1
|
Ataherian MR, Hafezi N, Ferdosi-Shahandashti E, Abdinia FS. IFN-γ Approaches in Tumor Suppression, Its Challenges, and Future Directions: A Review of Recent Advances. J Interferon Cytokine Res 2025; 45:164-173. [PMID: 39914810 DOI: 10.1089/jir.2024.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
IFN-γ is recognized as an immunoregulatory cytokine due to its dual role in both accelerating and dampening immunological responses. Accordingly, in the context of tumor immunotherapy, the therapeutic outcome of IFN-γ is contingent upon factors such as dosage and the expression status of downstream signaling molecules. Furthermore, the coadministration of IFN-γ with various immunestimulatory agents, including anticheckpoint inhibitors, chemotherapeutic agents, and herbal-based medicines, may potentially overcome the IFN-γ-related challenges and enhance the response rate. We decipher the mechanisms of tumor cell eradication facilitated by IFN-γ, the last achievements in IFN-γ-mediated tumor immunotherapy across various cancers, and the strategies to address the failure of IFN-γ-based tumor immunotherapy. Unraveling the molecular mechanisms that lead to failure in IFN-γ-based antitumor actions could assist in pinpointing therapeutic agents that target the immune-modulatory features of IFN-γ, thereby increasing the antitumor response rate.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Sarina Abdinia
- Department of Nanotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Rizwan A, Rehman U, Gupta G, Alsayari A, Wahab S, Kesharwani P. Polyglutamic acid in cancer nanomedicine: Advances in multifunctional delivery platforms. Int J Pharm 2025; 676:125623. [PMID: 40254191 DOI: 10.1016/j.ijpharm.2025.125623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Polyglutamic acid (PGA)-coated nanoparticles have emerged as a significant advancement in cancer nanomedicine due to their biocompatibility, biodegradability, and versatility. PGA enhances the stability and bioavailability of therapeutic agents, enabling controlled and sustained drug release with reduced systemic toxicity. Stimuli-responsive modifications to PGA allow for precise drug delivery tailored to the tumor microenvironment, improving specificity and therapeutic outcomes. PGA's potential extends to gene delivery, where it facilitates safe and efficient transfection, addressing critical challenges such as multidrug resistance. Additionally, PGA-coated nanoparticles play a pivotal role in theranostic, integrating diagnostic and therapeutic capabilities within a single platform for real-time monitoring and treatment optimization. These nanoparticles have demonstrated enhanced efficacy in chemotherapy, immunotherapy, and combination regimens, tackling persistent issues like poor tumor penetration and non-specific drug distribution. Advancements in stimuli-responsive designs, ligand functionalization, and payload customization highlight the adaptability of PGA-based platforms for precision oncology. However, challenges such as scalability, stability under physiological conditions, and regulatory compliance remain key obstacles to clinical translation. This review explores the design, development, and applications of PGA-coated nanoparticles, emphasizing their potential to transform cancer treatment through safer, more effective, and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Asfi Rizwan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; Health and Medical Research Centre, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
3
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
4
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
5
|
Shi Q, Liu Y, Yang W, Li Y, Wang C, Gao K. The covalent modification of STAT1 cysteines by sulforaphane promotes antitumor immunity via blocking IFN-γ-induced PD-L1 expression. Redox Biol 2025; 81:103543. [PMID: 39961271 PMCID: PMC11875811 DOI: 10.1016/j.redox.2025.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Sulforaphane (SFN), a natural compound found in cruciferous vegetables, possesses well-documented antitumor properties. However, the precise functions and mechanisms of SFN in cancer suppression remain poorly understood. Here we provide evidence to demonstrate that SFN exerts more pronounced antitumor effects in immunocompetent mice compared to immunodeficient mice, suggesting the involvement of the host immune system in SFN-mediated tumor suppression. Furthermore, we reveal that SFN primarily acts through CD8+ cytotoxic T lymphocytes (CTLs) to enhance antitumor immunity by blocking the IFN-γ-mediated induction of PD-L1, a critical immune checkpoint receptor expressed in cancer cells. Importantly, our findings indicate that the suppression of PD-L1 expression by SFN is independent of the NRF2 protein stabilization pathway. Instead, SFN inhibits IFN-γ-mediated activation of STAT1, a key transcription factor involved in PD-L1 induction. Mechanistically, SFN covalently modifies specific cysteine residues (C155 and C174) on STAT1, resulting in the inhibition of its transcriptional activity. Notably, SFN-mediated downregulation of PD-L1 contributes to its antitumor immune effects, as demonstrated by enhanced anti-CTLA-4-mediated cytotoxicity. These findings indicate that SFN's antitumor effect extends beyond its direct cytotoxic properties, as it also actively engages the host immune system. This underscores SFN's immense potential as an immune-modulating agent in cancer therapy.
Collapse
Affiliation(s)
- Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan, Fudan University, Shanghai, 200438, China
| | - Yajuan Liu
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wanqi Yang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
6
|
Li G, Qi Y, Zhang L, Yu Y. Development of a machine learning-based diagnostic model using hematological parameters to differentiate periductal mastitis from granulomatous lobular mastitis. Sci Prog 2025; 108:368504251333513. [PMID: 40223288 PMCID: PMC12033734 DOI: 10.1177/00368504251333513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
ObjectiveNonpuerperal mastitis (NPM) is an inflammatory condition, including periductal mastitis (PDM) and granulomatous lobular mastitis (GLM). The clinical manifestations of PDM and GLM are highly similar, posing significant challenges in their differentiation. Currently, there is a paucity of diagnostic models for distinguishing PDM from GLM. The objective of this research is to create and verify a model that can distinguish between PDM and GLM.MethodsThis study retrospectively collected laboratory data from 60 patients with PDM and 60 patients with GLM, and randomly assigned these patients into a training group (80%) and a testing group (20%). Additionally, 20 patients with NPM from another center were included as an external validation group. Five machine learning (ML) algorithms (Logistic Regression, XGBoost, Random Forest, AdaBoost, GNB) were combined to differentiate PDM from GLM. The performance of the models was evaluated using the area under the curve (AUC), and the model with the highest AUC in the testing group was selected as the best model.ResultsThe logistic regression model emerged as the optimal ML approach for distinguishing PDM from GLM, primarily utilizing six variables (RDW, mean platelet volume, C4, IFN-γ, PT, and DD). In the training group, the model achieved an AUC of 0.827, and similarly, in the testing group, it yielded an AUC of 0.807. Addition, both the training and testing groups achieved an accuracy, sensitivity, and specificity of over 0.7. Notably, the model also performed effectively in the external validation group, with an AUC of 0.750.ConclusionThis study established a hematological model to distinguish PDM from GLM, facilitating early diagnosis and reducing misdiagnosis in NPM patients.
Collapse
Affiliation(s)
- Gaosha Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuxiang Qi
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
7
|
Hofer S, Jenny M, Klein A, Becker K, Parráková L, Überall F, Ganzera M, Fuchs D, Hackl H, Monfort-Lanzas P, Gostner JM. Myrobalan Fruit Extracts Modulate Immunobiochemical Pathways In Vitro. Antioxidants (Basel) 2025; 14:350. [PMID: 40227454 PMCID: PMC11939258 DOI: 10.3390/antiox14030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Myrobalan fruits are important ingredients of traditional remedies, such as the Ayurvedic formulation Triphala or the Tibetan formulation Bras bu 3. Myrobalan-containing remedies are described to have positive effects on metabolism, the cardiovascular system, and the immune system. The chemical composition of botanical mixtures can be very complex, and it is often impossible to identify individual compounds as specific active ingredients, which suggests a multi-target mode of action. In this in vitro study, the effect of myrobalan extracts in human cell models was investigated to gain more information about the molecular mechanism of action and to find possible synergistic effects. Direct and indirect antioxidant effects were investigated, and the activation of immunobiochemical metabolic pathways involved in the cellular immune response was examined in cell lines treated with extracts of the fruits of Phyllanthus emblica, Terminalia chebula and Terminalia bellirica, as well as a combination of them. In particular, a synergistic effect on the activation of the endogenous antioxidant defence system was observed with the combined treatment of the three fruit extracts. An integrated transcriptome analysis of cells treated with a combination of fruit extracts confirmed an effect on immune pathways, oxidative stress, and detoxification processes. This study shows the modulation of various signalling pathways and cellular processes that may be part of the multi-target mechanism of individual and combined myrobalan fruit extracts. Although the results are limited to in vitro data, they contribute to a better understanding of how botanical mixtures work and provide hypotheses for further research.
Collapse
Affiliation(s)
- Stefanie Hofer
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Marcel Jenny
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Angela Klein
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Kathrin Becker
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Lucia Parráková
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Florian Überall
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Markus Ganzera
- Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Scheese D, Lu P, Moore H, Tsuboi K, Tragesser C, Duess J, Raouf Z, Sampah MF, Klerk D, El Baassiri M, Jang HS, Williams-McLeod S, Ishiyama A, Steinway SN, Wang S, Wang M, Prindle T, Fulton WB, Sodhi CP, Hackam DJ. Cytomegalovirus Worsens Necrotizing Enterocolitis Severity in Mice via Increased Toll-Like Receptor 4 Signaling. Cell Mol Gastroenterol Hepatol 2025; 19:101473. [PMID: 39954728 PMCID: PMC12008672 DOI: 10.1016/j.jcmgh.2025.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND AIMS Necrotizing enterocolitis (NEC) is a life-threatening condition in premature infants, marked by acute intestinal necrosis. NEC develops in part after activation of the lipopolysaccharide receptor toll-like receptor 4 (TLR4) by intestinal microbes in the intestinal epithelium. Previous authors have shown an increased risk of NEC in human infants after cytomegalovirus (CMV) infection, which can affect mitochondrial function. We now seek to explore the impact and the mechanisms of CMV infection on NEC severity and its relationship with TLR4 signaling and mitochondria function. METHODS NEC was induced in newborn mice with and without CMV infection. RNA sequencing and gene set enrichment analysis were performed to identify effects on inflammatory and metabolic pathways. The role of TLR4 signaling and mitochondrial function were investigated in wild-type and Tlr4-deficient mice. The adenosine receptor agonist 5'-N-ethylcarboxamido adenosine was tested for its ability to reduce CMV-induced effects on NEC severity. RESULTS CMV infection significantly increased NEC severity in wild-type mice. Mechanistically, CMV infection triggered proinflammatory pathways, disrupted cellular metabolism, and upregulated Tlr4 expression, leading to mitochondrial dysfunction and nuclear factor-kB translocation. These effects were notably absent in Tlr4-deficient mice. 5'-N-ethylcarboxamido adenosine treatment reversed CMV-induced NEC severity by reducing mitochondrial dysfunction and TLR4-driven nuclear factor-kB activation. CONCLUSIONS CMV infection worsens NEC severity in mice by amplifying TLR4 signaling, inflammation, and mitochondrial dysfunction. Targeting CMV and its influence on TLR4 may offer novel therapeutic approaches for NEC.
Collapse
Affiliation(s)
- Daniel Scheese
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Peng Lu
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hannah Moore
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Cody Tragesser
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Johannes Duess
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Zachariah Raouf
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Maame F Sampah
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Daphne Klerk
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Mahmoud El Baassiri
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sierra Williams-McLeod
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Asuka Ishiyama
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Steve N Steinway
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Menghan Wang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland.
| | - David J Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland.
| |
Collapse
|
9
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
10
|
Srisai P, Hongsa C, Hinwan Y, Manbenmad V, Chetchotisakd P, Anunnatsiri S, Faksri K, Techo T, Salao K, Edwards SW, Nithichanon A. Increased Inflammatory Responses in Patients With Active Disseminated Non-Tuberculous Mycobacterial Infection and High Anti-Interferon-Gamma Autoantibodies. Immune Netw 2024; 24:e36. [PMID: 39513027 PMCID: PMC11538605 DOI: 10.4110/in.2024.24.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Adult-onset immunodeficiency (AOID) is associated with the presence of anti-IFN-γ autoantibodies (auAbs). In disseminated nontuberculous mycobacterial (dNTM) infection with AOID, neutralization of IFN-γ by auAb may play a role in disease susceptibility, but other molecular mechanisms are likely to contribute. In this study, dNTM patients, including inactive, active but non-progressive and active, progressive cases were enrolled to measure plasma anti-IFN-γ auAb by ELISA and underwent whole-blood RNA sequencing. Healthy control individuals were also enrolled. Plasma IL-8 was then quantified to confirm transcriptomic analysis. Results revealed that anti-IFN-γ auAb titers were significantly increased in patients with active stage of disease. Gene expression could separate patients with active infection from individuals with no signs of infection (inactive patients and healthy controls). In active cases, there was over-expression of inflammatory pathways and under-expression of type-2 immunity pathways. Interestingly, increased levels of plasma IL-8 (p=0.0167) not only confirmed gene expression results but also correlated with the presence of neutrophilic dermatitis (p=0.0244). In conclusion, our findings highlight the value of anti-IFN-γ auAb titers for predicting disease reactivity and first propose IL-8 as a promising mediator to be further explored, given its correlation with skin reactive disease, a hallmark of active dNTM infection.
Collapse
Affiliation(s)
- Pattaraporn Srisai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanchai Hongsa
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yothin Hinwan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Varis Manbenmad
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Siriluck Anunnatsiri
- Department of Medicine, Faculty of Medicine Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanin Salao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077 Singapore
| | - Steven W. Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Yasamut U, Thongheang K, Weechan A, Sornsuwan K, Juntit OA, Tayapiwatana C. Evaluating the ability of different chaperones in improving soluble expression of a triple-mutated human interferon gamma in Escherichia coli. J Biosci Bioeng 2024:S1389-1723(24)00168-3. [PMID: 38969548 DOI: 10.1016/j.jbiosc.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
Human interferon gamma (hIFN-γ) plays a pivotal role as a soluble cytokine with diverse functions in both innate and adaptive immunity. In a previous investigation, we pinpointed three critical amino acid residues, i.e., threonine (T) 27, phenylalanine (F) 29, and leucine (L) 30, on the IFN-γ structure, which are integral to the epitope recognized by anti-IFN-γ autoantibodies. It is crucial to impede the interaction between this epitope and autoantibodies for effective therapy in adult-onset immunodeficiency (AOID). However, the challenge arises from the diminished solubility of the T27AF29L30A mutant in Escherichia coli BL21(DE3). This study delves into a targeted strategy aimed at improving the soluble expression of IFN-γ T27AF29AL30A. This is achieved through the utilization of five chaperone plasmids: pG-KJE8, pKJE7, pGro7, pG-Tf2, and pTf16. These plasmids, encoding cytoplasmic chaperones, are co-expressed with the IFN-γ mutant in E. coli BL21(DE3), and we meticulously analyze the proteins in cell lysate and inclusion bodies using SDS-PAGE and Western blotting. Our findings reveal the remarkable efficacy of pG-KJE8, which houses cytoplasmic chaperones DnaK-DnaJ-GrpE and GroEL-GroES, in significantly enhancing the solubility of IFN-γ T27AF29AL30A. Importantly, this co-expression not only addresses solubility concerns but also preserves the functional dimerized structure, as confirmed by sandwich ELISA. This promising outcome signifies a significant step forward in developing biologic strategies for AOID.
Collapse
Affiliation(s)
- Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyarat Thongheang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anuwat Weechan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - On-Anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Li X, Mi Z, Liu Z, Rong P. SARS-CoV-2: pathogenesis, therapeutics, variants, and vaccines. Front Microbiol 2024; 15:1334152. [PMID: 38939189 PMCID: PMC11208693 DOI: 10.3389/fmicb.2024.1334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 with staggering economic fallout and human suffering. The unique structure of SARS-CoV-2 and its underlying pathogenic mechanism were responsible for the global pandemic. In addition to the direct damage caused by the virus, SARS-CoV-2 triggers an abnormal immune response leading to a cytokine storm, culminating in acute respiratory distress syndrome and other fatal diseases that pose a significant challenge to clinicians. Therefore, potential treatments should focus not only on eliminating the virus but also on alleviating or controlling acute immune/inflammatory responses. Current management strategies for COVID-19 include preventative measures and supportive care, while the role of the host immune/inflammatory response in disease progression has largely been overlooked. Understanding the interaction between SARS-CoV-2 and its receptors, as well as the underlying pathogenesis, has proven to be helpful for disease prevention, early recognition of disease progression, vaccine development, and interventions aimed at reducing immunopathology have been shown to reduce adverse clinical outcomes and improve prognosis. Moreover, several key mutations in the SARS-CoV-2 genome sequence result in an enhanced binding affinity to the host cell receptor, or produce immune escape, leading to either increased virus transmissibility or virulence of variants that carry these mutations. This review characterizes the structural features of SARS-CoV-2, its variants, and their interaction with the immune system, emphasizing the role of dysfunctional immune responses and cytokine storm in disease progression. Additionally, potential therapeutic options are reviewed, providing critical insights into disease management, exploring effective approaches to deal with the public health crises caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Yu R, Zhang W, Yu P, Zhou J, Su J, Yuan G. IFN-γ enhances protective efficacy against Nocardia seriolae infection in largemouth bass ( Micropterus salmoides). Front Immunol 2024; 15:1361231. [PMID: 38545095 PMCID: PMC10965728 DOI: 10.3389/fimmu.2024.1361231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/17/2024] Open
Abstract
Introduction Nocardia seriolae adversely impacts a diverse range of fish species, exhibiting significant pathogenic characteristics that substantially impede the progress of aquaculture. N. seriolae infects in fish has a long incubation period, and clinical symptoms are not obvious in the early stages. There is presently no viable and eco-friendly approach to combat the spread of the disease. According to reports, N. seriolae primarily targets macrophages in tissues after infecting fish and can proliferate massively, leading to the death of fish. Interferon-gamma (IFN-γ) is a crucial molecule that regulates macrophage activation, but little is known about its role in the N. seriolae prevention. Methods IFN-γ was first defined as largemouth bass (Micropterus salmoides, MsIFN-γ), which has a highly conserved IFN-γ characteristic sequence through homology analysis. The recombinant proteins (rMsIFN-γ) were obtained in Escherichia coli (E. coli) strain BL21 (DE3). The inflammatory response-inducing ability of rMsIFN-γ was assessed in vitro using monocytes/macrophages. Meanwhile, the protective effect of MsIFN-γ in vivo was evaluated by N. seriolae infection largemouth bass model. Results In the inflammatory response of the monocytes/macrophages activated by rMsIFN-γ, various cytokines were significantly increased. Interestingly, interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-a) increased by 183- and 12-fold, respectively, after rMsIFN-γ stimulation. rMsIFN-γ improved survival by 42.1% compared with the control. The bacterial load in the liver, spleen and head kidney significantly decreased. rMsIFN-γ was also shown to better induce increased expression of IL-1β, TNF-α, hepcidin-1(Hep-1), major histocompatibility complex I (MHCI), and MHC II in head kidney, spleen and liver. The histopathological examination demonstrated the transformation of granuloma status from an early necrotic foci to fibrosis in the infection period. Unexpectedly, the development of granulomas was successfully slowed in the rMsIFN-γ group. Discussion This work paves the way for further research into IFN-γ of largemouth bass and identifies a potential therapeutic target for the prevention of N. seriolae.
Collapse
Affiliation(s)
- Ruying Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiancheng Zhou
- Jiangsu DABEINONG Group (DBN) Aquaculture Technology Co. LTD, Huai’an, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Su J, Ren Q, Li P, Wei W, Liu J, Feng Y, Huang X, Cao Y, Wang W, Wu M, Zhang Q, Wang Z. Clinical Observation of Various Types of Idiopathic Hypertrophic Cranial Pachymeningitis. World Neurosurg 2024; 181:e493-e503. [PMID: 37898275 DOI: 10.1016/j.wneu.2023.10.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND To assist doctors in making better treatment decisions and improve patient prognosis, it is important to determine which therapy modalities are suitable for various forms of idiopathic hypertrophic cranial pachymeningitis (IHCP). METHODS All cases were received from the hospital medical record system, and some follow-up information was gathered through telephone follow-up. RESULTS A total of 26 patients, 14 men and 12 women, with ages ranging from 20 to 73 years and a mean of 47.42 years, were included in the research. Regular types were less likely to recur than irregular and nodular types, focal types were less likely to recur than diffuse types, and corticosteroid-refractory types were more likely to recur than corticosteroid-sensitive types. CONCLUSIONS The extent and shape of the lesion and susceptibility to corticosteroids are potential factors that could influence recurrence. Futhermore, this paper also proposes the fibroblasts as a new therapeutic target which may improve the quality of prognostic survival of patients.
Collapse
Affiliation(s)
- Jinfei Su
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qinzhan Ren
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pu Li
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junqi Liu
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanjun Feng
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Huang
- Department of Rheumatism and Immunity, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanxiang Cao
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Wu
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiuhang Zhang
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Skull Base Surgery Center and Department of Otorhinolaryngology-Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Chen L, Chi H, Teng J, Meng J, Zhang H, Su Y, Liu H, Ye J, Shi H, Hu Q, Zhou Z, Yang C, Sun Y, Cheng X. Neutralizing anti-IFN-γ IgG was increased in patients with systemic lupus erythematosus and associated with susceptibility to infection. Clin Rheumatol 2024; 43:189-198. [PMID: 37857784 PMCID: PMC10774216 DOI: 10.1007/s10067-023-06758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a complicated autoimmune disease, in which infection is a leading cause of death. Some SLE patients clinically presented with recurrent and refractory infections, which manifested as adult-onset immunodeficiency syndrome due to the production of anti-interferon-γ (anti-IFN-γ) autoantibodies. This study aimed to investigate the role of anti-IFN-γ autoantibodies concerning severe infections in SLE patients. METHODS We detected serum levels of anti-IFN-γ IgG/IgM isotypes in SLE patients with severe infections (n = 55), SLE patients without severe infections (n = 120), rheumatoid arthritis (n = 24), ankylosing spondylitis (n = 24), and healthy controls (n = 60). The relationship between anti-IFN-γ autoantibodies and clinical characteristics and laboratory parameters were analyzed. We further evaluated the neutralizing ability of anti-IFN-γ IgG. RESULTS The level of anti-IFN-γ IgG was significantly elevated in SLE patients with severe infections compared with the other groups (all p < 0.01), and the positive rates of anti-IFN-γ IgG in SLE patients with and without severe infections were 29.1% and 10.8%, respectively. Further analysis indicated that the levels of anti-IFN-γ IgG were positively associated with the SLEDAI score (r = 0.6420, p < 0.001), and it could predict the susceptibility to severe infections in SLE patients. Moreover, the inhibition and function assay showed that purified IgG from anti-IFN-γ IgG-positive SLE patients could neutralize IFN-γ, and further impair IFN-γ-induced STAT1 phosphorylation. CONCLUSIONS The neutralizing anti-IFN-γ IgG might increase the susceptibility to infection in SLE patients, which has important implications for the treatment. Key Points • The role of anti-IFN-γ autoantibodies concerning severe infections in SLE patients remains unknown. • The results of this study reveals that anti-IFN-γ IgG levels were significantly elevated in SLE patients with severe infections. • This study suggests that neutralizing anti-IFN-γ IgG might increase the susceptibility to infection in SLE patients.
Collapse
Affiliation(s)
- Longfang Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ZhuoChao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
17
|
Chattopadhyay A, Jagdish S, Karhale AK, Ramteke NS, Zaib A, Nandi D. IFN-γ lowers tumor growth by increasing glycolysis and lactate production in a nitric oxide-dependent manner: implications for cancer immunotherapy. Front Immunol 2023; 14:1282653. [PMID: 37965321 PMCID: PMC10641808 DOI: 10.3389/fimmu.2023.1282653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Interferon-gamma (IFN-γ), the sole member of the type-II interferon family, is well known to protect the host from infectious diseases as well as mount anti-tumor responses. The amounts of IFN-γ in the tumor microenvironment determine the host responses against tumors; however, several tumors employ evasive strategies by responding to low IFN-γ signaling. Methods In this study, the response of various tumor cell lines to IFN-γ was studied in vitro. Results IFN-γ-activation increases glycolytic flux and reduces mitochondrial function in a nitric oxide (NO)- and reactive oxygen species (ROS)-dependent manner in the H6 hepatoma tumor cell line. The higher glycolysis further fueled NO and ROS production, indicating a reciprocal regulation. These processes are accompanied by Hypoxia inducing factor (HIF)-1α stabilization and HIF-1α-dependent augmentation of the glycolytic flux. The IFN-γ enhancement of lactate production also occurred in other NO-producing cell lines: RAW 264.7 monocyte/macrophage and Renca renal adenocarcinoma. However, two other tumor cell lines, CT26 colon carcinoma and B16F10 melanoma, did not produce NO and lactate upon IFN-γ-activation. HIF-1α stabilization upon IFN-γ-activation led to lower cell growth of B16F10 but not CT26 cells. Importantly, the IFN-γ-activation of both CT26 and B16F10 cells demonstrated significant cellular growth reduction upon metabolic rewiring by exogenous administration of potassium lactate. Discussion Clinical studies have shown the crucial roles of IFN-γ for successful cancer immunotherapies involving checkpoint inhibitors and chimeric antigen receptor T cells. The positive implications of this study on the metabolic modulation of IFN-γ activation on heterogeneous tumor cells are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
18
|
Chattopadhyay A, Joseph JP, Jagdish S, Chaudhuri S, Ramteke NS, Karhale AK, Waturuocha U, Saini DK, Nandi D. High throughput screening identifies auranofin and pentamidine as potent compounds that lower IFN-γ-induced Nitric Oxide and inflammatory responses in mice: DSS-induced colitis and Salmonella Typhimurium-induced sepsis. Int Immunopharmacol 2023; 122:110569. [PMID: 37392571 DOI: 10.1016/j.intimp.2023.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Interferon-gamma (IFN-γ) is a type II interferon produced primarily by T cells and natural killer cells. IFN-γ induces the expression of inducible nitric oxide synthase (NOS2) to catalyze Nitric Oxide (NO) production in various immune and non-immune cells. Excessive IFN-γ-activated NO production is implicated in several inflammatory diseases, including peritonitis and inflammatory bowel diseases. In this study, we screened the LOPAC®1280 library in vitro on the H6 mouse hepatoma cell line to identify novel non-steroidal small molecule inhibitors of IFN-γ-induced NO production. Compounds with the highest inhibitory activity were validated, which led to identifying the lead compounds: pentamidine, azithromycin, rolipram, and auranofin. Auranofin was the most potent compound determined based on IC50 and goodness of fit analyses. Mechanistic investigations revealed that majority of the lead compounds suppress the IFN-γ-induced transcription of Nos2 without negatively affecting NO-independent processes, such as the IFN-γ-induced transcription of Irf1, Socs1 and MHC class 1 surface expression. However, all four compounds lower IFN-γ-induced reactive oxygen species amounts. In addition, auranofin significantly reduced IFN-γ-mediated NO and IL6 production in resident as well as thioglycolate-elicited peritoneal macrophages (PMs). Finally, in vivo testing of the lead compounds in the pre-clinical DSS-induced ulcerative colitis mice model revealed pentamidine and auranofin to be the most potent and protective lead compounds. Also, pentamidine and auranofin greatly increase the survival of mice in another inflammatory model: Salmonella Typhimurium-induced sepsis. Overall, this study identifies novel anti-inflammatory compounds targeting IFN-γ-induced NO-dependent processes to alleviate two distinct inflammatory models of disease.
Collapse
Affiliation(s)
- Avik Chattopadhyay
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Joel P Joseph
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Somak Chaudhuri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Uchenna Waturuocha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
19
|
Bendaya I, Ben Jemaa A, Sahraoui G, Kharrat M, Sdiri W, Oueslati R. Immunometabolism mRNA expression phenotypes and reprogramming of CD14 in T2DM with or without CVD. Int Immunopharmacol 2023; 122:110665. [PMID: 37487262 DOI: 10.1016/j.intimp.2023.110665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) have a significant impact on the expression of genes in peripheral blood mononuclear cells (PBMCs). The primary objective of this study was to investigate the role of two signaling pathways, STAT1/6, and two important modulators of immunometabolism, leptin and PPARs, in the development of T2DM with and without CVD. Furthermore, the study aimed to assess the correlation between these factors and the dynamics of CD14 in PBMCs. This research was conducted within the context of a growing body of literature on the complex pathophysiology of T2DM and its association with CVD. Prior studies have indicated that T2DM is characterized by an imbalance in immunometabolism and the involvement of various signaling pathways. MATERIALS AND METHODS Blood samples were collected from a total of 47 subjects, including 7 healthy volunteers, 20 individuals diagnosed with diabetes and cardiovascular disease (D.CVD) and another 20 individuals diagnosed with diabetes only (D). PBMCs were isolated from these samples, and the expression levels of leptin, PPARγ, PPARα, and CD14 genes were measured using Real-Time PCR. RESULTS The most relevant result showed that diabetic patients with CVD had significantly higher levels of leptin expression, which was positively correlated with STAT1 (r = 0.7497, p = 0.0001). On the other hand, diabetic patients without CVD had elevated PPARγ expression, which was strongly correlated with STAT6 (r = 0.8437, p = 0.0001). Interestingly, we found a significant increase in the PPARγ/ PPARα ratio in the D.CVD group compared to the D group (4.273 ± 0.9531; 7.52 ± 3.556, p = 0.0479). Moreover, CD14 expression was significantly reduced in this group compared to diabetic patients without CVD. CONCLUSION These findings suggested that the immunometabolic imbalance in T2DM was driven by a STAT1/Leptin phenotype in diabetic patients with CVD and by a STAT6/PPARγ phenotype in diabetic patients without CVD. Taking into account STAT1/Leptin and STAT6/PPARγ profiling could help clinicians identify novel therapeutic targets for T2DM and other related diseases.
Collapse
Affiliation(s)
- Imen Bendaya
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia.
| | - Awatef Ben Jemaa
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia; Department of Biology, Faculty of science of Gafsa ,University of Gafsa, Gafsa, Tunisia
| | - Ghada Sahraoui
- Department of Pathology, Salah Azaeiz Institute, Bab Saadoun 1006 Tunis, Tunis, Tunisia
| | - Maher Kharrat
- Laboratory of Human Genetics, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wissem Sdiri
- Department of Cardiology, University Hospital Habib Bougatfa of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Unit of Immunology and Microbiology Environmental and Carcinogenesis [IMEC], Faculty of Sciences of Bizerte, Zarzouna7021, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
20
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:1325. [PMID: 37238995 PMCID: PMC10215686 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
21
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Fu J, Chen J, Meng X, Luo Z, Liu Y, Wei L. Molecular identification and functional analysis of X-linked inhibitor of apoptosis -associated factor-1 (XAF1) in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108635. [PMID: 36822382 DOI: 10.1016/j.fsi.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) -associated factor 1 (XAF1) is an interferon-stimulated gene which exhibits pro-apoptosis effect. In this study, XAF1 was characterized from grass carp Ctenopharyngodon idella and its expression pattern and function were analyzed. The open reading frame (orf) of XAF1 is 789 nucleotides (nt) encoding 262 amino acids. SMART online search results showed that a C2H2-type and six C2HC-type zinc-fingers were found in XAF1, however, the XAF1 of grass carp showed high sequence identity to zebrafish (71%), low sequence identity to tetrapods (21-22%). Rt-qPCR results showed that XAF1 was constitutively expressed in all tested organs/tissues with highest expression in blood. An inductive expression of XAF1 at mRNA level was observed in peripheral blood leucocytes (PBLs) and C. idellus kidney cells (CIKs) after treatment with C. idellus recombinant interferon-γ (rIFNg). Overexpressing XAF1 in CIKs exhibited resistance against grass carp reovirus (GCRV) and more sensitivity to cisplatin. These results implied a functional homologue of XAF1 in evolution, however the mechanism may require further investigation.
Collapse
Affiliation(s)
- Jianping Fu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Jun Chen
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - XinYan Meng
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Zhang Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Yi Liu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China.
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
23
|
Zhang W, Guan N, Zhang X, Liu Y, Gao X, Wang L. Study on the imbalance of M1/M2 macrophage polarization in severe chronic periodontitis. Technol Health Care 2023; 31:117-124. [PMID: 35964216 DOI: 10.3233/thc-220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Macrophages commonly exist in two distinct subsets in different microenvironments: classically activated macrophages (M1) and alternatively activated macrophages (M2). The imbalance of M1-M2 macrophage polarization is often related to various diseases or inflammatory states. OBJECTIVE The purpose of this study was to determine whether there is an imbalance in the expression of M1 and M2 macrophage-related cytokines in severe chronic periodontitis. METHODS A total of 30 clinical specimens, including severe chronic periodontitis tissues (n= 15) and healthy control tissues (n= 15), were used in this study. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot methods were used to detect the mRNA and protein expression levels of M1 macrophage-related cytokines (inducible nitric oxide synthase (iNOS) and signal transducer and activator of transcription 1 (STAT1)) and M2 macrophage-related cytokines (arginase-1 (Arg-1) and STAT6), respectively. RESULTS The mRNA and protein expression levels of M1 macrophage-related cytokines (iNOS and STAT1) and M2 macrophage-related cytokines (Arg-1 and STAT6) were significantly increased in severe chronic periodontitis patients. In addition, the ratios of iNOS/Arg-1 and STAT1/STAT6 in the severe chronic periodontitis group were also significantly increased (P< 0.01). CONCLUSION The imbalance of M1/M2 macrophages exists in the pathogenesis of severe chronic periodontitis, and has a tendency towards M1 polarization. Therefore, maintaining the immune balance of M1/M2 macrophages may be a novel therapeutic alternative for the management of severe chronic periodontitis.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Periodontics, School of Stomatology of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiumei Zhang
- Department of Biochemistry and Molecular Biology, Jinzhou Medical University, Liaoning, China
| | - Yizhen Liu
- Department of Periodontics, School of Stomatology of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiuqiu Gao
- Department of Periodontics, School of Stomatology of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Linyuan Wang
- Department of Periodontics, School of Stomatology of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
24
|
Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3124122. [PMID: 36567857 PMCID: PMC9780013 DOI: 10.1155/2022/3124122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has a good therapeutic effect and provides a new approach for cancer treatment. However, only limited studies have focused on the use of molecular typing to construct an immune characteristic index for gene expression in pancreatic adenocarcinoma (PAAD) and to assess the effectiveness of immunotherapy in patients with PAAD. Clinical follow-up data and gene expression profile of PAAD patients were retrieved from The Cancer Genome Atlas (TCGA) database. Based on 184 immune features, molecular subtypes of pancreatic cancer were found by the "ConsensusClusterPlus" package, and the association between clinical features and immune cell subtype distribution was analysed. In addition, the relationship between the proportion of immune subtypes and the expression of immune checkpoints was analysed. The CIBERSORT algorithm was introduced to evaluate the immune scores of different molecular subtypes. We used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the potential clinical effect of immunotherapy interventions on single-molecule subtypes. In addition, the oxidative stress index was constructed by linear discriminant analysis DNA (LDA), and weighted correlation network analysis was performed to identify the core module of the index and its characteristic genes. Expression of hub genes was verified by immunohistochemical analysis in an independent PAAD cohort. Pancreatic cancer is divided into three molecular subtypes (IS1, IS2, and IS3), with significant differences in prognosis between multiple cohorts. Expression of immune checkpoint-associated genes was significantly reduced in IS3 and higher in IS1 and IS2, suggesting that the three subgroups have different responsiveness to immunotherapy interventions. The results of the CIBERSORT analysis showed that IS1 exhibited the highest levels of immune infiltration, whereas the results of the TIDE analysis showed that the T-cell dysfunction score of IS1 was higher than that of IS2 and IS3. Furthermore, IS3 was found to be more sensitive to 5-FU and to have a higher immune signature index than IS1 and IS2. Based on WGCNA analysis, 10 potential gene markers were identified, and their expression at the protein level was verified by immunohistochemical analysis. Specific molecular expression patterns in pancreatic cancer can predict the efficacy of immunotherapy and influence the prognosis of patients.
Collapse
|
25
|
Peptide Modification Diminishes HLA Class II-restricted CD4 + T Cell Recognition of Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms232315234. [PMID: 36499557 PMCID: PMC9738740 DOI: 10.3390/ijms232315234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022] Open
Abstract
Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.
Collapse
|
26
|
Wang J, Long R, Han Y. The role of exosomes in the tumour microenvironment on macrophage polarisation. Biochim Biophys Acta Rev Cancer 2022; 1877:188811. [DOI: 10.1016/j.bbcan.2022.188811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
|
27
|
Pandey A, Madan R, Singh S. Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Curr Microbiol 2022; 79:306. [PMID: 36064873 PMCID: PMC9444117 DOI: 10.1007/s00284-022-03003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
The emergence of COVID19 pandemic caused by SARS-CoV-2 virus has created a global public health and socio-economic crisis. Immunoinformatics-based approaches to investigate the potential antigens is the fastest way to move towards a multiepitope-based vaccine development. This review encompasses the underlying mechanisms of pathogenesis, innate and adaptive immune signaling along with evasion pathways of SARS-CoV-2. Furthermore, it compiles the promiscuous peptides from in silico studies which are subjected to prediction of cytokine milieu using web-based servers. Out of the 434 peptides retrieved from all studies, we have identified 33 most promising T cell vaccine candidates. This review presents a list of the most potential epitopes from several proteins of the virus based on their immunogenicity, homology, conservancy and population coverage studies. These epitopes can form a basis of second generation of vaccine development as the first generation vaccines in various stages of trials mostly focus only on Spike protein. We therefore, propose them as most potential candidates which can be taken up immediately for confirmation by experimental studies.
Collapse
Affiliation(s)
- Apoorva Pandey
- Indian Council of Medical Research, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box No. 4911, New Delhi, 110029 India
| | - Riya Madan
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Swati Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
28
|
Kim S, Nowakowska A, Kim YB, Shin HY. Integrated CRISPR-Cas9 System-Mediated Knockout of IFN-γ and IFN-γ Receptor 1 in the Vero Cell Line Promotes Viral Susceptibility. Int J Mol Sci 2022; 23:ijms23158217. [PMID: 35897807 PMCID: PMC9368479 DOI: 10.3390/ijms23158217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The current pandemic and the possible emergence of new viruses urgently require the rapid development of antiviral vaccines and therapeutics. However, some viruses or newly generated variants are difficult to culture in common cell types or exhibit low viral susceptibility in vivo, making it difficult to manufacture viral vector-based vaccines and understand host-virus interactions. To address these issues, we established new cell lines deficient in both type I and type II interferon responses, which are essential for host immunity and interference with virus replication. These cell lines were generated by developing an integrated CRISPR-Cas9 system that simultaneously expresses dual-guide RNA cassettes and Cas9 nuclease in a single plasmid. Using this highly efficient gene-editing system, we successfully established three cell lines starting from IFN-α/β-deficient Vero cells, deleting the single interferon-gamma (IFNG) gene, the IFNG receptor 1 (IFNGR1) gene, or both genes. All cell lines clearly showed a decrease in IFN-γ-responsive antiviral gene expression and cytokine production. Moreover, production of IFN-γ-induced cytokines remained low, even after HSV-1 or HCoV-OC43 infection, while expression of the receptor responsible for viral entry increased. Ultimately, knockout of IFN-signaling genes in these cell lines promoted cytopathic effects and increased apoptosis after viral infection up to three-fold. These results indicate that our integrated CRISPR-Cas9-mediated IFNG- and IFNGR1-knockout cell lines promote virus replication and will be useful in viral studies used to design novel vaccines and therapies.
Collapse
|
29
|
Mycobacterium intracellulare induces a Th17 immune response via M1-like macrophage polarization in canine peripheral blood mononuclear cells. Sci Rep 2022; 12:11818. [PMID: 35821058 PMCID: PMC9276657 DOI: 10.1038/s41598-022-16117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium avium-intracellulare complex (MAC) is one of the most prevalent pathogenic nontuberculous mycobacteria that cause chronic pulmonary disease. The prevalence of MAC infection has been rising globally in a wide range of hosts, including companion animals. MAC infection has been reported in dogs; however, little is known about interaction between MAC and dogs, especially in immune response. In this study, we investigated the host immune response driven by M. intracellulare using the co-culture system of canine T helper cells and autologous monocyte-derived macrophages (MDMs). Transcriptomic analysis revealed that canine MDMs differentiated into M1-like macrophages after M. intracellulare infection and the macrophages secreted molecules that induced Th1/Th17 cell polarization. Furthermore, canine lymphocytes co-cultured with M. intracellulare-infected macrophages induced the adaptive Th17 responses after 5 days. Taken together, our results indicate that M. intracellulare elicits a Th17 response through macrophage activation in this system. Those findings might help the understanding of the canine immune response to MAC infection and diminishing the potential zoonotic risk in One Health aspect.
Collapse
|
30
|
Xiang Q, Yang Z, Nicholas J. STAT and Janus kinase targeting by human herpesvirus 8 interferon regulatory factor in the suppression of type-I interferon signaling. PLoS Pathog 2022; 18:e1010676. [PMID: 35776779 PMCID: PMC9307175 DOI: 10.1371/journal.ppat.1010676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/22/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma (KS)-associated herpesvirus, is involved etiologically in AIDS-associated KS, primary effusion lymphoma (PEL), and multicentric Castleman’s disease, in which both viral latent and lytic functions are important. HHV-8 encodes four viral interferon regulatory factors (vIRFs) that are believed to contribute to viral latency (in PEL cells, at least) and/or to productive replication via suppression of cellular antiviral and stress signaling. Here, we identify vIRF-1 interactions with signal transducer and activator of transcription (STAT) factors 1 and 2, interferon (IFN)-stimulated gene factor 3 (ISGF3) cofactor IRF9, and associated signal transducing Janus kinases JAK1 and TYK2. In naturally infected PEL cells and in iSLK epithelial cells infected experimentally with genetically engineered HHV-8, vIRF-1 depletion or ablation, respectively, led to increased levels of active (phosphorylated) STAT1 and STAT2 in IFNβ-treated, and untreated, cells during lytic replication and to associated cellular-gene induction. In transfected 293T cells, used for mechanistic studies, suppression by vIRF-1 of IFNβ-induced phospho-STAT1 (pSTAT1) was found to be highly dependent on STAT2, indicating vIRF-1-mediated inhibition and/or dissociation of ISGF3-complexing, resulting in susceptibility of pSTAT1 to inactivating dephosphorylation. Indeed, coprecipitation experiments involving targeted precipitation of ISGF3 components identified suppression of mutual interactions by vIRF-1. In contrast, suppression of IFNβ-induced pSTAT2 was effected by regulation of STAT2 activation, likely via detected inhibition of TYK2 and its interactions with STAT2 and IFN type-I receptor (IFNAR). Our identified vIRF-1 interactions with IFN-signaling mediators STATs 1 and 2, co-interacting ISGF3 component IRF9, and STAT-activating TYK2 and the suppression of IFN signaling via ISGF3, TYK2-STAT2 and TYK2-IFNAR disruption and TYK2 inhibition represent novel mechanisms of vIRF function and HHV-8 evasion from host-cell defenses. Viral interferon regulatory factors (vIRFs) encoded by Kaposi’s sarcoma- and lymphoma-associated human herpesvirus 8 (HHV-8) are mediators of protection from cellular antiviral responses and therefore are considered to be pivotal for successful de novo infection, latency establishment and maintenance, and productive (lytic) replication. Identification and characterization of their interactions with cellular proteins, the functional consequences of these interactions, and the operation of these mechanisms in the context of infection has the potential to enable the development of novel antiviral strategies targeted to these interactions and mechanisms. In this report we identify vIRF-1 interactions with transcription factors STAT1 and STAT2, the co-interacting component, IRF9, of the antiviral interferon (IFN)-induced transcription complex ISGF3, and the ability of vIRF-1 to inhibit activation and functional associations of IFN-I receptor- and STAT1/2-kinase TYK2, suppress STAT1/2 activation, and dissociate STAT1 from IFN-induced ISGF3 to blunt IFN signaling and promote STAT1 inactivation. These interactions and activities, which mediate suppression of innate cellular defenses against virus replication, represent novel properties among vIRFs and could potentially be exploited for antiviral and therapeutic purposes.
Collapse
Affiliation(s)
- Qiwang Xiang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zunlin Yang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
32
|
Yasamut U, Wisitponchai T, Lee VS, Yamabhai M, Rangnoi K, Thongkum W, Chupradit K, Tayapiwatana C. Determination of a distinguished interferon gamma epitope recognized by monoclonal antibody relating to autoantibody associated immunodeficiency. Sci Rep 2022; 12:7608. [PMID: 35534543 PMCID: PMC9085737 DOI: 10.1038/s41598-022-11774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Anti-interferon gamma autoantibodies (anti-IFN-γ autoAbs) neutralize the IFN-γ-mediated functions, contributing to immunodeficiency. A particular autoAb in patient serum had been previously demonstrated to recognize the same determinant on IFN-γ as the neutralizing anti-IFN-γ monoclonal antibody clone B27 (B27 mAb). This study explored the epitope recognized by B27 mAb. The specific peptide sequence recognized by B27 mAb, TDFLRMMLQEER, was retrieved from a phage display random peptide library. Sequence alignment and homology modeling demonstrated that the queried phage peptide sequence and structure were similar to amino acids at position 27–40 (TLFLGILKNWKEES) of the human IFN-γ. This determinant resides in the contact surface of IFN-γ and interferon gamma receptor 1. To elucidate the crucial amino acids, mutations were introduced by substituting T27 and T27F29L30 with alanine or deleting the amino acid residues T27–L33. The binding of B27 mAb to IFN-γ T27A using western blotting was lesser than that to wild-type. The interaction with triple mutant and T27–L33 deletion mutant using western blotting and sandwich ELISA was abolished. The finding demonstrated that T27, F29, and L30 are critical residues in the B27 antigenic determinant. Identification of the functional domain of IFN-γ decrypted the relevance of neutralizing autoAb in adult-onset immunodeficiency.
Collapse
|
33
|
Berglund-Brown I, Nissen E, Koestler DC, Butler RA, Eliot MN, Padbury JF, Salas LA, Molinaro AM, Christensen BC, Wiencke JK, Kelsey KT. A core of differentially methylated CpG loci in gMDSCs isolated from neonatal and adult sources. Clin Epigenetics 2022; 14:27. [PMID: 35189960 PMCID: PMC8862379 DOI: 10.1186/s13148-022-01247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs), which include monocytic (mMDSCs) and granulocytic (gMDSCs) cells, are an immunosuppressive, heterogeneous population of cells upregulated in cancer and other pathologic conditions, in addition to normal conditions of stress. The origin of MDSCs is debated, and the regulatory pattern responsible for gMDSC differentiation remains unknown. Since DNA methylation (DNAm) contributes to lineage differentiation, we have investigated whether it contributes to the acquisition of the gMDSC phenotype. RESULTS Using the Illumina EPIC array to measure DNAm of gMDSCs and neutrophils from diverse neonatal and adult blood sources, we found 189 differentially methylated CpGs between gMDSCs and neutrophils with a core of ten differentially methylated CpGs that were consistent across both sources of cells. Genes associated with these loci that are involved in immune responses include VCL, FATS, YAP1, KREMEN2, UBTF, MCC-1, and EFCC1. In two cancer patient groups that reflected those used to develop the methylation markers (head and neck squamous cell carcinoma (HNSCC) and glioma), all of the CpG loci were differentially methylated, reaching statistical significance in glioma cases and controls, while one was significantly different in the smaller HNSCC group. CONCLUSIONS Our findings indicate that gMDSCs have a core of distinct DNAm alterations, informing future research on gMDSC differentiation and function.
Collapse
Affiliation(s)
| | - Emily Nissen
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rondi A Butler
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - Melissa N Eliot
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA
| | - James F Padbury
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Departments of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Departments of Epidemiology, and Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, RI, 02912, USA.
| |
Collapse
|
34
|
Kajeekul R, Insiripong S, Riwlord A, Poomchuchit S, Kerdsin A. Francisella sp., a Close Relative of Francisella orientalis, Causing Septicemia with Cholestatic Hepatitis in a Patient with Anti-Interferon-γ (IFN-γ) Autoantibodies. Trop Med Infect Dis 2022; 7:tropicalmed7020025. [PMID: 35202220 PMCID: PMC8874608 DOI: 10.3390/tropicalmed7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Francisella is an intracellular, fastidious, Gram-negative bacterium that is difficult to identify using routine microbiological methods in the laboratory. We studied the isolation of Francisella sp. (strain IDAMR664) from the blood of a patient with anti-interferon-γ (IFN-γ) autoantibodies who presented with septicemia and cholestatic hepatitis. Analysis of the strain IDAMR664 genome sequence revealed the isolate was closely related to the strain GA01-2794 that had been isolated from a human in the USA. In addition, it was clustered with F. orientalis, a fish pathogen. The isolate contained several virulence factors and had Francisella pathogenicity island pattern no. 3.
Collapse
Affiliation(s)
- Rattagan Kajeekul
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Somchai Insiripong
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Athita Riwlord
- Clinical Microbiology Laboratory, Department of Medical Technology, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand;
| | - Suleeporn Poomchuchit
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
- Correspondence: ; Tel.: +66-42-725-023
| |
Collapse
|
35
|
Çalışkan G, French T, Enrile Lacalle S, Del Angel M, Steffen J, Heimesaat MM, Rita Dunay I, Stork O. Antibiotic-induced gut dysbiosis leads to activation of microglia and impairment of cholinergic gamma oscillations in the hippocampus. Brain Behav Immun 2022; 99:203-217. [PMID: 34673174 DOI: 10.1016/j.bbi.2021.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely applied for the treatment of bacterial infections, but their long-term use may lead to gut flora dysbiosis and detrimental effects on brain physiology, behavior as well as cognitive performance. Still, a striking lack of knowledge exists concerning electrophysiological correlates of antibiotic-induced changes in gut microbiota and behavior. Here, we investigated changes in the synaptic transmission and plasticity together with behaviorally-relevant network activities from the hippocampus of antibiotic-treated mice. Prolonged antibiotic treatment led to a reduction of myeloid cell pools in bone marrow, circulation and those surveilling the brain. Circulating Ly6Chi inflammatory monocytes adopted a proinflammatory phenotype with increased expression of CD40 and MHC II. In the central nervous system, microglia displayed a subtle activated phenotype with elevated CD40 and MHC II expression, increased IL-6 and TNF production as well as with an increased number of Iba1 + cells in the hippocampal CA3 and CA1 subregions. Concomitantly, we detected a substantial reduction in the synaptic transmission in the hippocampal CA1 after antibiotic treatment. In line, carbachol-induced cholinergic gamma oscillation were reduced upon antibiotic treatment while the incidence of hippocampal sharp waves was elevated. These alterations were associated with the global changes in the expression of neurotrophin nerve growth factor and inducible nitric oxide synthase, both of which have been shown to influence cholinergic system in the hippocampus. Overall, our study demonstrates that antibiotic-induced dysbiosis of the gut microbiome and subsequent alteration of the immune cell function are associated with reduced synaptic transmission and gamma oscillations in the hippocampus, a brain region that is critically involved in mediation of innate and cognitive behavior.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Miguel Del Angel
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Oliver Stork
- Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
36
|
Renin-Angiotensin System Induced Secondary Hypertension: The Alteration of Kidney Function and Structure. Int J Nephrol 2021. [PMID: 31628476 PMCID: PMC8505109 DOI: 10.1155/2021/5599754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long-term hypertension is known as a major risk factor for cardiovascular and chronic kidney disease (CKD). The Renin-angiotensin system (RAS) plays a key role in hypertension pathogenesis. Angiotensin II (Ang II) enhancement in Ang II-dependent hypertension leads to progressive CKD and kidney fibrosis. In the two-kidney one-clip model (2K1C), more renin is synthesized in the principal cells of the collecting duct than juxtaglomerular cells (JGCs). An increase of renal Ang I and Ang II levels and a decrease of renal cortical and medullary Ang 1–7 occur in both kidneys of the 2K1C hypertensive rat model. In addition, the activity of the angiotensin-converting enzyme (ACE) increases, while ACE2's activity decreases in the medullary region of both kidneys in the 2K1C hypertensive model. Also, the renal prolyl carboxypeptidase (PrCP) expression and its activity reduce in the clipped kidneys. The imbalance in the production of renal ACE, ACE2, and PrCP expression causes the progression of renal injury. Intrarenal angiotensinogen (AGT) expression and urine AGT (uAGT) excretion rates in the unclipped kidney are greater than the clipped kidney in the 2K1C hypertensive rat model. The enhancement of Ang II in the clipped kidney is related to renin secretion, while the elevation of intrarenal Ang II in the unclipped kidney is related to stimulation of AGT mRNA and protein in proximal tubule cells by a direct effect of systemic Ang II level. Ang II-dependent hypertension enhances macrophages and T-cell infiltration into the kidney which increases cytokines, and AGT synthesis in proximal tubules is stimulated via cytokines. Accumulation of inflammatory cells in the kidney aggravates hypertension and renal damage. Moreover, Ang II-dependent hypertension alters renal Ang II type 1 & 2 receptors (AT1R & AT2R) and Mas receptor (MasR) expression, and the renal interstitial fluid bradykinin, nitric oxide, and cGMP response to AT1R, AT2R, or BK B2-receptor antagonists. Based on a variety of sources including PubMed, Google Scholar, Scopus, and Science-Direct, in the current review, we will discuss the role of RAS-induced secondary hypertension on the alteration of renal function.
Collapse
|
37
|
Cosenza M, Sacchi S, Pozzi S. Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. Int J Mol Sci 2021; 22:ijms22147652. [PMID: 34299273 PMCID: PMC8305850 DOI: 10.3390/ijms22147652] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokines are a broad group of small regulatory proteins with many biological functions involved in regulating the hematopoietic and immune systems. However, in pathological conditions, hyperactivation of the cytokine network constitutes the fundamental event in cytokine release syndrome (CRS). During the last few decades, the development of therapeutic monoclonal antibodies and T-cell therapies has rapidly evolved, and CRS can be a serious adverse event related to these treatments. CRS is a set of toxic adverse events that can be observed during infection or following the administration of antibodies for therapeutic purposes and, more recently, during T-cell-engaging therapies. CRS is triggered by on-target effects induced by binding of chimeric antigen receptor (CAR) T cells or bispecific antibody to its antigen and by subsequent activation of bystander immune and non-immune cells. CRS is associated with high circulating concentrations of several pro-inflammatory cytokines, including interleukins, interferons, tumor necrosis factors, colony-stimulating factors, and transforming growth factors. Recently, considerable developments have been achieved with regard to preventing and controlling CRS, but it remains an unmet clinical need. This review comprehensively summarizes the pathophysiology, clinical presentation, and treatment of CRS caused by T-cell-engaging therapies utilized in the treatment of hematological malignancies.
Collapse
|
38
|
Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development. Immunobiology 2021; 226:152091. [PMID: 34303920 PMCID: PMC8297981 DOI: 10.1016/j.imbio.2021.152091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
The spike protein of coronavirus is key target for drug development and other pharmacological interventions. In current study, we performed an integrative approach to predict antigenic sites in SARS-CoV-2 spike receptor binding domain and found nine potential antigenic sites. The predicted antigenic sites were then assessed for possible molecular similarity with other known antigens in different organisms. Out of nine sites, seven sites showed molecular similarity with 54 antigenic determinants found in twelve pathogenic bacterial species (Mycobacterium tuberculosis, Mycobacterium leprae, Bacillus anthracis, Borrelia burgdorferi, Clostridium perfringens, Clostridium tetani, Helicobacter Pylori, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pyogenes, Vibrio cholera and Yersinia pestis), two malarial parasites (Plasmodium falciparum and Plasmodium knowlesi) and influenza virus A. Most of the bacterial antigens that displayed molecular similarity with antigenic sites in SARS-CoV-2 RBD (receptor binding domain) were toxins and virulent factors. Antigens from Mycobacterium that showed similarity were mainly involved in modulating host cell immune response and ensuring persistence and survival of pathogen in host cells. Presence of a large number of antigenic determinants, similar to those in highly pathogenic microorganisms, not merely accounts for complex etiology of the disease but also provides an explanation for observed pathophysiological complications, such as deregulated immune response, unleashed or dysregulated cytokine secretion (cytokine storm), multiple organ failure etc., that are more evident in aged and immune-compromised patients. Over-representation of antigenic determinants from Plasmodium and Mycobacterium in all antigenic sites suggests that anti-malarial and anti-TB drugs can prove to be clinical beneficial for COVID-19 treatment. Besides this, anti-leprosy, anti-lyme, anti-plague, anti-anthrax drugs/vaccine etc. are also expected to be beneficial in COVID-19 treatment. Moreover, individuals previously immunized/vaccinated or had previous history of malaria, tuberculosis or other disease caused by fifteen microorganisms are expected to display a considerable degree of resistance against SARS-CoV-2 infection. Out of the seven antigenic sites predicted in SARS-CoV-2, a part of two antigenic sites were also predicted as potent T-cell epitopes (KVGGNYNYL444-452 and SVLYNSASF366-374) against MHC class I and three (KRISNCVADYSVLYN356-370, DLCFTNVYADSFVI389-402, and YRVVVLSFELLHA508-520) against MHC class II. All epitopes possessed significantly lower predicted IC50 value which is a prerequisite for a preferred vaccine candidate for COVID-19.
Collapse
|
39
|
Rafeld HL, Kolanus W, van Driel IR, Hartland EL. Interferon-induced GTPases orchestrate host cell-autonomous defence against bacterial pathogens. Biochem Soc Trans 2021; 49:1287-1297. [PMID: 34003245 PMCID: PMC8286824 DOI: 10.1042/bst20200900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.
Collapse
Affiliation(s)
- Heike L. Rafeld
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Life and Medical Sciences Institute (LIMES), Molecular Immunology and Cell Biology, University of Bonn, Bonn, Germany
| | - Ian R. van Driel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Papoutsopoulou S, Pollock L, Walker C, Tench W, Samad SS, Bergey F, Lenzi L, Sheibani-Tezerji R, Rosenstiel P, Alam MT, Martins Dos Santos VAP, Müller W, Campbell BJ. Impact of Interleukin 10 Deficiency on Intestinal Epithelium Responses to Inflammatory Signals. Front Immunol 2021; 12:690817. [PMID: 34220850 PMCID: PMC8244292 DOI: 10.3389/fimmu.2021.690817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Catherine Walker
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William Tench
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sakim Shakh Samad
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Luca Lenzi
- Centre for Genomic Research (CGR), Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, United Kingdom
| | | | - Phillip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics Research Technology Platform (RTP), University of Warwick, Coventry, United Kingdom
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
41
|
Pascarella A, Bracaglia C, Caiello I, Arduini A, Moneta GM, Rossi MN, Matteo V, Pardeo M, De Benedetti F, Prencipe G. Monocytes From Patients With Macrophage Activation Syndrome and Secondary Hemophagocytic Lymphohistiocytosis Are Hyperresponsive to Interferon Gamma. Front Immunol 2021; 12:663329. [PMID: 33815425 PMCID: PMC8010171 DOI: 10.3389/fimmu.2021.663329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Objective To investigate the activation of the IFNγ signaling pathway in monocytes of patients with secondary hemophagocytic lymphohistiocytosis (sHLH)/macrophage activation syndrome (MAS) and to evaluate whether levels of phosphorylated STAT1 represent a biomarker for the identification of patients at early stages of the disease. Methods Fresh whole blood samples from pediatric patients with active sHLH/MAS, not receiving (n=10) and receiving glucocorticoids (n=14) at time of sampling, were prospectively collected. As disease control groups, patients with active systemic juvenile idiopathic arthritis (sJIA) without MAS, patients with sHLH/MAS in remission and patients with other rheumatic diseases were also sampled. Whole blood cells were left unstimulated or stimulated with increasing concentrations of IFNγ for 10 minutes and the intracellular Tyrosine (701)-phosphorylated STAT1 (pSTAT1) levels were evaluated in monocytes by flow cytometry. Results Monocytes from untreated sHLH/MAS patients showed significantly higher basal levels of pSTAT1 compared to those observed in monocytes from glucocorticoid-treated sHLH/MAS patients and from all the other disease controls. In addition, a significant increase in responsiveness to IFNγ, as assessed by increased levels of pSTAT1 following ex vivo stimulation, was observed in monocytes from untreated sHLH/MAS patients. pSTAT1 levels in monocytes distinguished patients with sHLH/MAS not treated with glucocorticoids from patients with active sJIA or with other rheumatic diseases [AUC, 0.93; 95% confidence interval 0.85-1.00, p<0.001]. Statistically significant correlations between IFNG mRNA levels in whole blood cells, circulating IFNγ levels and pSTAT1 levels in sHLH/MAS monocytes were found. Conclusion Our data demonstrating higher basal levels of pSTAT1 as well as a hyperreactivity to IFNγ stimulation in monocytes from patients with sHLH/MAS point to perturbations in the activation of downstream IFNγ signaling pathway as a contributor to the hyperinflammation occurring in these patients. Finally, the observation that glucocorticoids affect pSTAT1 levels in vivo, makes it difficult to consider the measurement of pSTAT1 levels as a biomarker to identify patients at early stages of sHLH/MAS in clinical practice.
Collapse
Affiliation(s)
- Antonia Pascarella
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Claudia Bracaglia
- Laboratory of Immuno-Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alessia Arduini
- Laboratory of Immuno-Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gian Marco Moneta
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Valentina Matteo
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Manuela Pardeo
- Laboratory of Immuno-Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fabrizio De Benedetti
- Laboratory of Immuno-Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giusi Prencipe
- Division of Rheumatology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
42
|
Carlton M, Voisey J, Parker TJ, Punyadeera C, Cuttle L. A review of potential biomarkers for assessing physical and psychological trauma in paediatric burns. BURNS & TRAUMA 2021; 9:tkaa049. [PMID: 33654699 PMCID: PMC7901707 DOI: 10.1093/burnst/tkaa049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 01/03/2021] [Indexed: 01/08/2023]
Abstract
Biological markers that evaluate physical healing as well as psychological impact of a burn are essential for effective treatment of paediatric burns. The objective of this review is to summarize the evidence supporting the use of biomarkers in children with burns. An extensive review of the literature was performed using PubMed. A total of 59 biomarkers were identified relating to burn presence, specifically relating to processes involved in inflammation, wound healing, growth and metabolism. In addition, biomarkers involved in the stress response cascade following a burn trauma were also identified. Although many biomarkers have been identified that are potentially associated with burn-related physical and psychological trauma, an understanding of burn biology is still lacking in children. We propose that future research in the field of children’s burns should be conducted using broad screening methods for identifying potential biomarkers, examine the biological interactions of different biomarkers, utilize child-appropriate biological fluids such as urine or saliva, and include a range of different severity burns. Through further research, the biological response to burn injury may be fully realized and clinically relevant diagnostic tests and treatment therapies utilizing these biomarkers could be developed, for the improvement of healing outcomes in paediatric burn patients.
Collapse
Affiliation(s)
- Morgan Carlton
- Queensland University of Technology (QUT), Centre for Children's Burn and Trauma Research, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Joanne Voisey
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Tony J Parker
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Brisbane, Queensland, Australia
| | - Leila Cuttle
- Queensland University of Technology (QUT), Centre for Children's Burn and Trauma Research, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Dorrier CE, Aran D, Haenelt EA, Sheehy RN, Hoi KK, Pintarić L, Chen Y, Lizama CO, Cautivo KM, Weiner GA, Popko B, Fancy SPJ, Arnold T, Daneman R. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci 2021; 24:234-244. [PMID: 33526922 PMCID: PMC7877789 DOI: 10.1038/s41593-020-00770-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is a common pathological response to inflammation in many peripheral tissues and can prevent tissue regeneration and repair. Here, we identified persistent fibrotic scarring in the CNS following immune cell infiltration in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis. Using lineage tracing and single-cell sequencing in EAE, we determined that the majority of the fibrotic scar is derived from proliferative CNS fibroblasts, not pericytes or infiltrating bone marrow-derived cells. Ablating proliferating fibrotic cells using cell-specific expression of herpes thymidine kinase led to an increase in oligodendrocyte lineage cells within the inflammatory lesions and a reduction in motor disability. We further identified that interferon-gamma pathway genes are enriched in CNS fibrotic cells, and the fibrotic cell-specific deletion of Ifngr1 resulted in reduced fibrotic scarring in EAE. These data delineate a framework for understanding the CNS fibrotic response.
Collapse
Affiliation(s)
- Cayce E. Dorrier
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA
| | - Dvir Aran
- Technion- Israel Institute of Technology, Haifa,
Israel
| | - Ezekiel A. Haenelt
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA
| | - Ryan N. Sheehy
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA
| | - Kimberly K. Hoi
- Department of Neurology, University of California San
Francisco, San Francisco, California 94158 USA
| | - Lucija Pintarić
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA
| | - Yanan Chen
- Department of Neurology, Feinberg School of Medicine,
Northwestern University, Chicago, Illinois 60611 USA
| | - Carlos O. Lizama
- Cardiovascular Research Institute, University of
California San Francisco, San Francisco, California 94158 USA
| | - Kelly M. Cautivo
- Department of Laboratory Medicine, University of
California San Francisco, San Francisco, California 94143 USA
| | - Geoffrey A. Weiner
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA
| | - Brian Popko
- Department of Neurology, Feinberg School of Medicine,
Northwestern University, Chicago, Illinois 60611 USA
| | - Stephen P. J. Fancy
- Department of Neurology, University of California San
Francisco, San Francisco, California 94158 USA
| | - Thomas Arnold
- Department of Pediatrics, University of California San
Francisco, California 94143 USA.,Co-Corresponding authors: Thomas
Arnold, MD, , Richard Daneman, PhD,
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, University
of California San Diego, La Jolla, California 92093 USA.,Co-Corresponding authors: Thomas
Arnold, MD, , Richard Daneman, PhD,
| |
Collapse
|
44
|
Chawansuntati K, Rattanathammethee K, Wipasa J. Minireview: Insights into anti-interferon-γ autoantibodies. Exp Biol Med (Maywood) 2021; 246:790-795. [PMID: 33430618 DOI: 10.1177/1535370220981579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The association between the presence of anti-interferon-γ autoantibodies and the onset of immunodeficiency with intracellular infections has been clearly established. No standard regimen to control the production of these pathogenic autoantibodies, apart from antimicrobial therapy to eliminate infections, contributes to the medical burden of this syndrome, which sometimes has a fatal outcome. In this review, we summarize the findings on anti-interferon-γ autoantibodies to facilitate further research and to provide guidance for treatment strategies.
Collapse
Affiliation(s)
| | | | - Jiraprapa Wipasa
- Research Institute for Health Sciences, 26682Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
45
|
Zahid A, Siegler EL, Kenderian SS. CART Cell Toxicities: New Insight into Mechanisms and Management. Clin Hematol Int 2020; 2:149-155. [PMID: 33409484 PMCID: PMC7785104 DOI: 10.2991/chi.k.201108.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T cells genetically engineered with chimeric antigen receptors (CART) have become a potent class of cancer immunotherapeutics. Numerous clinical trials of CART cells have revealed remarkable remission rates in patients with relapsed or refractory hematologic malignancies. Despite recent clinical success, CART cell therapy has also led to significant morbidity and occasional mortality from associated toxicities. Cytokine release syndrome (CRS) and Immune effector cell-associated neurotoxicity syndrome (ICANS) present barriers to the extensive use of CART cell therapy in the clinic. CRS can lead to fever, hypoxia, hypotension, coagulopathies, and multiorgan failure, and ICANS can result in cognitive dysfunction, seizures, and cerebral edema. The mechanisms of CRS and ICANS are becoming clearer, but many aspects remain unknown. Disease type and burden, peak serum CART cell levels, CART cell dose, CAR structure, elevated pro-inflammatory cytokines, and activated myeloid and endothelial cells all contribute to CART cell toxicity. Current guidelines for the management of toxicities associated with CART cell therapy vary between clinics, but are typically comprised of supportive care and treatment with corticosteroids or tocilizumab, depending on the severity of the symptoms. Acquiring a deeper understanding of CART cell toxicities and developing new management and prevention strategies are ongoing. In this review, we present findings in the mechanisms and management of CART cell toxicities.
Collapse
Affiliation(s)
- Anas Zahid
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, U.A.E
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
M R, S S, Jose SP, Rajan S, Thomas S, Jagmag T, Tilwani J. Biochemical and immunological aspects of COVID-19 infection and therapeutical intervention of oral low dose cytokine therapy: a systematic review. Immunopharmacol Immunotoxicol 2020; 43:22-29. [PMID: 33106053 DOI: 10.1080/08923973.2020.1842444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The novel coronavirus (SARS-CoV-2) pandemic has now spread to all corners of the world. It causes severe respiratory syndromes which is one of the leading causes of death. Evidence shows that the novel SARS-CoV-2 has close similarities with other coronaviruses, SARS and MERS. So, SARS-CoV-2 might use the similar mechanisms of these viruses to attack the host cells. The severity of COVID-19 is associated with various factors, one of the major reasons is immune dysregulation or immune suppression. Immunity plays a significant role in maintaining the body in a healthy condition. In order to induce a timely immune response against the invaded pathogens, both innate and adaptive immunity must be in an active state. During the viral infection, there will be an excessive generation of pro-inflammatory cytokines known as cytokine storm and also, the antiviral agents in the body gets inhibited or inactivated through viral mechanisms. Thus, this might be the reason for the transition from mild symptoms to more severe medical conditions which leads to an immediate need for the invention of a new medicine.This review aims to show the host-viral interaction along with immune response, antiviral mechanism and effectiveness of oral low dose cytokines against the virus as a therapeutic approach.
Collapse
Affiliation(s)
- Ratheesh M
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sheethal S
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sony Rajan
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sulumol Thomas
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | | | | |
Collapse
|
47
|
Lindquist Liljeqvist M, Hultgren R, Bergman O, Villard C, Kronqvist M, Eriksson P, Roy J. Tunica-Specific Transcriptome of Abdominal Aortic Aneurysm and the Effect of Intraluminal Thrombus, Smoking, and Diameter Growth Rate. Arterioscler Thromb Vasc Biol 2020; 40:2700-2713. [PMID: 32907367 DOI: 10.1161/atvbaha.120.314264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There is no medical treatment to prevent abdominal aortic aneurysm (AAA) growth and rupture, both of which are linked to smoking. Our objective was to map the tunica-specific pathophysiology of AAA with consideration of the intraluminal thrombus, age, and sex, and to subsequently identify which mechanisms were linked to smoking and diameter growth rate. Approach and Results: Microarray analyses were performed on 246 samples from 76 AAA patients and 13 controls. In media and adventitia, there were 5889 and 2701 differentially expressed genes, respectively. Gene sets related to adaptive and innate immunity were upregulated in both tunicas. Media-specific gene sets included increased matrix disassembly and angiogenesis, as well as decreased muscle cell development, contraction, and differentiation. Genes implicated in previous genome-wide association studies were dysregulated in media. The intraluminal thrombus had a pro-proteolytic and proinflammatory effect on the underlying media. Active smoking resulted in increased inflammation, oxidative stress, and angiogenesis in all tissues and enriched lipid metabolism in adventitia. Processes enriched with active smoking in control aortas overlapped to a high extent with those differentially expressed between AAAs and controls. The AAA diameter growth rate (n=24) correlated with T- and B-cell expression in media, as well as lipid-related processes in the adventitia. CONCLUSIONS This tunica-specific analysis of gene expression in a large study enabled the detection of features not previously described in AAA disease. Smoking was associated with increased expression of aneurysm-related processes, of which adaptive immunity and lipid metabolism correlated with growth rate.
Collapse
Affiliation(s)
- Moritz Lindquist Liljeqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| | - Otto Bergman
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Villard
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine (O.B., P.E.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery (M.L.L., R.H., C.V., M.K., J.R.), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden (R.H., J.R.)
| |
Collapse
|
48
|
Chałubiński M, Gajewski A, Kowalski ML. The relationship between human coronaviruses, asthma and allergy-An unresolved dilemma. Clin Exp Allergy 2020; 50:1122-1126. [PMID: 32762099 PMCID: PMC7436768 DOI: 10.1111/cea.13718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022]
Abstract
Human coronaviruses (HCoVs) such as HCoV‐229E or OC43 are responsible for mild upper airway infections, whereas highly pathogenic HCoVs, including SARS‐CoV, MERS‐CoV and SARS‐CoV‐2, often evoke acute, heavy pneumonias. They tend to induce immune responses based on interferon and host inflammatory cytokine production and promotion of T1 immune profile. Less is known about their effect on T2‐type immunity. Unlike human rhinoviruses (HRV) and Respiratory Syncytial Virus (RSV), HCoVs are not considered as a dominant risk factor of severe exacerbations of asthma, mostly T2‐type chronic inflammatory disease. The relationship between coronaviruses and T2‐type immunity, especially in asthma and allergy, is not well understood. This review aims to summarize currently available knowledge about the relationship of HCoVs, including novel SARS‐CoV‐2, with asthma and allergic inflammation.
Collapse
Affiliation(s)
- Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
49
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
50
|
Penrose HM, Katsurada A, Miyata K, Urushihara M, Satou R. STAT1 regulates interferon-γ-induced angiotensinogen and MCP-1 expression in a bidirectional manner in primary cultured mesangial cells. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320946527. [PMID: 32741247 PMCID: PMC7412908 DOI: 10.1177/1470320320946527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: Intrarenal interferon-γ significantly contributes to the development of glomerular injury in which angiotensinogen and monocyte chemoattractant protein 1 levels are elevated. However, the exact nature of the role that interferon-γ plays in regulating angiotensinogen and monocyte chemoattractant protein 1 expression has not been fully delineated. Therefore, the aim of this study was to investigate the role that interferon-γ plays in angiotensinogen and monocyte chemoattractant protein 1 expression. Methods: Primary cultured rat mesangial cells were treated with 0–20 ng/mL interferon-γ for 2, 8 or 24 hours. Expression levels of angiotensinogen, monocyte chemoattractant protein 1, suppressors of cytokine signaling 1, an intracellular suppressor of Janus kinase-signal transducers and activators of transcription signaling and activity of the Janus kinase-signal transducers and activators of transcription pathway were evaluated by reverse transcriptase polymerase chain reaction and western blot analysis. Results: Interferon-γ increased angiotensinogen expression in mesangial cells with maximal augmentation observed following 5 ng/mL interferon-γ at 8 hours of treatment (1.87 ± 0.05, mRNA, relative ratio). Further increases were reduced or absent using higher concentrations of interferon-γ. Following treatments, monocyte chemoattractant protein 1 expression was induced in a linear dose-dependent manner (6.85 ± 0.62-fold by 20 ng/mL interferon-γ at 24 hours). In addition, interferon-γ induced STAT1 phosphorylation and suppressors of cytokine signaling 1 expression in a linear dose-dependent manner. The suppression of STAT1 and suppressors of cytokine signaling 1 expression by small interference RNAs facilitated an increase in interferon-γ-induced angiotensinogen expression, indicating that these two factors negatively regulate angiotensinogen expression. In contrast, the increase in interferon-γ-induced monocyte chemoattractant protein 1 expression was attenuated in STAT1-deficient mesangial cells, suggesting that STAT1 positively regulates monocyte chemoattractant protein 1 expression in mesangial cells. Conclusion: These results demonstrate that while interferon-γ increases both angiotensinogen and monocyte chemoattractant protein 1 expression, STAT1 plays an opposing role in the regulation of each factor in mesangial cells.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Akemi Katsurada
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Kayoko Miyata
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| | - Maki Urushihara
- Department of Pediatrics, The University of Tokushima Graduate School, Japan
| | - Ryousuke Satou
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, USA
| |
Collapse
|