1
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025; 26:442-455. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. Proc Natl Acad Sci U S A 2025; 122:e2412161122. [PMID: 40359035 PMCID: PMC12107121 DOI: 10.1073/pnas.2412161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
While paradigms for patterning of cell fates in development are well established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are not. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose gradient creates tissue mechanical properties that specify the degree of elongation. Here, we show that the gradient is not regulated by Col4 transcription but instead relies on posttranscriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypoelongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Meanwhile, the terminally expressed metalloprotease Stall increases Col4 turnover in the posterior. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| |
Collapse
|
3
|
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Dilan TL, Ruetten VMS, Ahrens MB, Shroff H, Wang S, Weaver VM, Pedram K. Live imaging of the extracellular matrix with a glycan-binding fluorophore. Nat Methods 2025; 22:1070-1080. [PMID: 39915692 PMCID: PMC12074998 DOI: 10.1038/s41592-024-02590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/18/2024] [Indexed: 02/12/2025]
Abstract
All multicellular systems produce and dynamically regulate extracellular matrices (ECMs) that play essential roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small-molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, non-perturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.
Collapse
Affiliation(s)
- Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Thomas A Ravenscroft
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Richard Ikegami
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Wiert Kolkman
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Tanya L Dilan
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Virginia M S Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| |
Collapse
|
4
|
Courbot O, Elosegui-Artola A. The role of extracellular matrix viscoelasticity in development and disease. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:10. [PMID: 40191103 PMCID: PMC11968406 DOI: 10.1038/s44341-025-00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025]
Abstract
For several decades, research has studied the influence of the extracellular matrix (ECM) mechanical properties in cell response, primarily emphasising its elasticity as the main determinant of cell and tissue behaviour. However, the ECM is not purely elastic; it is viscoelastic. ECM viscoelasticity has now emerged as a major regulator of collective cell dynamics. This review highlights recent findings on the role of ECM viscoelasticity in development and pathology.
Collapse
Affiliation(s)
- Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King’s College London, London, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, King’s College London, London, UK
| |
Collapse
|
5
|
Andrews TGR, Priya R. The Mechanics of Building Functional Organs. Cold Spring Harb Perspect Biol 2025; 17:a041520. [PMID: 38886066 PMCID: PMC7616527 DOI: 10.1101/cshperspect.a041520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.
Collapse
Affiliation(s)
| | - Rashmi Priya
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
6
|
Myllymäki SM, Lan Q, Mikkola ML. Embryonic Mammary Gland Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:9-27. [PMID: 39821018 DOI: 10.1007/978-3-031-70875-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma. Placode and bud stages are morphologically similar with other ectodermal appendages like the hair follicle, reflecting the mammary gland's assumed evolutionary origin from an ancestral hair follicle-associated glandular unit. The shared features extend to signalling cascades such as the Wnt/β-catenin, fibroblast growth factor (Fgf), and ectodysplasin (Eda) pathways, while pathways unique to mammary gland include parathyroid hormone-like hormone (Pthlh) signalling and Hedgehog activity suppression. Mammary gland branching is highly non-stereotypic, achieved by the dynamic use of two distinct modes of branching: tip bifurcation and side branching and stochastic branch point formation. The cellular mechanisms driving the initial morphogenetic steps are slowly beginning to be unravelled. During placode and bud stages, mammary primordium predominantly grows through cell influx, while sprouting correlates with heightened proliferation. Branch elongation is driven by directional cell migration combined with differential cell motility and proliferation supplying the reservoir of migratory cells, whereas a bifurcating tip is associated with localized repression of the cell cycle and cell motility. Numerous similarities exist between embryonic programs and breast tumorigenesis, spanning cellular plasticity, epithelial-stromal interactions, and molecular regulators. Understanding embryonic mammogenesis may provide insights into how normal developmental processes can go awry, leading to malignancy, or how they can be reversed to prevent cancer progression.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Jiang C, Centonze A, Song Y, Chrisnandy A, Tika E, Rezakhani S, Zahedi Z, Bouvencourt G, Dubois C, Van Keymeulen A, Lütolf M, Sifrim A, Blanpain C. Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice. Nat Commun 2024; 15:10482. [PMID: 39695111 PMCID: PMC11655882 DOI: 10.1038/s41467-024-54843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
Collapse
Affiliation(s)
- Chen Jiang
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonius Chrisnandy
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saba Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zahra Zahedi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland
- Institute of Human Biology (IHB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alejandro Sifrim
- Laboratory of Multi-Omic Integrative Bioinformatics (LMIB), Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
8
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Paavolainen O, Peurla M, Koskinen LM, Pohjankukka J, Saberi K, Tammelin E, Sulander SR, Valkonen M, Mourao L, Boström P, Brück N, Ruusuvuori P, Scheele CLGJ, Hartiala P, Peuhu E. Volumetric analysis of the terminal ductal lobular unit architecture and cell phenotypes in the human breast. Cell Rep 2024; 43:114837. [PMID: 39368089 DOI: 10.1016/j.celrep.2024.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
The major lactiferous ducts of the human breast branch out and end at terminal ductal lobular units (TDLUs). Despite their functional and clinical importance, the three-dimensional (3D) architecture of TDLUs has remained undetermined. Our quantitative and volumetric imaging of healthy human breast tissue demonstrates that highly branched TDLUs, which exhibit increased proliferation, are uncommon in the resting tissue regardless of donor age, parity, or hormonal contraception. Overall, TDLUs have a consistent shape and branch parameters, and they contain a main subtree that dominates in bifurcation events and exhibits a more duct-like keratin expression pattern. Simulation of TDLU branching morphogenesis in three dimensions suggests that evolutionarily conserved mechanisms regulate mammary gland branching in humans and mice despite their anatomical differences. In all, our data provide structural insight into 3D anatomy and branching of the human breast and exemplify the power of volumetric imaging in gaining a deeper understanding of breast biology.
Collapse
Affiliation(s)
- Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Pohjankukka
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Kamyab Saberi
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Ella Tammelin
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Suvi-Riitta Sulander
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Masi Valkonen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Larissa Mourao
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Nina Brück
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pekka Ruusuvuori
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Pauliina Hartiala
- University of Turku, 20520 Turku, Finland; Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland; Medicity Research Laboratories and InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, 20520 Turku, Finland; Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
10
|
Peak KE, Rajaguru P, Khan A, Gleghorn JP, Obaid G, Ferruzzi J, Varner VD. Photo-induced changes in tissue stiffness alter epithelial budding morphogenesis in the embryonic lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609268. [PMID: 39229009 PMCID: PMC11370601 DOI: 10.1101/2024.08.22.609268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Extracellular matrix (ECM) stiffness has been shown to influence the differentiation of progenitor cells in culture, but a lack of tools to perturb the mechanical properties within intact embryonic organs has made it difficult to determine how changes in tissue stiffness influence organ patterning and morphogenesis. Photocrosslinking of the ECM has been successfully used to stiffen soft tissues, such as the cornea and skin, which are optically accessible, but this technique has not yet been applied to developing embryos. Here, we use photocrosslinking with Rose Bengal (RB) to locally and ectopically stiffen the pulmonary mesenchyme of explanted embryonic lungs cultured ex vivo . This change in mechanical properties was sufficient to suppress FGF-10-mediated budding morphogenesis along the embryonic airway, without negatively impacting patterns of cell proliferation or apoptosis. A computational model of airway branching was used to determine that FGF-10-induced buds form via a growth-induced buckling mechanism and that increased mesenchymal stiffness is sufficient to inhibit epithelial buckling. Taken together, our data demonstrate that photocrosslinking can be used to create regional differences in mechanical properties within intact embryonic organs and that these differences influence epithelial morphogenesis and patterning. Further, this photocrosslinking assay can be readily adapted to other developing tissues and model systems.
Collapse
|
11
|
Satta JP, Lindström R, Myllymäki SM, Lan Q, Trela E, Prunskaite-Hyyryläinen R, Kaczyńska B, Voutilainen M, Kuure S, Vainio SJ, Mikkola ML. Exploring the principles of embryonic mammary gland branching morphogenesis. Development 2024; 151:dev202179. [PMID: 39092607 DOI: 10.1242/dev.202179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland. Our results show that the embryonic epithelial trees are highly complex in topology owing to the flexible use of two distinct modes of branch point initiation: lateral branching and tip bifurcation. This non-stereotypy was contrasted by the remarkably constant average branch frequency, indicating a ductal growth invariant, yet stochastic, propensity to branch. The probability of branching was malleable and could be tuned by manipulating the Fgf10 and Tgfβ1 pathways. Finally, our in vivo data and ex vivo time-lapse imaging suggest the involvement of tissue rearrangements in mammary branch elongation.
Collapse
Affiliation(s)
- Jyoti P Satta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Riitta Lindström
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Ewelina Trela
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | | | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria Voutilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu Kuure
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
- Kvantum Institute, Infotech Oulu, University of Oulu, Oulu 90014, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
12
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602330. [PMID: 39026720 PMCID: PMC11257494 DOI: 10.1101/2024.07.06.602330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
While paradigms for patterning of cell fates in development are well-established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are less so. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose symmetric gradient creates tissue mechanical properties that specify the degree of elongation. Here we show that the gradient is not regulated by Col4 transcription but instead relies on post-transcriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypo-elongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| |
Collapse
|
13
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
14
|
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K. Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593460. [PMID: 38766047 PMCID: PMC11100790 DOI: 10.1101/2024.05.09.593460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.
Collapse
Affiliation(s)
- Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jason J. Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Richard Ikegami
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Wiert Kolkman
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Tanya L. Dilan
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
15
|
Koskinen LM, Nieminen L, Arjonen A, Guzmán C, Peurla M, Peuhu E. Spatial Engineering of Mammary Epithelial Cell Cultures with 3D Bioprinting Reveals Growth Control by Branch Point Proximity. J Mammary Gland Biol Neoplasia 2024; 29:5. [PMID: 38416267 PMCID: PMC10902034 DOI: 10.1007/s10911-024-09557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
The three-dimensional (3D) structure of the ductal epithelium and the surrounding extracellular matrix (ECM) are integral aspects of the breast tissue, and they have important roles during mammary gland development, function and malignancy. However, the architecture of the branched mammary epithelial network is poorly recapitulated in the current in vitro models. 3D bioprinting is an emerging approach to improve tissue-mimicry in cell culture. Here, we developed and optimized a protocol for 3D bioprinting of normal and cancerous mammary epithelial cells into a branched Y-shape to study the role of cell positioning in the regulation of cell proliferation and invasion. Non-cancerous cells formed continuous 3D cell networks with several organotypic features, whereas the ductal carcinoma in situ (DCIS) -like cancer cells exhibited aberrant basal polarization and defective formation of the basement membrane (BM). Quantitative analysis over time demonstrated that both normal and cancerous cells proliferate more at the branch tips compared to the trunk region of the 3D-bioprinted cultures, and particularly at the tip further away from the branch point. The location-specific rate of proliferation was independent of TGFβ signaling but invasion of the DCIS-like breast cancer cells was reduced upon the inhibition of TGFβ. Thus, our data demonstrate that the 3D-bioprinted cells can sense their position in the branched network of cells and proliferate at the tips, thus recapitulating this feature of mammary epithelial branching morphogenesis. In all, our results demonstrate the capacity of the developed 3D bioprinting method for quantitative analysis of the relationships between tissue structure and cell behavior in breast morphogenesis and cancer.
Collapse
Affiliation(s)
- Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | | | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
16
|
Pally D, Naba A. Extracellular matrix dynamics: A key regulator of cell migration across length-scales and systems. Curr Opin Cell Biol 2024; 86:102309. [PMID: 38183892 PMCID: PMC10922734 DOI: 10.1016/j.ceb.2023.102309] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
The interactions between cells and their surrounding extracellular matrix (ECM) are dynamic and play critical roles in cell migration during development, health, and diseases. Recent advances have highlighted the complexity and diversity of ECM compositions, or "matrisomes", of tissues resulting in ECMs of different physical, mechanical, and biochemical properties. Investigating the effects of these properties on cell-ECM interactions in the context of cell migration have led to a better understanding of the principles underlying tissue morphogenesis, wound healing, immune response, or cancer metastasis. These new insights into the interplay between ECM dynamics and cell migration can lead to the identification of unique opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Sumbal J, Sumbalova Koledova Z. Fibroblast-Epithelium Co-culture Methods Using Epithelial Organoids and Cell Line-Derived Spheroids. Methods Mol Biol 2024; 2764:107-129. [PMID: 38393591 DOI: 10.1007/978-1-0716-3674-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Fibroblasts are an integral cell type of mammary gland stroma, which plays crucial roles in development, homeostasis, and tumorigenesis of mammary epithelium. Fibroblasts produce and remodel extracellular matrix proteins and secrete a plethora of paracrine signals, which instruct both epithelial and other stromal cells of the mammary gland through mechanisms, which have not been fully understood. To enable deciphering of the intricate fibroblast-epithelial interactions, we developed several 3D co-culture methods. In this chapter, we describe methods for establishment of various types of embedded 3D co-cultures of mammary fibroblasts with mammary epithelial organoids, mammary tumor organoids, or breast cancer spheroids to investigate the role of fibroblasts in mammary epithelial development, morphogenesis, and tumorigenesis. The co-culture types include dispersed, aggregated, and transwell cultures.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Laboratory of Tissue Morphogenesis and Cancer, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
18
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
19
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Myllymäki SM, Kaczyńska B, Lan Q, Mikkola ML. Spatially coordinated cell cycle activity and motility govern bifurcation of mammary branches. J Cell Biol 2023; 222:e202209005. [PMID: 37367826 PMCID: PMC10300433 DOI: 10.1083/jcb.202209005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Branching morphogenesis is an evolutionary solution to maximize epithelial function in a compact organ. It involves successive rounds of branch elongation and branch point formation to generate a tubular network. In all organs, branch points can form by tip splitting, but it is unclear how tip cells coordinate elongation and branching. Here, we addressed these questions in the embryonic mammary gland. Live imaging revealed that tips advance by directional cell migration and elongation relies upon differential cell motility that feeds a retrograde flow of lagging cells into the trailing duct, supported by tip proliferation. Tip bifurcation involved localized repression of cell cycle and cell motility at the branch point. Cells in the nascent daughter tips remained proliferative but changed their direction to elongate new branches. We also report the fundamental importance of epithelial cell contractility for mammary branching morphogenesis. The co-localization of cell motility, non-muscle myosin II, and ERK activities at the tip front suggests coordination/cooperation between these functions.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marja L. Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Bordeu I, Chatzeli L, Simons BD. Inflationary theory of branching morphogenesis in the mouse salivary gland. Nat Commun 2023; 14:3422. [PMID: 37296120 PMCID: PMC10256724 DOI: 10.1038/s41467-023-39124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanisms that regulate the patterning of branched epithelia remain a subject of long-standing debate. Recently, it has been proposed that the statistical organization of multiple ductal tissues can be explained through a local self-organizing principle based on the branching-annihilating random walk (BARW) in which proliferating tips drive a process of ductal elongation and stochastic bifurcation that terminates when tips encounter maturing ducts. Here, applied to mouse salivary gland, we show the BARW model struggles to explain the large-scale organization of tissue. Instead, we propose that the gland develops as a tip-driven branching-delayed random walk (BDRW). In this framework, a generalization of the BARW, tips inhibited through steric interaction with proximate ducts may continue their branching program as constraints become alleviated through the persistent expansion of the surrounding tissue. This inflationary BDRW model presents a general paradigm for branching morphogenesis when the ductal epithelium grows cooperatively with the domain into which it expands.
Collapse
Affiliation(s)
- Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Lemonia Chatzeli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK.
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
23
|
Growth anisotropy of the extracellular matrix shapes a developing organ. Nat Commun 2023; 14:1220. [PMID: 36869053 PMCID: PMC9984492 DOI: 10.1038/s41467-023-36739-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Final organ size and shape result from volume expansion by growth and shape changes by contractility. Complex morphologies can also arise from differences in growth rate between tissues. We address here how differential growth guides the morphogenesis of the growing Drosophila wing imaginal disc. We report that 3D morphology results from elastic deformation due to differential growth anisotropy between the epithelial cell layer and its enveloping extracellular matrix (ECM). While the tissue layer grows in plane, growth of the bottom ECM occurs in 3D and is reduced in magnitude, thereby causing geometric frustration and tissue bending. The elasticity, growth anisotropy and morphogenesis of the organ are fully captured by a mechanical bilayer model. Moreover, differential expression of the Matrix metalloproteinase MMP2 controls growth anisotropy of the ECM envelope. This study shows that the ECM is a controllable mechanical constraint whose intrinsic growth anisotropy directs tissue morphogenesis in a developing organ.
Collapse
|
24
|
Chatzeli L, Bordeu I, Han S, Bisetto S, Waheed Z, Koo BK, Alcolea MP, Simons BD. A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland. Dev Cell 2023; 58:94-109.e6. [PMID: 36693323 PMCID: PMC7614884 DOI: 10.1016/j.devcel.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
The development of the mouse salivary gland involves a tip-driven process of branching morphogenesis that takes place in concert with differentiation into acinar, myoepithelial, and ductal (basal and luminal) sub-lineages. By combining clonal lineage tracing with a three-dimensional (3D) reconstruction of the branched epithelial network and single-cell RNA-seq analysis, we show that in tips, a heterogeneous population of renewing progenitors transition from a Krt14+ multipotent state to unipotent states via two transcriptionally distinct bipotent states, one restricted to the Krt14+ basal and myoepithelial lineage and the other to the Krt8+ acinar and luminal lineage. Using genetic perturbations, we show how the differential expression of Notch signaling correlates with spatial segregation, exits from multipotency, and promotes the Krt8+ lineage, whereas Kras activation promotes proacinar fate. These findings provide a mechanistic basis for how positional cues within growing tips regulate the process of lineage segregation and ductal patterning.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Ignacio Bordeu
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
| | - Seungmin Han
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara Bisetto
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Zahra Waheed
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, The Hutchison Building, Box 197 Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
25
|
Hannezo E, Scheele CLGJ. A Guide Toward Multi-scale and Quantitative Branching Analysis in the Mammary Gland. Methods Mol Biol 2023; 2608:183-205. [PMID: 36653709 DOI: 10.1007/978-1-0716-2887-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mammary gland consists of a bilayered epithelial structure with an extensively branched morphology. The majority of this epithelial tree is laid down during puberty, during which actively proliferating terminal end buds repeatedly elongate and bifurcate to form the basic structure of the ductal tree. Mammary ducts consist of a basal and luminal cell layer with a multitude of identified sub-lineages within both layers. The understanding of how these different cell lineages are cooperatively driving branching morphogenesis is a problem of crossing multiple scales, as this requires information on the macroscopic branched structure of the gland, as well as data on single-cell dynamics driving the morphogenic program. Here we describe a method to combine genetic lineage tracing with whole-gland branching analysis. Quantitative data on the global organ structure can be used to derive a model for mammary gland branching morphogenesis and provide a backbone on which the dynamics of individual cell lineages can be simulated and compared to lineage-tracing approaches. Eventually, these quantitative models and experiments allow to understand the couplings between the macroscopic shape of the mammary gland and the underlying single-cell dynamics driving branching morphogenesis.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Neumann NM, Kim DM, Huebner RJ, Ewald AJ. Collective cell migration is spatiotemporally regulated during mammary epithelial bifurcation. J Cell Sci 2023; 136:jcs259275. [PMID: 36602106 PMCID: PMC10112963 DOI: 10.1242/jcs.259275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-β signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-β1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-β signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-β1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-β signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.
Collapse
Affiliation(s)
- Neil M. Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel M. Kim
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew J. Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, Munne P, Klefström J, Peuhu E, Katajisto P. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci 2022; 135:285829. [DOI: 10.1242/jcs.260232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
ABSTRACT
Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through β4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.
Collapse
Affiliation(s)
- Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Defne D. Dinç
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Tomás McKenna
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
| | - Suvi Laitinen
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
- University of Helsinki 6 Faculty of Biological and Environmental Sciences , , Helsinki FI-00014 , Finland
| |
Collapse
|
28
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
29
|
Yamada KM, Doyle AD, Lu J. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol 2022; 32:883-895. [PMID: 35410820 PMCID: PMC9464680 DOI: 10.1016/j.tcb.2022.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/03/2023]
Abstract
Tissues consist of cells and their surrounding extracellular matrix (ECM). Cell-ECM interactions play crucial roles in embryonic development, differentiation, tissue remodeling, and diseases including fibrosis and cancer. Recent research advances in characterizing cell-matrix interactions include detailed descriptions of hundreds of ECM and associated molecules, their complex intermolecular interactions in development and disease, identification of distinctive modes of cell migration in different 3D ECMs, and new insights into mechanisms of organ formation. Exploring the roles of the physical features of different ECM microenvironments and the bidirectional regulation of cell signaling and matrix organization emphasize the dynamic nature of these interactions, which can include feedback loops that exacerbate disease. Understanding mechanisms of cell-matrix interactions can potentially lead to targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaoyang Lu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Peak KE, Mohr-Allen SR, Gleghorn JP, Varner VD. Focal sources of FGF-10 promote the buckling morphogenesis of the embryonic airway epithelium. Biol Open 2022; 11:bio059436. [PMID: 35979841 PMCID: PMC9536751 DOI: 10.1242/bio.059436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
During airway branching morphogenesis, focal regions of FGF-10 expression in the pulmonary mesenchyme are thought to provide a local guidance cue, which promotes chemotactically the directional outgrowth of the airway epithelium. Here, however, we show that an ectopic source of FGF-10 induces epithelial buckling morphogenesis and the formation of multiple new supernumerary buds. FGF-10-induced budding can be modulated by altered epithelial tension and luminal fluid pressure. Increased tension suppresses the formation of ectopic branches, while a collapse of the embryonic airway promotes more expansive buckling and additional FGF-10-induced supernumerary buds. Our results indicate that a focal source of FGF-10 can promote epithelial buckling and suggest that the overall branching pattern cannot be explained entirely by the templated expression of FGF-10. Both FGF-10-mediated cell behaviors and exogenous mechanical forces must be integrated to properly shape the bronchial tree.
Collapse
Affiliation(s)
- Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby R Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Uçar MC, Kamenev D, Sunadome K, Fachet D, Lallemend F, Adameyko I, Hadjab S, Hannezo E. Theory of branching morphogenesis by local interactions and global guidance. Nat Commun 2021; 12:6830. [PMID: 34819507 PMCID: PMC8613190 DOI: 10.1038/s41467-021-27135-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Branching morphogenesis governs the formation of many organs such as lung, kidney, and the neurovascular system. Many studies have explored system-specific molecular and cellular regulatory mechanisms, as well as self-organizing rules underlying branching morphogenesis. However, in addition to local cues, branched tissue growth can also be influenced by global guidance. Here, we develop a theoretical framework for a stochastic self-organized branching process in the presence of external cues. Combining analytical theory with numerical simulations, we predict differential signatures of global vs. local regulatory mechanisms on the branching pattern, such as angle distributions, domain size, and space-filling efficiency. We find that branch alignment follows a generic scaling law determined by the strength of global guidance, while local interactions influence the tissue density but not its overall territory. Finally, using zebrafish innervation as a model system, we test these key features of the model experimentally. Our work thus provides quantitative predictions to disentangle the role of different types of cues in shaping branched structures across scales.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| | - Dmitrii Kamenev
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dominik Fachet
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
32
|
Trenado C, Bonilla LL, Martínez-Calvo A. Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses. SOFT MATTER 2021; 17:8276-8290. [PMID: 34374406 DOI: 10.1039/d1sm00626f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Collective cell migration plays a crucial role in many developmental processes that underlie morphogenesis, wound healing, or cancer progression. In such coordinated behaviours, cells are organised in coherent structures and actively migrate to serve different biological purposes. In some contexts, namely during epithelial wound healing, it is well known that a migrating free-edge monolayer develops finger-like instabilities, yet the onset is still under debate. Here, by means of theory and numerical simulations, we shed light on the main mechanisms driving the instability process, analysing the linear and nonlinear dynamics of a continuum compressible polar fluid. In particular, we assess the role of cell polarisation, substrate friction, and contractile stresses. Linear theory shows that it is crucial to analyse the perturbation transient dynamics, since we unravel a plethora of crossovers between different exponential growth rates during the linear regime. Numerical simulations suggest that cell-substrate friction could be the mechanism responsible for the formation of complex finger-like structures at the edge, since it triggers secondary fingering instabilities and tip-splitting phenomena. Finally, we obtain a critical contractile stress that depends on cell-substrate friction and the initial-to-nematic length ratio, characterising an active wetting-dewetting transition. In the dewetting scenario, the monolayer retracts and becomes stable without developing finger-like structures.
Collapse
Affiliation(s)
- Carolina Trenado
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Luis L Bonilla
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Alejandro Martínez-Calvo
- Grupo de Mecánica de Fluidos, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
33
|
Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell 2021; 184:3702-3716.e30. [PMID: 34133940 PMCID: PMC8287763 DOI: 10.1016/j.cell.2021.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Samantha R Lish
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|