1
|
Husband S, Cankar K, Catrice O, Chabert S, Erler S. A guide to sunflowers: floral resource nutrition for bee health and key pollination syndromes. FRONTIERS IN PLANT SCIENCE 2025; 16:1552335. [PMID: 40376158 PMCID: PMC12078318 DOI: 10.3389/fpls.2025.1552335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/26/2025] [Indexed: 05/18/2025]
Abstract
Sunflower, Helianthus annuus L., is a prominent global oilseed crop with rising cultivation and appeal as a bee-friendly plant by providing abundant floral resources for pollinators. Mass-flowering crops can increase the availability of resources, and sunflower is a good opportunity to relieve pollen scarcity during the late summer in agricultural landscapes. Yet this should be taken with caution as they also provide a homogeneous source of nutrition. This study aimed to review and summarize the nutritional profile of sunflower pollen, nectar, bee bread, and honey, while assessing their effects on bee survival, development, and health. Furthermore, we present here the general state of knowledge on additional pollinator syndromes that extend beyond floral resources, including those influencing pollinator visual and olfactory attraction. We found that while sunflower pollen's nutritional quality is questioned due to lower protein and amino acid deficiencies, its nutrient content, like nectar sugars, had large variability. Sunflower pollen consumption showed mixed effects on Apis mellifera and Bombus species, sometimes negatively impacting development and survival. However, studies have conveyed a positive impact on bee health as sunflower pollen consistently reduced the infection intensity of the gut parasite, Crithidia bombi, in Bombus species. This probes the question on defining the quality of floral resources, emphasizing the need for caution when categorizing sunflower as a low quality nutritional resource. This review also outlines the importance of sunflower nectar characteristics (sugar content and volume) and floral morphology (flower pigmentation and corolla length) on pollinator foraging preferences. A prominent knowledge gap persists regarding nectar chemistry and sunflowers' extensive volatile profile to better understand the pollination syndromes that drive its pollinator interactions.
Collapse
Affiliation(s)
- Salena Husband
- Institute for Bee Protection, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katarina Cankar
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Olivier Catrice
- Université de Toulouse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR) Le Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Castanet-Tolosan, France
| | - Stan Chabert
- Université de Toulouse, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Unité Mixte de Recherche (UMR) Le Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Castanet-Tolosan, France
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Aizaz M, Lubna, Hashmi SS, Khan MA, Jan R, Bilal S, Kim KM, Al-Harrasi A, Asaf S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1131. [PMID: 40219203 PMCID: PMC11991662 DOI: 10.3390/plants14071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant-microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Salman Hashmi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Science, Qurtaba University of Science and Technology, Peshawar 25000, Pakistan;
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
3
|
Williamson E, Hill K, Hogendoorn K, Eisenhofer R. The bacterial community associated with the solitary resin bee Megachile tosticauda throughout its life cycle. FEMS Microbiol Ecol 2025; 101:fiaf023. [PMID: 40037901 PMCID: PMC11916890 DOI: 10.1093/femsec/fiaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/15/2025] [Accepted: 03/03/2025] [Indexed: 03/06/2025] Open
Abstract
Unlike in eusocial bees where the identity, acquisition, and function of symbiotic microbes are well understood, little is known about the relationships formed between solitary bees and bacteria. Assessing the potential role of microbes in solitary bee health is important, especially in the face of global bee declines. Early evidence suggests solitary bee microbiomes differ between bee species and development stages, but the reported bacteria are often indistinguishable from environmental taxa. Here, we use metabarcoding of the 16S rRNA gene to characterize the bacterial communities associated with solitary resin bee Megachile tosticauda. We describe the microbiome at different life cycle stages, and within pollen provisions, and investigate indirect inheritance from nesting substrate upon eclosion. The microbiome of adult M. tosticauda was consistent between samples, and the bacterial composition of larval pollen supplies changed with progressing larval development. In wild adults and pollen provisions, the genus Acinetobacter-a common nectar associate-dominated the communities. In prepupae and frass, Tyzzerella dominated, a genus that has been found in a number of other immature bee systems. Intriguingly, while wild adults did not harbour Tyzzerella, all bees that had newly emerged from the nest did. The combined observations show that M. tosticauda acquire their bacterial community from the environment, and Tyzzerella may represent a beneficial symbiont for mature brood.
Collapse
Affiliation(s)
- Elisabeth Williamson
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide 5005, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Entomology, Adelaide 5005, Australia
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide 5005, Australia
| | | |
Collapse
|
4
|
Quevedo‐Caraballo S, de Vega C, Lievens B, Fukami T, Álvarez‐Pérez S. Tiny but mighty? Overview of a decade of research on nectar bacteria. THE NEW PHYTOLOGIST 2025; 245:1897-1910. [PMID: 39716780 PMCID: PMC11798911 DOI: 10.1111/nph.20369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
An emerging focus of research at the intersection of botany, zoology, and microbiology is the study of floral nectar as a microbial habitat, referred to as the nectar microbiome, which can alter plant-pollinator interactions. Studies on these microbial communities have primarily focused on yeasts, and it was only about a decade ago that bacteria began to be studied as widespread inhabitants of floral nectar. This review aims to give an overview of the current knowledge on nectar bacteria, with emphasis on evolutionary origin, dispersal mode, effects on nectar chemistry and plant-animal interactions, community assembly, agricultural applications, and their use as model systems in ecological research. We further outline gaps in our understanding of the ecological significance of these microorganisms, their response to environmental changes, and the potential cascading effects.
Collapse
Affiliation(s)
| | - Clara de Vega
- Departamento de Biología Vegetal y EcologíaUniversidad de Sevilla41012SevillaSpain
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular SystemsKU LeuvenB‐3001LeuvenBelgium
| | - Tadashi Fukami
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
- Department of Earth System ScienceStanford UniversityStanfordCA94305‐5020USA
| | - Sergio Álvarez‐Pérez
- Department of Animal HealthComplutense University of Madrid28040MadridSpain
- Department of BiologyStanford UniversityStanfordCA94305‐5020USA
| |
Collapse
|
5
|
Ma B, Chang H, Guo M, Ai D, Wang J, Chen R, Liu X, Ren B, Hansson BS, Wang G. Yeast-derived volatiles orchestrate an insect-yeast mutualism with oriental armyworm moths. Nat Commun 2025; 16:1479. [PMID: 39929802 PMCID: PMC11811291 DOI: 10.1038/s41467-025-56354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Interactions among insects, plants, and microorganisms are fundamental to ecosystem dynamics, with floral nectar and pollen serving as key resources for various organisms. Yeasts, such as Metschnikowia reukaufii, commonly found in nectar, influence nectarial attraction through volatile compounds (VOCs), yet the underlying biological mechanisms remain elusive. Here, we show that isoamyl alcohol, a prominent yeast VOC, attracts oriental armyworm moths (Mythimna separata) to pollen-rich, yeast-fermented nectar. In a series of electrophysiological and behavioral assays, we show that isoamyl alcohol activates a single class of highly specific olfactory sensory neurons expressing the olfactory receptor MsepOR8. In the moth antennal lobe, these neurons target the AM2 glomerulus, which responds to isoamyl alcohol. Genetic disruption of MsepOR8 leads to complete abolition of both physiological and behavioral responses to isoamyl alcohol, resulting in an impaired ability to locate nectar sources. Moreover, we show that isoamyl alcohol-induced foraging behavior fosters a mutualistic relationship between yeast and moths to some extent, enhancing yeast dispersal and increasing moth reproductive success. Our results unveil a highly specific mechanism by which a yeast-derived VOC facilitates insect-yeast mutualism, providing insights into insect-microbe interactions within pollination ecosystems.
Collapse
Affiliation(s)
- Baiwei Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hetan Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengbo Guo
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects; Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Jones JA, Newton IG, Moczek AP. Microbiome composition and turnover in the face of complex lifecycles and bottlenecks: insights through the study of dung beetles. Appl Environ Microbiol 2025; 91:e0127824. [PMID: 39704535 PMCID: PMC11784073 DOI: 10.1128/aem.01278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
Microbiome composition and function often change throughout a host's life cycle, reflecting shifts in the ecological niche of the host. The mechanisms that establish these relationships are therefore important dimensions of host ecology and evolution; yet, their nature remains poorly understood. Here, we sought to investigate the microbial communities associated with the complex life cycle of the dung beetle Onthophagus taurus and the relative contributions of host life stage, sex, and environment in determining microbiome assembly. We find that O. taurus plays host to a diverse microbiota that undergo drastic community shifts throughout host development, influenced by host life stage, environmental microbiota, and, to a lesser degree, sex. Contrary to predictions, we found that egg and pupal stages-despite the absence of a digestive tract or defined microbe-storing organs-do not constrain microbial maintenance, while host-constructed environments, such as a maternally derived fecal pellet or the pupal chamber constructed by late larvae, may still serve as complementary microbial refugia for select taxa. Lastly, we identify a small community of putative core microbiota likely to shape host development and fitness. Our results provide important insights into mechanisms employed by solitary organisms to assemble, maintain, and adjust beneficial microbiota to confront life-stage-specific needs and challenges. IMPORTANCE As the influence of symbionts on host ecology, evolution, and development has become more apparent so has the importance of understanding how hosts facilitate the reliable maintenance of their interactions with these symbionts. A growing body of work has thus begun to identify diverse behaviors and physiological mechanisms underpinning the selective colonization of beneficial symbionts across a range of host taxa. Yet, how organisms with complex life cycles, such as holometabolous insects, establish and maintain key symbionts remains poorly understood. This is particularly interesting considering the drastic transformations of both internal and external host morphology, and the ecological niche shifts in diet and environment, that are the hallmark of metamorphosis. This work investigates the dynamic changes of the microbiota associated with the complex life cycle and host-constructed environments of the bull-headed dung beetle, Onthophagus taurus, a useful model for understanding how organisms may maintain and modulate their microbiota across development.
Collapse
Affiliation(s)
- Joshua A. Jones
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Irene Garcia Newton
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Sanchez VA, Renner T, Baker LJ, Hendry TA. Genome evolution following an ecological shift in nectar-dwelling Acinetobacter. mSphere 2025; 10:e0101024. [PMID: 39723821 PMCID: PMC11774029 DOI: 10.1128/msphere.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The bacterial genus Acinetobacter includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of Acinetobacter has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar. Here, we compared the genomes of floral-dwelling and pollinator-associated Acinetobacter, including newly described species, with genomes from relatives found in other environments to determine the genomic changes associated with this ecological shift. Following one evolutionary origin of floral nectar adaptation, nectar-dwelling Acinetobacter taxa have undergone reduction in genome size compared with relatives and have experienced dynamic gene gains and losses as they diversified. Gene content changes suggest a shift to metabolism of monosaccharides rather than diverse carbohydrates, and scavenging of nitrogen sources, which we predict to be beneficial in nectar environments. Gene gains appear to result from duplication events, evolutionary divergence, and horizontal gene transfer. Most notably, nectar-dwelling Acinetobacter acquired the ability to degrade pectin from plant pathogens, and the genes underlying this ability have duplicated and are under selection within the clade. We hypothesize that this ability was a key trait for adaptation to floral nectar, as it could improve access to nutrients in the nutritionally unbalanced habitat of nectar. These results identify the genomic changes and traits coinciding with a dramatic habitat switch from soil to floral nectar. IMPORTANCE Many bacteria, including the genus Acinetobacter, commonly evolve to exploit new habitats. However, the genetic changes that underlie habitat switches are often unknown. Floral nectar is home to specialized microbes that can grow in this nutritionally unbalanced habitat. Several specialized Acinetobacter species evolved from soil-dwelling relatives to become common and abundant in floral nectar. Here, we investigate the genomic adaptations required to successfully colonize a novel habitat like floral nectar. We performed comparative genomics analyses between nectar-dwelling Acinetobacter and Acinetobacter species from other environments, like soil and water. We find that although gene loss coincided with the switch to living in nectar, gains of specific genes from other bacteria may have been particularly important for this ecological change. Acinetobacter living in nectar gained genes for degrading pectin, a plant polysaccharide, which may improve access to nutrients in their environment. These findings shed light on how evolutionary novelty evolves in bacteria.
Collapse
Affiliation(s)
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lydia J. Baker
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Peters B, Leonhardt SD, Schloter M, Keller A. Direct and indirect effects of land use on microbiomes of trap-nesting solitary bee larvae and nests. Front Microbiol 2025; 15:1513096. [PMID: 39845038 PMCID: PMC11753253 DOI: 10.3389/fmicb.2024.1513096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species. In this study, we investigated yet another facet currently less well investigated in such context: Microbial communities associated with wild bees play crucial roles in larval development, metabolism, immunity and overall bee health. However, the drivers and dynamics of healthy microbiome in solitary bees are still poorly understood, especially regarding the direct and indirect effects of land use on the diversity and composition of these microbial communities. Methods We examined bacterial communities in the offspring and nest materials of the Megachilid trap-nesting solitary bee, Osmia bicornis, along a gradient of land use intensification by 16S rRNA gene metabarcoding. Given that landscape composition, climatic conditions, and food resources are known to influence microbial compositions in solitary bee species, we hypothesized that land use changes would alter resources available for food and nest material collection and thereby affecting the microbiomes in offspring and their nest environments. We anticipated reduced microbial diversity and altered composition with increased land use intensification, which is known to decrease the number and diversity of resources, including the pool of floral and soil bacteria in the surrounding environment. Results As expected, we observed significant shifts in the bacterial composition and diversity of bees and their nests across varying degrees of land use intensity, differing in management types and the availability of flowers. The Shannon diversity of bacteria in nest materials (larval pollen provision, soil nest enclosure) and larval guts decreased with increasing land use intensity. However, the pupae microbiome remained unaffected, indicating a reorganization of the microbiome during metamorphosis, which is not significantly influenced by land use and available resources. Discussion Our findings provide new insights into the factors shaping environmental transmission and changes in solitary bee microbiomes. This understanding is crucial for comprehending the impacts of intensive land use on wild bee health and developing strategies to mitigate these effects.
Collapse
Affiliation(s)
- Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
- Department of Biodiversity and People, Helmholtz Center Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Michael Schloter
- Comparative Microbiome Analysis, Helmholtz Centrum Munich, Munich, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Cecala JM, Landucci L, Vannette RL. Seasonal Assembly of Nectar Microbial Communities Across Angiosperm Plant Species: Assessing Contributions of Climate and Plant Traits. Ecol Lett 2025; 28:e70045. [PMID: 39737670 DOI: 10.1111/ele.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators. We monitored weather and, after 24 h, collected and cultured communities. We found a strong signature of plant species on resulting microbial abundance and community composition, in part explained by plant phylogeny and nectar peroxide content, but not floral morphology. Increasing temperature reduced microbial diversity, while higher minimum temperatures increased growth, suggesting complex ecological effects of temperature. Consistent nectar microbial communities within plant species could enable plant or pollinator adaptation. Our work supports the roles of host identity, traits and temperature in microbial community assembly, and indicates diversity-productivity relationships within host-associated microbiomes.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Leta Landucci
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
10
|
Mukhtar S, Hassani MA, Zarrillo T, Cui Z, Sundin GW, Zeng Q. The role of foraging pollinators in assembling the flower microbiota and transmitting the fire blight pathogen Erwinia amylovora. Environ Microbiol 2024; 26:e16702. [PMID: 39389580 DOI: 10.1111/1462-2920.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Flowers serve as hubs for biotic interactions with pollinators and microbes, which can significantly impact plant reproduction and health. Previous studies have shown that the flower microbiota undergoes dynamic assembly processes during anthesis. However, the influence of foraging pollinators on the assembly and dispersal of the flower microbiota and the transmission of plant pathogens remains poorly understood. In this study, we used insect exclusion netting to investigate the role of pollinators in the assembly of the microbiota on apple stigma and the transmission of the fire blight pathogen Erwinia amylovora. We found that excluding pollinators had a minor impact on the community diversity and composition of the apple stigma microbiota, while the flower's developmental stage had a strong influence. Additionally, pollinator exclusion altered bacterial dispersal and the relative abundance of different bacterial species, including E. amylovora, suggesting that pollinators play a role in transmitting plant pathogens. Using a reporter system, we demonstrated that bumble bees can transmit the fire blight pathogen from an infected flower under controlled growth conditions. Our study highlights the importance of intrinsic and pollinator-independent microbes as sources of inoculum for the stigma microbiota and underscores the role of foraging pollinators in vectoring plant pathogens.
Collapse
Affiliation(s)
- Salma Mukhtar
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - M Amine Hassani
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Tracy Zarrillo
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Cullen NP, Ashman TL. Hyperaccumulation of nickel but not selenium drives floral microbiome differentiation: A study with six species of Brassicaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16382. [PMID: 39148360 DOI: 10.1002/ajb2.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/17/2024]
Abstract
PREMISE Intraspecific variation in flower microbiome composition can mediate pollination and reproduction, and so understanding the community assembly processes driving this variation is critical. Yet the relative importance of trait-based host filtering and dispersal in shaping among-species variation in floral microbiomes remains unknown. METHODS Within two clades of Brassicaceae, we compared diversity and composition of floral microbiomes in natural populations of focal nickel and selenium hyperaccumulator species and two of their non-accumulating relatives. We assessed the relative strengths of floral elemental composition, plant phylogenetic distance (host filtering), and geography (dispersal) in driving floral microbiome composition. RESULTS Species in the nickel hyperaccumulator clade had strongly divergent floral microbiomes, the most of that variation driven by floral elemental composition, followed by geographic distance between plant populations and, lastly, phylogenetic distance. Conversely, within the selenium hyperaccumulator clade, floral microbiome divergence was much lower among the species and elemental composition, geography, and plant phylogeny were far weaker determinants of microbiome variation. CONCLUSIONS Our results show that the strength of elemental hyperaccumulation's effect on floral microbiomes differs substantially among plant clades, possibly due to variation in elements as selective filters or in long-distance dispersal probability in different habitats.
Collapse
Affiliation(s)
- Nevin P Cullen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, 15260, Pennsylvania, USA
| |
Collapse
|
12
|
Rivest S, Forrest JRK. Do flower-colonizing microbes influence floral evolution? A test with fast-cycling Brassica. J Evol Biol 2024; 37:935-946. [PMID: 38902913 DOI: 10.1093/jeb/voae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Pollinators are thought to be the main drivers of floral evolution. Flowers are also colonized by abundant communities of microbes that can affect the interaction between plants and their pollinators. Very little is known, however, about how flower-colonizing microbes influence floral evolution. Here we performed a 6-generation experimental evolution study using fast-cycling Brassica rapa, in which we factorially manipulated the presence of pollinators and flower microbes to determine how pollinators and microbes interact in driving floral evolution. We measured the evolution of 6 morphological traits, as well as the plant mating system and flower attractiveness. Only one of the 6 traits (flower number) evolved in response to pollinators, while microbes did not drive the evolution of any trait, nor did they interact with pollinators in driving the evolution of morphological traits. Moreover, we did not find evidence that pollinators or microbes affected the evolution of flower attractiveness to pollinators. However, we found an interactive effect of pollinators and microbes on the evolution of autonomous selfing, a trait that is expected to evolve in response to pollinator limitations. Overall, we found only weak evidence that microbes mediate floral evolution. However, our ability to detect an interactive effect of pollinators and microbes might have been limited by weak pollinator-mediated selection in our experimental setting. Our results contrast with previous (similar) experimental evolution studies, highlighting the susceptibility of such experiments to drift and to experimental artefacts.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|
13
|
Nguyen PN, Samad-Zada F, Chau KD, Rehan SM. Microbiome and floral associations of a wild bee using biodiversity survey collections. Environ Microbiol 2024; 26:e16657. [PMID: 38817079 DOI: 10.1111/1462-2920.16657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
The health of bees can be assessed through their microbiome, which serves as a biomarker indicating the presence of both beneficial and harmful microorganisms within a bee community. This study presents the characterisation of the bacterial, fungal, and plant composition on the cuticle of adult bicoloured sweat bees (Agapostemon virescens). These bees were collected using various methods such as pan traps, blue vane traps and sweep netting across the northern extent of their habitat range. Non-destructive methods were employed to extract DNA from the whole pinned specimens of these wild bees. Metabarcoding of the 16S rRNA, ITS and rbcL regions was then performed. The study found that the method of collection influenced the detection of certain microbial and plant taxa. Among the collection methods, sweep net samples showed the lowest fungal alpha diversity. However, minor differences in bacterial or fungal beta diversity suggest that no single method is significantly superior to others. Therefore, a combination of techniques can cater to a broader spectrum of microbial detection. The study also revealed regional variations in bacterial, fungal and plant diversity. The core microbiome of A. virescens comprises two bacteria, three fungi and a plant association, all of which are commonly detected in other wild bees. These core microbes remained consistent across different collection methods and locations. Further extensive studies of wild bee microbiomes across various species and landscapes will help uncover crucial relationships between pollinator health and their environment.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Katherine D Chau
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Rivest S, Lee ST, Cook D, Forrest JRK. Consequences of pollen defense compounds for pollinators and antagonists in a pollen-rewarding plant. Ecology 2024; 105:e4306. [PMID: 38590050 DOI: 10.1002/ecy.4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Stephen T Lee
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
15
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Rering CC, Lanier AM, Peres NA. Blueberry floral probiotics: nectar microbes inhibit the growth of Colletotrichum pathogens. J Appl Microbiol 2023; 134:lxad300. [PMID: 38061796 DOI: 10.1093/jambio/lxad300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
AIMS To identify whether microorganisms isolated from blueberry flowers can inhibit the growth of Colletotrichum, an opportunistic plant pathogen that infects flowers and threatens yields, and to assess the impacts of floral microbes and Colletotrichum pathogens on artificial nectar sugars and honey bee consumption. METHODS AND RESULTS The growth inhibition of Colletotrichum (Colletotrichum acutatum, Colletotrichum fioriniae, and Colletotrichum gloeosporioides) was screened using both artificial nectar co-culture and dual culture plate assays. All candidate nectar microbes were screened for antagonism against a single C. acutatum isolate. Then, the top four candidate nectar microbes showing the strongest inhibition of C. acutatum (Neokomagataea thailandica, Neokomagataea tanensis, Metschnikowia rancensis, and Symmetrospora symmetrica) were evaluated for antagonism against three additional C. acutatum isolates, and single isolates of both C. fioriniae and C. gloeosporioides. In artificial nectar assays, single and three-species cultures inhibited the growth of two of four C. acutatum isolates by ca. 60%, but growth of other Colletotrichum species was not affected. In dual culture plate assays, inhibition was observed for all Colletotrichum species for at least three of four selected microbial antagonists (13%‒53%). Neither honey bee consumption of nectar nor nectar sugar concentrations were affected by any microbe or pathogen tested. CONCLUSIONS Selected floral microbes inhibited growth of all Colletotrichum species in vitro, although the degree of inhibition was specific to the assay and pathogen examined. In all microbial treatments, nectar sugars were preserved, and honey bee preference was not affected.
Collapse
Affiliation(s)
- Caitlin C Rering
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Alexia M Lanier
- Chemistry Research Unit, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, United States
| | - Natalia A Peres
- Department of Horticulture, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, United States
| |
Collapse
|
17
|
Nguyen PN, Rehan SM. Wild bee and pollen microbiomes across an urban-rural divide. FEMS Microbiol Ecol 2023; 99:fiad158. [PMID: 38037395 DOI: 10.1093/femsec/fiad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Wild pollinators and their microbiota are sensitive to land use changes from anthropogenic activities that disrupt landscape and environmental features. As urbanization and agriculture affect bee habitats, human-led disturbances are driving changes in bee microbiomes, potentially leading to dysbiosis detrimental to bee fitness. This study examines the bacterial, fungal, and plant compositions of the small carpenter bee, Ceratina calcarata, and its pollen provisions across an urban-rural divide. We performed metabarcoding of C. calcarata and provisions in Toronto by targeting the 16S rRNA, ITS, and rbcL regions. Despite similar plant composition and diversity across bees and their provisions, there was a greater microbial diversity in pollen provisions than in bees. By characterizing the differences in land use, climate, and pesticide residues that differentiate urban and rural landscapes, we find that urban areas support elevated levels of microbial diversity and more complex networks between microbes and plants than rural areas. However, urban areas may lead to lower relative abundances of known beneficial symbionts and increased levels of pathogens, such as Ascosphaera and Alternaria fungi. Further, rural pollen provisions indicate elevated pesticide residues that may dysregulate symbiosis. As anthropogenic activities continue to alter land use, ever changing environments threaten microbiota crucial in maintaining bee health.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Sandra M Rehan
- Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
18
|
Francis JS, Mueller TG, Vannette RL. Intraspecific variation in realized dispersal probability and host quality shape nectar microbiomes. THE NEW PHYTOLOGIST 2023; 240:1233-1245. [PMID: 37614102 DOI: 10.1111/nph.19195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/16/2023] [Indexed: 08/25/2023]
Abstract
Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal-mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood. We compared the effects of host-plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars of Epilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants. There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal. These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.
Collapse
Affiliation(s)
- Jacob S Francis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Tobias G Mueller
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Nguyen PN, Rehan SM. Environmental Effects on Bee Microbiota. MICROBIAL ECOLOGY 2023; 86:1487-1498. [PMID: 37099156 DOI: 10.1007/s00248-023-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic activities and increased land use, which include industrialization, agriculture and urbanization, directly affect pollinators by changing habitats and floral availability, and indirectly by influencing their microbial composition and diversity. Bees form vital symbioses with their microbiota, relying on microorganisms to perform physiological functions and aid in immunity. As altered environments and climate threaten bees and their microbiota, characterizing the microbiome and its complex relationships with its host offers insights into understanding bee health. This review summarizes the role of sociality in microbiota establishment, as well as examines if such factors result in increased susceptibility to altered microbiota due to environmental changes. We characterize the role of geographic distribution, temperature, precipitation, floral resources, agriculture, and urbanization on bee microbiota. Bee microbiota are affected by altered surroundings regardless of sociality. Solitary bees that predominantly acquire their microbiota through the environment are particularly sensitive to such effects. However, the microbiota of obligately eusocial bees are also impacted by environmental changes despite typically well conserved and socially inherited microbiota. We provide an overview of the role of microbiota in plant-pollinator relationships and how bee microbiota play a larger role in urban ecology, offering microbial connections between animals, humans, and the environment. Understanding bee microbiota presents opportunities for sustainable land use restoration and aiding in wildlife conservation.
Collapse
Affiliation(s)
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
20
|
Morales-Poole JR, de Vega C, Tsuji K, Jacquemyn H, Junker RR, Herrera CM, Michiels C, Lievens B, Álvarez-Pérez S. Sugar Concentration, Nitrogen Availability, and Phylogenetic Factors Determine the Ability of Acinetobacter spp. and Rosenbergiella spp. to Grow in Floral Nectar. MICROBIAL ECOLOGY 2023; 86:377-391. [PMID: 35930073 PMCID: PMC10293439 DOI: 10.1007/s00248-022-02088-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The floral nectar of angiosperms harbors a variety of microorganisms that depend predominantly on animal visitors for their dispersal. Although some members of the genus Acinetobacter and all currently known species of Rosenbergiella are thought to be adapted to thrive in nectar, there is limited information about the response of these bacteria to variation in the chemical characteristics of floral nectar. We investigated the growth performance of a diverse collection of Acinetobacter (n = 43) and Rosenbergiella (n = 45) isolates obtained from floral nectar and the digestive tract of flower-visiting bees in a set of 12 artificial nectars differing in sugar content (15% w/v or 50% w/v), nitrogen content (3.48/1.67 ppm or 348/167 ppm of total nitrogen/amino nitrogen), and sugar composition (only sucrose, 1/3 sucrose + 1/3 glucose + 1/3 fructose, or 1/2 glucose + 1/2 fructose). Growth was only observed in four of the 12 artificial nectars. Those containing elevated sugar concentration (50% w/v) and low nitrogen content (3.48/1.67 ppm) were limiting for bacterial growth. Furthermore, phylogenetic analyses revealed that the ability of the bacteria to grow in different types of nectar is highly conserved between closely related isolates and genotypes, but this conservatism rapidly vanishes deeper in phylogeny. Overall, these results demonstrate that the ability of Acinetobacter spp. and Rosenbergiella spp. to grow in floral nectar largely depends on nectar chemistry and bacterial phylogeny.
Collapse
Affiliation(s)
- José R Morales-Poole
- Department of Animal Health, Complutense University of Madrid, 28040, Madrid, Spain
| | - Clara de Vega
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012, Seville, Spain
| | - Kaoru Tsuji
- Department of Biology, Graduate School of Science, Kobe University, Hyogo, 657-8501, Japan
| | - Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, B-3001, Heverlee, Belgium
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany
- Department of Biosciences, University Salzburg, 5020, Salzburg, Austria
| | | | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, KU Leuven, B-3001, Heverlee, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001, Heverlee, Belgium
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Complutense University of Madrid, 28040, Madrid, Spain.
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, B-3001, Heverlee, Belgium.
| |
Collapse
|
21
|
Khan KA, Ganeshprasad DN, Sachin HR, Shouche YS, Ghramh HA, Sneharani AH. Gut microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Front Vet Sci 2023; 10:1149876. [PMID: 37252382 PMCID: PMC10213700 DOI: 10.3389/fvets.2023.1149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Honey bee gut microbiota have an important role in host health, nutrition, host-symbiont interaction, and interaction behavior with the surrounding environment. Recent discoveries of strain-level variation, characteristics of protective and nutritional capabilities, and reports of eco-physiological significance to the microbial community have emphasized the importance of honey bee gut microbiota. Many regions of Asia and Africa are inhabited by the dwarf honey bee, Apis florea. Studying its microflora and potential for pollination is therefore of foremost importance. Methods In the present investigation, we aimed to explore the gut bacteriobiome composition of two distinct honey bee species, Apis florea and Apis cerana indica using high throughput sequencing. Functional predictions of bee gut bacterial communities using PICRUSt2 was carried out. Results and discussion The phylum Proteobacteria dominated the bacterial community in both A. cerana indica (50.1%) and A. florea (86.7%), followed by Firmicutes (26.29 and 12.81%), Bacteroidetes (23.19 and 0.04%) and Actinobacteria (0.4 and 0.02%) respectively. The gut bacteria of A. cerana indica was more diverse than that of A. florea. The observed variations in bacterial genomic diversity among these critical pollinator species may have been influenced by the apiary management techniques, ecological adaptation factors or habitat size. These variations can have a significant effect in understanding host-symbiont interactions and functioning of gut microbiota highlighting the importance of metagenomic survey in understanding microbial community ecology and evolution. This is the first comparative study on variation in bacterial diversity between two Asian honey bees.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Applied College, Mahala Campus, King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - D. N. Ganeshprasad
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - H. R. Sachin
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - A. H. Sneharani
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| |
Collapse
|
22
|
Kueneman JG, Gillung J, Van Dyke MT, Fordyce RF, Danforth BN. Solitary bee larvae modify bacterial diversity of pollen provisions in the stem-nesting bee, Osmia cornifrons (Megachilidae). Front Microbiol 2023; 13:1057626. [PMID: 36699601 PMCID: PMC9868615 DOI: 10.3389/fmicb.2022.1057626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Microbes, including diverse bacteria and fungi, play an important role in the health of both solitary and social bees. Among solitary bee species, in which larvae remain in a closed brood cell throughout development, experiments that modified or eliminated the brood cell microbiome through sterilization indicated that microbes contribute substantially to larval nutrition and are in some cases essential for larval development. To better understand how feeding larvae impact the microbial community of their pollen/nectar provisions, we examine the temporal shift in the bacterial community in the presence and absence of actively feeding larvae of the solitary, stem-nesting bee, Osmia cornifrons (Megachilidae). Our results indicate that the O. cornifrons brood cell bacterial community is initially diverse. However, larval solitary bees modify the microbial community of their pollen/nectar provisions over time by suppressing or eliminating rare taxa while favoring bacterial endosymbionts of insects and diverse plant pathogens, perhaps through improved conditions or competitive release. We suspect that the proliferation of opportunistic plant pathogens may improve nutrient availability of developing larvae through degradation of pollen. Thus, the health and development of solitary bees may be interconnected with pollen bacterial diversity and perhaps with the propagation of plant pathogens.
Collapse
Affiliation(s)
- Jordan G. Kueneman
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States,*Correspondence: Jordan G. Kueneman, ✉
| | - Jessica Gillung
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States,Lyman Entomological Museum, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Maria T. Van Dyke
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Rachel F. Fordyce
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Bryan N. Danforth
- Danforth Lab, Department of Entomology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Characterization of Seed Mycobiota Using Culture-Dependent and Culture-Independent Approaches. Methods Mol Biol 2022; 2605:65-78. [PMID: 36520389 DOI: 10.1007/978-1-0716-2871-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Seed fungi are potentially important for their roles in seedling microbiome assembly and seedling health, but surveys of full seed fungal communities remain limited. While culture-dependent methods have been used to characterize some members of the seed mycobiota, recent culture-independent studies have improved the ease in identifying and characterizing full seed fungal communities. In this chapter, we describe how to survey seed fungi using both traditional culture-based methods and culture-free metabarcoding. We first describe protocols for the isolation and long-term preservation of fungal strains from individual seeds and for the extraction and amplification of DNA from such fungal isolates for identification with Sanger sequencing. We also detail how to extract, amplify, and sequence fungal DNA directly from individual seeds. Finally, we provide suggestions for troubleshooting media choices, PCR inhibition by isolates and plant tissue, and PCR limitation by low fungal DNA.
Collapse
|
24
|
Li K, Cheng K, Wang H, Zhang Q, Yang Y, Jin Y, He X, Wu R. Disentangling leaf-microbiome interactions in Arabidopsis thaliana by network mapping. FRONTIERS IN PLANT SCIENCE 2022; 13:996121. [PMID: 36275601 PMCID: PMC9583167 DOI: 10.3389/fpls.2022.996121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The leaf microbiota plays a key role in plant development, but a detailed mechanism of microbe-plant relationships remains elusive. Many genome-wide association studies (GWAS) have begun to map leaf microbes, but few have systematically characterized the genetics of how microbes act and interact. Previously, we integrated behavioral ecology and game theory to define four types of microbial interactions - mutualism, antagonism, aggression, and altruism, in a microbial community assembly. Here, we apply network mapping to identify specific plant genes that mediate the topological architecture of microbial networks. Analyzing leaf microbiome data from an Arabidopsis GWAS, we identify several heritable hub microbes for leaf microbial communities and detect 140-728 SNPs (Single nucleotide polymorphisms) responsible for emergent properties of microbial network. We reconstruct Bayesian genetic networks from which to identify 22-43 hub genes found to code molecular pathways related to leaf growth, abiotic stress responses, disease resistance and nutrition uptake. A further path analysis visualizes how genetic variants of Arabidopsis affect its fecundity through the internal workings of the leaf microbiome. We find that microbial networks and their genetic control vary along spatiotemporal gradients. Our study provides a new avenue to reveal the "endophenotype" role of microbial networks in linking genotype to end-point phenotypes in plants. Our integrative theory model provides a powerful tool to understand the mechanistic basis of structural-functional relationships within the leaf microbiome and supports the need for future research on plant breeding and synthetic microbial consortia with a specific function.
Collapse
Affiliation(s)
- Kaihang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kexin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haochen Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yan Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Departments of Public Health Sciences and Statistics, Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
25
|
Detaling morphological traits of Trollius europeus L. flowers, nectary structure, and holocrine nectar secretion through combined light and electron microscopy. Micron 2022; 162:103345. [DOI: 10.1016/j.micron.2022.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
|
26
|
Burgess EC, Schaeffer RN. The Floral Microbiome and Its Management in Agroecosystems: A Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9819-9825. [PMID: 35917340 DOI: 10.1021/acs.jafc.2c02037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disease management is critical to ensuring healthy crop yields and is often targeted at flowers because of their susceptibility to pathogens and direct link to reproduction. Many disease management strategies are unsustainable however because of the potential for pathogens to evolve resistance, or nontarget effects on beneficial insects. Manipulating the floral microbiome holds some promise as a sustainable alternative to chemical means of disease control. In this perspective, we discuss the current state of research concerning floral microbiome assembly and management in agroecosystems as well as future directions aimed at improving the sustainability of disease control and insect-mediated ecosystem services.
Collapse
Affiliation(s)
- Emily C Burgess
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| | - Robert N Schaeffer
- Department of Biology, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
27
|
Bergmann GE, Leveau JHJ. A metacommunity ecology approach to understanding microbial community assembly in developing plant seeds. Front Microbiol 2022; 13:877519. [PMID: 35935241 PMCID: PMC9355165 DOI: 10.3389/fmicb.2022.877519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have the potential to affect plant seed germination and seedling fitness, ultimately impacting plant health and community dynamics. Because seed-associated microbiota are highly variable across individual plants, plant species, and environments, it is challenging to identify the dominant processes that underlie the assembly, composition, and influence of these communities. We propose here that metacommunity ecology provides a conceptually useful framework for studying the microbiota of developing seeds, by the application of metacommunity principles of filtering, species interactions, and dispersal at multiple scales. Many studies in seed microbial ecology already describe individual assembly processes in a pattern-based manner, such as correlating seed microbiome composition with genotype or tracking diversity metrics across treatments in dispersal limitation experiments. But we see a lot of opportunities to examine understudied aspects of seed microbiology, including trait-based research on mechanisms of filtering and dispersal at the micro-scale, the use of pollination exclusion experiments in macro-scale seed studies, and an in-depth evaluation of how these processes interact via priority effect experiments and joint species distribution modeling.
Collapse
Affiliation(s)
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
28
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Martin VN, Schaeffer RN, Fukami T. Potential effects of nectar microbes on pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210155. [PMID: 35491594 DOI: 10.1098/rstb.2021.0155] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
| | | | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
30
|
Nicolson SW. Sweet solutions: nectar chemistry and quality. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210163. [PMID: 35491604 PMCID: PMC9058545 DOI: 10.1098/rstb.2021.0163] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nectar, the main floral reward for pollinators, varies greatly in composition and concentration. The assumption that nectar quality is equivalent to its sugar (energy) concentration is too simple. Diverse non-sugar components, especially amino acids and secondary metabolites, play various roles in nutrition and health of pollinators. Many nectar compounds have indirect effects by altering the foraging behaviour of pollinators or protecting them from disease. This review also emphasizes the water component of nectar, often ignored because of evaporative losses and difficulties in sampling small nectar volumes. Nectar properties vary with environmental factors, pollinator visits and microbial contamination. Pollination mutualisms depend on the ability of insect and vertebrate pollinators to cope with and benefit from the variation and diversity in nectar chemistry. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Susan W. Nicolson
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
31
|
Dharampal PS, Danforth BN, Steffan SA. Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself. Ecol Evol 2022; 12:e8788. [PMID: 35414891 PMCID: PMC8986510 DOI: 10.1002/ece3.8788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Developing bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe-colonized pollen.To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist. Larvae from each species were reared on either microbe-rich natural or microbe-deficient sterilized pollen provisions allocated by a female forager belonging to their own species (conspecific-sourced pollen) or that of another species (heterospecific-sourced pollen). Our results reveal that the presence of pollen-associated microbes was critical for the survival of both the generalist and specialist larvae, regardless of whether the pollen was sourced from a conspecific or heterospecific forager.Given the positive effects of exosymbiotic microbes for larval fitness, we then examined if the magnitude of this benefit varied based on whether the microbes were provisioned by a conspecific forager (the mother bee) or a heterospecific forager. In this second study, generalist larvae were reared only on microbe-rich pollen provisions, but importantly, the sources (conspecific versus heterospecific) of the microbes and pollen were experimentally manipulated.Bee fitness metrics indicated that microbial and pollen sourcing both had significant impacts on larval performance, and the effect sizes of each were similar. Moreover, the effects of conspecific-sourced microbes and conspecific-sourced pollen were strongly positive, while that of heterospecific-sourced microbes and heterospecific-sourced pollen, strongly negative.Our findings imply that not only is the presence of exosymbionts critical for both specialist and generalist solitary bees, but more notably, that the composition of the specific microbial community within larval pollen provisions may be as critical for bee development as the composition of the pollen itself.
Collapse
Affiliation(s)
| | | | - Shawn A. Steffan
- Department of EntomologyUniversity of WisconsinMadisonWisconsinUSA
- USDA‐ARSVegetable Crops Research UnitMadisonWisconsinUSA
| |
Collapse
|
32
|
Marre M, Ushio M, Sakai S. The effects of the floral infection by a bacterial pathogen in a dioecious plant,
Mallotus japonicus
(Euphorbiaceae). POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maxime Marre
- Center for Ecological Research Kyoto University Otsu Japan
| | - Masayuki Ushio
- Center for Ecological Research Kyoto University Otsu Japan
- Hakubi Center Kyoto University Kyoto Japan
| | - Shoko Sakai
- Center for Ecological Research Kyoto University Otsu Japan
| |
Collapse
|
33
|
Vannette RL, McMunn MS, Hall GW, Mueller TG, Munkres I, Perry D. Culturable bacteria are more common than fungi in floral nectar and are more easily dispersed by thrips, a ubiquitous flower visitor. FEMS Microbiol Ecol 2021; 97:6430164. [PMID: 34791198 DOI: 10.1093/femsec/fiab150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Variation in dispersal ability among taxa affects community assembly and biodiversity maintenance within metacommunities. Although fungi and bacteria frequently coexist, their relative dispersal abilities are poorly understood. Nectar-inhabiting microbial communities affect plant reproduction and pollinator behavior, and are excellent models for studying dispersal of bacteria and fungi in a metacommunity framework. Here, we assay dispersal ability of common nectar bacteria and fungi in an insect-based dispersal experiment. We then compare these results with the incidence and abundance of culturable flower-inhabiting bacteria and fungi within naturally occurring flowers across two coflowering communities in California across two flowering seasons. Our microbial dispersal experiment demonstrates that bacteria disperse via thrips among artificial habitat patches more readily than fungi. In the field, incidence and abundance of culturable bacteria and fungi were positively correlated, but bacteria were much more widespread. These patterns suggest shared dispersal routes or habitat requirements among culturable bacteria and fungi, but differences in dispersal or colonization frequency by thrips, common flower visitors. The finding that culturable bacteria are more common among nectar sampled here, in part due to superior thrips-mediated dispersal, may have relevance for microbial life history, community assembly of microbes, and plant-pollinator interactions.
Collapse
Affiliation(s)
- Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Marshall S McMunn
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Griffin W Hall
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Tobias G Mueller
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Ivan Munkres
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| | - Douglas Perry
- Department of Entomology and Nematology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
34
|
Crowley B, Russell A. Plant biology: Nectar bacteria grow by germinating and bursting pollen. Curr Biol 2021; 31:R1120-R1122. [PMID: 34637711 DOI: 10.1016/j.cub.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial residents of floral nectar must survive in a carbohydrate-rich yet seemingly nitrogen-poor environment. A new study shows that Acinetobacter spp., common nectar-inhabiting bacteria, differentially induce the pollen commonly found in nectar to germinate and burst, releasing nutrients for microbial growth.
Collapse
Affiliation(s)
- Bailey Crowley
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Avery Russell
- Department of Biology, Missouri State University, Springfield, MO 65897, USA.
| |
Collapse
|