1
|
Tseng CEJ, Guma E, McDougle CJ, Hooker JM, Zürcher NR. Regional skull translocator protein elevation in autistic adults detected by PET-MRI. Brain Behav Immun 2025; 126:70-79. [PMID: 39904469 DOI: 10.1016/j.bbi.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025] Open
Abstract
Immune processes have been implicated in the pathophysiology of autism spectrum disorder (ASD). Brain borders, such as the skull, have recently been highlighted as sites where neuro-immune interactions occur with key consequences for brain immunity. Translocator protein (TSPO), a mitochondrial protein involved in immune functions, was measured in the skull using [11C]PBR28 positron emission tomography-magnetic resonance imaging (PET-MRI) in 38 autistic adults (26 males, 12 females) and 29 age-and sex-matched healthy controls (19 males, 10 females). [11C]PBR28 uptake relative to a pseudo-reference region assessed using standardized uptake value ratio (SUVR) revealed elevated TSPO in autistic adults in frontal and temporal skull. We did not observe an association between [11C]PBR28 uptake in total or regional skull areas and autism symptom severity. C-reactive protein levels were positively associated with [11C]PBR28 uptake in the total skull across participants. Lastly, [11C]PBR28 uptake in the total skull was stable across a 4-month period. This work indicates regional TSPO elevations in the skull in autistic adults, which may suggest immune involvement.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA
| | - Elisa Guma
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Christopher J McDougle
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Jacob M Hooker
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Nicole R Zürcher
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA.
| |
Collapse
|
2
|
Kato D, Okuno A, Ishikawa T, Itakura S, Oguchi S, Kasahara Y, Kanenishi K, Kitadai Y, Kimura Y, Shimojo N, Nakahara K, Hanai A, Hamada H, Mogami H, Morokuma S, Sakurada K, Konishi Y, Kawakami E. Multilevel Factors and Indicators of Atypical Neurodevelopment During Early Infancy in Japan: Prospective, Longitudinal, Observational Study. JMIR Pediatr Parent 2025; 8:e58337. [PMID: 40190042 PMCID: PMC11990654 DOI: 10.2196/58337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 04/13/2025] Open
Abstract
Background The early identification of developmental concerns requires understanding individual differences that may represent early signs of neurodevelopmental conditions. However, few studies have longitudinally examined how child and maternal factors interact to shape these early developmental characteristics. Objective We aim to identify factors from the perinatal to infant periods associated with early developmental characteristics that may precede formal diagnoses and propose a method for evaluating individual differences in neurodevelopmental trajectories. Methods A prospective longitudinal observational study of 147 mother-child pairs was conducted from gestation to 12 months post partum. Assessments included prenatal questionnaires and blood collection, cord blood at delivery, and postpartum questionnaires at 1, 6, and 12 months. The Modified Checklist for Autism in Toddlers (M-CHAT) was used to evaluate developmental characteristics that might indicate early signs of atypical neurodevelopment. Polychoric or polyserial correlation coefficients assessed relationships between M-CHAT scores and longitudinal variables. L2-regularized logistic regression and Shapley Additive Explanations predicted M-CHAT scores and determined feature contributions. Results Twenty-one factors (4 prenatal, 3 at birth, and 14 postnatal) showed significant associations with M-CHAT scores (adjusted P values<.05). The predictive accuracy for M-CHAT scores demonstrated reasonable predictive accuracy (area under the receiver operating characteristic curve=0.79). Key predictors included infant sleep status after 6 months (nighttime sleep duration, bedtime, and difficulties falling asleep), maternal Kessler Psychological Distress Scale scores, and Mother-to-Infant Bonding Scale scores after late gestation. Conclusions Maternal psychological distress, mother-infant bonding, and infant sleep patterns were identified as significant predictors of early developmental characteristics that may indicate emerging developmental concerns. This study advances our understanding of early developmental assessment by providing a novel approach to identifying and evaluating early indicators of atypical neurodevelopment.
Collapse
Affiliation(s)
- Daigo Kato
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
| | - Akiko Okuno
- Center for Baby Science, Doshisha University, Kyoto, Japan
| | - Tetsuo Ishikawa
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Shinjuku, Japan
- Collective Intelligence Research Laboratory, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Shoji Itakura
- Center for Baby Science, Doshisha University, Kyoto, Japan
| | - Shinji Oguchi
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kenji Kanenishi
- Department of Perinatology and Gynecology, Graduate School of Medicine, Kagawa University, Kita, Japan
| | - Yuzo Kitadai
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Yoshitaka Kimura
- Department of Maternal and Fetal Therapeutics, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Kazushige Nakahara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiko Hanai
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seiichi Morokuma
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Sakurada
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
- Department of Extended Intelligence for Medicine, The Ishii-Ishibashi Laboratory, Keio University School of Medicine, Shinjuku, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyoto, Japan
| | - Eiryo Kawakami
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan, 81 45 503 7012, 81 45 503 7010
| |
Collapse
|
3
|
Moreno RJ, Azzam YW, Eng S, Rose D, Ashwood P. Altered Monocyte Populations and Activation Marker Expression in Children with Autism and Co-Occurring Gastrointestinal Symptoms. Biomolecules 2025; 15:207. [PMID: 40001509 PMCID: PMC11853397 DOI: 10.3390/biom15020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is an early-onset neurodevelopmental condition that now impacts 1 in 36 children in the United States and is characterized by deficits in social communication, repetitive behaviors, and restricted interests. Children with ASD also frequently experience co-morbidities including anxiety and ADHD, and up to 80% experience gastrointestinal (GI) symptoms such as constipation, diarrhea, and/or abdominal pain. Systemic immune activation and dysregulation, including increased pro-inflammatory cytokines, are frequently observed in ASD. Evidence has shown that the innate immune system may be impacted in ASD, as altered monocyte gene expression profiles and cytokine responses to pattern recognition ligands have been observed compared to typically developing (TD) children. In humans, circulating monocytes are often categorized into three subpopulations-classical, transitional (or "intermediate"), and nonclassical monocytes, which can vary in functions, including archetypal inflammatory and/or reparative functions, as well as their effector locations. The potential for monocytes to contribute to immune dysregulation in ASD and its comorbidities has so far not been extensively studied. This study aims to determine whether these monocyte subsets differ in frequency in children with ASD and if the presence of GI symptoms alters subset distribution, as has been seen for T cell subsets. Whole blood from ASD children with (ASD+GI+) and without gastrointestinal symptoms (ASD+GI-) and their TD counterparts was collected from children enrolled in the Childhood Autism Risk from Genetics and Environment (CHARGE) study. Peripheral blood mononuclear cells were isolated and stained for commonly used subset identifiers CD14 and CD16 as well as activation state markers CCR2, HLA-DR, PD-1, and PD-L1 for flow cytometry analysis. We identified changes in monocyte subpopulations and their expression of surface markers in children with ASD compared to TD children. These differences in ASD appear to be dependent on the presence or absence of GI symptoms. We found that the ASD+GI+ group have a different monocyte composition, evident in their classical, transitional, and nonclassical populations, compared to the ASD+GI- and TD groups. Both the ASD+GI+ and ASD+GI- groups exhibited greater frequencies of classical monocytes compared to the TD group. However, the ASD+GI+ group demonstrated lower frequencies of transitional and nonclassical monocytes than their ASD+GI- and TD counterparts. CCR2+ classical monocyte frequencies were highest in the ASD+GI- group. HLA-DR+ classical, transitional, and nonclassical monocytes were statistically comparable between groups, however, HLA-DR- nonclassical monocyte frequencies were lower in both ASD groups compared to TD. The frequency of classical monocytes displaying exhaustion markers PD-1 and PD-L1 were increased in the ASD+GI+ group compared to ASD+GI- and TD, suggesting potentially impaired ability for clearance of foreign pathogens or debris, typically associated with worsened inflammation. Taken together, the findings of differential proportions of the monocyte subpopulations and altered surface markers may explain some of the characteristics of immune dysregulation, such as in the gastrointestinal tract, observed in ASD.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- MIND Institute, University of California, Sacramento, CA 95817, USA
| | - Yasmin W. Azzam
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- MIND Institute, University of California, Sacramento, CA 95817, USA
| | - Serena Eng
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- MIND Institute, University of California, Sacramento, CA 95817, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- MIND Institute, University of California, Sacramento, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- MIND Institute, University of California, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Noori AS, Rajabi P, Sargolzaei J, Alaghmand A. Correlation of biochemical markers and inflammatory cytokines in autism spectrum disorder (ASD). BMC Pediatr 2024; 24:696. [PMID: 39487445 PMCID: PMC11529241 DOI: 10.1186/s12887-024-05182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Autism Spectrum Disorder (ASD) is a disorder that severely affects neurodevelopment, and its underlying causes are not yet entirely understood. Research suggests that there may be a connection between the occurrence of ASD and changes in immune responses. This study aims to know if some biochemical and inflammatory cytokines are promising biomarkers for ASD and whether they are involved in the pathogenesis of ASD. METHODS The serum levels of CRP, TNF-α, TGF-β, IL-1β, IL-10, 1 L-8, and IL-6 were measured in all of the patients (n = 22) and in the healthy (n = 12) children using ELISA method. RESULTS The serum concentrations of IL-10 and IL-8 were significantly lower in the ASD patients compared to the control group (p < 0.05) and there were not significant differences between CRP, TNF-α, TGF-β, IL-6 and IL-1β levels in two groups. There were positive correlations between CRP and IL-10, also CRP and IL-8, in ASD group. In contrast to the ASD patients, the correlations of IL-8, IL-10, and CRP were not significant in the control group. CONCLUSION In conclusion, this study highlights the potential role of certain biochemical markers and inflammatory cytokines in ASD. Specifically, the lower levels of IL-10 and IL-8 in ASD patients, along with the significant correlations between CRP and these cytokines, suggest an altered immune response in individuals with ASD. These findings support the hypothesis that immune dysregulation may be involved in ASD pathogenesis. Further research is needed to explore these biomarkers and their mechanistic links to ASD, which could lead to improved diagnostics or therapeutic strategies.
Collapse
Affiliation(s)
- Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Parisa Rajabi
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
| | - Anita Alaghmand
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
5
|
Cory-Slechta DA, Marvin E, Welle K, Goeke C, Chalupa D, Oberdörster G, Sobolewski M. Male-biased vulnerability of mouse brain tryptophan/kynurenine and glutamate systems to adolescent exposures to concentrated ambient ultrafine particle air pollution. Neurotoxicology 2024; 104:20-35. [PMID: 39002649 PMCID: PMC11377152 DOI: 10.1016/j.neuro.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) exposures have been associated with numerous neurodevelopmental and psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia, all male-biased disorders with onsets from early life to late adolescence/early adulthood. While prior experimental studies have focused on effects of AP exposures during early brain development, brain development actually extends well into early adulthood. The current study in mice sought to extend the understanding of developmental brain vulnerability during adolescence, a later but significant period of brain development and maturation to the ultrafine particulate (UFPs) component of AP, considered its most reactive component. Additionally, it examined adolescent response to UFPs when preceded by earlier developmental exposures, to ascertain the trajectory of effects and potential enhancement or mitigation of adverse consequences. Outcomes focused on shared features associated with multiple neurodevelopmental disorders. For this purpose, C57Bl/6 J mice of both sexes were exposed to ambient concentrated UFPs or filtered air from PND (postnatal day) 4-7 and PND10-13, and again at PND39-42 and 45-49, resulting in 3 exposure postnatal/adolescent treatment groups per sex: Air/Air, Air/UFP, and UFP/UFP. Features common to neurodevelopmental disorders were examined at PND50. Mass exposure concentration from postnatal exposure averaged 44.34 μg/m3 and the adolescent exposure averaged 49.18 μg/m3. Male brain showed particular vulnerability to UFP exposures in adolescence, with alterations in frontal cortical and striatal glutamatergic and tryptophan/serotonergic neurotransmitters and concurrent reductions in levels of astrocytes in corpus callosum and in serum cytokine levels, with combined exposures resulting in significant reductions in corpus callosum myelination and serum corticosterone. Reductions in serum corticosterone in males correlated with reductions in neurotransmitter levels, and reductions in striatal glutamatergic function specifically correlated with reductions in corpus callosum astrocytes. UFP-induced changes in neurotransmitter levels in males were mitigated by prior postnatal exposure, suggesting potential adaptation, whereas reductions in corticosterone and in corpus callosum neuropathological effects were further strengthened by combined postnatal and adolescent exposures. UFP-induced changes in females occurred primarily in striatal dopamine systems and as reductions in serum cytokines only in response to combined postnatal and adolescent exposures. Findings in males underscore the importance of more integrated physiological assessments of mechanisms of neurotoxicity. Further, these findings provide biological plausibility for an accumulating epidemiologic literature linking air pollution to neurodevelopmental and psychiatric disorders. As such, they support a need for consideration of the regulation of the UFP component of air pollution.
Collapse
Affiliation(s)
- D A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States.
| | - E Marvin
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - K Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - C Goeke
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - D Chalupa
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - G Oberdörster
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| | - M Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Box EHSC, Rochester, NY 14642, United States
| |
Collapse
|
6
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
7
|
Fuentes-Albero M, Mafla-España MA, Martínez-Raga J, Cauli O. Autistic Children/Adolescents Have Lower Adherence to the Mediterranean Diet and Higher Salivary IL-6 Concentration: Potential Diet-Inflammation Links? PATHOPHYSIOLOGY 2024; 31:376-387. [PMID: 39189164 PMCID: PMC11348102 DOI: 10.3390/pathophysiology31030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. Many patients with ASD often show behavioral problems at mealtimes, including food selectivity and atypical feeding behaviors. The Mediterranean diet (MD) has a beneficial effect on mental health for the general population across different ages. There is evidence that good adherence to the MD is effective in reducing peripheral inflammatory markers, such as the cytokine interleukin-6 (IL-6). The present study was designed to evaluate adherence to the MD in children with ASD using age- and sex-matched, typically developing individuals (TDs) as a control group and to determine whether differences in adherence to the MD are associated with salivary IL-6 and IL-6 receptor concentration. METHODS Twenty children and adolescents with ASD (mean age 9.95 ± 0.65 years) and twenty TDs (mean age: 9.85 ± 0.59 years) participated in this study (N = 16 males and N = 4 females in each group). Participants with ASD were enrolled in a psychiatric consultation in Valencia (Spain), and TDs were recruited from two public schools in Valencia. The parents of both ASD and TD groups answered the items in a validated Mediterranean Diet Quality Index for children and adolescents (KIDMED) questionnaire on their children's adherence to the MD. RESULTS The mean adherence to MD score was significantly lower in the ASD group (9.10 ± 0.42) (range 6-12) than in the TD group (10.35 ± 0.31) (range 8-12) (p = 0.02, Mann-Whitney U test). There was no statistically significant association between adherence to the MD and age or sex in both groups, but there was a significant correlation between the total KIDMED score and body mass index (BMI) in the ASD group. Regarding the concentration of Il-6 and the Il-6 receptor in saliva samples, there were no significant differences between the two groups; however, linear regression analysis by group revealed significant associations between the adherence to MD score and the concentration of IL-6 and its receptor in saliva in the ASD group (p = 0.003, OR = 0.68, 95% CI 0.007 to -0.02; p = 0.009, OR = -0.64, 95% CI -0.01 to -0.00). In contrast, no significant associations were observed between the adherence to MD score and the concentration of IL-6 and its receptor in saliva in the TD group. CONCLUSIONS Children and adolescents with ASD showed significantly lower adherence to the MD, which can contribute to nutritional deficits described in ASD, and the role of BMI composition (fat versus lean mass) needs to be further investigated in this group. The concentration of IL-6 and its receptor in saliva is associated with adherence to the MD, suggesting a possible link between IL-6 and diet in ASD. Further studies to clarify the associations between IL-6, psychiatric alterations, and diet in ASD are needed.
Collapse
Affiliation(s)
| | | | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset and University of Valencia, 46010 Valencia, Spain;
| | - Omar Cauli
- Nursing Department, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
8
|
Lagod PP, Abdelli LS, Naser SA. An In Vivo Model of Propionic Acid-Rich Diet-Induced Gliosis and Neuro-Inflammation in Mice (FVB/N-Tg(GFAPGFP)14Mes/J): A Potential Link to Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8093. [PMID: 39125662 PMCID: PMC11311704 DOI: 10.3390/ijms25158093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Evidence shows that Autism Spectrum Disorder (ASD) stems from an interplay of genetic and environmental factors, which may include propionic acid (PPA), a microbial byproduct and food preservative. We previously reported that in vitro treatment of neural stem cells with PPA leads to gliosis and neuroinflammation. In this study, mice were exposed ad libitum to a PPA-rich diet for four weeks before mating. The same diet was maintained through pregnancy and administered to the offspring after weaning. The brains of the offspring were studied at 1 and 5 months postpartum. Glial fibrillary acidic protein (astrocytic marker) was significantly increased (1.53 ± 0.56-fold at 1 M and 1.63 ± 0.49-fold at 5 M) in the PPA group brains. Tubulin IIIβ (neuronal marker) was significantly decreased in the 5 M group. IL-6 and TNF-α expression were increased in the brain of the PPA group (IL-6: 2.48 ± 1.25-fold at 5 M; TNF-α: 2.84 ± 1.16-fold at 1 M and 2.64 ± 1.42-fold, at 5 M), while IL-10 was decreased. GPR41 and p-Akt were increased, while PTEN (p-Akt inhibitor) was decreased in the PPA group. The data support the role of a PPA-rich diet in glia over-proliferation and neuro-inflammation mediated by the GPR41 receptor and PTEN/Akt pathway. These findings strongly support our earlier study on the role of PPA in ASD.
Collapse
Affiliation(s)
- Piotr P. Lagod
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Latifa S. Abdelli
- Health Sciences Department, College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Saleh A. Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
9
|
Long J, Dang H, Su W, Moneruzzaman M, Zhang H. Interactions between circulating inflammatory factors and autism spectrum disorder: a bidirectional Mendelian randomization study in European population. Front Immunol 2024; 15:1370276. [PMID: 38742104 PMCID: PMC11089225 DOI: 10.3389/fimmu.2024.1370276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Background Extensive observational studies have reported an association between inflammatory factors and autism spectrum disorder (ASD), but their causal relationships remain unclear. This study aims to offer deeper insight into causal relationships between circulating inflammatory factors and ASD. Methods Two-sample bidirectional Mendelian randomization (MR) analysis method was used in this study. The genetic variation of 91 circulating inflammatory factors was obtained from the genome-wide association study (GWAS) database of European ancestry. The germline GWAS summary data for ASD were also obtained (18,381 ASD cases and 27,969 controls). Single nucleotide polymorphisms robustly associated with the 91 inflammatory factors were used as instrumental variables. The random-effects inverse-variance weighted method was used as the primary analysis, and the Bonferroni correction for multiple comparisons was applied. Sensitivity tests were carried out to assess the validity of the causal relationship. Results The forward MR analysis results suggest that levels of sulfotransferase 1A1, natural killer cell receptor 2B4, T-cell surface glycoprotein CD5, Fms-related tyrosine kinase 3 ligand, and tumor necrosis factor-related apoptosis-inducing ligand are positively associated with the occurrence of ASD, while levels of interleukin-7, interleukin-2 receptor subunit beta, and interleukin-2 are inversely associated with the occurrence of ASD. In addition, matrix metalloproteinase-10, caspase 8, tumor necrosis factor-related activation-induced cytokine, and C-C motif chemokine 19 were considered downstream consequences of ASD. Conclusion This MR study identified additional inflammatory factors in patients with ASD relative to previous studies, and raised a possibility of ASD-caused immune abnormalities. These identified inflammatory factors may be potential biomarkers of immunologic dysfunction in ASD.
Collapse
Affiliation(s)
- Junzi Long
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Hui Dang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Md. Moneruzzaman
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
- Division of Brain Sciences, Changping Laboratory, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
11
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
12
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
13
|
Shim S, Ha S, Choi J, Kwon HK, Cheon KA. Alterations in Plasma Cytokine Levels in Korean Children with Autism Spectrum Disorder. Yonsei Med J 2024; 65:70-77. [PMID: 38288647 PMCID: PMC10827638 DOI: 10.3349/ymj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.
Collapse
Affiliation(s)
- Songjoo Shim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
15
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
16
|
Sreenivas N, Maes M, Padmanabha H, Dharmendra A, Chakkera P, Paul Choudhury S, Abdul F, Mullapudi T, Gowda VK, Berk M, Vijay Sagar Kommu J, Debnath M. Comprehensive immunoprofiling of neurodevelopmental disorders suggests three distinct classes based on increased neurogenesis, Th-1 polarization or IL-1 signaling. Brain Behav Immun 2024; 115:505-516. [PMID: 37972879 DOI: 10.1016/j.bbi.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a spectrum of conditions with commonalities as well as differences in terms of phenome, symptomatome, neuropathology, risk factors and underlying mechanisms. Immune dysregulation has surfaced as a major pathway in NDDs. However, it is not known if neurodevelopmental disorders share a common immunopathogenetic mechanism. In this study, we explored the possibility of a shared immune etiology in three early-onset NDDs, namely Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and Intellectual Disability Disorder (IDD). A panel of 48 immune pathway-related markers was assayed in 135 children with NDDs, represented by 45 children with ASD, ADHD and IDD in each group, along with 35 typically developing children. The plasma levels of 48 immune markers were analyzed on the Multiplex Suspension Assay platform using Pro Human cytokine 48-plex kits. Based on the cytokine/chemokine/growth factor levels, different immune profiles were computed. The primary characteristics of NDDs are depletion of the compensatory immune-regulatory system (CIRS) (z composite of IL-4, IL-10, sIL-1RA, and sIL-2R), increased interleukin (IL)-1 signaling associated with elevated IL-1α and decreased IL-1-receptor antagonist levels, increased neurogenesis, M1/M2 macrophage polarization and increased IL-4 as well as C-C Motif Chemokine Ligand 2 (CCL2) levels. With a cross-validated sensitivity of 81.8% and specificity of 94.4%, these aberrations seem specific for NDDs. Many immunological abnormalities are shared by ASD, ADHD and IDD, which are distinguished by minor differences in IL-9, IL-17 and CCL12. In contrast, machine learning reveals that NDD group consists of three immunologically distinct clusters, with enhanced neurogenesis, Th-1 polarization, or IL-1 signaling as the defining features. NDD is characterized by immune abnormalities that have functional implications for neurogenesis, neurotoxicity, and neurodevelopment. Using machine learning, NDD patients could be classified into subgroups with qualitatively distinct immune disorders that may serve as novel drug targets for the treatment of NDDs.
Collapse
Affiliation(s)
- Nikhitha Sreenivas
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; Research Center, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Apoorva Dharmendra
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Priyanka Chakkera
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Saptamita Paul Choudhury
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Fazal Abdul
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Thrinath Mullapudi
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vykuntaraju K Gowda
- Department of Paediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Michael Berk
- Deakin University, IMPACT Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - John Vijay Sagar Kommu
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
17
|
Almulla AF, Thipakorn Y, Tunvirachaisakul C, Maes M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res 2023; 16:2302-2315. [PMID: 37909397 DOI: 10.1002/aur.3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social communication and interaction, as well as rigid and unchanging interests and behaviors. Several studies have reported that activated immune-inflammatory and nitro-oxidative pathways are accompanied by depletion of plasma tryptophan (TRP), increased competing amino acid (CAAs) levels, and activation of the TRP catabolite (TRYCAT) pathway. This study aims to systematically review and meta-analyze data on peripheral TRP, CAAs, TRYCAT pathway activity, and individual TRYCATs, including kynurenine (KYN) and kynurenic acid (KA) levels, in the blood and urine of ASD patients. After extensively searching PubMed, Google Scholar, and SciFinder, a total of 25 full-text papers were included in the analysis, with a total of 6653 participants (3557 people with ASD and 3096 healthy controls). Our results indicate that blood TRP and the TRP/CAAs ratio were not significantly different between ASD patients and controls (standardized mean difference, SMD = -0.227, 95% confidence interval, CI: -0.540; 0.085, and SMD = 0.158, 95% CI: -0.042; 0.359), respectively. The KYN/TRP ratio showed no significant difference between ASD and controls (SMD = 0.001, 95% CI: -0.169; 0.171). Blood KYN and KA levels were not significantly changed in ASD. Moreover, there were no significant differences in urine TRP, KYN, and KA levels between ASD and controls. We could not establish increases in neurotoxic TRYCATs in ASD. In conclusion, this study demonstrates no abnormalities in peripheral blood TRP metabolism, indoleamine 2,3-dioxygenase enzyme (IDO) activity, or TRYCAT production in ASD. Reduced TRP availability and elevated neurotoxic TRYCAT levels are not substantial contributors to ASD's pathophysiology.
Collapse
Affiliation(s)
- Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Korea
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
18
|
Yildirim V, Simsek S, Cetin I, Dokuyucu R. Kynurenine, Kynurenic Acid, Quinolinic Acid and Interleukin-6 Levels in the Serum of Patients with Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1906. [PMID: 38003955 PMCID: PMC10673218 DOI: 10.3390/medicina59111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: It is known that inflammatory processes play a role in the pathogenesis of autism spectrum disorder (ASD). It is also reported that immune activation induces the kynurenine pathway (KP), as known as the tryptophan destruction pathway. In our study, we aimed to investigate whether the serum levels of KP products and interleukin (IL)-6 activating indolamine 2-3 dioxygenase (IDO) enzyme are different in healthy developing children and children with ASD. Materials and Methods: Forty-three ASD children aged 2-9 were included in this study. Forty-two healthy developing children, similar to the patient group in terms of age and gender, were selected as the control group. Serum levels of kynurenic acid, kynurenine, quinolinic acid and IL-6 were analyzed using the ELISA method. ASD severity was evaluated with the Autism Behavior Checklist (ABC). Results: The mean age of children with ASD was 42.4 ± 20.5 months, and that of healthy controls was 48.1 ± 15.8 months. While the serum levels of kynurenic acid, kynurenine and interleukin-6 were higher in the group with ASD (p < 0.05), there was no significant difference (p > 0.05) in terms of the quinolinic acid level. There was no significant difference between the ABC total and subscale scores of children with ASD and biochemical parameters (p > 0.05). Conclusions: We conclude that these biomarkers must be measured in all ASD cases. They may be important for the diagnosis of ASD.
Collapse
Affiliation(s)
- Veli Yildirim
- Special Clinic, Department of Child Psychiatry, Yenişehir, Mersin 33110, Turkey;
| | - Seref Simsek
- Special Clinic, Department of Child Psychiatry, Antalya 07000, Turkey;
| | - Ihsan Cetin
- Department of Nutrition and Dietetics, School of Health Sciences, Batman University, Batman 72040, Turkey;
| | - Recep Dokuyucu
- Department of Physiology, School of Medicine, Atlas University, Istanbul 34413, Turkey
| |
Collapse
|
19
|
Man MQ, Yang S, Mauro TM, Zhang G, Zhu T. Link between the skin and autism spectrum disorder. Front Psychiatry 2023; 14:1265472. [PMID: 37920540 PMCID: PMC10619695 DOI: 10.3389/fpsyt.2023.1265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurological disorder. Although the etiologies of ASD have been widely speculated, evidence also supports the pathogenic role of cutaneous inflammation in autism. The prevalence of ASD is higher in individuals with inflammatory dermatoses than in those without inflammatory diseases. Anti-inflammation therapy alleviates symptoms of ASD. Recent studies suggest a link between epidermal dysfunction and ASD. In the murine model, mice with ASD display epidermal dysfunction, accompanied by increased expression levels of proinflammatory cytokines in both the skin and the brain. Children with ASD, which develops in their early lifetime, also exhibit altered epidermal function. Interestingly, improvement in epidermal function alleviates some symptoms of ASD. This line of evidence suggests a pathogenic role of cutaneous dysfunction in ASD. Either an improvement in epidermal function or effective treatment of inflammatory dermatoses can be an alternative approach to the management of ASD. We summarize here the current evidence of the association between the skin and ASD.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, China
| | - Theodora M. Mauro
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Belica I, Janšáková K, Celušáková H, Kopčíková M, Polónyiová K, Rašková B, Vidošovičová M, Ostatníková D, Babinská K. Plasma cytokine concentrations of children with autism spectrum disorder and neurotypical siblings. Cytokine 2023; 170:156333. [PMID: 37598479 DOI: 10.1016/j.cyto.2023.156333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Several studies of autism spectrum disorder (ASD) have shown cytokine dysregulation in children with ASD, leading to a consideration of the immune theory of the ASD etiopathogenesis and a debate about cytokines as potential biomarkers of ASD. However, the results of these studies are still inconsistent. Overall, studies comparing the cytokine levels of children with ASD and neurotypical siblings achieved relatively different results than studies with control groups of non-siblings. The studies suggest that the immune profile of siblings of individuals with ASD serving as control is more similar to children with ASD than the profile of non-siblings. However, there are still only a few studies with control groups including neurotypical siblings of children with ASD. The aim of our study was to determine whether the concentration of plasma cytokine levels may differentiate children with ASD from their neurotypical siblings. The sample consisted of 40 children with ASD (mean age 7.11 years, SD 2.9) and 21 neurotypical siblings (mean age 7.38, SD 3.3). Levels of 20 cytokines were included into the statistical analysis. A multiple logistic regression model using multiple corrections showed that an increase in log-transformed plasma G-CSF (granulocyte colony stimulating factor) concentration is associated with an increased risk of the child being diagnosed as an ASD case (OR = 4.35, 95% CI 1.77, 10.73). Although the significantly increased concentration of G-CSF suggests a slightly different activity of the immune system of children with ASD, the overall cytokine profile of their siblings appeared to be very similar.
Collapse
Affiliation(s)
- Ivan Belica
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Research Institute for Child Psychology and Pathopsychology, Bratislava, Slovakia
| | - Katarína Janšáková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Hana Celušáková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Mária Kopčíková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Polónyiová
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbara Rašková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Mária Vidošovičová
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarína Babinská
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
21
|
Carpita B, Massoni L, Battaglini S, Palego L, Cremone IM, Massimetti G, Betti L, Giannaccini G, Dell'Osso L. IL-6, homocysteine, and autism spectrum phenotypes: an investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr 2023; 28:620-628. [PMID: 36690583 DOI: 10.1017/s1092852923000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The importance of recognizing different kinds of autism spectrum presentations among adults, including subthreshold forms and the broad autism phenotype (BAP), has been increasingly highlighted in recent studies. Meanwhile, the possible involvement of immune system deregulation and altered methylation/trans-sulfuration processes in autism spectrum disorder (ASD) is gaining growing attention, but studies in this field are mainly focused on children. In this framework, the aim of this study was to compare plasmatic concentrations of IL-6 and homocysteine (HCY) among adults with ASD, their first-degree relatives, and healthy controls (CTLs), investigating also possible correlations with specific autism symptoms. METHODS Plasma concentrations of IL-6 and HCY were measured in a group of adult subjects with ASD, their first-degree relatives (BAP group), and healthy controls (CTL). All participants were also evaluated with psychometric instruments. RESULTS IL-6 and HCY concentrations were significantly higher in the ASD group than in CTLs, while BAP subjects reported intermediate results. Significant correlations were reported between biochemical parameters and psychometric scales, particularly for the dimension of ruminative thinking. CONCLUSIONS These findings support the hypothesis of a key involvement of HCY-related metabolism and immune system alteration in autism spectrum pathophysiology. HCY and IL-6 seem to show different associations with specific autism dimensions.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simone Battaglini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ivan M Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Bujnakova I, Kovacova V, Macejova A, Tonhajzerova I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci 2023; 24:11710. [PMID: 37511467 PMCID: PMC10380731 DOI: 10.3390/ijms241411710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are associated with immune dysregulation. We aimed to estimate the pro- and anti-inflammatory activity/balance in ASD and ADHD patients at a little-studied adolescent age with respect to sex. We evaluated 20 ASD patients (5 girls, average age: 12.4 ± 1.9 y), 20 ADHD patients (5 girls, average age: 13.4 ± 1.8 y), and 20 age- and gender-matched controls (average age: 13.2 ± 1.9 y). The evaluated parameters included (1) white blood cells (WBCs), neutrophils, monocytes, lymphocytes, platelets, platelet distribution width (PDW), mean platelet volume, and derived ratios, as well as (2) cytokines-interferon-gamma, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, tumor necrosis factor-alpha (TNF-α), and derived profiles and ratios. ASD adolescents showed higher levels of WBC, monocytes, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, macrophages (M)1 profile, and anti-inflammatory profile than the controls, with ASD males showing higher monocytes, IL-6 and IL-10, anti-inflammatory profile, and a lower T-helper (Th)1/Th2+T-regulatory cell ratio than control males. The ADHD adolescents showed higher levels of PDW, IL-1β and IL-6, TNF-α, M1 profile, proinflammatory profile, and pro-/anti-inflammatory ratio than the controls, with ADHD females showing a higher TNF-α and pro-/anti-inflammatory ratio than the control females and ADHD males showing higher levels of IL-1β and IL-6, TNF-α, and M1 profile than the control males. Immune dysregulation appeared to be different for both neurodevelopmental disorders in adolescence.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Iveta Bujnakova
- Society to Help People with Autism (SPOSA-Turiec), 03601 Martin, Slovakia
| | - Veronika Kovacova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Andrea Macejova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
23
|
Bagcioglu E, Solmaz V, Erbas O, Özkul B, Çakar B, Uyanikgil Y, Söğüt İ. Modafinil Improves Autism-like Behavior in Rats by Reducing Neuroinflammation. J Neuroimmune Pharmacol 2023; 18:9-23. [PMID: 37043086 DOI: 10.1007/s11481-023-10061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
To evaluate the ameliorating effect of Modafinil on neuroinflammation, behavioral, and histopathological alterations in rats induced by propionic acid (PPA). Thirty male Wistar rats were used in the study, divided into 3 groups of ten subjects. One group served as a control, the subjects in the other two were given 250 mg/kg/day of PPA by intraperitoneal injection over the course of 5 days to induce autism. The experimental design was as follows: Group 1: Normal control (orally-fed control, n = 10); Group 2 (PPA + saline, n = 10): PPA and 1 ml/kg/day % 0.9 NaCl saline via oral gavage; Group 3 (PPA + Modafinil, n = 10) PPA and 30 mg/kg/day Modafinil (Modiodal tablets 100 mg, Cephalon) via oral gavage. All of the groups were investigated for behavioral, biochemical, and histological abnormality. Autism-like behaviors were reduced significantly in the rats treated with PPA. TNF-α, Nerve Growth Factor (NGF), IL-17, IL-2, and NF-KB levels as well as MDA levels and lactate were significantly higher in those treated with PPA compared to the control group. Using immunohistochemical methods, the number of neurons and GFAP immunoreactivity was significantly altered in PPA-treated rats compared to the control. Using Magnetic Resonance Spectroscopy (MRS), we found that lactate levels were significantly higher in the PPA-treated rats, while creatinine levels were significantly decreased. In the rats administered with Modafinil, behavior, neuroinflammation, and histopathological changes brought about by PPA were significantly reversed. Our results demonstrate the potential role of Modafinil in ameliorating PPA-induced neuroinflammation in rats.
Collapse
Affiliation(s)
- Erman Bagcioglu
- Department of Clinical Psychology, Ruhr University, Bochum, Germany.
| | - Volkan Solmaz
- Department of Neurophysiology, Cologne University, Cologne, Germany
| | - Oytun Erbas
- Department of Physiology, Istanbul Bilim University School of Medicine, Istanbul, Turkey
| | - Bahattin Özkul
- Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Burak Çakar
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
24
|
Arteaga-Henríquez G, Gisbert L, Ramos-Quiroga JA. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023; 37:215-229. [PMID: 36913130 PMCID: PMC10024667 DOI: 10.1007/s40263-023-00993-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sulforaphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone, celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood. Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide stronger evidence.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- NCRR-The National Center for Register-Based Research, Aahrus University, Aahrus, Denmark
| | - Laura Gisbert
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
25
|
Runge K, Fiebich BL, Kuzior H, Rausch J, Maier SJ, Dersch R, Nickel K, Domschke K, Tebartz van Elst L, Endres D. Altered cytokine levels in the cerebrospinal fluid of adult patients with autism spectrum disorder. J Psychiatr Res 2023; 158:134-142. [PMID: 36584491 DOI: 10.1016/j.jpsychires.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite intensive research, the etiological causes of autism spectrum disorder (ASD) remain elusive. Immunological mechanisms have recently been studied more frequently in the context of maternal autoantibodies and infections, as well as altered cytokine profiles. For the detection of immunological processes in the central nervous system, analyses of cerebrospinal fluid (CSF) are advantageous due to its proximity to the brain. However, cytokine studies in the CSF of ASD patients are sparse. METHODS CSF was collected from a patient sample of 24 adults (m = 16, f = 8, age: 30.3 ± 11.6 years) with ASD and compared to a previously published mentally healthy control sample of 39 neurological patients with idiopathic intracranial hypertension. A magnetic bead multiplexing immunoassay was used to measure multiple cytokines in CSF. RESULTS Significantly decreased interferon-γ-induced protein-10 (p = 0.001) and monocyte chemoattractant protein-1 (p = 0.041) levels as well as significantly higher interleukin-8 levels (p = 0.041) were detected in patients with ASD compared with the control group. CONCLUSION The main finding of this study is an altered cytokine profile in adult patients with ASD compared to the control group. This may indicate immune dysregulation in a subgroup of adult ASD patients. Further studies in larger cohorts that examine a broader spectrum of chemokines and cytokines in general are needed to detect possible specific immune signatures in ASD.
Collapse
Affiliation(s)
- Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hanna Kuzior
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jördis Rausch
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon J Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Hosokawa R, Yoshino Y, Funahashi Y, Horiuchi F, Iga JI, Ueno SI. MiR-15b-5p Expression in the Peripheral Blood: A Potential Diagnostic Biomarker of Autism Spectrum Disorder. Brain Sci 2022; 13:brainsci13010027. [PMID: 36672009 PMCID: PMC9855964 DOI: 10.3390/brainsci13010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD), is a neurodevelopmental disorder that is known to have a high degree of heritability. Diagnosis of ASD is difficult because of the high heterogeneity of the clinical symptoms. MicroRNAs (miRNAs) can potentially be diagnostic biomarkers for ASD, and several studies have shown the relationship between miRNAs and ASD pathogenesis. In this study, we investigated ten miRNA and mRNA expression of target genes in peripheral blood to explore a diagnostic biomarker for ASD. METHODS We recruited control and ASD subjects for the discovery cohort (n = 6, each) and replication cohort (n = 20, each). Using qPCR, miRNA and mRNA expression was measured using the SYBR green and probe methods, respectively. In-silico prediction was used for identifying target genes of miRNAs. An in vitro experiment using HEK293 cells was conducted to investigate whether miR-15b-5p modulates the predicted target genes (TGFBR3 and MYBL1). RESULTS miR-15b-5p expression indicated an increased trend in the discovery cohort (p = 0.052) and a significant upregulation in the replication cohort (p = 0.021). In-silico analysis revealed that miR-15b-5p is relevant to cell development and Wnt signaling. The decreased trends of TGFBR3 and MYBL expression were the same as in previous RNA-seq data. MiR-15b-5p positively regulated TGFBR3 expression in in vitro experiments. CONCLUSIONS Upregulated miR-15b-5p expression may represent a useful diagnostic marker of ASD subjects, and it may regulate TGFBR3 mRNA expression. These findings indicate a new perspective in the understanding of the pathogenesis of ASD.
Collapse
Affiliation(s)
- Rie Hosokawa
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Fumie Horiuchi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Center for Child Health, Behavior and Development, Ehime University Hospital, Toon 791-0295, Ehime, Japan
| | - Jun-ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
- Correspondence: ; Tel.: +81-89-960-5315; Fax: +81-89-960-5317
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
27
|
Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214329. [PMID: 36430805 PMCID: PMC9699353 DOI: 10.3390/ijms232214329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.
Collapse
|
28
|
Selective Probiotic Treatment Positively Modulates the Microbiota-Gut-Brain Axis in the BTBR Mouse Model of Autism. Brain Sci 2022; 12:brainsci12060781. [PMID: 35741667 PMCID: PMC9220969 DOI: 10.3390/brainsci12060781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022] Open
Abstract
Recent studies have shown promise for the use of probiotics in modulating behaviour through the microbiota–gut–brain axis. In the present study, we assessed the impact of two probiotic strains in mitigating autism-related symptomology in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorder (ASD). Male juvenile BTBR mice were randomized into: (1) control, (2) Lr probiotic (1 × 109 CFU/mL Lacticaseibacillus rhamnosus HA-114), and (3) Ls probiotic groups (1 × 109 CFU/mL Ligilactobacillus salivarius HA-118) (n = 18–21/group), receiving treatments in drinking water for 4 weeks. Gut microbiota profiling by 16S rRNA showed Lr, but not Ls supplementation, to increase microbial richness and phylogenetic diversity, with a rise in potential anti-inflammatory and butyrate-producing taxa. Assessing serum and brain metabolites, Lr and Ls supplementation produced distinct metabolic profiles, with Lr treatment elevating concentrations of potentially beneficial neuroactive compounds, such as 5-aminovaleric acid and choline. As mitochondrial dysfunction is often observed in ASD, we assessed mitochondrial oxygen consumption rates in the prefrontal cortex and hippocampus. No differences were observed for either treatment. Both Lr and Ls treatment reduced behavioural deficits in social novelty preference. However, no changes in hyperactivity, repetitive behaviour, and sociability were observed. Results show Lr to impart positive changes along the microbiota–gut–brain axis, exhibiting beneficial effects on selected behaviour, gut microbial diversity, and metabolism in BTBR mice.
Collapse
|
29
|
Li Q, Zhang L, Shan H, Yu J, Dai Y, He H, Li WG, Langley C, Sahakian BJ, Yao Y, Luo Q, Li F. The immuno-behavioural covariation associated with the treatment response to bumetanide in young children with autism spectrum disorder. Transl Psychiatry 2022; 12:228. [PMID: 35660740 PMCID: PMC9166783 DOI: 10.1038/s41398-022-01987-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Bumetanide, a drug being studied in autism spectrum disorder (ASD) may act to restore gamma-aminobutyric acid (GABA) function, which may be modulated by the immune system. However, the interaction between bumetanide and the immune system remains unclear. Seventy-nine children with ASD were analysed from a longitudinal sample for a 3-month treatment of bumetanide. The covariation between symptom improvements and cytokine changes was calculated and validated by sparse canonical correlation analysis. Response patterns to bumetanide were revealed by clustering analysis. Five classifiers were used to test whether including the baseline information of cytokines could improve the prediction of the response patterns using an independent test sample. An immuno-behavioural covariation was identified between symptom improvements in the Childhood Autism Rating Scale (CARS) and the cytokine changes among interferon (IFN)-γ, monokine induced by gamma interferon and IFN-α2. Using this covariation, three groups with distinct response patterns to bumetanide were detected, including the best (21.5%, n = 17; Hedge's g of improvement in CARS = 2.16), the least (22.8%, n = 18; g = 1.02) and the medium (55.7%, n = 44; g = 1.42) responding groups. Including the cytokine levels significantly improved the prediction of the best responding group before treatment (the best area under the curve, AUC = 0.832) compared with the model without the cytokine levels (95% confidence interval of the improvement in AUC was [0.287, 0.319]). Cytokine measurements can help in identifying possible responders to bumetanide in ASD children, suggesting that immune responses may interact with the mechanism of action of bumetanide to enhance the GABA function in ASD.
Collapse
Affiliation(s)
- Qingyang Li
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Lingli Zhang
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Haidi Shan
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Juehua Yu
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Center for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuan Dai
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Hua He
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Wei-Guang Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Christelle Langley
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
| | - Barbara J Sahakian
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
- Department of Psychiatry and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB21TN, UK
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China
| | - Yin Yao
- Department of Computational Biology, School of Life Sciences, Fudan University, 200438, Shanghai, China
- Human Phenome Institute, Fudan University, 201203, Shanghai, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433, Shanghai, China.
- Human Phenome Institute, Fudan University, 201203, Shanghai, China.
- Center for Computational Psychiatry, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired, Research Institute of Intelligent Complex Systems, Fudan University, 200040, Shanghai, China.
| | - Fei Li
- Department of Developmental and Behavioural Pediatric & Child Primary Care, Brain and Behavioural Research Unit of Shanghai Institute for Pediatric Research and MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
30
|
Ejlersen M, Ilieva M, Michel TM. Superoxide dismutase isozymes in cerebral organoids from autism spectrum disorder patients. J Neural Transm (Vienna) 2022; 129:617-626. [PMID: 35266053 DOI: 10.1007/s00702-022-02472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is a pervasive neurodevelopmental disorder with a substantial contribution to the global disease burden. Despite intensive research efforts, the aetiopathogenesis remains unclear. The Janus-faced antioxidant enzymes superoxide dismutase 1-3 have been implicated in initiating oxidative stress and as such may constitute a potential therapeutic target. However, no measurement has been taken in human autistic brain samples. The aim of this study is to measure superoxide dismutase 1-3 in autistic cerebral organoids as an in vitro model of human foetal neurodevelopment. Whole brain organoids were created from induced pluripotent stem cells from healthy individuals (n = 5) and individuals suffering from autism (n = 4). Using Pierce bicinchoninic acid and enzyme-linked immunosorbent assays, the protein and superoxide dismutase 1, 2, and 3 concentrations were quantified in the cerebral organoids at days 22, 32, and 42. Measurements were normalized to the protein concentration. Results represented using medians and interquartile ranges. Using Wilcoxon matched-pairs signed-rank test, an abrupt rise in the superoxide dismutase concentration was observed at day 32 and onwards. Using Wilcoxon rank-sum test, no differences were observed between healthy (SOD1: 35.56 ng/mL ± 3.46; SOD2: 2435.80 ng/mL ± 1327.00; SOD3: 1854.88 ng/mL ± 867.94) and autistic (SOD1: 32.85 ng/mL ± 5.26; SOD2: 2717.80 ng/mL ± 1889.10; SOD3: 1690.18 ng/mL ± 615.49) organoids. Cerebral organoids recapitulate many aspects of human neurodevelopment, but the diffusion restriction may render efforts in modelling differences in oxidative stress futile due to the intrinsic hypoxia and central necrosis.
Collapse
Affiliation(s)
- Morten Ejlersen
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark
| | - Mirolyuba Ilieva
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark
| | - Tanja Maria Michel
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark.
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark.
| |
Collapse
|
31
|
Panisi C, Marini M. Dynamic and Systemic Perspective in Autism Spectrum Disorders: A Change of Gaze in Research Opens to A New Landscape of Needs and Solutions. Brain Sci 2022; 12:250. [PMID: 35204013 PMCID: PMC8870276 DOI: 10.3390/brainsci12020250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022] Open
Abstract
The first step for a harmonious bio-psycho-social framework in approaching autism spectrum disorders (ASD) is overcoming the conflict between the biological and the psychosocial perspective. Biological research can provide clues for a correct approach to clinical practice, assuming that it would lead to the conceptualization of a pathogenetic paradigm able to account for epidemiologic and clinical findings. The upward trajectory in ASD prevalence and the systemic involvement of other organs besides the brain suggest that the epigenetic paradigm is the most plausible one. The embryo-fetal period is the crucial window of opportunity for keeping neurodevelopment on the right tracks, suggesting that women's health in pregnancy should be a priority. Maladaptive molecular pathways beginning in utero, in particular, a vicious circle between the immune response, oxidative stress/mitochondrial dysfunction, and dysbiosis-impact neurodevelopment and brain functioning across the lifespan and are the basis for progressive multisystemic disorders that account for the substantial health loss and the increased mortality in ASD. Therefore, the biological complexity of ASD and its implications for health requires the enhancement of clinical skills on these topics, to achieve an effective multi-disciplinary healthcare model. Well-balanced training courses could be a promising starting point to make a change.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
32
|
Pham C, Symeonides C, O'Hely M, Sly PD, Knibbs LD, Thomson S, Vuillermin P, Saffery R, Ponsonby AL. Early life environmental factors associated with autism spectrum disorder symptoms in children at age 2 years: A birth cohort study. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1864-1881. [PMID: 35012378 DOI: 10.1177/13623613211068223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LAY ABSTRACT Mounting evidence indicates the contribution of early life environmental factors in autism spectrum disorder. We aim to report the prospective associations between early life environmental factors and autism spectrum disorder symptoms in children at the age of 2 years in a population-derived birth cohort, the Barwon Infant Study. Autism spectrum disorder symptoms at the age of 2 years strongly predicted autism spectrum disorder diagnosis by the age of 4 years (area under curve = 0.93; 95% CI (0.82, 1.00)). After adjusting for child's sex and age at the time of behavioural assessment, markers of socioeconomic disadvantage, such as lower household income and lone parental status; maternal health factors, including younger maternal age, maternal pre-pregnancy body mass index, higher gestational weight gain and prenatal maternal stress; maternal lifestyle factors, such as prenatal alcohol and environmental air pollutant exposures, including particulate matter < 2.5 μm at birth, child secondhand tobacco smoke at 12 months, dampness/mould and home heating with oil, kerosene or diesel heaters at 2 years postnatal. Lower socioeconomic indexes for area, later birth order, higher maternal prenatal depression and maternal smoking frequency had a dose-response relationship with autism spectrum disorder symptoms. Future studies on environmental factors and autism spectrum disorder should consider the reasons for the socioeconomic disparity and the combined impact of multiple environmental factors through common mechanistic pathways.
Collapse
Affiliation(s)
- Cindy Pham
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Peter D Sly
- The University of Queensland, South Brisbane, Australia
| | | | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- Deakin University, Geelong, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Australia
- The University of Melboure, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The University of Melboure, Parkville, Australia
| |
Collapse
|
33
|
Bairwa SC, Shaw CA, Kuo M, Yoo J, Tomljenovic L, Eidi H. Cytokines profile in neonatal and adult wild-type mice post-injection of U. S. pediatric vaccination schedule. Brain Behav Immun Health 2021; 15:100267. [PMID: 34589773 PMCID: PMC8474652 DOI: 10.1016/j.bbih.2021.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first 18 months of life according to the U. S. pediatric vaccination schedule. Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a mouse model. In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in postnatal life and compared with placebo controls. Materials and methods Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine × 3 (V3) and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cytokines were analyzed: GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-α, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable. Results IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-α, IL-10, MCP-1, GM-CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group and CM-CSF levels in V1 and V3 group and decrease in TNF-α levels in V1 group were observed in treated males as compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-α in V3 group, and IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-α levels were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The changes in levels of most tested cytokines were altered between the early and the late postnatal assays. Conclusions IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67. These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole vaccine administration supporting our recently published observations regarding the behavioral abnormalities in the same mice. These observations support the view that the administration of whole pediatric vaccines in a neonatal period may impact at least short-term CNS functions in mice.
Collapse
Affiliation(s)
- S C Bairwa
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Tomljenovic
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,French Agency for Veterinary Medicinal Products (ANMV) - French Agency for Food, Environmental and Occupational Health Safety (ANSES), Fougères, France
| |
Collapse
|
34
|
Krigsman A, Walker SJ. Gastrointestinal disease in children with autism spectrum disorders: Etiology or consequence? World J Psychiatry 2021; 11:605-618. [PMID: 34631464 PMCID: PMC8474996 DOI: 10.5498/wjp.v11.i9.605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic gastrointestinal (GI) symptoms and disorders are common in children with autism spectrum disorder and have been shown to be significantly correlated with the degree of behavioral and cognitive impairment. In this unique population, GI symptoms often arise very early in development, during infancy or toddlerhood, and may be misdiagnosed - or not diagnosed at all – due in part to the challenges associated with recognition of symptoms in a minimally or non-communicative child. Evidence demonstrating that the gut-brain-axis can communicate gut dysbiosis and systemic immune dysregulation in a bidirectional manner raises the question as to whether an untreated gastrointestinal disorder can directly impact neurodevelopment or, conversely, whether having a neurodevelopmental disorder predisposes a child to chronic GI issues. From the data presented in this mini review, we conclude that the preponderance of available evidence would suggest the former scenario is more strongly supported.
Collapse
Affiliation(s)
- Arthur Krigsman
- Pediatric Gastroenterology Resources of New York and Texas, Georgetown, TX 78628, United States
| | - Stephen J Walker
- Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, United States
| |
Collapse
|
35
|
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the "Omes" in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:695873. [PMID: 34290588 PMCID: PMC8289253 DOI: 10.3389/fnmol.2021.695873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Metal dyshomeostasis plays a significant role in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorders (ASD), and many more. Like studies investigating the proteome, transcriptome, epigenome, microbiome, etc., for years, metallomics studies have focused on data from their domain, i.e., trace metal composition, only. Still, few have considered the links between other "omes," which may together result in an individual's specific pathologies. In particular, ASD have been reported to have multitudes of possible causal effects. Metallomics data focusing on metal deficiencies and dyshomeostasis can be linked to functions of metalloenzymes, metal transporters, and transcription factors, thus affecting the proteome and transcriptome. Furthermore, recent studies in ASD have emphasized the gut-brain axis, with alterations in the microbiome being linked to changes in the metabolome and inflammatory processes. However, the microbiome and other "omes" are heavily influenced by the metallome. Thus, here, we will summarize the known implications of a changed metallome for other "omes" in the body in the context of "omics" studies in ASD. We will highlight possible connections and propose a model that may explain the so far independently reported pathologies in ASD.
Collapse
Affiliation(s)
- Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
36
|
Zhao H, Zhang H, Liu S, Luo W, Jiang Y, Gao J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry 2021; 12:670200. [PMID: 34276441 PMCID: PMC8283413 DOI: 10.3389/fpsyt.2021.670200] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Although increasing evidence suggests an association between alterations in peripheral cytokines and autism spectrum disorder (ASD), a consensus is lacking. To determine whether abnormal cytokine profiles in peripheral blood were associated with ASD, we performed this systemic review and meta-analysis. Methods: A systematic literature search was conducted through the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases up to 4 June 2020. Clinical studies exploring the aberration of peripheral cytokines of autistic patients and controls were included in our meta-analysis. We pooled extracted data using fixed- or random-effects models based on heterogeneity tests with Comprehensive Meta-analysis software. We converted standardized mean differences to Hedges' g statistic to obtain the effect sizes adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also carried out. Results: Sixty-one articles (326 studies) were included to assess the association between 76 cytokines and ASD. We conducted our meta-analysis based on 37 cytokines with 289 studies. Since there were fewer than three studies on any of the other 39 cytokines, we only provided basic information for them. The levels of peripheral IL-6, IL-1β, IL-12p70, macrophage migration inhibitory factor (MIF), eotaxin-1, monocyte chemotactic protein-1 (MCP-1), IL-8, IL-7, IL-2, IL-12, tumor necrosis factor-α (TNF-α), IL-17, and IL-4 were defined as abnormal cytokines in the peripheral blood of ASD patients compared with controls. The other 24 cytokines did not obviously change in ASD patients compared with the controls. Conclusions: The findings of our meta-analysis strengthen the evidence for an abnormal cytokine profile in ASD. These abnormal cytokines may be potential biomarkers for the diagnosis and treatment of ASD in the future.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Rehabilitation Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Hongqi Zhang
- Department of Pulmonary and Critical Care Medicine, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Shijie Liu
- The 947th Hospital of Army, Kashi, China
| | - Wulin Luo
- Department of Medical Psychology and Neurology, The 947th Hospital of Army, Kashi, China
| | - Yongfeng Jiang
- Department of Rehabilitation Medicine, The 947th Hospital of Army, Kashi, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
37
|
Meng W, Huan Y, Gao Y. Urinary proteome profiling for children with autism using data-independent acquisition proteomics. Transl Pediatr 2021; 10:1765-1778. [PMID: 34430425 PMCID: PMC8349970 DOI: 10.21037/tp-21-193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism is a complex neurodevelopmental disorder. Objective and reliable biomarkers are crucial for the clinical diagnosis of autism. Urine can accumulate early changes of the whole body and is a sensitive source for disease biomarkers. METHODS The data-independent acquisition (DIA) strategy was used to identify differential proteins in the urinary proteome between autistic and non-autistic children aged 3-7 years. Receiver operating characteristic (ROC) curves were developed to evaluate the diagnostic performance of differential proteins. RESULTS A total of 118 differential proteins were identified in the urine between autistic and non-autistic children, of which 18 proteins were reported to be related to autism. Randomized grouping statistical analysis indicated that 91.5% of the differential proteins were reliable. Functional analysis revealed that some differential proteins were associated with axonal guidance signaling, endocannabinoid developing neuron pathway, synaptic long-term depression, agrin interactions at neuromuscular junction, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling and synaptogenesis signaling pathway. The combination of cadherin-related family member 5 (CDHR5) and vacuolar protein sorting-associated protein 4B (VPS4B) showed the best discriminative performance between autistic and non-autistic children with an area under the curve (AUC) value of 0.987. CONCLUSIONS The urinary proteome could distinguish between autistic children and non-autistic children. This study will provide a promising approach for future biomarker research of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wenshu Meng
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuhang Huan
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
38
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
39
|
Saad K, Abdallah AEM, Abdel-Rahman AA, Al-Atram AA, Abdel-Raheem YF, Gad EF, Abo-Elela MGM, Elserogy YM, Elhoufey A, Nigm DA, Nagiub Abdelsalam EM, Alruwaili TAM. Polymorphism of interleukin-1β and interleukin-1 receptor antagonist genes in children with autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109999. [PMID: 32526258 DOI: 10.1016/j.pnpbp.2020.109999] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
In this study, we first investigated interleukin-1 beta (IL-1β) and IL-1 receptor antagonist (IL-1RA) levels in a cohort of Egyptian children with autism spectrum disorder (ASD) and in healthy controls. Second, we examined the single-nucleotide polymorphisms (SNPs) at positions -31 and - 511 of the IL-1β gene promoter and IL1RA and assessed the association between IL1B and IL1RA polymorphisms with ASD. We examined IL1β promoter polymorphism at -511 (IL-1β-511) and - 31 (IL-1β-31) and IL1RA gene polymorphism in 80 children with ASD and 60 healthy children. The children with ASD had significantly higher levels of IL-1β and IL-1RA than the controls. The children with ASD also had significantly higher frequencies of homozygous (CC) and heterozygous (TC) genotype variants of IL-1β-511, and IL-1RA than the controls. Moreover, the frequency of the IL-1β-511 allele (C) was higher in the ASD group than in the controls (p = .001). The homozygous and heterozygous variants of IL-1RA allele II were also significantly higher in the ASD group than in the control group. There was no significant association between the IL-1β-31 genotype and autism classes. However, there were significant differences in the distribution of the IL-1RA heterogeneous genotype and allele II among children with severe autism. The inflammatory role of cytokines has been implicated in a variety of neuropsychiatric pathologies, including autism. Our data show alterations in the IL-1β system, with abnormally increased serum levels of IL-1β and IL-1RA in the children with ASD. Further, polymorphisms in the IL-1β-511 and IL-1RA genotype variants correlated positively with autism severity and behavioral abnormalities. IL-1β-511 and IL-1RA gene polymorphisms could impact ASD risk and may be used as potential biomarkers of ASD. Variations in the IL-1β and IL-1RA systems may have a role in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Ahmed A Abdel-Rahman
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdulrahman A Al-Atram
- Department of Psychiatry, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | | | - Eman Fathallah Gad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Yasser M Elserogy
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Egypt; Department of Community Health Nursing, Alddrab University College, Jazan University, Saudi Arabia
| | - Dalia A Nigm
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
40
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|
41
|
Yin F, Wang H, Liu Z, Gao J. Association between peripheral blood levels of C-reactive protein and Autism Spectrum Disorder in children: A systematic review and meta-analysis. Brain Behav Immun 2020; 88:432-441. [PMID: 32272227 DOI: 10.1016/j.bbi.2020.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION In the past five years, a growing number of studies have tried to illustrate the association between the peripheral blood level of C-reactive protein (CRP) and Autism Spectrum Disorders (ASD). However, the results have been inconsistent. To assess whether abnormal CRP in peripheral blood was associated with ASD, we conducted a systematic review and meta-analysis. METHODS A systematic literature search was performed using the Embase, PubMed, Web of Knowledge, PsycINFO, and Cochrane databases through August 27, 2019. Reference lists were also checked by hand-searching. Clinical studies exploring CRP concentration in the peripheral blood of autistic children and healthy controls were included in our meta-analysis. Overlapping samples were excluded. We pooled obtained data using a fixed- or random-effect model based on a heterogeneity test with Comprehensive Meta-Analysis software and STATA software. Standardized mean differences were converted to Hedges' g statistic in order to obtain the effect size adjusted for sample size. Subgroup analyses, sensitivity analyses, meta-regression, and publication bias tests were also undertaken. RESULTS Nine studies with 592 ASD children and 604 healthy children were included in our meta-analysis. Significantly elevated CRP levels in peripheral blood were found in ASD children compared with healthy controls (Hedges' g = 0.527, 95% CI: 0.224-0.830, p = 0.001). Subgroup analyses based on sample types and ethnicity also showed similar results, except for the plasma subgroup. There was also a significant association between peripheral CRP concentration and ASD after removing the studies identified by Galbraith plots. The results of the sensitivity analysis revealed that no single study could reverse our results. Meta-regression analyses revealed that the gender of autistic children had a moderating effect on the outcome of the meta-analysis. In addition, no obvious publication bias was found in the meta-analysis. CONCLUSIONS AND RELEVANCE In our study, peripheral CRP levels were significantly elevated in autistic children compared with healthy children. These results may provide us some new insights about ASD.
Collapse
Affiliation(s)
- Fangna Yin
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Hongbing Wang
- Department of Radiotherapy Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Zeya Liu
- Department of Blood Transfusion, China-Japan Friendship Hospital, Beijing 100029, China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
42
|
Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta 2020; 502:41-54. [DOI: 10.1016/j.cca.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
|
43
|
Tsafaras GP, Ntontsi P, Xanthou G. Advantages and Limitations of the Neonatal Immune System. Front Pediatr 2020; 8:5. [PMID: 32047730 PMCID: PMC6997472 DOI: 10.3389/fped.2020.00005] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
During early post-natal life, neonates must adjust to the transition from the sheltered intra-uterine environment to the microbe-laden external world, wherein they encounter a constellation of antigens and the colonization by the microbiome. At this vulnerable stage, neonatal immune responses are considered immature and present significant differences to those of adults. Pertinent to innate immunity, functional and quantitative deficiencies in antigen-presenting cells and phagocytes are often documented. Exposure to environmental antigens and microbial colonization is associated with epigenetic immune cell reprogramming and activation of effector and regulatory mechanisms that ensure age-depended immune system maturation and prevention of tissue damage. Moreover, neonatal innate immune memory has emerged as a critical mechanism providing protection against infectious agents. Still, in neonates, inexperience to antigenic exposure, along with enhancement of tissue-protective immunosuppressive mechanisms are often associated with severe immunopathological conditions, including sepsis and neurodevelopmental disorders. Despite significant advances in the field, adequate vaccination in newborns is still in its infancy due to elemental restrictions associated also with defective immune responses. In this review, we provide an overview of neonatal innate immune cells, highlighting phenotypic and functional disparities with their adult counterparts. We also discuss the effects of epigenetic modifications and microbial colonization on the regulation of neonatal immunity. A recent update on mechanisms underlying dysregulated neonatal innate immunity and linked infectious and neurodevelopmental diseases is provided. Understanding of the mechanisms that augment innate immune responsiveness in neonates may facilitate the development of improved vaccination protocols that can protect against pathogens and organ damage.
Collapse
Affiliation(s)
- George P Tsafaras
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polyxeni Ntontsi
- Second Respiratory Medicine Department, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|