been developed. Firstly, near-infrared spectra of 232 royal jelly samples with different 10-HDA concentrations (0.35% to 2.44%) were be collected. Second-order derivative processing of the spectra was carried out to construct a full-spectrum PLS model. Secondly, GA-PLS, CARS-PLS, and Si-PLS were used to select characteristic wavelengths from the second-order derivative spectrum to construct a PLS calibration model. Finally, 58 samples were used to select the best predictive model for 10-HDA content. The result show that the PLS model constructed after wavelength selection was significantly more accurate than the full spectrum model. The Si-PLS algorithm performed best and the corresponding characteristic wavelength range were: 980 to 1038, 1220 to 1278, 1340 to 1398, and 1688 to 1746 nm. The prediction results were RMSEP = 0.1496% and RP = 0.9380. Hence, it is feasible to employ near-infrared spectra to analyze 10-HDA in royal jelly.
Collapse
Affiliation(s)
- Xinhao Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Dept. of Optoelectronic Engineering, Jinan Univ., Guangzhou, 510632, China
| | - Yuanpeng Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Dept. of Optoelectronic Engineering, Jinan Univ., Guangzhou, 510632, China
| | - Lei Wang
- Hangzhou Tienchu Miyuan Health Food Co., Ltd
| | - Liqun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Inst. of Applied Biological Resources, Guangzhou, 510260, China
| | - Liu Guo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Dept. of Optoelectronic Engineering, Jinan Univ., Guangzhou, 510632, China
| | - Furong Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Dept. of Optoelectronic Engineering, Jinan Univ., Guangzhou, 510632, China.,Research Inst. of Jinan Univ. in Dongguan, Dongguan, 523000, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Inst. of Applied Biological Resources, Guangzhou, 510260, China
| |
Collapse
|
30
|
Abstract
A new study shows that, in honey bees, the main role of certain proteins in royal jelly is to ensure that the larva stays in its cell, thereby allowing it to develop into a queen.
Collapse
Affiliation(s)
- Christian W W Pirk
- Social Insect Research Group (SIRG), Department of Zoology & Entomology, University of Pretoria, Private Bag X20 Hatfield 0028, Pretoria, Republic of South Africa.
| |
Collapse
|
31
|
Dobritzsch D, Aumer D, Fuszard M, Erler S, Buttstedt A. The rise and fall of major royal jelly proteins during a honeybee ( Apis mellifera) workers' life. Ecol Evol 2019; 9:8771-8782. [PMID: 31410279 PMCID: PMC6686338 DOI: 10.1002/ece3.5429] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
The genome of the western honeybee (Apis mellifera) harbors nine transcribed major royal jelly protein genes (mrjp1-9) which originate from a single-copy precursor via gene duplication. The first MRJP was identified in royal jelly, a secretion of the bees' hypopharyngeal glands that is used by young worker bees, called nurses, to feed developing larvae. Thus, MRJPs are frequently assumed to mainly have functions for developing bee larvae and to be expressed in the food glands of nurse bees. In-depth knowledge on caste- and age-specific role and abundance of MRJPs is missing. We here show, using combined quantitative real-time PCR with quantitative mass spectrometry, that expression and protein amount of mrjp1-5 and mrjp7 show an age-dependent pattern in worker's hypopharyngeal glands as well as in brains, albeit lower relative abundance in brains than in glands. Expression increases after hatching until the nurse bee period and is followed by a decrease in older workers that forage for plant products. Mrjp6 expression deviates considerably from the expression profiles of the other mrjps, does not significantly vary in the brain, and shows its highest expression in the hypopharyngeal glands during the forager period. Furthermore, it is the only mrjp of which transcript abundance does not correlate with protein amount. Mrjp8 and mrjp9 show, compared to the other mrjps, a very low expression in both tissues. Albeit mrjp8 mRNA was detected via qPCR, the protein was not quantified in any of the tissues. Due to the occurrence of MRJP8 and MRJP9 in other body parts of the bees, for example, the venom gland, they might not have a hypopharyngeal gland- or brain-specific function but rather functions in other tissues. Thus, mrjp1-7 but not mrjp8 and mrjp9 might be involved in the regulation of phenotypic plasticity and age polyethism in worker honeybees.
Collapse
Affiliation(s)
- Dirk Dobritzsch
- Institut für Biochemie und Biotechnologie, PflanzenbiochemieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Denise Aumer
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Matthew Fuszard
- Proteinzentrum Charles Tanford, Core Facility ‐ Proteomic Mass SpectrometryMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Silvio Erler
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Anja Buttstedt
- Institut für BiologieMolekulare ÖkologieMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- B CUBE ‐ Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
32
|
pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins. Sci Rep 2019; 9:9014. [PMID: 31227768 PMCID: PMC6588556 DOI: 10.1038/s41598-019-45460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/07/2019] [Indexed: 01/04/2023] Open
Abstract
Honey bee larval food jelly is a secretion of the hypopharyngeal and mandibular glands of young worker bees that take care of the growing brood in the hive. Food jelly is fed to all larvae (workers, drones and queens) and as royal jelly to the queen bee for her entire life. Up to 18% of the food jelly account for proteins the majority of which belongs to the major royal jelly protein (MRJP) family. These proteins are produced in the hypopharyngeal glands at a pH value of 7.0. Before being fed to the larvae, they are mixed with the fatty acids secreted by the mandibular glands of the worker bees resulting at a pH of 4.0 in the food jelly. Thus, MRJPs are exposed to a broad pH range from their site of synthesis to the actual secreted larval food. We therefore determined the pH-dependent stability of MRJP1, MRJP2 and MRJP3 purified from royal jelly using differential scanning fluorimetry. All MRJPs were much more stable at acidic pH values compared to neutral ones with all proteins showing highest stability at pH 4.0 or 4.5, the native pH of royal jelly.
Collapse
|
33
|
Winkler P, Sieg F, Buttstedt A. Transcriptional Control of Honey Bee ( Apis mellifera) Major Royal Jelly Proteins by 20-Hydroxyecdysone. INSECTS 2018; 9:insects9030122. [PMID: 30235865 PMCID: PMC6163268 DOI: 10.3390/insects9030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/04/2022]
Abstract
One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.
Collapse
Affiliation(s)
- Paul Winkler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| | - Frank Sieg
- CuroNZ, 173 Cames Road, Mangawhai 0975, New Zealand.
| | - Anja Buttstedt
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany.
| |
Collapse
|
34
|
Architecture of the native major royal jelly protein 1 oligomer. Nat Commun 2018; 9:3373. [PMID: 30135511 PMCID: PMC6105727 DOI: 10.1038/s41467-018-05619-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
Honeybee caste development is nutritionally regulated by royal jelly (RJ). Major royal jelly protein 1 (MRJP1), the most abundant glycoprotein among soluble royal jelly proteins, plays pivotal roles in honeybee nutrition and larvae development, and exhibits broad pharmacological activities in humans. However, its structure has long remained unknown. Herein, we identify and report a 16-molecule architecture of native MRJP1 oligomer containing four MRJP1, four apisimin, and eight unanticipated 24-methylenecholesterol molecules at 2.65 Å resolution. MRJP1 has a unique six-bladed β-propeller fold with three disulfide bonds, and it interacts with apisimin mainly by hydrophobic interaction. Every four 24-methylenecholesterol molecules are packaged by two MRJP1 and two apisimin molecules. This assembly dimerizes to form an H-shaped MRJP14-apisimin4-24-methylenecholesterol8 complex via apisimin in a conserved and pH-dependent fashion. Our findings offer a structural basis for understanding the pharmacological effects of MRJPs and 24-methylenecholesterol, and provide insights into their unique physiological roles in bees.
Collapse
|