1
|
Poggianella M, Bernedo R, Oloketuyi S, de Marco A. Nanobodies Selectively Binding to the Idiotype of a Dengue Virus Neutralizing Antibody Do Not Necessarily Mimic the Viral Epitope. Biomolecules 2023; 13:biom13030551. [PMID: 36979486 PMCID: PMC10046864 DOI: 10.3390/biom13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Vaccination against dengue virus is challenged by the fact that a generic immune response can induce antibody-dependent-enhancement (ADE) in secondary infections. Only some antibodies targeting a quaternary epitope formed by the dimerization of the virus protein E possess sufficient neutralizing capacity. Therefore, the immunization with anti-idiotypic antibodies of neutralizing antibodies might represent a safe vaccination strategy. Starting from a large pre-immune library, we succeeded in isolating a wide set of anti-idiotypic nanobodies characterized by selective and strong binding to the paratope of the neutralizing antibody 1C10. However, the mice immunized with such constructs did not produce effective antibodies, despite at least some of them eliciting an immune response selective for the nanobody variable regions. The results suggest that complex conformational epitopes might be difficult to be recreated by anti-idiotypic structures. The selection process of the anti-idiotypic candidates might be optimized by applying epitope mapping and modeling approaches aimed at identifying the key residues that is necessary to bind to trigger selective immune response.
Collapse
Affiliation(s)
- Monica Poggianella
- Molecular Immunology Laboratory, International Centre for Genetic Engineering and Biotechnolgy, Padriciano 99, 34149 Trieste, Italy
| | - Robert Bernedo
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Sandra Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, 5000 Nova Gorica, Slovenia
| |
Collapse
|
2
|
Wang M, Wei L, Xiang H, Ren B, Liu X, Jiang L, Yang N, Shi J. A megadiverse naïve library derived from numerous camelids for efficient and rapid development of VHH antibodies. Anal Biochem 2022; 657:114871. [PMID: 36108795 DOI: 10.1016/j.ab.2022.114871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
Abstract
The field of antibody development is under pressure to meet rising demands for speed, cost-effectiveness, efficacy, reliability, and large-scale production. It is costly and time-consuming to immunize animals and build a single-domain antibody (sdAb) library for each target. Using the variable domain (VHH) of heavy-chain only antibodies (HcAbs) derived from blood samples of 75 non-immunized camelid animals (51 alpacas, 13 llamas, 11 Bactrian camels), and spleens from two Bactrian camels, a naïve sdAb library with extensive megadiversity and reusability was constructed. The library was evaluated using next-generation DNA sequencing (NGS) and was found to contain hundreds of billions of unique clones. To confirm the availability of target-specific VHHs, a naive library was screened for a variety of targets. At least two VHH candidates were extracted for each target using a 20-day selection pipeline. Some binders had ultrahigh potencies, with binding affinities in the nanomolar range. This naïve library, in particular, offers the possibility of acquiring unique antibodies targeting antigens of interest with low feasible dissociation constant (kD) without the time, effort, and price associated in producing antibodies in animals via antigen injection. Overall, the study shows that the megadiverse naïve library provides a rapid, adaptable, and easy platform for antibody creation, emphasizing its therapeutic and diagnostic implications.
Collapse
Affiliation(s)
- Meiniang Wang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Likun Wei
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; Biotechnology and Health Centre, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Bingzhao Ren
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaopan Liu
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Lin Jiang
- BGI-Shenzhen, Shenzhen, 518103, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen, 518103, China; China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China; Complete Genomics, Inc., 2904 Orchard Parkway, San Jose, CA, 95134, USA.
| | - Jiahai Shi
- Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Filipović L, Spasojević M, Prodanović R, Korać A, Matijaševic S, Brajušković G, de Marco A, Popović M. Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. N Biotechnol 2022; 69:36-48. [PMID: 35301156 DOI: 10.1016/j.nbt.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/11/2022] [Accepted: 03/06/2022] [Indexed: 01/30/2023]
Abstract
Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Milica Popović
- University of Belgrade-Faculty of Chemistry, Belgrade, Serbia.
| |
Collapse
|
4
|
Liu B, Yang D. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. Int J Mol Sci 2022; 23:ijms23031482. [PMID: 35163405 PMCID: PMC8835997 DOI: 10.3390/ijms23031482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Nanobodies, or VHHs, refer to the antigen-binding domain of heavy-chain antibodies (HCAbs) from camelids. They have been widely used as research tools for protein purification and structure determination due to their small size, high specificity, and high stability, overcoming limitations with conventional antibody fragments. However, animal immunization and subsequent retrieval of antigen-specific nanobodies are expensive and complicated. Construction of synthetic nanobody libraries using DNA oligonucleotides is a cost-effective alternative for immunization libraries and shows great potential in identifying antigen-specific or even conformation-specific nanobodies. This review summarizes and analyses synthetic nanobody libraries in the current literature, including library design and biopanning methods, and further discusses applications of antigen-specific nanobodies obtained from synthetic libraries to research.
Collapse
|
5
|
Slater SL, Mavridou DAI. Harnessing the potential of bacterial oxidative folding to aid protein production. Mol Microbiol 2021; 116:16-28. [PMID: 33576091 DOI: 10.1111/mmi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Protein folding is central to both biological function and recombinant protein production. In bacterial expression systems, which are easy to use and offer high protein yields, production of the protein of interest in its native fold can be hampered by the limitations of endogenous posttranslational modification systems. Disulfide bond formation, entailing the covalent linkage of proximal cysteine amino acids, is a fundamental posttranslational modification reaction that often underpins protein stability, especially in extracytoplasmic environments. When these bonds are not formed correctly, the yield and activity of the resultant protein are dramatically decreased. Although the mechanism of oxidative protein folding is well understood, unwanted or incorrect disulfide bond formation often presents a stumbling block for the expression of cysteine-containing proteins in bacteria. It is therefore important to consider the biochemistry of prokaryotic disulfide bond formation systems in the context of protein production, in order to take advantage of the full potential of such pathways in biotechnology applications. Here, we provide a critical overview of the use of bacterial oxidative folding in protein production so far, and propose a practical decision-making workflow for exploiting disulfide bond formation for the expression of any given protein of interest.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Soler MA, Medagli B, Wang J, Oloketuyi S, Bajc G, Huang H, Fortuna S, de Marco A. Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region. Biomolecules 2021; 11:163. [PMID: 33530572 PMCID: PMC7911018 DOI: 10.3390/biom11020163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022] Open
Abstract
In vivo clinical applications of nanobodies (VHHs) require molecules that induce minimal immunoresponse and therefore possess sequences as similar as possible to the human VH domain. Although the relative sequence variability in llama nanobodies has been used to identify scaffolds with partially humanized signature, the transformation of the Camelidae hallmarks in the framework2 still represents a major problem. We assessed a set of mutants in silico and experimentally to elucidate what is the contribution of single residues to the VHH stability and how their combinations affect the mutant nanobody stability. We described at molecular level how the interaction among residues belonging to different structural elements enabled a model llama nanobody (C8WT, isolated from a naïve library) to be functional and maintain its stability, despite the analysis of its primary sequence would classify it as aggregation-prone. Five chimeras formed by grafting CDRs isolated from different nanobodies into C8WT scaffold were successfully expressed as soluble proteins and both tested clones preserved their antigen binding specificity. We identified a nanobody with human hallmarks that seems suitable for humanizing selected camelid VHHs by grafting heterologous CDRs in its scaffold and could serve for the preparation of a synthetic library of human-like single domains.
Collapse
Affiliation(s)
- Miguel A. Soler
- CONCEPT Lab, Italian Institute of Technology (IIT), 16152 Genova, Italy
| | - Barbara Medagli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (B.M.); (S.F.)
| | - Jiewen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; (J.W.); (H.H.)
| | - Sandra Oloketuyi
- Lab of Environmental and Life Sciences, University of Nova Gorica, 5000 Rožna Dolina-Nova Gorica, Slovenia;
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - He Huang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; (J.W.); (H.H.)
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (B.M.); (S.F.)
| | - Ario de Marco
- Lab of Environmental and Life Sciences, University of Nova Gorica, 5000 Rožna Dolina-Nova Gorica, Slovenia;
| |
Collapse
|
7
|
Abstract
Recombinant antibodies in single-domain format (VHHs) have been recently used for stabilizing antigens during their purification and crystallization. VHHs are also known for their structural stability and a significant part of them share the characteristic of remaining functionally folded also in the absence of the internal disulfide bond. Therefore, they can be expressed as intrabodies in the cell cytoplasm as well as in the bacterial periplasm. This evidence means that, in theory, VHHs can be co-expressed with their antigens independently on the redox constrains. It has also suggested the idea of using co-expression and co-purification of antigen-antibody complexes for maximizing the stabilizing effect of the antibody on its antigen during all the production steps for both cytoplasmic and periplasmic expression strategies.
Collapse
|
8
|
Tu Z, Huang X, Fu J, Hu N, Zheng W, Li Y, Zhang Y. Landscape of variable domain of heavy-chain-only antibody repertoire from alpaca. Immunology 2020; 161:53-65. [PMID: 32506493 DOI: 10.1111/imm.13224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
Heavy-chain-only antibodies (HCAbs), which are devoid of light chains, have been found naturally occurring in various species including camelids and cartilaginous fish. Because of their high thermostability, refoldability and capacity for cell permeation, the variable regions of the heavy chain of HCAbs (VHHs) have been widely used in diagnosis, bio-imaging, food safety and therapeutics. Most immunogenetic and functional studies of HCAbs are based on case studies or a limited number of low-throughput sequencing data. A complete picture derived from more abundant high-throughput sequencing (HTS) data can help us gain deeper insights. We cloned and sequenced the full-length coding region of VHHs in Alpaca (Vicugna pacos) via HTS in this study. A new pipeline was developed to conduct an in-depth analysis of the HCAb repertoires. Various critical features, including the length distribution of complementarity-determining region 3 (CDR3), V(D)J usage, VJ pairing, germline-specific mutation rate and germline-specific scoring profiles (GSSPs), were systematically characterized. The quantitative data show that V(D)J usage and VHH recombination are highly biased. Interestingly, we found that the average CDR3 length of classical VHHs is longer than that of non-classical ones, whereas the mutation rates are similar in both kinds of VHHs. Finally, GSSPs were built to quantitatively describe and compare sequences that originate from each VJ pair. Overall, this study presents a comprehensive landscape of the HCAb repertoire, which can provide useful guidance for the modeling of somatic hypermutation and the design of novel functional VHHs or VHH repertoires via evolutionary profiles.
Collapse
Affiliation(s)
- Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| | - Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jinheng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Na Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China.,Maternal and Child Medical Research Institute, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China.,Jiangxi-OAI Joint Research Institution, Nanchang University, Nanchang, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Abstract
Camelid-derived nanobodies are versatile tools for research, diagnostics, and therapeutics. Certain nanobodies can function as intrabodies and bind antigens within the eukaryotic cytosol. This capability is valuable for the development of intracellular probes and targeted gene therapies. Consequently, many attempts have been made to produce nanobodies that are intracellularly stable and resistant to aggregation. Pursuit of these intrabodies generally focuses on library design or nanobody selection method. Recent variations of library design have yielded diverse libraries capable of producing nanobodies against a wide variety of antigens. Novel screening methods have also been developed, yielding nanobodies with high affinity for intracellular antigens. These screening techniques can have advantages over phage display methods when nanobodies against intracellular antigens must be rapidly produced. Some intracellular screening methods convey the additional advantage of selecting for other desired intrabody characteristics, such as antiviral action or conditional stability. This review summarizes the recent developments in both library design and selection methods aimed at producing intrabodies.
Collapse
Affiliation(s)
- James Woods
- 1 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
10
|
Li T, Vandesquille M, Bay S, Dhenain M, Delatour B, Lafaye P. Selection of similar single domain antibodies from two immune VHH libraries obtained from two alpacas by using different selection methods. Immunol Lett 2017; 188:89-95. [PMID: 28690185 DOI: 10.1016/j.imlet.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Accepted: 07/02/2017] [Indexed: 12/16/2022]
Abstract
The two most used methods to select camelid single-domain antibody-fragments (VHHs) are: displaying their repertoires on the surface of filamentous bacteriophages (phage display) or linking them to ribosomes (ribosome display). In this study, we compared specific VHHs isolated from two different immune libraries coming from two different alpacas by using these two selection methods. Three anti-GFAP (glial fibrillary acidic protein) VHHs were derived from an immune library obtained by ribosome display after immunization of one alpaca with purified GFAP, a protein expressed by astroglial cells. In parallel, three other anti-GFAP VHHs were derived from an immune library by phage display after immunization of another alpaca with a human brain tissue extract containing GFAP. All the VHHs were closely related and one VHH was found to be strictly identical in both studies. This highlights the selection pressure exerted by the camelid immune system to shape the paratope of an antibody against a defined antigen.
Collapse
Affiliation(s)
- Tengfei Li
- Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, Inserm U 1127/CNRS UMR 7225, Paris, France; Université Paris Diderot-Paris 7, Paris, France
| | | | - Sylvie Bay
- Institut Pasteur, Unité de Chimie des Biomolécules, Paris, France; CNRS UMR 3523, Paris, France
| | - Marc Dhenain
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), MIRCen, CNRS, Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Benoît Delatour
- Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, Inserm U 1127/CNRS UMR 7225, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps, Paris, France.
| |
Collapse
|
11
|
Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. eLife 2016; 5. [PMID: 27434673 PMCID: PMC4985285 DOI: 10.7554/elife.16228] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. DOI:http://dx.doi.org/10.7554/eLife.16228.001 Antibodies are proteins that form part of an animal’s immune system and can identify and help eradicate infections. These proteins are also needed at many stages in biological research and represent one of the most promising tools in medical applications, from diagnostics to treatments. Traditionally, antibodies have been collected from animals that had been previously injected with a target molecule that the antibodies must recognize. An alternative strategy that uses bacteria and bacteria-infecting viruses instead of animals was developed several decades ago and allows researchers to obtain antibodies more quickly. However, the majority of the scientific community view these “in vitro selected antibodies” as inferior to those produced via the more traditional approach. Moutel, Bery et al. set out to challenge this widespread opinion, using a smaller kind of antibody known as nanobodies. The proteins were originally found in animals like llamas and camels and are now widely used in biological research. One particularly stable nanobody was chosen to form the backbone of the in vitro antibodies, and the DNA that encodes this nanobody was altered to make the protein more similar to human antibodies. Moutel, Bery et al. then changed the DNA sequence further to make billions of different versions of the nanobody, each one slightly different from the next in the region that binds to the target molecules. Transferring this DNA into bacteria resulted in a library (called the NaLi-H1 library) of bacterial clones that produce the nanobodies displayed at the surface of bacteria-infecting viruses. Moutel, Bery et al. then screened this library against various target molecules, including some from tumor cells, and showed that the fully in vitro selected antibodies worked just as well as natural antibodies in a number of assays. The in vitro antibodies could even be used to track, or inactivate, proteins within living cells. The NaLi-H1 library will help other researchers obtain new antibodies that bind strongly to their targets. The approaches developed to create the library could also see more people decide to create their own synthetic libraries, which would accelerate the identification of new antibodies in a way that is cheaper and requires fewer experiments to be done using animals. These in vitro selected antibodies could help to advance both fundamental and medical research. DOI:http://dx.doi.org/10.7554/eLife.16228.002
Collapse
Affiliation(s)
- Sandrine Moutel
- Institut Curie, PSL Research University, Paris, France.,CNRS UMR144, Paris, France.,Translational Research Department, Institut Curie, Paris, France
| | - Nicolas Bery
- Inserm, UMR 1037-CRCT, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Laura Keller
- Inserm, UMR 1037-CRCT, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université Toulouse III-Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Toulouse, France
| | - Emilie Lemesre
- Institut Curie, PSL Research University, Paris, France.,CNRS UMR144, Paris, France
| | - Ario de Marco
- Institut Curie, PSL Research University, Paris, France
| | - Laetitia Ligat
- Le Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, plateau de protéomique, Toulouse, France
| | | | - Gilles Favre
- Inserm, UMR 1037-CRCT, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université Toulouse III-Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Toulouse, France
| | - Aurélien Olichon
- Inserm, UMR 1037-CRCT, Toulouse, France.,Faculté des Sciences Pharmaceutiques, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Franck Perez
- Institut Curie, PSL Research University, Paris, France.,CNRS UMR144, Paris, France
| |
Collapse
|
12
|
Gao X, Hu X, Tong L, Liu D, Chang X, Wang H, Dang R, Wang X, Xiao S, Du E, Yang Z. Construction of a camelid VHH yeast two-hybrid library and the selection of VHH against haemagglutinin-neuraminidase protein of the Newcastle disease virus. BMC Vet Res 2016; 12:39. [PMID: 26920806 PMCID: PMC4769559 DOI: 10.1186/s12917-016-0664-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Newcastle disease (ND), which is caused by the Newcastle disease virus (NDV), is one of the most important avian diseases in poultry. Since its discovery in 1926, ND has caused great economic losses to the world poultry industry and remains a threat to chickens and wild birds. Although a stringent vaccination policy is widely adopted to control ND, ND outbreaks still occur, and virulent NDV is sporadically isolated from chickens and wild birds. To study the pathogenesis of ND and provide tools to prevent its prevalence, novel antibody fragments should be developed. The variable domains of the heavy chain of the heavy-chain antibodies (VHH) are the smallest naturally occurring antibodies derived from camelid heavy-chain antibodies. The comparatively small size, high affinity, high solubility, low immunogenicity and ability to bind epitopes inaccessible to conventional antibodies of VHH make them ideal candidates for a considerable number of therapeutic and biotechnological applications. However, an anti-NDV VHH has not been reported to date. RESULTS In this study, a VHH yeast two-hybrid library was constructed from NDV vaccine immunized C. bactrianus, and seven VHH fragments to the haemagglutinin-neuraminidase (HN) protein of NDV were successfully screened and characterized for the first time. These selected VHH clones were all expressed as soluble protein in E. coli. ELISA, dot blot, immunocytochemistry and pull down results showed that the screened VHHs could interact with NDV virion, among which five had neutralizing activity. In addition, the seven VHHs could inhibit the haemagglutination activity of different NDV strains. CONCLUSIONS We constructed an NDV-immunized VHH yeast two-hybrid library and screened and characterized seven VHHs targeting NDV HN protein for the first time. The seven VHHs may have great potential for NDV diagnosis, pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Xiaolong Gao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Xiangyun Hu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Lina Tong
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Dandan Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Xudong Chang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Haixin Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, P. R. China.
| |
Collapse
|
13
|
Rossotti MA, Pirez M, Gonzalez-Techera A, Cui Y, Bever CS, Lee KSS, Morisseau C, Leizagoyen C, Gee S, Hammock BD, González-Sapienza G. Method for Sorting and Pairwise Selection of Nanobodies for the Development of Highly Sensitive Sandwich Immunoassays. Anal Chem 2015; 87:11907-14. [PMID: 26544909 PMCID: PMC4666776 DOI: 10.1021/acs.analchem.5b03561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single domain heavychain binders (nanobodies) obtained from camelid antibody libraries hold a great promise for immunoassay development. However, there is no simple method to select the most valuable nanobodies from the crowd of positive clones obtained after the initial screening. In this paper, we describe a novel nanobody-based platform that allows comparison of the reactivity of hundreds of clones with the labeled antigen, and identifies the best nanobody pairs for two-site immunoassay development. The output clones are biotinylated in vivo in 96-well culture blocks and then used to saturate the biotin binding capacity of avidin coated wells. This standardizes the amount of captured antibody allowing their sorting by ranking their reactivity with the labeled antigen. Using human soluble epoxide hydrolase (sEH) as a model antigen, we were able to classify 96 clones in four families and confirm this classification by sequencing. This provided a criterion to select a restricted panel of five capturing antibodies and to test each of them against the rest of the 96 clones. The method constitutes a powerful tool for epitope binning, and in our case allowed development of a sandwich ELISA for sEH with a detection limit of 63 pg/mL and four log dynamic range, which performed with excellent recovery in different tissue extracts. This strategy provides a systematic way to test nanobody pairwise combinations and would have a broad utility for the development of highly sensitive sandwich immunoassays.
Collapse
Affiliation(s)
- Martín A. Rossotti
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay
| | - Macarena Pirez
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay
| | - Andres Gonzalez-Techera
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Instituto de Higiene, UDELAR, Montevideo, Uruguay
| | - Yongliang Cui
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Candace S. Bever
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Kin S. S. Lee
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | | | - Shirley Gee
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | | |
Collapse
|
14
|
Miyazaki N, Kiyose N, Akazawa Y, Takashima M, Hagihara Y, Inoue N, Matsuda T, Ogawa R, Inoue S, Ito Y. Isolation and characterization of antigen-specific alpaca (Lama pacos) VHH antibodies by biopanning followed by high-throughput sequencing. J Biochem 2015; 158:205-15. [DOI: 10.1093/jb/mvv038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
|
15
|
Wang SM, He X, Li N, Yu F, Hu Y, Wang LS, Zhang P, Du YK, Du SS, Yin ZF, Wei YR, Mulet X, Coia G, Weng D, He JH, Wu M, Li HP. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting. Int J Nanomedicine 2015; 10:2857-69. [PMID: 25926731 PMCID: PMC4403696 DOI: 10.2147/ijn.s77268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery.
Collapse
Affiliation(s)
- Shan-Mei Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xian He
- School of Medicine, Suzhou University, SuZhou, People's Republic of China
| | - Nan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Tongji University, Shanghai, People's Republic of China
| | - Yang Hu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Liu-Sheng Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Peng Zhang
- Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yu-Kui Du
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shan-Shan Du
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhao-Fang Yin
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Ya-Ru Wei
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xavier Mulet
- CSIRO (Commonwealth Scientific and Industrial Research) Materials Science and Engineering, Clayton
| | - Greg Coia
- CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Tongji University, Shanghai, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Hui-Ping Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
17
|
De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 2014; 32:263-70. [PMID: 24698358 DOI: 10.1016/j.tibtech.2014.03.001] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 01/25/2023]
Abstract
Since the serendipitous discovery 20 years ago of bona fide camelid heavy-chain antibodies, their single-domain antigen-binding fragments, known as VHHs or nanobodies, have received a progressively growing interest. As a result of the beneficial properties of these stable recombinant entities, they are currently highly valued proteins for multiple applications, including fundamental research, diagnostics, and therapeutics. Today, with the original patents expiring, even more academic and industrial groups are expected to explore innovative VHH applications. Here, we provide a thorough overview of novel implementations of VHHs as research and diagnostic tools, and of the recently evaluated production platforms for several VHHs and VHH-derived antibody formats.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Serge Muyldermans
- Structural Biology Research Center, VIB, 1050 Brussel, Belgium; Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
18
|
Recombinant polypeptide production in E. coli: towards a rational approach to improve the yields of functional proteins. Microb Cell Fact 2013; 12:101. [PMID: 24176192 PMCID: PMC3832250 DOI: 10.1186/1475-2859-12-101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/30/2013] [Indexed: 11/16/2022] Open
Abstract
The development of complementary technologies enabled the successful production of recombinant polypeptides in bacteria and opened to biology researchers new avenues as obtaining suitable amounts of proteins necessary for their experimental work became easy, fast, and inexpensive. Nevertheless, the recombinant approach remained somehow unpredictable, since many constructs resisted to apparent production or accumulated as aggregates. Several factors and physical/chemical conditions that could improve the accumulation of native-like protein were identified. At the same time, it was acknowledged that the outcome of most of them was erratic and that almost any protein required its own specific optimized set of conditions to achieve its correct folding. The attempt to understand the critical points specific for recombinant protein production missed the goal of setting universally useful protocols, but contributed to the increase of the rate of success by proposing always new empiric combinations. Nevertheless, the results published in the recent literature allow for a better comprehension of some key mechanisms controlling protein production in E. coli and could enable the elaboration of rational methodologies for improving the quantitative and qualitative features of the produced polypeptides. This result will be achieved when the identification of the limiting step that impairs the accomplishment of the native folding for any single construct will become straightforward. This minireview will discuss how factors such as the expression rate, the folding machinery, and the secretion efficiency may impact the final protein yields.
Collapse
|
19
|
Hofzumahaus S, Schallmey A. Escherichia coli-based expression system for the heterologous expression and purification of the elicitin β-cinnamomin from Phytophthora cinnamomi. Protein Expr Purif 2013; 90:117-23. [PMID: 23747816 DOI: 10.1016/j.pep.2013.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Elicitins are sterol carrier proteins from the Oomycete genera Phytophthora and Phytium and elicit a hypersensitive response in many economically important plants, in some cases causing a systemic acquired resistance. Their recombinant expression in bacteria is complicated by the presence of three disulfide bonds in the elicitin structure. In consequence, elicitins have so far only been produced in soluble form by isolation from native Phytophthora or Phytium strains or by recombinant expression in the yeast Pichia pastoris. Here, for the first time, we report the soluble expression of the elicitin β-cinnamomin from Phytophthora cinnamomi in Escherichia coli by secretion of the protein into the periplasm. β-Cinnamomin yields have been significantly improved after careful selection of the optimum secretion signal sequence. In total, 17.6 mg β-cinnamomin per liter cell culture have been obtained in shake flasks with the secretion signal sequence of the maltose-binding protein MalE from E. coli. Furthermore, by making use of a C-terminal His-tag, β-cinnamomin purification has been significantly simplified with only one step of immobilized metal ion affinity chromatography yielding protein of high purity (>90%). The established protocol has further been successfully applied to the soluble expression of another elicitin.
Collapse
|
20
|
Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microb Cell Fact 2013; 12:24. [PMID: 23497240 PMCID: PMC3605120 DOI: 10.1186/1475-2859-12-24] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background In Escherichia coli many heterologous proteins are produced in the periplasm. To direct these proteins to the periplasm, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec-translocon. For poorly understood reasons, the production of heterologous secretory proteins is often toxic to the cell thereby limiting yields. To gain insight into the mechanism(s) that underlie this toxicity we produced two secretory heterologous proteins, super folder green fluorescent protein and a single-chain variable antibody fragment, in the Lemo21(DE3) strain. In this strain, the expression intensity of the gene encoding the target protein can be precisely controlled. Results Both SFGFP and the single-chain variable antibody fragment were equipped with a DsbA-derived signal sequence. Producing these proteins following different gene expression levels in Lemo21(DE3) allowed us to identify the optimal expression level for each target gene. Too high gene expression levels resulted in saturation of the Sec-translocon capacity as shown by hampered translocation of endogenous secretory proteins and a protein misfolding/aggregation problem in the cytoplasm. At the optimal gene expression levels, the negative effects of the production of the heterologous secretory proteins were minimized and yields in the periplasm were optimized. Conclusions Saturating the Sec-translocon capacity can be a major bottleneck hampering heterologous protein production in the periplasm. This bottleneck can be alleviated by harmonizing expression levels of the genes encoding the heterologous secretory proteins with the Sec-translocon capacity. Mechanistic insight into the production of proteins in the periplasm is key to optimizing yields in this compartment.
Collapse
|
21
|
de Marco A. Recent contributions in the field of the recombinant expression of disulfide bonded proteins in bacteria. Microb Cell Fact 2012; 11:129. [PMID: 22978724 PMCID: PMC3462667 DOI: 10.1186/1475-2859-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/03/2022] Open
Abstract
The production of heterologous disulfide bonded proteins in bacteria remains a biotechnological challenge. A rapid literature survey results in the identification of some interesting proposals, such as the option of producing functional proteins in the cytoplasm in the presence of sulfhydryl oxidases and isomerases. Furthermore, an ever-increasing number of applications refers to recombinant proteins displayed at the bacterial surface. Time will tell whether these developments will lead to universally accepted laboratory protocols.
Collapse
|