1
|
Hassan ASI, Henawy AR, Saied YA, Garas KA, Shahat OM, Halema AA. Direct-fed Microbials (DFM) and Poultry Genomics: A Synergistic Approach to Sustainable Antibiotic Free Farming. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10618-y. [PMID: 40515794 DOI: 10.1007/s12602-025-10618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2025] [Indexed: 06/16/2025]
Abstract
Improper usage of antibiotics in poultry production is a great threat to the ecosystem because their residues can enter into the food chain or leach into soil or water systems and increase antibiotic resistance risks. Hence, direct-fed microbials (DFMs) have gained recognition as a sustainable and viable alternative to antibiotics in poultry production, capitalizing on the relationship between microbial genetics, host genomics, and gut microbiota. This review delves into the genetic and host genomic mechanisms through DFMs effects including the enhancement of nutrient metabolism, modulation of gut microbiota and strengthening of the host immunity. The revolution of multi-omics has participated in the identification of probiotic strains with desirable traits and revealed their impact on host gene expression, particularly in genes related to intestinal health, such as tight junction proteins and mucins. Furthermore, the review summarizes the benefits of using DFMs in poultry production, the factors affecting their efficacy and their challenges and limitations. Future research integrating host and microbial genomics, along with precision microbiome engineering, holds promise for maximizing the potential of DFMs in advancing sustainable poultry farming practices.
Collapse
Affiliation(s)
- Abdallah S I Hassan
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Ahmed R Henawy
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Youssef A Saied
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Karen A Garas
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Omar M Shahat
- Department of Biotechnology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Asmaa A Halema
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Li S, Zou M, Wang Y, Guo Q, Lv S, Zhao W, Kabir MA, Peng X. Matrix metalloproteinase 7 (MMP7) as a molecular target for Mycoplasma gallisepticum (MG) resistance in chickens. Int J Biol Macromol 2025; 298:140110. [PMID: 39842573 DOI: 10.1016/j.ijbiomac.2025.140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance. Analysis of high-throughput sequencing data revealed MMP7's association with MG infection at tissue and cellular levels. Overexpression of MMP7 in avian type II alveolar epithelial cells (AECII) and macrophages (HD11) inhibited MG adhesion, modulated immune responses, and suppressed MG-induced cell proliferation and apoptosis, though MG replication remained unaffected. Conversely, MMP7 inhibition enhanced MG infection. Experimental infections in commercial (Jingfen Layer No.6, Hy-Line White) and local Chinese chicken breeds (Guangxi Indigenous, Tianlu Partridge, Cyan Shank Partridge) validated Tianlu Partridge chickens' relative resistance and Jingfen Layers' susceptibility. MMP7 expression levels correlated positively with reduced chick weight, air sac damage, tracheal mucosal thickness, and MG lung loads. These findings highlight MMP7 as a molecular target for assessing MG susceptibility and breeding resistant chickens while demonstrating the utility of local Chinese breeds in resistance-focused breeding programs.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Institute of animal husbandry and veterinary medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi poultry Engineering Technology Research Center, Jiangxi poultry breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Md Ahsanul Kabir
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Sayed Y, Hassan M, Salem HM, Al-Amry K, Eid G. Probiotics/prebiotics effect on chicken gut microbiota and immunity in relation to heat-stress and climate-change mitigation. J Therm Biol 2025; 129:104097. [PMID: 40186955 DOI: 10.1016/j.jtherbio.2025.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Heat stress is a serious hazard that threatens world poultry production. The avian gut microbiome plays a critical role in improving nutrient utilization, competing with pathogens, stimulating an immune response, and reducing inflammatory reactions. Hence, the gut microbiome has a positive impact on the host's health which appears in the shape of improved body weight, feed conversion rate, and increased birds' productivity (meat or eggs). Accordingly, this review shed light on the chicken gut microbiome, its correlation with the immunity of chicken, and how this affects the general health condition of the bird as well as, the role of prebiotics and probiotics in improving the gut health and increasing birds' productivity, especially under climate change and heat stress condition. The review aims to focus on the significance of maintaining healthy chickens in order to increase the production of poultry meat to satisfy human needs. A robust microbiota and a well-functioning immune system synergistically contribute to the optimal health and productivity of chickens.
Collapse
Affiliation(s)
- Yara Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, 43511, Suez, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy Cairo University, Kasr El-Aini Street, Cairo, 11562, Cairo, Egypt.
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Khaled Al-Amry
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Gamal Eid
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
4
|
Xu ZY, Yu Y, Fu SX, Ma JY, Li BB. Effects of high-level ghrelin on intestinal epithelial cell proliferation, nutrient transport and intestinal mucosal immune barrier in chickens. Br Poult Sci 2025:1-16. [PMID: 40116599 DOI: 10.1080/00071668.2025.2456582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
1. Chicken ghrelin (GH) plays an important role in regulating growth hormone secretion, immunity and gastrointestinal motility. This study utilised haematoxylin-eosin staining, quantitative reverse transcription PCR and western blotting to examine the effects of high-level ghrelin on the proliferation of small intestinal epithelial cells, intestinal nutrient transport and the mucosal immune barrier in chicks.2. Eighty, 17-d-old layer type chicks were randomly divided into two groups: control (C treated with sterile phosphate buffer) and the ghrelin-treated group (GH; intraperitoneally injected with 0.5 nM GH per 100 g body weight). At 1, 3 and 5 d post-injection, six chicks from each group were randomly selected for sampling of the duodenum and ileum.3. Administering GH reduced the expression of proliferating cell nuclear antigen protein in the duodenum and leucine-rich repeat-containing G protein-coupled receptor 5 mRNA in both the duodenum and ileum. In addition, GH affected villus height and ratio of villus height to crypt (H/C) depth in these sections and fatty acid binding protein 6 expression in the ileum. The relative mRNA levels of oligopeptide transporter 1, solute carrier family 3 member 1, solute carrier family 1 member 1 and solute carrier family 5 member 1 were decreased by GH.4. Birds treated with GH had a decrease in duodenal intraepithelial lymphocytes, Paneth cells and ileal goblet cells. There was a reduction in mucin 2 mRNA in goblet cells and lysozyme C and phospholipaseA2 mRNA in Paneth cells. Additionally, the relative mRNA levels of avian β-defensin 1 (AvBD1), AvBD6 and AvBD7 in the duodenum and ileum decreased with GH administration.5. The GH inhibited proliferation of chicken duodenal epithelial cells and decreased surface area available for intestinal villus absorption. This affected the transport of intestinal amino acids, glucose and bile acids and impaired the function of the mucosal immune barrier in both the duodenum and ileum.
Collapse
Affiliation(s)
- Z-Y Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Y Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - S-X Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - J-Y Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - B-B Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
5
|
Finatto AN, Meurens F, de Oliveira Costa M. Piggybacking on nature: exploring the multifaceted world of porcine β-defensins. Vet Res 2025; 56:47. [PMID: 40033445 PMCID: PMC11877871 DOI: 10.1186/s13567-025-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/16/2024] [Indexed: 03/05/2025] Open
Abstract
Porcine β-defensins (pBDs) are cationic peptides that are classically associated with the innate immune system. These molecules yield both antimicrobial and immunomodulatory properties, as evidenced by various in vitro and animal trials. Researchers have revealed that enhancing pBD expression can be achieved through dietary components and gene editing techniques in pigs and porcine cell models. This state-of-the-art review aims to encapsulate the pivotal findings and progress made in the field of pBD over recent decades, with a specific emphasis on the biological role of pBD in infection control and its usage in clinical trials, thereby offering a new landscape of opportunities for research aimed at identifying prophylactic and therapeutic alternatives for both swine medicine and translational purposes.
Collapse
Affiliation(s)
- Arthur Nery Finatto
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC, J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Matheus de Oliveira Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
- Department of Population Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
7
|
Ayalew H, Xu C, Liu Q, Wang J, Wassie T, Wu S, Qiu K, Qi G, Zhang H. Maternal derived antibodies and avian β-defensins expression patterns and their correlation in the yolk sac tissue of different chicken breeds (Gallus gallus). Poult Sci 2025; 104:104758. [PMID: 39813860 PMCID: PMC11782828 DOI: 10.1016/j.psj.2024.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
The expression of maternal derived antibodies (MDAs) and avian β-defensins (AvBDs) in yolk sac tissue may be age-specific and influenced by breed, thereby immunological window difference in hatchlings. This study investigated the mRNA expression of MDAs and AvBDs in the yolk sac tissues of Beijing You and Hy-Line Gray chickens from the embryonic day (ED)7 to 3 days after hatch (DAH). Hy-Line showed a higher embryo bodyweight and a lower residual yolk weight at ED17 (P < 0.05). The expression of IgY and FcRY was higher in the Hy-Line (P < 0.05). In Beijing You, IgA level decreased from ED15 to 19 but peaked from day old hatch to 3 DAH. In Hy-Line, IgA increased from ED19 to 3 DAH (P < 0.05). IgY increased from ED17 to day old hatch (DOH), but declined from DOH to 3 DAH in Beijing You, whereas in Hy-Line, it declined from ED9 to 15 and ED19 to 3 DAH (P < 0.05). FcRY expression declined from DOH to 3 DAH in Beijing You and from ED19 to 3 DAH in Hy-Line (P < 0.05). The expression of AvBD5 increased from ED7 to 13 and ED19 to 3 DAH, and decreased from ED13 to 19 in both breeds. A similar expression patterns of AvBD10 was observed in breeds, increased from ED7 to 11, followed by a decline after ED11. AvBD12 expression peaked at ED17 in Beijing You and from ED15 to 17 in Hy-Line (P < 0.05), then declined from ED17 to 3 DAH in both breeds. The study observed temporal expression development patterns of AvBD5 and AvBD10 in both breeds and AvBD12 in Beijing You, with a correlation coefficient of R2 > 0.5. Overall, the lower yolk residue for faster growth of chickens compromised the expression of MDAs and AvBDs, except for IgA and AvBD5. These results suggest a broader immunological window and highlight the need to focus on maintaining specific MDAs and AvBDs in the strategies of embryonic feeding.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; University of Gondar, College of Veterinary Medicine and Animal Sciences, Po. Box 196, Gondar, Ethiopia
| | - Changchun Xu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiongge Liu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Teketay Wassie
- Oregon Health and Science University, Department of Molecular Microbiology and Immunology, Portland, Oregon, USA
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Chatterjee D, Sivashanmugam K. Immunomodulatory peptides: new therapeutic horizons for emerging and re-emerging infectious diseases. Front Microbiol 2024; 15:1505571. [PMID: 39760081 PMCID: PMC11695410 DOI: 10.3389/fmicb.2024.1505571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects. Many eukaryotic organisms produce HDPs as a defense mechanism, for example Purothionin from Triticum aestivum plant, Defensins, Cathelicidins, and Histatins from humans and many such peptides are currently the focus of research because of their antibacterial, antiviral and anti-fungicidal properties. This article offers a comprehensive review of the immunomodulatory activities of HDPs derived from eukaryotic organisms including humans, plants, birds, amphibians, reptiles, and marine species along with their mechanisms of action and therapeutic benefits.
Collapse
|
9
|
Muthusamy M, Ramasamy KT, Peters SO, Palani S, Gowthaman V, Nagarajan M, Karuppusamy S, Thangavelu V, Aranganoor Kannan T. Transcriptomic Profiling Reveals Altered Expression of Genes Involved in Metabolic and Immune Processes in NDV-Infected Chicken Embryos. Metabolites 2024; 14:669. [PMID: 39728450 DOI: 10.3390/metabo14120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses. METHODS This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs. RESULT RNA-Seq reads were aligned with the chicken reference genome (Galgal7), revealing 594 differentially expressed genes: 264 upregulated and 330 downregulated. The most overexpressed genes, with logFC between 8.15 and 8.75, included C8A, FGG, PIT54, FETUB, APOC3, and FGA. Notably, downregulated genes included BPIFB3 (-4.46 logFC) and TRIM39.1 (-4.26 logFC). The analysis also identified 29 novel transcripts and 20 lncRNAs that were upregulated. Gene Ontology and KEGG pathways' analyses revealed significant alterations in gene expression related to immune function, metabolism, cell cycle, nucleic acid processes, and mitochondrial activity due to NDV infection. Key metabolic genes, such as ALDOB (3.27 logFC), PRPS2 (2.66 logFC), and XDH (2.15 logFC), exhibited altered expression patterns, while DCK2 (-1.99 logFC) and TK1 (-2.11 logFC) were also affected. Several immune-related genes showed significant upregulation in infected lung samples, including ALB (6.15 logFC), TLR4 (1.86 logFC), TLR2 (2.79 logFC), and interleukin receptors, such as IL1R2 (3.15 logFC) and IL22RA2 (1.37 logFC). Conversely, genes such as CXCR4 (-1.49 logFC), CXCL14 (-2.57 logFC), GATA3 (-1.51 logFC), and IL17REL (-2.93 logFC) were downregulated. The higher expression of HSP genes underscores their vital role in immune responses. CONCLUSION Comprehension of these genes' interactions is essential for regulating viral replication and immune responses during infections, potentially aiding in the identification of candidate genes for poultry breed improvement amidst NDV challenges.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Kannaki T Ramasamy
- Indian Council of Agricultural Research-Directorate of Poultry Research, Hyderabad 500030, India
| | | | - Srinivasan Palani
- Department of Veterinary Pathology, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Vasudevan Gowthaman
- Poultry Disease Diagnosis and Surveillance Laboratory, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Dharmapuri 635111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | | | - Thiruvenkadan Aranganoor Kannan
- Department of Animal Genetics and Breeding, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal 637002, India
| |
Collapse
|
10
|
Oladosu OJ, Reyer H, Weikard R, Grafl B, Liebhart D, Metges CC, Kühn C, Daş G. Hepatic transcriptomic analysis reveals differential regulation of metabolic and immune pathways in three strains of chickens with distinct growth rates exposed to mixed parasite infections. Vet Res 2024; 55:125. [PMID: 39342330 PMCID: PMC11439216 DOI: 10.1186/s13567-024-01378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 10/01/2024] Open
Abstract
During parasite infections, the liver may prioritise immune-related pathways over its metabolic functions. Intestinal infections caused by Ascaridia galli and Heterakis gallinarum impair feed intake, nutrient absorption, and weight gain. Histomonas meleagridis, vectored by H. gallinarum, can also damage liver tissues, potentially impairing liver functions. This study examined the hepatic gene expression in three strains of chickens: Ross-308 (R), Lohmann Brown Plus (LB), and Lohmann Dual (LD), 2 weeks after an experimental infection (n = 18) with both A. galli and H. gallinarum or kept as uninfected control (n = 12). Furthermore, H. gallinarum infection led to a co-infection with H. meleagridis. The mixed infections reduced feed intake and the average daily weight gain (P < 0.001). The infections also increased the plasma concentrations of alpha (1)-acid glycoprotein and the antibody titre against H. meleagridis (P = 0.049), with no strain differences (P > 0.05). For host molecular response, 1887 genes were differentially expressed in LD, while 275 and 25 genes were differentially expressed in R and LB, respectively. The up-regulated genes in R and LD were mostly related to inflammatory and adaptive immune responses, while down-regulated genes in LD were involved in metabolic pathways, including gluconeogenesis. Despite performance differences among the strains, worm burdens were similar, but hepatic molecular responses differed significantly. Moreover, there was an indication of a shift in hepatic functions towards immune-related pathways. We, therefore, conclude that the liver shifts its functions from metabolic to immune-related activities in chickens when challenged with mixed parasite species.
Collapse
Affiliation(s)
- Oyekunle John Oladosu
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Rosemarie Weikard
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christa Kühn
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
11
|
Hao S, Shi W, Chen L, Kong T, Wang B, Chen S, Guo X. CATH-2-derived antimicrobial peptide inhibits multidrug-resistant Escherichia coli infection in chickens. Front Cell Infect Microbiol 2024; 14:1390934. [PMID: 38812753 PMCID: PMC11133627 DOI: 10.3389/fcimb.2024.1390934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Avian colibacillosis (AC), caused by infection with Escherichia coli (E. coli), is a major threat to poultry health, food safety and public health, and results in high mortality and significant economic losses. Currently, new drugs are urgently needed to replace antibiotics due to the continuous emergence and increasing resistance of multidrug-resistant (MDR) strains of E. coli caused by the irrational use of antibiotics in agriculture and animal husbandry. In recent years, antimicrobial peptides (AMPs), which uniquely evolved to protect the host, have emerged as a leading alternative to antibiotics in clinical settings. CATH-2, a member of the antimicrobial cathelicidin peptide family, has been reported to have antibacterial activity. To enhance the antimicrobial potency and reduce the adverse effects on animals, we designed five novel AMPs, named C2-1, C2-2, C2-3, C2-4 and C2-5, based on chicken CATH-2, the secondary structures of these AMPs were consistently α-helical and had an altered net charge and hydrophobicity compared to those of the CATH-2 (1-15) sequences. Subsequently, the antimicrobial activities of CATH-2 (1-15) and five designed peptides against MDR E. coli were evaluated in vitro. Specifically, C2-2 showed excellent antimicrobial activity against either the ATCC standard strain or veterinary clinical isolates of MDR E. coli, with concentrations ranging from 2-8 μg/mL. Furthermore, C2-2 maintained its strong antibacterial efficacy under high temperature and saline conditions, demonstrating significant stability. Similarly, C2-2 retained a high level of safety with no significant hemolytic activity on chicken mature red blood cells or cytotoxicity on chicken kidney cells over the concentration range of 0-64 μg/mL. Moreover, the administration of C2-2 improved the survival rate and reduced the bacterial load in the heart, liver and spleen during MDR E. coli infection in chickens. Additionally, pathological damage to the heart, liver and intestine was prevented when MDR E. coli infected chickens were treated with C2-2. Together, our study showed that C2-2 may be a promising novel therapeutic agent for the treatment of MDR E. coli infections and AC.
Collapse
Affiliation(s)
- Shihao Hao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Wenhui Shi
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liujun Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Tianyou Kong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Bin Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaomin Guo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
12
|
Goo D, Ko H, Sharma MK, Choppa VSR, Paneru D, Shi H, Kim WK. Comparison of necrotic enteritis effects on growth performance and intestinal health in two different meat-type chicken strains Athens Canadian Random Bred and Cobb 500. Poult Sci 2024; 103:103599. [PMID: 38479098 PMCID: PMC10950882 DOI: 10.1016/j.psj.2024.103599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024] Open
Abstract
Chickens have undergone genetic improvements in the past few decades to maximize growth efficiency. However, necrotic enteritis (NE), an enteric disease primarily caused by C. perfringens, remains a significant problem in poultry production. A study investigated the differences in intestinal health between the nonselected meat-type chicken Athens Canadian Random Bred (ACRB) and the modern meat-type Cobb 500 broilers (Cobb) when challenged with experimental NE. The study utilized a 2 × 3 factorial arrangement, consisting of two main effects of chicken strain and NE challenge model (nonchallenged control, NC; NE challenge with 2,500/12,500 Eimeria maxima oocysts + 1 × 109C. perfringens, NE2.5/NE12.5). A total of 432 fourteen-day-old male ACRB and Cobb were used until 22 d (8 d postinoculation with E. maxima on d 14, dpi), and the chickens were euthanized on 6 and 8 dpi for the analysis. All data were statistically analyzed using a two-way ANOVA, and Student's t-test or Tukey's HSD test was applied when P < 0.05. The NE12.5 group showed significant decreases in growth performance and relative growth performance from d 14 to 20, regardless of chicken strain (P < 0.01). The ACRB group exhibited significant decreases in relative body weight and relative body weight gain compared to the Cobb group from d 14 to 22 (P < 0.01). On 6 and 8 dpi, both NE challenge groups showed significant decreases in intestinal villus height to crypt depth ratio, jejunal goblet cell count, and jejunal MUC2 and LEAP2 expression (P < 0.01). Additionally, the NE12.5 group had significantly higher intestinal NE lesion score, intestinal permeability, fecal E. maxima oocyst count, intestinal C. perfringens count, and jejunal IFNγ and CCL4 expression compared to the NC group (P < 0.05). In conclusion, NE negatively impacts growth performance and intestinal health in broilers, parameters regardless of the strain.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Těšický M, Schmiedová L, Krajzingrová T, Samblas MG, Bauerová P, Kreisinger J, Vinkler M. Nearly (?) sterile avian egg in a passerine bird. FEMS Microbiol Ecol 2024; 100:fiad164. [PMID: 38115624 PMCID: PMC10791042 DOI: 10.1093/femsec/fiad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
During early ontogeny, microbiome affects development of the gastrointestinal tract, immunity, and survival in vertebrates. Bird eggs are thought to be (1) initially sterile (sterile egg hypothesis) and (2) colonized after oviposition through horizontal trans-shell migration, or (3) initially seeded with bacteria by vertical transfer from mother oviduct. To date, however, little empirical data illuminate the contribution of these mechanisms to gut microbiota formation in avian embryos. We investigated microbiome of the egg content (day 0; E0-egg), embryonic gut at day 13 (E13) and female faeces in a free-living passerine, the great tit (Parus major), using a methodologically advanced procedure combining 16S rRNA gene sequencing and microbe-specific qPCR assays. Our metabarcoding revealed that the avian egg is (nearly) sterile, but acquires a slightly richer microbiome during the embryonic development. Of the three potentially pathogenic bacteria targeted by qPCR, only Dietzia was found in E0-egg (yet also in negative controls), E13 gut and female samples, which might indicate possible vertical transfer. Unlike in poultry, we have shown that major bacterial colonization of the gut in passerines does not occur before hatching. We emphasize that protocols that carefully check for environmental contamination are critical in studies with low-bacterial biomass samples.
Collapse
Affiliation(s)
- Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Institute of Vertebrate Biology, v.v.i., The Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
- Institute of Paleonatomy, Domestification Research and History of Veterinary Medicine, Ludwig Maxmilian University of Munich, Kaulbachstr. 37 III, 80539 Munich, Germany
| | - Lucie Schmiedová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Institute of Vertebrate Biology, v.v.i., The Czech Academy of Sciences, Květná 8, Brno 603 65, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| | - Mercedes Gomez Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
- Faculty of Science, Department of Parasitology, Campus Universitario de Fuentenueva, University of Granada, Profesor Adolfo Rancano, 18071 Granada, Spain
| | - Petra Bauerová
- Division of Air Quality, Czech Hydrometeorological Institute
, Tušimice Observatory, Tušimice 6, 432 01 Kadaň, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, 128 43 Prague, Czech Republic
| |
Collapse
|
14
|
Mahmoud MM, Al-Hejin AM, Abujamel TS, Ghetas AM, Yacoub HA. Chicken β-defensin-1 peptide as a candidate anticoccidial agent in broiler chickens. Anim Biotechnol 2023; 34:3108-3125. [PMID: 36309816 DOI: 10.1080/10495398.2022.2136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current study aimed to investigate the potentiality of using avian β-defensin-1 peptide as a candidate agent against coccidiosis infection in broiler chicken.We employed an in-silico analysis to study the primary structure of β-defensin-1 peptide as well as its 3-D and molecular dynamic structures. This will also enable obtaining adequate information about the mode of action of these peptides and the intra-cellular transduction pathways. The results revealed no significant difference among groups of broiler chicken in terms of body weight before the Eimeria challenge.The results of our study indicated a significant reduction in oocyst count in birds administered β-defensin-1 peptide treatment, vis-a-vis healthy birds. The treated group showed a 2-3 times reduction in oocyst count, compared to the positive control group. The Eimeria oocysts count evaluated for birds administered with β-defensin-1 after the Eimeria challenge showed a significant difference. The study indicated significant reduction and down-regulation in the level of expression of β-defensin 1 and 4 in the control and treatment groups.This electrostatic profile and hydrophobicity regulate the functioning of this peptide. The results may help in the development of novel approaches that could be used as alternatives or adjunct to the existing means of coccidiosis control in broilers.
Collapse
Affiliation(s)
- Maged M Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research institute, National Research Centre, Cairo, Egypt
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Aly M Ghetas
- Poultry Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Kannoth S, Ali N, Prasanth GK, Arvind K, Mohany M, Hembrom PS, Sadanandan S, Vasu DA, Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci Rep 2023; 13:18728. [PMID: 37907616 PMCID: PMC10618271 DOI: 10.1038/s41598-023-45875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.
Collapse
Affiliation(s)
- Shalini Kannoth
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ganesh K Prasanth
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Kumar Arvind
- Neurogenetics Branch, National Institute of Neurological Disorder and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Shemmy Sadanandan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
16
|
Chagneau S, Gaucher ML, Fravalo P, Thériault WP, Thibodeau A. Intestinal Colonization of Campylobacter jejuni and Its Hepatic Dissemination Are Associated with Local and Systemic Immune Responses in Broiler Chickens. Microorganisms 2023; 11:1677. [PMID: 37512849 PMCID: PMC10385864 DOI: 10.3390/microorganisms11071677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen. Despite the lack of clinical signs associated with its colonization in poultry, it has been reported to interact with the intestinal immune system. However, little is known about the interaction between C. jejuni and the chicken immune system, especially in the context of hepatic dissemination. Therefore, to follow up on our previous study showing intestinal colonization and hepatic spread of C. jejuni, cecal tonsils and liver samples were collected from these birds to determine the mRNA levels of chemokines and cytokines. Serum samples were also collected to determine serum amyloid A (SAA) concentrations and specific IgY titers. Lack of Th17 induction was observed in the cecal tonsils of only the liver-contaminated groups. This hepatic dissemination was accompanied by innate, Th1 and Th2 immune responses in livers, as well as an increase in SAA concentrations and specific IgY levels in sera. Campylobacter appears to be able to restrain the induction of the chicken gut immunity in particular conditions, possibly enhancing its hepatic dissemination and thus eliciting systemic immune responses. Although Campylobacter is often recognized as a commensal-like bacterium in chickens, it seems to modulate the gut immune system and induce systemic immunity.
Collapse
Affiliation(s)
- Sophie Chagneau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Chaire Agroalimentaire du Conservatoire National des Arts et Métiers, 22440 Ploufragan, France
| | - William P Thériault
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Santé Publique (CReSP), Université de Montréal, Montréal, QC H3N 1X9, Canada
| |
Collapse
|
17
|
Lyu Z, Yang P, Lei J, Zhao J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics (Basel) 2023; 12:1037. [PMID: 37370356 DOI: 10.3390/antibiotics12061037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.
Collapse
Affiliation(s)
- Zhiqian Lyu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Lei
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- Qingyuan Haibei BIO-TECH Co., Ltd., Qingyuan 511853, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
19
|
Wu H, Zhou Q, Xiong H, Wang C, Cui Y, Qi K, Liu H. Goose surfactant protein A inhibits the growth of avian pathogenic Escherichia coli via an aggregation-dependent mechanism that decreases motility and increases membrane permeability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104592. [PMID: 36414098 DOI: 10.1016/j.dci.2022.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Pulmonary collectins have been reported to bind carbohydrates on pathogens and inhibit infection by agglutination, neutralization, and opsonization. In this study, surfactant protein A (SP-A) was identified from goose lung and characterized at expression- and agglutination-functional levels. The deduced amino acid sequence of goose surfactant protein A (gSP-A) has two characteristic structures: a shorter, collagen-like region and a carbohydrate recognition domain. The latter contains two conserved motifs in its Ca2+-binding site: EPN (Glu-Pro-Asn) and WND (Trp-Asn-Asp). Expression analysis using qRT-PCR and fluorescence IHC revealed that gSP-A was highly expressed in the air sac and present in several other tissues, including the lung and trachea. We went on to produce recombinant gSP-A (RgSP-A) using a baculovirus/insect cell system and purified using a Ni2+ affinity column. A biological activity assay showed that all bacterial strains tested in this study were aggregated by RgSP-A, but only Escherichia coli AE17 (E. coli AE17, O2) and E. coli AE158 (O78) were susceptible to RgSP-A-mediated growth inhibition at 2-6 h. Moreover, the swarming motility of the two bacterial strains were weakened with increasing RgSP-A concentration, and their membrane permeability was compromised at 3 h, as determined by flow cytometry and laser confocal microscopy. Therefore, RgSP-A is capable of reducing bacterial viability of E. coli O2 and O78 via an aggregation-dependent mechanism which involves decreasing motility and increasing the bacterial membrane permeability. These data will facilitate detailed studies into the role of gSP-A in innate immune defense as well as for development of antibacterial agents.
Collapse
Affiliation(s)
- Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Chenxiao Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yaqian Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
20
|
Li P, Cui Y, Guo F, Guo J, Cao X, Lin J, Ding B, Xu F. Campylobacter jejuni infection induces dynamic expression of avian host defense peptides in vitro and in vivo. Vet Microbiol 2023; 277:109631. [PMID: 36543091 DOI: 10.1016/j.vetmic.2022.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Campylobacter jejuni is considered as the leading cause of worldwide foodborne bacterial gastroenteritis. Chicken is the main reservoir of C. jejuni. Avian innate immune responses to C. jejuni remain poorly defined. Chicken host defense peptides (HDPs) are the major components of avian innate immune system. This study aimed to characterize the chicken HDPs responses to C. jejuni in vitro and in vivo. In the HD11 macrophage cell line, the HDPs, including AvBD1-2, CATH1-3, AvBD7, AvBD4, and AvBD6, were relatively higher expressed in untreated cells, whereas the expressions were suppressed after C. jejuni infection. In contrast, C. jejuni infection significantly increased the expression of the lower expressed HDPs, such as AvBD3, AvBD5, AvBD8-14, and CATHB1, in untreated cells. In the chicken challenge experiment, the immune tissues of spleens and cecal tonsils were collected from C. jejuni-infected and uninfected chickens at 1, 3 and 15 day post inoculation (DPI). In spleens of C. jejuni-infected chickens, only AvBD14 expression was elevated at 1 DPI. The majority of avian HDPs were significantly up-regulated at 3 DPI and dramatically decreased to the levels of uninfected controls at 15 DPI. In chicken cecal tonsils, only AvBD9 and AvBD14 were significantly up-regulated at 1 DPI with C. jejuni infection. Collectively, C. jejuni infection induced dynamic expression of chicken HDPs in both macrophage HD11 and immune tissues of chickens. Suppression of chicken HDPs expression may be an evasion strategy of C. jejuni for persistent colonization in chicken intestine by circumventing the chicken immune system.
Collapse
Affiliation(s)
- Pengxiang Li
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yifang Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiahui Guo
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoya Cao
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Baoan Ding
- Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
21
|
Palamidi I, Paraskeuas VV, Mountzouris KC. Dietary and phytogenic inclusion effects on the broiler chicken cecal ecosystem. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1094314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dietary modulation in broilers is crucial for the establishment of beneficial microbiota and, subsequently, the promotion of intestinal health. In this trial, a 2 × 2 factorial design was used with two different specifications with respect to dietary metabolizable energy (ME) and crude protein (CP) levels (i.e., 95% and 100% of recommendations) and phytogenic levels (0 and 150 mg/kg). Levels of total bacteria, Bacteroides spp., Lactobacillus spp., and Clostridium cluster XIVa attached to the cecal mucosa and in the cecal digesta were lower in broilers fed the 95% ME and CP specification diets, as was the molar ratio of butyric acid. In addition, the relative activity of autoinducers-2 (AI-2) and the expression levels of TLR4 and AvBD6 were increased. Phytogenic supplementation reduced cecal digesta levels of Escherichia coli and Clostridium cluster I levels, and increased Clostridium cluster IV levels. Moreover, the butyric acid molar ratio and the relative activity of AI-2 were increased, whereas the concentration of branched VFAs and the expression of AvBD6 and LEAP2 were reduced by phytogenic administration. Dietary specifications and phytogenic interactions were shown for the cecal-attached microbiota composition, metabolic activity of digesta microbiota, relative expression of autoinducers-2, and relative expression of toll-like signaling molecules and host antimicrobial peptides. In conclusion, it has been shown that ME and CP dietary specifications, combined or not with phytogenics, modulate multilevel gut biomarkers ranging from microbiota composition and metabolic activity to microbial communications and host signaling, inflammation, and defense.
Collapse
|
22
|
Cao L, Li J, Zhang J, Huang H, Gui F, Xu W, Zhang L, Bi S. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens. Poult Sci 2022; 102:102414. [PMID: 36565635 PMCID: PMC9801214 DOI: 10.1016/j.psj.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to investigate the effect of oral administration of β-glucan (G70), a product obtained from the cell wall of yeast, on Newcastle disease virus (NDV)-specific hemagglutination inhibition (HI) titers, lymphocyte proliferation, and the role of T lymphocyte subpopulations in chickens treated with live NDV vaccine. In addition, the influence of β-glucan on splenic gene expression was investigated by transcriptome sequencing. The results revealed that the supplementation of β-glucan boosted the titer of serum NDV HI increased the NDV stimulation index of lymphocytes in peripheral blood and intestinal tract, and promoted the differentiation of T lymphocytes into CD4+ T cells. The RNA sequencing (RNA-seq) analysis demonstrated that G70 upregulated the mRNA expressions related to G-protein coupled receptor and MHC class I polypeptide, and downregulated the mRNA expressions related to cathelicidin and beta-defensin. The immunomodulatory effect of G70 might function through mitogen-activated protein kinase signaling pathway. To sum up, G70 could boost the immunological efficacy of live NDV vaccine in chickens and could be applied as a potential adjuvant candidate in the poultry industry.
Collapse
Affiliation(s)
- Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianrong Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China,Correspondence author:
| |
Collapse
|
23
|
Jia M, Fulton J, Wong E. Temporal expression of avian β defensin 10 and cathelicidins in the yolk sac tissue of broiler and layer embryos. Poult Sci 2022; 102:102334. [PMID: 36481712 PMCID: PMC9723519 DOI: 10.1016/j.psj.2022.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The yolk sac is a multifunctional organ, which not only participates in nutrient absorption, but also plays an important role in immune function. The objective of this study was to compare the mRNA abundance of avian β-defensin 10 (AvBD10) and 3 cathelicidins (CATH1, CATH2, and CATH3) in the yolk sac tissue (YST) of commercial broilers and white egg and brown egg commercial layers. AvBD10 and CATH mRNA abundance was analyzed using two-way ANOVA and Tukey's test, with P < 0.05 being considered significant. AvBD10 and CATH mRNA showed similar temporal expression patterns in the YST of both broiler and layers, with an increase from embryonic day (E) 7 to E9 through E13 followed by a decrease to day of hatch. AvBD10 mRNA showed a breed × age interaction with greater expression in the YST of both layers compared to broilers at E9 and E11. CATH1 mRNA was greater in the YST of brown egg layers than broilers. CATH2 mRNA showed a breed × age interaction, with greater expression in the YST of brown egg layers than broilers at E11. CATH3 mRNA showed no difference in the YST between layers and broilers. Because broilers and brown egg layers are genetically related, these results show that selection for production parameters (broiler vs. layer) and not genetic relatedness (white egg layer vs. brown egg layer and broilers) is the basis for the differences in AvBD10, CATH1, and CATH2 mRNA in the YST of broilers and layers. The yolk-free body weights of broiler embryos were greater than that of both brown and white egg layers from E9 to 17. One possible explanation is that the reduced expression of AvBD10, CATH1 and CATH2 mRNA in the YST of broilers compared to layers at E9 and 11 may be due to faster embryonic growth at the expense of host defense peptide expression in broilers compared to layers.
Collapse
Affiliation(s)
- M. Jia
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - J.E. Fulton
- Hy-Line International, Dallas Center, IA 50063, USA
| | - E.A. Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA,Corresponding author:
| |
Collapse
|
24
|
Selected Antimicrobial Peptides Inhibit In Vitro Growth of Campylobacter spp. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Campylobacter is a major cause of acute human diarrheal illness. Broiler chickens constitute a primary reservoir for C. jejuni leading to human infection. Consequently, there is a need for developing novel intervention methods. Antimicrobial peptides (AMP) are small proteins which have evolved in most lifeforms to provide defense against microbial infections. To date, over 3000 AMP have been discovered; however, few of them have been analyzed specifically for ability to kill campylobacters. We selected and evaluated a set of 11 unique chemically synthesized AMP for ability to inhibit growth of C. jejuni. Six of the AMP we tested produced zones of inhibition on lawns of C. jejuni. These AMP included: NRC-13, RL-37, Temporin L, Cecropin–Magainin, Dermaseptin, and C12K-2β12. In addition, MIC were determined for Cecropin–Magainin, RL-37 and C12K-2β12 against 15 isolates of Campylobacter representing the three most common pathogenic strains. MIC for campylobacters were approximately 3.1 µg/mL for AMP RL-37 and C12K-2β12. MIC were slightly higher for the Cecropin–Magainin AMP in the range of 12.5 to 100 µg/mL. These AMP are attractive subjects for future study and potential in vivo delivery to poultry to reduce Campylobacter spp. populations.
Collapse
|
25
|
Wu H, Xiong H, Huang X, Zhou Q, Hu D, Qi K, Liu H. Lung infection of avian pathogenic Escherichia coli co-upregulates the expression of cSP-A and cLL in chickens. Res Vet Sci 2022; 152:99-106. [PMID: 35939885 DOI: 10.1016/j.rvsc.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/22/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
The host innate defense-pathogen interaction in the lung has always been a topic of concern. The respiratory tract is a common entry route for Avian pathogenic Escherichia coli (APEC). Chicken surfactant protein A (cSP-A) and chicken lung lectin (cLL) can bind to the carbohydrate moieties of various microorganisms. Despite their detection in chickens, their role in the innate immune response is largely unknown. This study aimed to examine whether the expression levels of cSP-A and cLL in the chicken respiratory system were affected by APEC infection. A lung colonization model was established in vivo using 5-day-old specific-pathogen-free chickens infected intratracheally with APEC. The chickens were euthanized 12 h post-infection (hpi) and 1-3 days post-infection (dpi) to detect various indicators. The results of quantitative reverse transcription-polymerase chain reaction and fluorescence multiplex immunohistochemical staining showed that the mRNA and protein expression levels of cSP-A and cLL in the lung and trachea were significantly co-upregulated at 2dpi.Transcriptome RNA-sequencing analysis indicated that the inoculation with APEC AE17 at 2 dpi resulted in differential gene expression of approximately 810 genes compared with control birds, but only a few genes were expressed with astatistically significant ≧2-fold difference. cLL and cSP-A were among the significantly upregulated genes involved in innate immunity. These findings indicated that cSP-A and cLL might play an important role in lung innate host defense against APEC infection at the early stage.
Collapse
Affiliation(s)
- Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Dongmei Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
26
|
Large-Scale Identification of Multiple Classes of Host Defense Peptide-Inducing Compounds for Antimicrobial Therapy. Int J Mol Sci 2022; 23:ijms23158400. [PMID: 35955551 PMCID: PMC9368921 DOI: 10.3390/ijms23158400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.
Collapse
|
27
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
28
|
High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel) 2022; 11:antibiotics11070933. [PMID: 35884187 PMCID: PMC9311565 DOI: 10.3390/antibiotics11070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 01/02/2023] Open
Abstract
Enhancing the synthesis of endogenous host defense peptides (HDPs) has emerged as a novel antibiotic-free approach to infectious disease control and prevention. A number of epigenetic compounds have been identified as HDP inducers and several have proved beneficial in antimicrobial therapy. However, species-specific regulation of HDP synthesis is evident. In attempt to identify epigenetic compounds with potent HDP-inducing activity for poultry-specific application, we developed a stable luciferase reporter cell line, known as HTC/AvBD10-luc, following our earlier construction of HTC/AvBD9-luc. HTC/AvBD10-luc was developed through permanent integration of a chicken macrophage cell line, HTC, with a lentiviral luciferase reporter vector driven by a 4-Kb AvBD10 gene promoter. Using a high throughput screening assay based on the two stable cell lines, we identified 33 hits, mostly being histone deacetylase (HDAC) inhibitors, from a library of 148 epigenetic compounds. Among them, entinostat and its structural analog, tucidinostat, were particularly effective in promoting multiple HDP gene expression in chicken macrophages and jejunal explants. Desirably, neither compounds triggered an inflammatory response. Moreover, oral gavage of entinostat significantly enhanced HDP gene expression in the chicken intestinal tract. Collectively, the high throughput assay proves to be effective in identifying HDP inducers, and both entinostat and tucidinostat could be potentially useful as alternatives to antibiotics to enhance intestinal immunity and disease resistance.
Collapse
|
29
|
Fu Y, Zhang S, Zhao N, Xing L, Li T, Liu X, Bao J, Li J. Effect of mild intermittent cold stimulation on thymus immune function in broilers. Poult Sci 2022; 101:102073. [PMID: 36058173 PMCID: PMC9450148 DOI: 10.1016/j.psj.2022.102073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
This study aims to assess the effect of intermittent and mild cold stimulation (IMCS) on thymus function and the ability of 1-day-old male Ross 308 broilers to withstand cold. Four hundred broilers were reared under normal and mild cold temperatures at 3°C below the normal feeding temperature and were subjected to acute cold stress (ACS) at 10°C on d 50 at 7 am for 6 h, 12 h, and 24 h. We determined the expression levels of toll-like receptors (TLRs), cytokines and avian β-defencins (AvBDs), encoding genes in thymus of broilers at 22, 36, 43, and 50 d of age, and the serum ACTH and cortisol (CORT) levels at 50 d of age. At D22 and D36, the mRNA expression levels of TLRs and AvBDs genes in CS groups were generally significantly decreased (P < 0.05). The lowest expression levels were found in birds submitted to intermittent and mild cold stimulation training for 5 h (CS5 group) on d 22 and 36 of development (P < 0.05). At D43 and D49 after IMCS, mRNA expression levels of most TLRs and AvBDs were significantly lower than those in CC group (P < 0.05), and that mRNA expression levels of all TLRs and most AvBDs in CS5 group had the same change trend with age as those in CC group (P > 0.05). At D22 and D36, mRNA expression levels of different cytokines in each CS groups were different (P < 0.05). mRNA expression levels of IL-2, IL-4, IL-6, IL-8, IL-17, and IFN-α all reached the highest values in the CS5 group at D36 (P < 0.05). The levels of ACTH and CORT in all IMCS-treated birds changed in varying degrees after ACS, but there was no significant change in CS5 group (P > 0.05). Collectively, different cold stimulation schemes could modulate thymus immune function of broilers by maintaining homeostasis and enhancing cold resistance. In particular, the optimal cold adaptation scheme was at 3°C below the conventional feeding temperature for 5 h.
Collapse
|
30
|
Ibrahim D, Eldemery F, Metwally AS, Abd-Allah EM, Mohamed DT, Ismail TA, Hamed TA, Al Sadik GM, Neamat-Allah ANF, Abd El-Hamid MI. Dietary Eugenol Nanoemulsion Potentiated Performance of Broiler Chickens: Orchestration of Digestive Enzymes, Intestinal Barrier Functions and Cytokines Related Gene Expression With a Consequence of Attenuating the Severity of E. coli O78 Infection. Front Vet Sci 2022; 9:847580. [PMID: 35812892 PMCID: PMC9260043 DOI: 10.3389/fvets.2022.847580] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, the use of essential oils (EOs) or their bioactive compounds encapsulated by nanoparticles as alternative supplements for in-feed antimicrobials is gaining attention, especially in organic poultry production. Focusing on eugenol, its incorporation into the nanoformulation is a novel strategy to improve its stability and bioavailability and thus augment its growth-boosting and antimicrobial activities. Therefore, we explored eugenol nanoemulsion activities in modulating growth, digestive and gut barrier functions, immunity, cecal microbiota, and broilers response to avian pathogenic E. coli challenge (APEC) O78. A total of 1,000 one-day-old broiler chicks were allocated into five groups; negative control (NC, fed basal diet), positive control (PC), and 100, 250, and 400 mg/kg eugenol nanoemulsion supplemented groups. All groups except NC were challenged with APEC O78 at 14 days of age. The results showed that birds fed eugenol nanoemulsion displayed higher BWG, FI, and survivability and most improved FCR over the whole rearing period. Birds fed 400 mg/kg of eugenol nanoemulsion sustained a higher growth rate (24% vs. PC) after infection. Likely, the expression of digestive enzymes' genes (AMY2A, CCK, CELA1, and PNLIP) was more prominently upregulated and unaffected by APEC O78 challenge in the group fed eugenol nanoemulsion at the level of 400 mg/kg. Enhanced gut barrier integrity was sustained post-challenge in the group supplemented with higher levels of eugenol nanoemulsion as evidenced by the overexpression of cathelicidins-2, β-defensin-1, MUC-2, JAM-2, occludin, CLDN-1, and FABP-2 genes. A distinct modulatory effect of dietary eugenol nanoemulsion was observed on cytokine genes (IL-1β, TNF-α, IL-6, IL-8, and IL-10) expression with a prominent reduction in the excessive inflammatory reactions post-challenge. Supplementing eugenol nanoemulsion increased the relative cecal abundance of Lactobacillus species and reduced Enterobacteriaceae and Bacteriods counts. Notably, a prominent reduction in APEC O78 loads with downregulation of papC, iroN, iutA, and iss virulence genes and detrimental modifications in E. coli morphological features were noticed in the 400 mg/kg eugenol nanoemulsion group at the 3rd-week post-challenge. Collectively, we recommend the use of eugenol nanoemulsion as a prospective targeted delivery approach for achieving maximum broilers growth and protection against APEC O78 infection.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia T. Mohamed
- Department of Pathology and Clinical Pathology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Thoria A. Hamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Gehan M. Al Sadik
- Department of Bacteriology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Ahmed N. F. Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Marwa I. Abd El-Hamid
| |
Collapse
|
31
|
YALCIN S, Özkan S, Shah T. Incubation Temperature and Lighting: Effect on Embryonic Development, Post-Hatch Growth, and Adaptive Response. Front Physiol 2022; 13:899977. [PMID: 35634161 PMCID: PMC9136109 DOI: 10.3389/fphys.2022.899977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
During incubation, the content of the egg is converted into a chick. This process is controlled by incubation conditions, which must meet the requirements of the chick embryo to obtain the best chick quality and maximum hatchability. Incubation temperature and light are the two main factors influencing embryo development and post-hatch performance. Because chicken embryos are poikilothermic, embryo metabolic development relies on the incubation temperature, which influences the use of egg nutrients and embryo development. Incubation temperature ranging between 37 and 38°C (typically 37.5–37.8°C) optimizes hatchability. However, the temperature inside the egg called “embryo temperature” is not equal to the incubator air temperature. Moreover, embryo temperature is not constant, depending on the balance between embryonic heat production and heat transfer between the eggshell and its environment. Recently, many studies have been conducted on eggshell and/or incubation temperature to meet the needs of the embryo and to understand the embryonic requirements. Numerous studies have also demonstrated that cyclic increases in incubation temperature during the critical period of incubation could induce adaptive responses and increase the thermotolerance of chickens without affecting hatchability. Although the commercial incubation procedure does not have a constant lighting component, light during incubation can modify embryo development, physiology, and post-hatch behavior indicated by lowering stress responses and fearful behavior and improving spatial abilities and cognitive functions of chicken. Light-induced changes may be attributed to hemispheric lateralization and the entrainment of circadian rhythms in the embryo before the hatching. There is also evidence that light affects embryonic melatonin rhythms associated with body temperature regulation. The authors’ preliminary findings suggest that combining light and cyclic higher eggshell temperatures during incubation increases pineal aralkylamine N-acetyltransferase, which is a rate-limiting enzyme for melatonin hormone production. Therefore, combining light and thermal manipulation during the incubation could be a new approach to improve the resistance of broilers to heat stress. This review aims to provide an overview of studies investigating temperature and light manipulations to improve embryonic development, post-hatch growth, and adaptive stress response in chickens.
Collapse
Affiliation(s)
| | - Sezen Özkan
- *Correspondence: Servet YALCIN, ; Sezen Özkan,
| | | |
Collapse
|
32
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
33
|
Kim SD, Kim GB, Lee GY, Yang SJ. Multilocus sequence type-dependent activity of human and animal cathelicidins against community-, hospital-, and livestock-associated methicillin-resistant Staphylococcus aureus isolates. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:515-530. [PMID: 35709124 PMCID: PMC9184701 DOI: 10.5187/jast.2022.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Sequence type (ST) 5 methicillin-resistant Staphylococcus aureus
(MRSA) with staphylococcal cassette chromosome mec (SCCmec)
type II (ST5-MRSA-II) and ST72-MRSA-IV represent the most significant genotypes
for healthcare- (HA) and community-associated (CA) MRSA in Korea, respectively.
In addition to the human-type MRSA strains, the prevalence of
livestock-associated (LA) MRSA clonal lineages, such as ST541 and ST398
LA-MRSA-V in pigs and ST692 LA-MRSA-V and ST188 LA-MRSA-IV in chickens, has
recently been found. In this study, clonotype-specific resistance profiles to
cathelicidins derived from humans (LL-37), pigs (PMAP-36), and chickens (CATH-2)
were examined using six different ST groups of MRSA strains: ST5 HA-MRSA-II,
ST72 CA-MRSA-IV, ST398 LA-MRSA-V, ST541 LA-MRSA-V, ST188 LA-MRSA-IV, and ST692
LA-MRSA-V. Phenotypic characteristics often involved in cathelicidin resistance,
such as net surface positive charge, carotenoid production, and hydrogen
peroxide susceptibility were also determined in the MRSA strains. Human- and
animal-type MRSA strains exhibited clonotype-specific resistance profiles to
LL-37, PMAP-36, or CATH-2, indicating the potential role of cathelicidin
resistance in the adaptation and colonization of human and animal hosts. The ST5
HA-MRSA isolates showed enhanced resistance to all three cathelicidins and
hydrogen peroxide than ST72 CA-MRSA isolates by implementing increased surface
positive charge and carotenoid production. In contrast, LA-MRSA strains employed
mechanisms independent of surface charge regulation and carotenoid production
for cathelicidin resistance. These results suggest that human- and
livestock-derived MRSA strains use different strategies to counteract the
bactericidal action of cathelicidins during the colonization of their respective
host species.
Collapse
Affiliation(s)
- Sun Do Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Gi Yong Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul 08826, Korea
- Corresponding author: Soo-Jin Yang, Department of
Veterinary Microbiology, College of Veterinary Medicine and Research Institute
for Veterinary Science, Seoul National University, Seoul 08826, Korea. Tel:
+82-2-880-1185, E-mail:
| |
Collapse
|
34
|
Whitmore MA, Li H, Lyu W, Khanam S, Zhang G. Epigenetic Regulation of Host Defense Peptide Synthesis: Synergy Between Histone Deacetylase Inhibitors and DNA/Histone Methyltransferase Inhibitors. Front Immunol 2022; 13:874706. [PMID: 35529861 PMCID: PMC9074817 DOI: 10.3389/fimmu.2022.874706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
Host defense peptides (HDPs) are an integral part of the innate immune system acting as the first line of defense. Modulation of HDP synthesis has emerged as a promising host-directed approach to fight against infections. Inhibition of histone deacetylation or DNA methylation is known to enhance HDP gene expression. In this study, we explored a possible synergy in HDP gene induction between histone deacetylase inhibitors (HDACi) and DNA/histone methyltransferase inhibitors (DNMTi/HMTi). Two chicken macrophage cell lines were treated with structurally distinct HDACi, HMTi, or DNMTi individually or in combinations, followed by HDP gene expression analysis. Each epigenetic compound was found to be capable of inducing HDP expression. To our surprise, a combination of HDACi and HMTi or HDACi and DNMTi showed a strong synergy to induce the expressions of most HDP genes. The HDP-inducing synergy between butyrate, an HDACi, and BIX01294, an HMTi, were further verified in chicken peripheral blood mononuclear cells. Furthermore, tight junction proteins such as claudin 1 were also synergistically induced by HDACi and HMTi. Overall, we conclude that HDP genes are regulated by epigenetic modifications. Strategies to increase histone acetylation while reducing DNA or histone methylation exert a synergistic effect on HDP induction and, therefore, have potential for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
- Melanie A. Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Hong Li
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wentao Lyu
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sharmily Khanam
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Guolong Zhang,
| |
Collapse
|
35
|
Vásquez-Escobar J, Romero-Gutiérrez T, Morales JA, Clement HC, Corzo GA, Benjumea DM, Corrales-García LL. Transcriptomic Analysis of the Venom Gland and Enzymatic Characterization of the Venom of Phoneutria depilata (Ctenidae) from Colombia. Toxins (Basel) 2022; 14:toxins14050295. [PMID: 35622542 PMCID: PMC9144723 DOI: 10.3390/toxins14050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.
Collapse
Affiliation(s)
- Julieta Vásquez-Escobar
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| | - Teresa Romero-Gutiérrez
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - José Alejandro Morales
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - Herlinda C. Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Gerardo A. Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Dora M. Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
| | - Ligia Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| |
Collapse
|
36
|
Anticancer activity of chicken cathelicidin peptides against different types of cancer. Mol Biol Rep 2022; 49:4321-4339. [PMID: 35449320 DOI: 10.1007/s11033-022-07267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study served as the pioneer in studying the anti-cancer role of chicken cathelicidin peptides. METHODS AND RESULTS Chicken cathelicidins were used as anticancer agent against the breast cancer cell line (MCF-7) and human colon cancer cell line (HCT116). In addition, the mechanism of action of the interaction of cationic peptides with breast cancer cell line MCF-7 was also investigated. An in vivo investigation was also achieved to evaluate the role of chicken cathelicidin in Ehrlich ascites cell (EAC) suppression as a tumor model after subcutaneous implantation in mice. It was found during the study that exposure of cell lines to 40 µg/ml of chicken cathelicidin for 72 h reduced cell lines growth rate by 90-95%. These peptides demonstrated down-regulation of (cyclin A1 and cyclin D genes) of MCF-7 cells. The study showed that two- and three-fold expression of both of caspase-3 and - 7 genes in untreated MCF-7 cells compared to treated MCF-7 cells with chicken cathelicidin peptides. Our data showed that chicken (CATH-1) enhance releasing of TNFα, INF-γ and upregulation of granzyme K in treated mice groups, in parallel, the tumor size and volume was reduced in the treated EAC-bearing groups. Tumor of mice groups treated with chicken cathelicidin displayed high area of necrosis compared to untreated EAC-bearing mice. Based on histological analysis and immunohistochemical staining revealed that the tumor section in Ehrlich solid tumor exhibited a strong Bcl2 expression in untreated control compared to mice treated with 10 & 20 µg of cathelicidin. Interestingly, low expression of Bcl2 were observed in mice taken 40 µg/mL of CATH-1. CONCLUSIONS This study drive intention in treatment of cancer through the efficacy of anticancer efficacy of chicken cathelicidin peptides.
Collapse
|
37
|
Li Q, Ouyang J, Zhou H, You J, Li G. Effect of probiotic supplementation on the expression of tight junction proteins, innate immunity-associated genes, and microbiota composition of broilers subjected to cyclic heat stress. Anim Sci J 2022; 93:e13719. [PMID: 35384158 DOI: 10.1111/asj.13719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
This study investigated the effects of probiotic on intestinal innate immunity-associated gene expression and cecal microbiota in heat-stressed broilers. A total of 180 21-day-old male broilers were randomly assigned to three treatment groups with four replicates per group. The thermoneutral group (TN) (23 ± 1°C) received a basal diet, and another two heat-stressed groups (28-35-28°C for 12 h daily) were fed the basal diet (HS) or the basal diet supplemented with probiotic at a dose of 1.5 × 108 CFU/kg (HS_Pro) for 21 consecutive days. Compared with the TN group, the abundance of beneficial bacteria was decreased (p < 0.05) in the caecum of heat-stressed broilers. Heat stress downregulated (p < 0.05) the expression of Toll-like receptor (TLR)2 and upregulated (p < 0.05) the expressions of TLR5, TLR15, avian β-defensin (AvBD)4, AvBD8, and AvBD14 in the ileum as compared with the TN group. Dietary supplementation of probiotic upregulated (p < 0.05) the occludin expression in the ileum, improved the microbiota balance in the caecum, and decreased (p < 0.05) the gene expressions of TLR5 and TLR15 in the ileum of heat-stressed broilers. Collectively, dietary probiotic supplementation could promote intestinal barrier function via improving gut microbiota community and regulating innate immunity-associated gene expressions in heat-stressed broilers.
Collapse
Affiliation(s)
- Qiufen Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| |
Collapse
|
38
|
Yang Q, Burkardt AC, Sunkara LT, Xiao K, Zhang G. Natural Cyclooxygenase-2 Inhibitors Synergize With Butyrate to Augment Chicken Host Defense Peptide Gene Expression. Front Immunol 2022; 13:819222. [PMID: 35273602 PMCID: PMC8902166 DOI: 10.3389/fimmu.2022.819222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Enhancing the synthesis of microbicidal and immunomodulatory host defense peptides (HDP) is a promising host-directed antimicrobial strategy to combat a growing threat of antimicrobial resistance. Here we investigated the effect of several natural cyclooxygenase-2 (COX-2) inhibitors on chicken HDP gene regulation. Our results indicated that phenolic COX-2 inhibitors such as quercetin, resveratrol, epigallocatechin gallate, anacardic acid, and garcinol enhanced HDP gene expression in chicken HTC macrophage cell line and peripheral blood mononuclear cells (PBMCs). Moreover, these natural COX-2 inhibitors showed a strong synergy with butyrate in augmenting the expressions of multiple HDP genes in HTC cells and PBMCs. Additionally, quercetin and butyrate synergistically promoted the expressions of mucin-2 and claudin-1, two major genes involved in barrier function, while suppressing lipopolysaccharide-triggered interleukin-1β expression in HTC macrophages. Mechanistically, we revealed that NF-κB, p38 mitogen-activated protein kinase, and cyclic adenosine monophosphate signaling pathways were all involved in the avian β-defensin 9 gene induction, but histone H4 was not hyperacetylated in response to a combination of butyrate and quercetin. Because of their HDP-inducing, barrier-protective, and antiinflammatory activities, these natural COX-2 inhibitors, when combined with butyrate, may be developed as novel host-directed antimicrobial therapeutics.
Collapse
Affiliation(s)
- Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda C Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Lakshimi T Sunkara
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Veterinary Diagnostic Center, Clemson University, Clemson, SC, United States
| | - Kan Xiao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
39
|
An K, Gao W, Li P, Li L, Xia Z. Dietary Lactobacillus plantarum improves the growth performance and intestinal health of Pekin ducks. Poult Sci 2022; 101:101844. [PMID: 35413596 PMCID: PMC9018153 DOI: 10.1016/j.psj.2022.101844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
|
40
|
Kankova Z, Drozdova A, Hodova V, Zeman M. Effect of blue and red monochromatic light during incubation on the early post-embryonic development of immune responses in broiler chicken. Br Poult Sci 2022; 63:541-547. [PMID: 35152798 DOI: 10.1080/00071668.2022.2042485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
1. The light regime during incubation can influence embryonic and post-embryonic life and its effects can be mediated by rhythmic melatonin production in the embryonic pineal gland.2. This study explored whether the incubation of chick embryos under red or blue monochromatic light, which induces maximum and minimum melatonin production, respectively, can influence the development and reactivity of the immune system in chicks.3. In hatchlings, basal expression of immune genes (AvBD-1, PSEN-1, and IL-6) was evaluated in the duodenum using real-time PCR. The expression of these genes was measured weekly for three weeks after hatching, 3 h after intraperitoneal lipopolysaccharide (LPS) injection. At these times, the heterophile/lymphocyte ratio (He/Ly) was evaluated on blood smears, plasma immunoglobulin Y (IgY) concentrations by ELISA and IL-6 gene expression in the spleen by real-time PCR were determined.4. During development, the He/Ly ratio and plasma IgY concentration were not significantly influenced by the light quality during incubation. Red light increased gene expression of AvBD-1 in hatchlings and IL-6 in two-week-old chickens compared to birds incubated under blue light. The expression of IL-6 after LPS stimulation increased in an age-dependent manner, both in the duodenum and the spleen, reflecting the maturation of the immune system.5. The results suggested that red light may increase the local immune response in the gut immediately after hatching, but this effect was not apparent during later development.
Collapse
Affiliation(s)
- Zuzana Kankova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Angelika Drozdova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Vladimira Hodova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Slovakia; (A.D.), (V.H.), (M.Z.)
| |
Collapse
|
41
|
Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines (Basel) 2022; 10:vaccines10020215. [PMID: 35214673 PMCID: PMC8879868 DOI: 10.3390/vaccines10020215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Coccidiosis is an avian intestinal disease caused by several distinct species of Eimeria parasites that damage the host’s intestinal system, resulting in poor nutrition absorption, reduced growth, and often death. Increasing evidence from recent studies indicates that immune-based strategies such as the use of recombinant vaccines and various dietary immunomodulating feed additives can improve host defense against intracellular parasitism and reduce intestinal damage due to inflammatory responses induced by parasites. Therefore, a comprehensive understanding of the complex interactions between the host immune system, gut microbiota, enteroendocrine system, and parasites that contribute to the outcome of coccidiosis is necessary to develop logical strategies to control coccidiosis in the post-antibiotic era. Most important for vaccine development is the need to understand the protective role of the local intestinal immune response and the identification of various effector molecules which mediate anti-coccidial activity against intracellular parasites. This review summarizes the current understanding of the host immune response to coccidiosis in poultry and discusses various non-antibiotic strategies which are being developed for coccidiosis control. A better understanding of the basic immunobiology of pertinent host–parasite interactions in avian coccidiosis will facilitate the development of effective anti-Eimeria strategies to mitigate the negative effects of coccidiosis.
Collapse
|
42
|
Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination. Anim Health Res Rev 2022; 22:147-162. [DOI: 10.1017/s146625232100013x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractNecrotic enteritis (NE), caused by Clostridium perfringens (CP), is one of the most common of poultry diseases, causing huge economic losses to the poultry industry. This review provides an overview of the pathogenesis of NE in chickens and of the interaction of CP with the host immune system. The roles of management, nutrition, probiotics, and vaccination in reducing the incidence and severity of NE in poultry flocks are also discussed.
Collapse
|
43
|
Yoshimura Y, Kondo H, Takamatsu K, Tsugami Y, Nii T, Isobe N. Modulation of the innate immune system by lipopolysaccharide in the proventriculus of chicks inoculated with or without Newcastle disease and infectious bronchitis vaccine. Poult Sci 2022; 101:101719. [PMID: 35247652 PMCID: PMC8897715 DOI: 10.1016/j.psj.2022.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine whether the innate immune system in the proventriculus of broiler chicks responds to lipopolysaccharide (LPS) and whether this response is affected by Newcastle disease and infectious bronchitis (ND/IB) vaccination. Chicks were divided into 4 groups: nonvaccinated and injected with PBS or LPS (V-L- and V-L+), and vaccinated and injected with PBS or LPS (V+L- and V+L+). Vaccination was performed on d 1, and LPS was intraperitoneally injected on d 11 of age. The gene expression and protein levels of immune molecules, including toll-like receptors (TLRs), antimicrobial peptides, interleukin-1β (IL-1B), and immunoglobulin A (IgA) in the proventriculus and serum were analyzed. The results showed that the expression levels of TLR21 were higher in vaccinated (V+L-) group than in nonvaccinated (V-L-) group. Gene expression levels of avian β-defensin (AvBDs) and cathelicidin1 (Cath1) were not different among the 4 groups. However, the results of LC/MS analysis showed that the levels of AvBD2, 6, and 7 significantly increased after the LPS challenge in nonvaccinated and vaccinated chicks; the levels were higher in V-L+ and V+L+ than in V-L- and V+L-, respectively. Immunohistochemistry analysis revealed the localization of AvBD1 protein in the epithelial cells of the surface glands and AvBD2 and CATH1 in the heterophil-like cells in the lamina propria of surface glands. Although IL-1B gene expression and protein concentration in the proventriculus tissues were not different among the 4 groups, serum IL-1B levels were upregulated by LPS in both the nonvaccinated and vaccinated groups (V-L- vs. V-L+, V+L- vs. V+L+). Moreover, IgA levels in the proventriculus and serum were not affected by vaccination or LPS challenge. Taken together, we conclude that LPS derived from gram-negative bacteria upregulates the innate immune system, including antimicrobial peptide synthesis in the proventriculus. ND/IB vaccination may not significantly affect antimicrobial peptide synthesis in response to LPS; however, TLR21 expression is upregulated by that vaccination. The antimicrobial peptides synthesized in the proventriculus probably prevent pathogenic microbes from entering the intestine.
Collapse
Affiliation(s)
- Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | - Hiroya Kondo
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Kyota Takamatsu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
44
|
SILVA MAURÍCIOB, FEITOSA ALEXYAO, LIMA IGORG, BISPO JAMESR, SANTOS ANACAROLINEM, MOREIRA MAGNAS, CÂMARA PAULOE, ROSA LUIZHENRIQUE, OLIVEIRA VALÉRIAM, DUARTE ALYSSONW, QUEIROZ ALINEC. Antarctic organisms as a source of antimicrobial compounds: a patent review. AN ACAD BRAS CIENC 2022; 94:e20210840. [DOI: 10.1590/0001-3765202220210840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - ALINE C. QUEIROZ
- Universidade Federal de Alagoas, Brazil; Universidade Federal de Alagoas, Brazil
| |
Collapse
|
45
|
Robinson K, Yang Q, Li H, Zhang L, Aylward B, Arsenault RJ, Zhang G. Butyrate and Forskolin Augment Host Defense, Barrier Function, and Disease Resistance Without Eliciting Inflammation. Front Nutr 2021; 8:778424. [PMID: 34778349 PMCID: PMC8579826 DOI: 10.3389/fnut.2021.778424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Host defense peptides (HDPs) are an integral part of the innate immune system with both antimicrobial and immunomodulatory activities. Induction of endogenous HDP synthesis is being actively explored as an antibiotic-alternative approach to disease control and prevention. Butyrate, a short-chain fatty acid, and forskolin, a phytochemical, have been shown separately to induce HDP gene expression in human cells. Here, we investigated the ability of butyrate and forskolin to induce the expressions of chicken HDP genes and the genes involved in barrier function such as mucin 2 and claudin 1 both in vitro and in vivo. We further evaluated their efficacy in protecting chickens from Clostridium perfringens-induced necrotic enteritis. Additionally, we profiled the transcriptome and global phosphorylation of chicken HD11 macrophage cells in response to butyrate and forskolin using RNA sequencing and a kinome peptide array, respectively. Our results showed a strong synergy between butyrate and forskolin in inducing the expressions of several, but not all, HDP genes. Importantly, dietary supplementation of butyrate and a forskolin-containing plant extract resulted in significant alleviation of intestinal lesions and the C. perfringens colonization in a synergistic manner in a chicken model of necrotic enteritis. RNA sequencing revealed a preferential increase in HDP and barrier function genes with no induction of proinflammatory cytokines in response to butyrate and forskolin. The antiinflammatory and barrier protective properties of butyrate and forskolin were further confirmed by the kinome peptide array. Moreover, we demonstrated an involvement of inducible cAMP early repressor (ICER)-mediated negative feedback in HDP induction by butyrate and forskolin. Overall, these results highlight a potential for developing butyrate and forskolin, two natural products, as novel antibiotic alternatives to enhance intestinal health and disease resistance in poultry and other animals.
Collapse
Affiliation(s)
- Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Poultry Production and Product Safety Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service, Fayetteville, AR, United States
| | - Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Hong Li
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Long Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Bridget Aylward
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
46
|
Gong T, Fu J, Shi L, Chen X, Zong X. Antimicrobial Peptides in Gut Health: A Review. Front Nutr 2021; 8:751010. [PMID: 34660671 PMCID: PMC8514777 DOI: 10.3389/fnut.2021.751010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Animal antimicrobial peptides (AMPs), known as broad-spectrum and high-efficiency antibacterial activity, are important effector molecules in innate immune system. AMPs not only have antimicrobial, antiviral and antitumor effects but also exhibit important effects in vivo, such as anti-inflammatory response, recruiting immune cells, promoting epithelial damage repair, and promoting phagocytosis of bacteria. However, research on the application of AMPs is incomplete and controversial. This review mainly introduces the classification of AMPs, biological functions, as well as the mechanisms of action, expression rules, and nutrition regulation from three perspectives, aiming to provide important information for the application of AMPs.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lexuan Shi
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Xin Chen
- School of Medicine, Foshan University, Foshan, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Alber A, Stevens MP, Vervelde L. The bird's immune response to avian pathogenic Escherichia coli. Avian Pathol 2021; 50:382-391. [PMID: 33410704 DOI: 10.1080/03079457.2021.1873246] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) cause colibacillosis in birds, a syndrome of severe respiratory and systemic disease that constitutes a major threat due to early mortality, condemnation of carcasses and reduced productivity. APEC can infect different types of birds in all commercial settings, and birds of all ages, although disease tends to be more severe in younger birds likely a consequence of an immature immune system. APEC can act as both primary and secondary pathogens, with predisposing factors for secondary infections including poor housing conditions, respiratory viral and Mycoplasma spp. infections or vaccinations. Controlled studies with APEC as primary pathogens have been used to study the bird's immune response to APEC, although it may not always be representative of natural infections which may be more complex due to the presence of secondary agents, stress and environmental factors. Under controlled experimental conditions, a strong early innate immune response is induced which includes host defence peptides in mucus and a cellular response driven by heterophils and macrophages. Both antibody and T-cell mediated adaptive responses have been demonstrated after vaccination. In this review we will discuss the bird's immune response to APEC as primary pathogen with a bias towards the innate immune response, as mechanistic adaptive studies clearly form a much more limited body of work despite numerous vaccine trials.
Collapse
Affiliation(s)
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lonneke Vervelde
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Hul LM, Ibelli AMG, Savoldi IR, Marcelino DEP, Fernandes LT, Peixoto JO, Cantão ME, Higa RH, Giachetto PF, Coutinho LL, Ledur MC. Differentially expressed genes in the femur cartilage transcriptome clarify the understanding of femoral head separation in chickens. Sci Rep 2021; 11:17965. [PMID: 34504189 PMCID: PMC8429632 DOI: 10.1038/s41598-021-97306-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis. In the transcriptome analysis, 12,169 genes were expressed in the femur AC. Of those, 107 genes were DE (FDR < 0.05) between normal and affected chickens, of which 9 were downregulated and 98 were upregulated in the affected broilers. In the gene-set enrichment analysis using the DE genes, 79 biological processes (BP) were identified and were grouped into 12 superclusters. The main BP found were involved in the response to biotic stimulus, gas transport, cellular activation, carbohydrate-derived catabolism, multi-organism regulation, immune system, muscle contraction, multi-organism process, cytolysis, leukocytes and cell adhesion. In this study, the first transcriptome analysis of the broilers femur articular cartilage was performed, and a set of candidate genes (AvBD1, AvBD2, ANK1, EPX, ADA, RHAG) that could trigger changes in the broiler´s femoral growth plate was identified. Moreover, these results could be helpful to better understand FHN in chickens and possibly in humans.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil
| | - Adriana Mércia Guaratini Ibelli
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | - Igor Ricardo Savoldi
- grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| | | | | | - Jane Oliveira Peixoto
- grid.412329.f0000 0001 1581 1066Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-080 Brazil ,Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil
| | | | - Roberto Hiroshi Higa
- grid.460200.00000 0004 0541 873XEmbrapa Informática Agropecuária, Campinas, SP 70770-901 Brazil
| | | | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Departamento de Zootecnia, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, SC 89715-899 Brazil ,grid.412287.a0000 0001 2150 7271Programa de Pós-Graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó, SC 89815-630 Brazil
| |
Collapse
|
49
|
Hu Q, Yin F, Li B, Guo Y, Yin Y. Dietary Tributyrin Administration Improves Intestinal Morphology and Selected Bacterial and Short-Chain Fatty Acid Profiles in Broilers Under an Isocaloric Feeding Regime. Front Microbiol 2021; 12:715712. [PMID: 34421875 PMCID: PMC8371336 DOI: 10.3389/fmicb.2021.715712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The current study was conducted to investigate the effect of dietary tributyrin (TB) administration on the intestinal and growth performances in Arbor Acres (AA) broilers under an isocaloric feeding regime. A total of 540 day-old healthy AA broilers were randomly assigned to five treatments with 12 replicates (pens) per treatment and nine birds per pen for 42 days. The dietary treatments were basal diet (control) and basal diet with TB at doses of 0.23 g/kg (TB1), 0.46 g/kg (TB2), 0.92 g/kg (TB3), and 1.84 g/kg (TB4). Particularly, to achieve the isocaloric and cost-saving experimental diets, soybean oil was replaced by the TB product (Eucalorie®) with equivalent metabolic energy contents, and the formulas were rebalanced with zeolite to get the sum of all the feed ingredients to 100%. On days 21 and 42, after weighing, the birds (one bird per replicate) whose body weight was close to the replicate average were euthanized to investigate the effect of dietary TB on intestinal morphology, intestinal bacterial population, and short-chain fatty acid contents. The results revealed that dietary TB administration increased the average daily gain, gain/feed ratio, and European broiler index (P < 0.05) and improved the intestinal morphology (P < 0.05) as indicated by higher villus height and the ratios of villus height/crypt depth in broilers. The incremental levels of TB increased the ileal Lactobacillus content (P = 0.05) and cecal Bacillus content (P = 0.02), respectively. Moreover, dietary TB administration also increased the contents of most of the selected short-chain fatty acids in ileal and cecal digesta (P < 0.05). Collectively, dietary TB administration quadratically improved the growth performance, intestinal morphology, beneficial bacterial population, and short-chain fatty acid levels under the isocaloric feeding regime, indicating better profit return potential in practical poultry operation.
Collapse
Affiliation(s)
- Qunbing Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Fugui Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Baocheng Li
- Hubei Horwath Biotechnology Co., Ltd., Xianning, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
50
|
Ishige T, Hara H, Hirano T, Kono T, Hanzawa K. Analysis of the Diversity of the AvBD Gene Region in Japanese Quail. J Hered 2021; 111:436-443. [PMID: 32852036 DOI: 10.1093/jhered/esaa035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
The avian β-defensin (AvBD) gene region is an important component of the innate immune system, encoding a variety of antimicrobial peptides. The AvBD region forms a multigene cluster in a specific chromosomal region. Comparison of the AvBD region among various birds suggests the presence of defects, duplications, and pseudogenization at many loci. The AvBD region in certain galliform birds, namely chicken, turkey, and bobwhite quail, includes AvBD3, -6, and -7, with the latter exhibiting copy number variants (CNVs) in chickens. DNA for genomic analysis was extracted from the peripheral blood of 99 randomly selected quail (Coturnix japonica) from 6 inbred lines. Nine CjAvBD1 and 8 CjAvBD12 alleles were detected. Ten haplotypes, including three that were strain specific, were found in alleles from the quail AvBD1 (CjAvBD1) and -12 (CjAvBD12) loci. Next-generation sequencing was used to determine the nucleotide sequences of the CjAvBD gene region (56-70 kb) for 7 homozygous diplotypes of these 10 haplotypes. These 7 haplotypes contained between 12 and 16 CjAvBD genes and were composed of 11 common loci: CjAvBD1, -2, -4, -5, -8, -9, -10, -11, -12, -13, and -14, but lacked CjAvBD3 and -7. Furthermore, up to 5 CjAvBD101 (AvBD6 ortholog) CNVs were observed among the 7 haplotypes. In addition, we detected amino acid substitutions causing net charge mutations that could affect antimicrobial activity in CjAvBD4, -13, -14, and -101. These results suggest that the CjAvBD region is unique among the Galliformes and that its diversity results in potential functional variation in innate immunity.
Collapse
Affiliation(s)
- Taichiro Ishige
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromi Hara
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Takashi Hirano
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kei Hanzawa
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| |
Collapse
|