1
|
Guzman JPMD, Nozaki R, Aoki M, Kuwahara H, Mikata K, Koiwai K, Kondo H, Hirono I. Transcriptome analyses of mRNA and circular RNA reveal dietary supplementation with freeze-dried Lactiplantibacillus plantarum primes immune memory of Whiteleg shrimp (Penaeus vannamei) against pathogens. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110091. [PMID: 39674426 DOI: 10.1016/j.fsi.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The lack of a classical adaptive immunity renders the development of disease control and prevention measures in shrimp challenging. In this study, the concept of trained immunity was exploited in the development of a feed supplement. Penaeus vannamei shrimp was fed with feed supplemented with freeze-dried whole culture of Lactiplantibacillus plantarum (FD-LAB) for 15 days. RNA sequencing using Illumina platform was performed on the gill and stomach tissues collected at specific time points during the feeding period (0th day, 8th day, 15th day). Differentially-expressed genes (DEGs) previously reported to have innate immunity- and immune memory-related functions were selected for validation. Additionally, the differential expression of putatively immune-related circular RNAs (DECs) were also explored as these noncoding regulatory RNAs may also influence host immunity. Challenge tests with either the acute hepatopancreatic necrosis disease-causing strain Vibrio parahaemolyticus D6 or White Spot Syndrome Virus (WSSV) were conducted. Transcriptome analyses showed that FD-LAB supplementation resulted to DEGs and DECs related to pathogen recognition, antimicrobial peptides, transcription regulation, and immune memory. Challenge tests performed immediately after 15 days and 8 days of feeding showed protection on P. vannamei by FD-LAB against bacterial and viral pathogens. Increase in survival rates were also observed upon challenge with both pathogens 7 days and 14 days after last intake of FD-LAB, indicating trained immunity in shrimp. Our study highlighted the effects of FD-LAB on the innate immunity and immune memory of P. vannamei against bacterial and viral pathogens. These findings emphasize the possibility of immunostimulants inducing lasting enhanced immunity against infections despite the lack of a classical adaptive immunity in shrimp.
Collapse
Affiliation(s)
- John Paul Matthew Domingo Guzman
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, 108-8477, Japan; Environment and Biotechnology Division, Industrial Technology Development Institute, Department of Science and Technology, Philippines
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Mikio Aoki
- Sumitomo Chemicals Co., Ltd., Tokyo, Japan
| | | | | | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
2
|
Betancourt JL, Rodríguez-Ramos T, Dixon B. Pattern recognition receptors in Crustacea: immunological roles under environmental stress. Front Immunol 2024; 15:1474512. [PMID: 39611155 PMCID: PMC11602452 DOI: 10.3389/fimmu.2024.1474512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Innate immunity is the first line of defense against infections and the only known available strategy for invertebrates. Crustaceans, being mostly aquatic invertebrates, are constantly exposed to potential pathogens in the surrounding water. Their immune system abolishes most microbes that enter and are recognized as a threat. However, the stress produced by high population densities and abiotic changes, in aquaculture, disrupts the host-pathogen balance, leading to severe economic losses in this industry. Consequently, crustacean immunology has become a prime area of research where significant progress has been made. This review provides our current understanding of the key pattern recognition receptors in crustaceans, with special focus on Decapoda, and their roles in triggering an immune response. We discuss recent developments in the field of signal transduction pathways such as Toll-like receptors (TLRs) and the immune deficiency (IMD) pathway, and examine the role of antimicrobial peptides (AMPs) in pathogen defense. Additionally, we analyze how environmental stressors-such as temperature fluctuations, ammonia levels, and pollution-impact immune responses and increase susceptibility to diseases. Finally, we highlight future research directions, emphasizing the need to explore the interactions between environmental stressors and immune signaling pathways and to develop strategies to enhance immune responses in crustaceans within aquaculture settings. Altogether, these advancements deepen our understanding of pathogen recognition in invertebrates and the specific defense mechanisms employed by crustaceans, particularly in response to infections triggered by pathogens under abiotic stressors.
Collapse
Affiliation(s)
| | | | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
3
|
Söderhäll K. Invertebrate immunology - some thoughts about past and future research. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105256. [PMID: 39214322 DOI: 10.1016/j.dci.2024.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, 752 36, Uppsala, Sweden.
| |
Collapse
|
4
|
Xia HH, Zhu LM, Shen LT, Wan ZC. Cytoplasmic tail of transmembrane dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109626. [PMID: 38797334 DOI: 10.1016/j.fsi.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.
Collapse
Affiliation(s)
- Hong-Hao Xia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Le-Mei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Long-Teng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Zhi-Cheng Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China.
| |
Collapse
|
5
|
Ng TH, Harrison MC, Scharsack JP, Kurtz J. Disentangling specific and unspecific components of innate immune memory in a copepod-tapeworm system. Front Immunol 2024; 15:1307477. [PMID: 38348037 PMCID: PMC10859752 DOI: 10.3389/fimmu.2024.1307477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Evidence that the innate immune system can respond with forms of memory upon reinfection has been accumulating over the past few years. These phenomena of "immune priming" in invertebrates, and "trained immunity" in vertebrates, are contrary to previous belief that immune memory and specificity are restricted to the adaptive immune system. However, while trained immunity is usually a response with rather low specificity, immune priming has shown highly specific responses in certain species. To date, it is largely unknown how specificity in innate immune memory can be achieved in response to different parasite types. Here, we revisited a system where an exceptionally high degree of innate immune specificity had been demonstrated for the first time, consisting of the copepod Macrocyclops albidus and its natural parasite, the tapeworm Schistocephalus solidus. Using homologous (same family) vs. heterologous (different family) priming-challenge experiments, we first confirm that copepods exposed to the same parasite family benefit from reduced secondary infections. We further focused on exposed-but-not-infected copepods in primary exposure to employ a transcriptomic approach, distinguishing between immunity that was either specific or unspecific regarding the discrimination between tapeworm types. A weighted gene co-expression network (WGCN) revealed differences between specific and unspecific immunity; while both involved histone modification regulation, specific immunity involved gene-splicing factors, whereas unspecific immunity was primarily involved in metabolic shift. We found a functional enrichment in spliceosome in specific immunity, whereas oxidative phosphorylation and carbon metabolism were enriched in unspecific immunity. Our findings allow discrimination of specific and unspecific components of an innate immune memory, based on gene expression networks, and deepen our understanding of basic aspects of immune systems.
Collapse
Affiliation(s)
- Tze Hann Ng
- *Correspondence: Tze Hann Ng, ; Joachim Kurtz,
| | | | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Zhang XL, Shen GQ, Zhang XN, Zhao YH, Li WW, Wang Q. Immune functions of the Dscam extracellular variable region in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108850. [PMID: 37244319 DOI: 10.1016/j.fsi.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
In arthropods, there is only a single copy of Down Syndrome Cell Adhesion Molecule (Dscam) in the genome, but it can exist as numerous splice variants. There are three hypervariable exons in the extracellular domain and one hypervariable exon in the transmembrane domain. In Chinese mitten crab (Eriocheir sinensis), exons 4, 6 and 14 can produce 25, 34 and 18 alternative splice variants, respectively. In this study, through Illumina sequencing, we identified additional splice variants for exons 6 and 14, hence there may be > 50,000 Dscam protein variants. Sequencing of exons 4, 6 and 14 showed that alternative splicing was altered after bacterial stimulation. Therefore, we expressed and purified the extracellular variable region of Dscam (EsDscam-Ig1-Ig7). Exons 4.3, 6.46 and 14.18, three variable exons of the recombinant protein, were randomly selected. The functions of EsDscam-Ig1-Ig7 in immune defences of E. sinensis were subsequently explored. EsDscam-Ig1-Ig7 was discovered to bind to both Gram-positive Staphylococcus aureus and Gram-negative Vibrio parahaemolyticus, but it did not exhibit antibacterial activity. By promoting hemocyte phagocytosis and bacterial removal, EsDscam-Ig1-Ig7 can also shield the host from bacterial infection. The findings highlight the immunological activities of Dscam alternative splicing and reveal the potential for many more Dscam isoforms than were previously predicted in E. sinensis.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guo-Qing Shen
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiao-Na Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yue-Hong Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Cheng J, Yu Y, Wang X, Zheng X, Liu T, Hu D, Jin Y, Lai Y, Fu TM, Chen Q. Structural basis for the self-recognition of sDSCAM in Chelicerata. Nat Commun 2023; 14:2522. [PMID: 37130844 PMCID: PMC10154414 DOI: 10.1038/s41467-023-38205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
To create a functional neural circuit, neurons develop a molecular identity to discriminate self from non-self. The invertebrate Dscam family and vertebrate Pcdh family are implicated in determining synaptic specificity. Recently identified in Chelicerata, a shortened Dscam (sDscam) has been shown to resemble the isoform-generating characters of both Dscam and Pcdh and represent an evolutionary transition. Here we presented the molecular details of sDscam self-recognition via both trans and cis interactions using X-ray crystallographic data and functional assays. Based on our results, we proposed a molecular zipper model for the assemblies of sDscam to mediate cell-cell recognition. In this model, sDscam utilized FNIII domain to form side-by-side interactions with neighboring molecules in the same cell while established hand-in-hand interactions via Ig1 domain with molecules from another cell around. Together, our study provided a framework for understanding the assembly, recognition, and evolution of sDscam.
Collapse
Affiliation(s)
- Jie Cheng
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Xingyu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Xi Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610041, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, 611135, Chengdu, China
| | - Ting Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Daojun Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ying Lai
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
8
|
Roberts AJ, Suttle CA. Pathogens and Passengers: Roles for Crustacean Zooplankton Viruses in the Global Ocean. Microorganisms 2023; 11:microorganisms11041054. [PMID: 37110477 PMCID: PMC10142142 DOI: 10.3390/microorganisms11041054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses infect all living organisms, but the viruses of most marine animals are largely unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few have been interrogated for their associated viruses despite the profound potential effects of viral infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous, including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses, in many cases representing deep branches of viral evolution. As there is clear evidence that many of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely responsible for a significant portion of unexplained non-consumptive mortality in this group. In turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct impacts of infection, zooplankton can vector economically devastating viruses of finfish and other crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton vertically between epi- and mesopelagic communities through seasonal and diel vertical migration (DVM) and across long distances in ship ballast water. The large potential impact of viruses on crustacean zooplankton emphasises the need to clearly establish the relationships between specific viruses and the zooplankton they infect and investigate disease and mortality for these host-virus pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics of host populations. We are only beginning to uncover the diversity and function of viruses associated with crustacean zooplankton.
Collapse
Affiliation(s)
- Alastair J Roberts
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Wan Z, Nan X, Zhuo Y, Xia H, Li W. Alternatively spliced exon 33 in Dscam controls antibacterial responses through regulating cellular endocytosis and regulation of actin cytoskeleton gene expression in the hemocytes of the Chinese mitten crab (Eriocheir sinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104619. [PMID: 36535491 DOI: 10.1016/j.dci.2022.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
It has been widely established that Down syndrome cell adhesion molecule (Dscam) regulates arthropod cellular endocytosis. However, the signal transduction pathways and molecular mechanisms of the regulatory process remain unclear. Our previous study identified a Dscam-mediated immune signal transduction pathway that regulates cellular antimicrobial peptide expression, and a conserved endocytosis motif encoded by exon 33 in the cytoplasmic tail of transmembrane Dscam. Therefore, the present study aimed to determine the transcriptional response of the Chinese mitten crab (Eriocheir sinensis) Dscam with a cytoplasmic tail encoded by different exons. In the group of exon 32 knockdown, 306 differentially expressed genes (DEGs) were identified, and 3579 differentially expressed genes (DEGs) were identified in the group of exon 33 knockdown (green fluorescent protein, (GFP) as control). The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. Quantitative real-time reverse transcription PCR validated the data for selected genes. Our study contributes to the understanding of the immune defense mechanism in E. sinensis and the development of the innate immune system, thus providing insights into disease control and prevention in aquaculture.
Collapse
Affiliation(s)
- Zhicheng Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China.
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yicai Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Honghao Xia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, 230031, PR China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
10
|
Zhang X, Zhang X, Zong S, Shen G, Zhao Y, Li W, Wang Q. The extracellular non-variable region of Dscam promotes bacterial clearance by promoting phagocytosis of hemocytes in Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104541. [PMID: 36108933 DOI: 10.1016/j.dci.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
As the most typical example of mRNA variable splicing, Down Syndrome Cell Adhesion Molecule (Dscam) can produce a large number of mRNA isomers. It plays an important role not only in the nervous system, but also in the immune system. In Eriocheir sinensis, the extracellular region of Dscam has three variable domains, which can produce 25, 34 and 18 exons and encode the N-terminal region of immunoglobulin (Ig) 2 and Ig3 domains, and the entire Ig7 domain, respectively. In addition to three variable domains, the extracellular non-variable region of Dscam also includes many Ig domains and fibronectin type III (FNIII) domains. However, the role of the extracellular non-variable region function of Dscam in the immune defense of E. sinensis is unclear. In this study, we focused on the role of the extracellular non-variable region of Dscam in crab immune defense. The results indicate that the extracellular non-variable region of Dscam can bind bacteria and has bacteriostatic function. At the same time, the extracellular non-variable region of Dscam can also directly promote bacterial clearance by promoting phagocytosis of hemocytes.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shibo Zong
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
11
|
Sarmiento ME, Chin KL, Lau NS, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Transcriptomic Signature of Horseshoe Crab Carcinoscorpius rotundicauda Hemocytes' Response to Lipopolysaccharides. Curr Issues Mol Biol 2022; 44:5866-5878. [PMID: 36547060 PMCID: PMC9777084 DOI: 10.3390/cimb44120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.
Collapse
Affiliation(s)
- Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| |
Collapse
|
12
|
Boštjančić LL, Francesconi C, Rutz C, Hoffbeck L, Poidevin L, Kress A, Jussila J, Makkonen J, Feldmeyer B, Bálint M, Schwenk K, Lecompte O, Theissinger K. Host-pathogen coevolution drives innate immune response to Aphanomyces astaci infection in freshwater crayfish: transcriptomic evidence. BMC Genomics 2022; 23:600. [PMID: 35989333 PMCID: PMC9394032 DOI: 10.1186/s12864-022-08571-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND For over a century, scientists have studied host-pathogen interactions between the crayfish plague disease agent Aphanomyces astaci and freshwater crayfish. It has been hypothesised that North American crayfish hosts are disease-resistant due to the long-lasting coevolution with the pathogen. Similarly, the increasing number of latent infections reported in the historically sensitive European crayfish hosts seems to indicate that similar coevolutionary processes are occurring between European crayfish and A. astaci. Our current understanding of these host-pathogen interactions is largely focused on the innate immunity processes in the crayfish haemolymph and cuticle, but the molecular basis of the observed disease-resistance and susceptibility remain unclear. To understand how coevolution is shaping the host's molecular response to the pathogen, susceptible native European noble crayfish and invasive disease-resistant marbled crayfish were challenged with two A. astaci strains of different origin: a haplogroup A strain (introduced to Europe at least 50 years ago, low virulence) and a haplogroup B strain (signal crayfish in lake Tahoe, USA, high virulence). Here, we compare the gene expression profiles of the hepatopancreas, an integrated organ of crayfish immunity and metabolism. RESULTS We characterised several novel innate immune-related gene groups in both crayfish species. Across all challenge groups, we detected 412 differentially expressed genes (DEGs) in the noble crayfish, and 257 DEGs in the marbled crayfish. In the noble crayfish, a clear immune response was detected to the haplogroup B strain, but not to the haplogroup A strain. In contrast, in the marbled crayfish we detected an immune response to the haplogroup A strain, but not to the haplogroup B strain. CONCLUSIONS We highlight the hepatopancreas as an important hub for the synthesis of immune molecules in the response to A. astaci. A clear distinction between the innate immune response in the marbled crayfish and the noble crayfish is the capability of the marbled crayfish to mobilise a higher variety of innate immune response effectors. With this study we outline that the type and strength of the host immune response to the pathogen is strongly influenced by the coevolutionary history of the crayfish with specific A. astaci strains.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Caterina Francesconi
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Lucien Hoffbeck
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Laetitia Poidevin
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Arnaud Kress
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
| | - Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70210, Kuopio, Finland
- Present address: BioSafe - Biological Safety Solutions, Microkatu 1, 70210, Kuopio, Finland
| | - Barbara Feldmeyer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Klaus Schwenk
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000, Strasbourg, France
| | - Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| |
Collapse
|
13
|
Ramírez M, Debut A. Control of vibriosis in shrimp through the management of the microbiota and the immune system. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shrimp aquaculture is constantly threatened by recurrent outbreaks of diseases caused by pathogenic bacteria of the genus Vibrio. Acute hepatopancreatic necrosis disease (AHPND) is one of the most aggressive vibriosis reported to date in the shrimp industry. AHPND provokes massive mortalities, causing economic losses with strong social impacts. Control of vibriosis requires the application of multifactorial strategies. This includes vibrio exclusion, shrimp microbiota, particularly in the digestive tract, and shrimp health management through immune stimulation. This paper reviews these two strategies for the prophylactic control of vibriosis. First, we describe the devastating effects of AHPND and the cellular and humoral effectors of the shrimp immune system to cope with this pathology. Secondly, the mechanisms of action of probiotics and their positive impacts are highlighted, including their immunostimulant effects and their role in the balance of the shrimp microbiota. Finally, we reviewed immunostimulants and prebiotics polysaccharides that together with probiotics act benefiting growth, feed efficiency and the microbiota of the digestive tract of farmed shrimp.
Collapse
Affiliation(s)
- Mery Ramírez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Avenida General Rumiñahui S/N y Ambato, P.O. Box 171-5-231B, Sangolquí, Ecuador
| |
Collapse
|
14
|
Tran NT, Liang H, Zhang M, Bakky MAH, Zhang Y, Li S. Role of Cellular Receptors in the Innate Immune System of Crustaceans in Response to White Spot Syndrome Virus. Viruses 2022; 14:v14040743. [PMID: 35458473 PMCID: PMC9028835 DOI: 10.3390/v14040743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Innate immunity is the only defense system for resistance against infections in crustaceans. In crustaceans, white spot diseases caused by white spot syndrome virus (WSSV) are a serious viral disease with high accumulative mortality after infection. Attachment and entry into cells have been known to be two initial and important steps in viral infection. However, systematic information about the mechanisms related to WSSV infection in crustaceans is still limited. Previous studies have reported that cellular receptors are important in the innate immune system and are responsible for the recognition of foreign microorganisms and in the stimulation of the immune responses during infections. In this review, we summarize the current understanding of the functions of cellular receptors, including Toll, C-type lectin, scavenger receptor, β-integrin, polymeric immunoglobulin receptor, laminin receptor, globular C1q receptor, lipopolysaccharide-and β-1,3-glucan-binding protein, chitin-binding protein, Ras-associated binding, and Down syndrome cell adhesion molecule in the innate immune defense of crustaceans, especially shrimp and crabs, in response to WSSV infection. The results of this study provide information on the interaction between viruses and hosts during infections, which is important in the development of preventative strategies and antiviral targets in cultured aquatic animals.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Md. Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; (N.T.T.); (H.L.); (M.Z.); (M.A.H.B.); (Y.Z.)
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Correspondence: ; Tel.: +86-754-86502485; Fax: +86-754-86503473
| |
Collapse
|
15
|
Li J, Zhao K, Li H, Zhou K, Wang Q, Li W. Immunological functional differentiation of two transmembrane variants of Dscam in Chinese mitten crab. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104313. [PMID: 34762937 DOI: 10.1016/j.dci.2021.104313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Down syndrome cell adhesion molecule (Dscam), also called hypervariable Dscam (Dscam-hv), is an important player in arthropod alternative splicing that connects neurons and immune regulation, acting as a pathogen-specific recognition molecule. Dscam-hv has two forms: transmembrane (TM) Dscam (mDscam) and soluble Dscam (sDscam). Herein, we investigated two transmembrane variants of mDscam resulting from alternative splicing of the transmembrane domain, focusing on differences in their immune regulation. We characterized the Dscam[TM1] and Dscam[TM2] genes of Chinese mitten crab (Eriocheir sinensis) through bioinformatics analysis. Both genes are expressed in the gill, intestine, and other immune tissues. Following gram-positive and gram-negative bacteria stimulation, EsDscam[TM1] and EsDscam[TM2] mRNA expression levels increased significantly in hemocytes. Sequencing showed that EsDscam[TM1] was more abundant in hemocytes than EsDscam[TM2]. Additionally, the two subtypes differ in their regulation of antimicrobial peptides, the proportion of exon 33 carried, and bacterial phagocytosis.
Collapse
Affiliation(s)
- Jiying Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
16
|
Zhang X, Shi J, Sun Y, Wang Y, Zhang Z. The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:62-73. [PMID: 34998096 DOI: 10.1016/j.fsi.2021.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The X-organ-sinus gland complex (XO-SG) in the eyestalk is an important neuroendocrine regulatory organ of crustaceans such as Litopenaeus vannamei, a prominent aquaculture species. The current study found significant changes in the enzyme activities of ALP, ACP, and T-SOD of hepatopancreatic in response to Vibrio parahaemolyticus exposure following eyestalk ablation, indicating that they were all involved in the immunological regulation of shrimps against V. parahaemolyticus infection. A total of 52,656 unigenes were obtained after RNA-Seq, with an average length of 1036 bp and an N50 of 1847 bp. Subsequently, 1899 eyestalk positive regulation genes (EPRGs), 745 eyestalk negative regulation genes (ENRGs), and 2077 non-eyestalk regulatory genes (NEGs) were identified. KEGG analysis of EPRGs revealed that eyestalk ablation might activate the neuroendocrine-immune (NEI) system. The RNA-Seq data were validated using quantitative real-time PCR (qRT-PCR). The findings suggested that eyestalk ablation might affect the expression of genes involved in the prophenoloxidase-activating system, the TLR signaling pathway, and numerous other immune-related genes in L. vannamei. All of these findings revealed that the eyestalk might have a role in the immune response of L. vannamei. The genes and pathways discovered in this study will help to elucidate the molecular mechanisms of hemocytes' immune response to V. parahaemolyticus following eyestalk ablation in shrimp, as well as provide the framework for building crustacean immunity theory.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jialong Shi
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
18
|
Huang YH, Kumar R, Liu CH, Lin SS, Wang HC. A novel C-type lectin LvCTL 4.2 has antibacterial activity but facilitates WSSV infection in shrimp (L. vannamei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104239. [PMID: 34425174 DOI: 10.1016/j.dci.2021.104239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Glycan-binding protein C-type lectin (CTL), one of the pattern recognition receptors (PRRs), binds to carbohydrates on the surface of pathogens and elicits antimicrobial responses in shrimp innate immunity. The objective was to identify and characterize a novel C-type lectin LvCTL 4.2 in Litopenaeus vannamei. The LvCTL 4.2 protein consisted of a signal peptide at the N terminal and a carbohydrate-recognition domain (CRD) with a mutated mannose-binding (Glu-Pro-Ala; EPA) motif at the C terminal, and thereby has a putative secreted mannose-binding C-type lectin architecture. LvCTL 4.2 was highly expressed in nervous tissue and stomach. Infection with white spot syndrome virus (WSSV) induced expression of LvCTL 4.2 in shrimp stomach at 12 h post infection. Conversely, there was no obvious upregulation in expression of LvCTL 4.2 in stomach or hepatopancreas of shrimp with AHPND (acute hepatopancreas necrosis disease). Pathogen binding assays confirmed recombinant LvCTL 4.2 protein (rLvCTL 4.2) had significant binding ability with the WSSV virion, Gram-negative, and Gram-positive bacteria. Moreover, rLvCTL 4.2 had strong growth inhibition of Vibrio parahaemolyticus. Silencing LvCTL 4.2 suppressed WSSV replication, whereas pretreatment of WSSV with rLvCTL 4.2 facilitated viral replication in vivo. In conclusion, LvCTL 4.2 acted as a PRR that inhibited AHPND-causing bacteria, but facilitated WSSV pathogenesis.
Collapse
Affiliation(s)
- Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
19
|
Zheng Z, Aweya JJ, Bao S, Yao D, Li S, Tran NT, Ma H, Zhang Y. The Microbial Composition of Penaeid Shrimps' Hepatopancreas Is Modulated by Hemocyanin. THE JOURNAL OF IMMUNOLOGY 2021; 207:2733-2743. [PMID: 34670821 DOI: 10.4049/jimmunol.2100746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022]
Abstract
Aquatic organisms have to produce proteins or factors that help maintain a stable relationship with microbiota and prevent colonization by pathogenic microorganisms. In crustaceans and other aquatic invertebrates, relatively few of these host factors have been characterized. In this study, we show that the respiratory glycoprotein hemocyanin is a crucial host factor that modulates microbial composition and diversity in the hepatopancreas of penaeid shrimp. Diseased penaeid shrimp (Penaeus vannamei), had an empty gastrointestinal tract with atrophied hepatopancreas, expressed low hemocyanin, and high total bacterial abundance, with Vibrio as the dominant bacteria. Similarly, shrimp depleted of hemocyanin had mitochondrial depolarization, increased reactive oxygen species (ROS) levels, and dysregulation of several energy metabolism-related genes. Hemocyanin silencing together with ROS scavenger (N-acetylcysteine) treatment improved microbial diversity and decreased Vibrio dominance in the hepatopancreas. However, fecal microbiota transplantation after hemocyanin knockdown could not restore the microbial composition in the hepatopancreas. Collectively, our data provide, to our knowledge, new insight into the pivotal role of hemocyanin in modulating microbial composition in penaeid shrimp hepatopancreas via its effect on mitochondrial integrity, energy metabolism, and ROS production.
Collapse
Affiliation(s)
- Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China; .,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Shiyuan Bao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Defu Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China.,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Marine Biology Institute, Science Center, Shantou University, Shantou, China; .,Shantou University-Universiti Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China; and.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
20
|
Li W. Dscam in arthropod immune priming: What is known and what remains unknown. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 125:104231. [PMID: 34390752 DOI: 10.1016/j.dci.2021.104231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
A popular view in the current academic circle is that invertebrates have no adaptive immunity. However, the immune memory and specificity of invertebrates pose a serious challenge to this view and constitute immune priming based on innate immunity. The Down syndrome cell adhesion molecule (Dscam) gene of invertebrates, with approximately 10,000 alternatively spliced isoforms, has a unique characteristic: it specifically binds to different types of bacteria and promotes cell phagocytosis; owing to its antibody-like function, Dscam is a key candidate protein for immune priming. However, the high molecular diversity of Dscam and the gaps and inconsistencies in the existing research make the study of regulation of immune priming by Dscam challenging. In recent years, significant research has been conducted on the Dscam-regulated immune functions in insects and crustaceans, providing preliminary results for Dscam-regulated innate immunity and immune priming, but some important questions remain unresolved. In this review, we summarize the existing knowledge about Dscam-regulated immunity and discuss three yet unanswered questions, the study of which may improve the understanding of the role of Dscam-regulated immune priming in invertebrates.
Collapse
Affiliation(s)
- Weiwei Li
- Laboratory of Invertebrate Immunological Defense, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
21
|
Sarmiento ME, Chin KL, Lau NS, Aziah I, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Comparative transcriptome profiling of horseshoe crab Tachypleus gigas hemocytes in response to lipopolysaccharides. FISH & SHELLFISH IMMUNOLOGY 2021; 117:148-156. [PMID: 34358702 DOI: 10.1016/j.fsi.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or < -0.3, 1338 genes were significantly upregulated and 215 genes were significantly downregulated following LPS stimulation. The differentially expressed genes (DEGs) were further identified to be associated with multiple pathways such as those related to immune defence, stress response, cytoskeleton function and signal transduction. This study provides insights into the underlying molecular and regulatory mechanisms in hemocytes exposed to LPS, which has relevance for the study of the immune response of HSCs to infection.
Collapse
Affiliation(s)
- Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nyok Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Millard RS, Bickley LK, Bateman KS, Farbos A, Minardi D, Moore K, Ross SH, Stentiford GD, Tyler CR, van Aerle R, Santos EM. Global mRNA and miRNA Analysis Reveal Key Processes in the Initial Response to Infection with WSSV in the Pacific Whiteleg Shrimp. Viruses 2021; 13:v13061140. [PMID: 34199268 PMCID: PMC8231841 DOI: 10.3390/v13061140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed—with limited differential expression from 3–12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.
Collapse
Affiliation(s)
- Rebecca S. Millard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| | - Lisa K. Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Kelly S. Bateman
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Audrey Farbos
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Diana Minardi
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Karen Moore
- Exeter Sequencing Service, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK; (A.F.); (K.M.)
| | - Stuart H. Ross
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Grant D. Stentiford
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
| | - Ronny van Aerle
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Cefas Weymouth Laboratory, International Centre of Excellence for Aquatic Animal Health, Weymouth DT4 8UB, UK;
| | - Eduarda M. Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK; (L.K.B.); (C.R.T.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK; (K.S.B.); (S.H.R.); (G.D.S.); (R.v.A.)
- Correspondence: (R.S.M.); (E.M.S.); Tel.: +44-(0)-1392-724607 (E.M.S.)
| |
Collapse
|
23
|
NaveenKumar S, Rai P, Karunasagar I, Karunasagar I. Recombinant viral proteins delivered orally through inactivated bacterial cells induce protection in Macrobrachium rosenbergii (de Man) against White Tail Disease. JOURNAL OF FISH DISEASES 2021; 44:601-612. [PMID: 33210311 DOI: 10.1111/jfd.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
White tail disease (WTD) is a disease of Macrobrachium rosenbergii caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) with the potential to devastate the aquaculture industry. The present study aimed to explore the possible protection of M. rosenbergii against the disease by oral administration of bacterially expressed recombinant capsid proteins of MrNV and XSV. Juvenile M. rosenbergii were fed with the feed coated with inactivated bacteria encapsulated expressed recombinant viral proteins either individually or in combination for 7 days. Challenge studies using WTD causing agents were carried out after 3 (group I), 10 (group II) and 20 (group III) days post-feeding of viral proteins. Recombinant capsid protein of MrNV showed better protection when compared to other treatments with relative per cent survival of 62.5% (group I), 57.9% (group II) and 39.5% (group III). Treatment controls of groups I, II and III showed 100%, 95% and 95% mortality, respectively. The study demonstrates that oral administration of recombinant capsid proteins of MrNV and XSV provides effective protection against WTD in freshwater prawn.
Collapse
Affiliation(s)
- Singaiah NaveenKumar
- Fisheries Research Centre, Ministry of Environment, Water and Agriculture, Saihat, Kingdom of Saudi Arabia
| | - Praveen Rai
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Indrani Karunasagar
- NITTE (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, India
| |
Collapse
|
24
|
Ganie SA, Reddy ASN. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance. BIOLOGY 2021; 10:309. [PMID: 33917813 PMCID: PMC8068108 DOI: 10.3390/biology10040309] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.
Collapse
Affiliation(s)
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Eslamloo K, Caballero-Solares A, Inkpen SM, Emam M, Kumar S, Bouniot C, Avendaño-Herrera R, Jakob E, Rise ML. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium salmoninarum Infection. Front Immunol 2020; 11:567838. [PMID: 33193341 PMCID: PMC7656060 DOI: 10.3389/fimmu.2020.567838] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Bacterial Kidney Disease (BKD), which is caused by a Gram-positive, intracellular bacterial pathogen (Renibacterium salmoninarum), affects salmonids including Atlantic salmon (Salmo salar). However, the transcriptome response of Atlantic salmon to BKD remained unknown before the current study. We used a 44K salmonid microarray platform to characterise the global gene expression response of Atlantic salmon to BKD. Fish (~54 g) were injected with a dose of R. salmoninarum (H-2 strain, 2 × 108 CFU per fish) or sterile medium (control), and then head kidney samples were collected at 13 days post-infection/injection (dpi). Firstly, infection levels of individuals were determined through quantifying the R. salmoninarum level by RNA-based TaqMan qPCR assays. Thereafter, based on the qPCR results for infection level, fish (n = 5) that showed no (control), higher (H-BKD), or lower (L-BKD) infection level at 13 dpi were subjected to microarray analyses. We identified 6,766 and 7,729 differentially expressed probes in the H-BKD and L-BKD groups, respectively. There were 357 probes responsive to the infection level (H-BKD vs. L-BKD). Several adaptive and innate immune processes were dysregulated in R. salmoninarum-infected Atlantic salmon. Adaptive immune pathways associated with lymphocyte differentiation and activation (e.g., lymphocyte chemotaxis, T-cell activation, and immunoglobulin secretion), as well as antigen-presenting cell functions, were shown to be differentially regulated in response to BKD. The infection level-responsive transcripts were related to several mechanisms such as the JAK-STAT signalling pathway, B-cell differentiation and interleukin-1 responses. Sixty-five microarray-identified transcripts were subjected to qPCR validation, and they showed the same fold-change direction as microarray results. The qPCR-validated transcripts studied herein play putative roles in various immune processes including pathogen recognition (e.g., tlr5), antibacterial activity (e.g., hamp and camp), regulation of immune responses (e.g., tnfrsf11b and socs1), T-/B-cell differentiation (e.g., ccl4, irf1 and ccr5), T-cell functions (e.g., rnf144a, il13ra1b and tnfrsf6b), and antigen-presenting cell functions (e.g., fcgr1). The present study revealed diverse immune mechanisms dysregulated by R. salmoninarum in Atlantic salmon, and enhanced the current understanding of Atlantic salmon response to BKD. The identified biomarker genes can be used for future studies on improving the resistance of Atlantic salmon to BKD.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mohamed Emam
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Ruben Avendaño-Herrera
- Facultad Ciencias de la Vida, Viña del Mar, and FONDAP Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Santiago, Chile
| | - Eva Jakob
- Cargill Innovation Center-Colaco, Calbuco, Chile
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
26
|
Ng TH, Kurtz J. Dscam in immunity: A question of diversity in insects and crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103539. [PMID: 31734281 DOI: 10.1016/j.dci.2019.103539] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In insects and crustaceans, thousands of Down syndrome cell adhesion molecules (Dscam) can be generated by alternative splicing of variable exons from a single-locus gene, Dscam-hv. This extraordinarily versatile gene (38,016 protein isoforms produced in Drosophila) was first proposed to be involved in exon guidance and subsequently implicated in immunity as a hypervariable immune molecule. Almost 20 y after discovery of Dscam-hv, there have been many studies in insects and crustaceans regarding roles of Dscam in immunity, with many similarities and concurrently, many differences. Here, we review the current status of Dscam-hv, presented as a comparison of similarities and differences in insects and crustaceans and discuss hypotheses of Dscam functions in immunity.
Collapse
Affiliation(s)
- Tze Hann Ng
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
27
|
Tran NT, Kong T, Zhang M, Li S. Pattern recognition receptors and their roles on the innate immune system of mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103469. [PMID: 31430487 DOI: 10.1016/j.dci.2019.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The innate immune system is the first line of defense protecting the hosts against invading pathogens. Mud crab (Scylla paramamosain) is widely distributed in China and Indo-west Pacific countries, which develops a very complicated innate immune system against pathogen invasions. Innate immunity involves the humoral and cellular responses that are linked to the pattern recognition receptors (PRRs). PRRs initially recognize the infection and trigger the activation of signaling cascades, leading to transcriptional regulation of inflammatory mediators that function in pathogenic control and clearance. In mud crab S. paramamosain, the Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified as receptor families responsible for the recognition of bacteria, fungi, and viruses, and are important components in the innate immune system. In this review, we summarize the literature on the current knowledge and the roles of PRRs in the immune defenses of mud crab, which in an effort to provide much information for further researches.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Tongtong Kong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
28
|
Abstract
The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.
Collapse
Affiliation(s)
- Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
29
|
Apitanyasai K, Huang SW, Ng TH, He ST, Huang YH, Chiu SP, Tseng KC, Lin SS, Chang WC, Baldwin-Brown JG, Long AD, Lo CF, Yu HT, Wang HC. The gene structure and hypervariability of the complete Penaeus monodon Dscam gene. Sci Rep 2019; 9:16595. [PMID: 31719551 PMCID: PMC6851185 DOI: 10.1038/s41598-019-52656-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022] Open
Abstract
Using two advanced sequencing approaches, Illumina and PacBio, we derive the entire Dscam gene from an M2 assembly of the complete Penaeus monodon genome. The P. monodon Dscam (PmDscam) gene is ~266 kbp, with a total of 44 exons, 5 of which are subject to alternative splicing. PmDscam has a conserved architectural structure consisting of an extracellular region with hypervariable Ig domains, a transmembrane domain, and a cytoplasmic tail. We show that, contrary to a previous report, there are in fact 26, 81 and 26 alternative exons in N-terminal Ig2, N-terminal Ig3 and the entirety of Ig7, respectively. We also identified two alternatively spliced exons in the cytoplasmic tail, with transmembrane domains in exon variants 32.1 and 32.2, and stop codons in exon variants 44.1 and 44.2. This means that alternative splicing is involved in the selection of the stop codon. There are also 7 non-constitutive cytoplasmic tail exons that can either be included or skipped. Alternative splicing and the non-constitutive exons together produce more than 21 million isoform combinations from one PmDscam locus in the P. monodon gene. A public-facing database that allows BLAST searches of all 175 exons in the PmDscam gene has been established at http://pmdscam.dbbs.ncku.edu.tw/.
Collapse
Affiliation(s)
- Kantamas Apitanyasai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shiao-Wei Huang
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsun Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shen-Po Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chien Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan
| | - James G Baldwin-Brown
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, USA
| | - Chu-Fang Lo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Hon-Tsen Yu
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan. .,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
30
|
Ng TH, Kumar R, Apitanyasai K, He ST, Chiu SP, Wang HC. Selective expression of a "correct cloud" of Dscam in crayfish survivors after second exposure to the same pathogen. FISH & SHELLFISH IMMUNOLOGY 2019; 92:430-437. [PMID: 31200075 DOI: 10.1016/j.fsi.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Arthropod hypervariable Dscam (Down syndrome cell adhesion molecule) may be involved in adaptive-like immune characteristics, namely immune priming, enabling the host to "learn" and "remember" pathogens previously encountered in arthropods. However, expression of Dscam in immune-primed arthropods after a second challenge has apparently not been confirmed. Herein, working with Dscam of Australian freshwater crayfish (Cherax quadricarinatus, i.e. CqDscam), we further investigated whether immune priming is mediated by "clouds" of appropriate (or "correct") CqDscam isoforms. In crayfish that survived a first WSSV challenge (immune priming), long-lasting CqDscam expression remained higher after a second WSSV challenge. Selective CqDscam isoforms were also induced after both challenges. Based on pathogen binding assays, these WSSV-induced CqDscam isoforms had a higher WSSV binding ability, perhaps mainly mediated by Ig3-spliced variants. We therefore hypothesized that in these crayfish survivors, an unknown selection process was generating a "correct cloud" of CqDscam against a previously encountered pathogen.
Collapse
Affiliation(s)
- Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Kantamas Apitanyasai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ting He
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shen-Po Chiu
- Department of Life Science, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Jing T, Wang F, Qi F, Wang Z. Insect anal droplets contain diverse proteins related to gut homeostasis. BMC Genomics 2018; 19:784. [PMID: 30376807 PMCID: PMC6208037 DOI: 10.1186/s12864-018-5182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insects share similar fundamental molecular principles with mammals in innate immunity. For modulating normal gut microbiota, insects produce phenoloxidase (PO), which is absent in all vertebrates, and reactive nitrogen species (ROS) and antimicrobial proteins (AMPs). However, reports on insect gut phagocytosis are very few. Furthermore, most previous studies measure gene expression at the transcription level. In this study, we provided proteomic evidence on gut modulation of normal microorganisms by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The results showed that the anal droplets contained diverse proteins related to physical barriers, epithelium renewal, pattern recognition, phenoloxidase activation, oxidative defense and phagocytosis, but AMPs were not detected. According to annotations, Scarb1, integrin βν, Dscam, spondin or Thbs2s might mediate phagocytosis. As a possible integrin βν pathway, βν activates Rho by an unknown mechanism, and Rho induces accumulation of mDia, which then promotes actin polymerization. CONCLUSIONS Our results well demonstrated that insect anal droplets can be used as materials to investigate the defense of a host to gut microorganisms and supported to the hypothesis that gut phagocytosis occurs in insects.
Collapse
Affiliation(s)
- Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Fuxiao Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Fenghui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
32
|
Chou HY, Lun CM, Smith LC. SpTransformer proteins from the purple sea urchin opsonize bacteria, augment phagocytosis, and retard bacterial growth. PLoS One 2018; 13:e0196890. [PMID: 29738524 PMCID: PMC5940198 DOI: 10.1371/journal.pone.0196890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker's yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity.
Collapse
Affiliation(s)
- Hung-Yen Chou
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| |
Collapse
|
33
|
Deist MS, Gallardo RA, Bunn DA, Kelly TR, Dekkers JCM, Zhou H, Lamont SJ. Novel analysis of the Harderian gland transcriptome response to Newcastle disease virus in two inbred chicken lines. Sci Rep 2018; 8:6558. [PMID: 29700338 PMCID: PMC5920083 DOI: 10.1038/s41598-018-24830-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/06/2018] [Indexed: 01/14/2023] Open
Abstract
Behind each eye of the chicken resides a unique lymph tissue, the Harderian gland, for which RNA sequencing (RNA-seq) analysis is novel. We characterized the response of this tissue to Newcastle disease virus (NDV) in two inbred lines with different susceptibility to NDV across three time points. Three-week-old relatively resistant (Fayoumi) and relatively susceptible (Leghorn) birds were inoculated with a high-titered (107EID50) La Sota strain of NDV via an oculonasal route. At 2, 6, and 10 days post infection (dpi) Harderian glands were collected and analyzed via RNA-seq. The Fayoumi had significantly more detectable viral transcripts in the Harderian gland at 2 dpi than the Leghorn, but cleared the virus by 6 dpi. At all three time points, few genes were declared differentially expressed (DE) between the challenged and nonchallenged birds, except for the Leghorns at 6 dpi, and these DE genes were predicted to activate an adaptive immune response. Relative to the Leghorn, the Fayoumi was predicted to activate more immune pathways in both challenged and nonchallenged birds suggesting a more elevated immune system in the Fayoumis under homeostatic conditions. Overall, this study helped characterize the function of this important tissue and its response to NDV.
Collapse
Affiliation(s)
- Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - David A Bunn
- Department of Animal Science, University of California, Davis, California, USA
| | - Terra R Kelly
- Department of Animal Science, University of California, Davis, California, USA.,One Health Institute, University of California, Davis, California, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
34
|
Chang YH, Kumar R, Ng TH, Wang HC. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:53-66. [PMID: 28279805 DOI: 10.1016/j.dci.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response.
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
35
|
Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0297. [PMID: 27160599 DOI: 10.1098/rstb.2015.0297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our limited understanding of AMP evolution in the natural context, and also the very limited understanding of the evolution of resistance against AMPs in bacteria in particular, caution is recommended. What is clear though is that study of the ecology and evolution of AMPs in natural systems could inform many of these outstanding questions, including those related to medical applications and pathogen control.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
36
|
Armitage SAO, Kurtz J, Brites D, Dong Y, Du Pasquier L, Wang HC. Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Front Immunol 2017. [PMID: 28649249 PMCID: PMC5465998 DOI: 10.3389/fimmu.2017.00662] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Down syndrome cell adhesion molecule 1 (Dscam1) gene is an extraordinary example of diversity: by combining alternatively spliced exons, thousands of isoforms can be produced from just one gene. So far, such diversity in this gene has only been found in insects and crustaceans, and its essential part in neural wiring has been well-characterized for Drosophila melanogaster. Ten years ago evidence from D. melanogaster showed that the Dscam1 gene is involved in insect immune defense and work on Anopheles gambiae indicated that it is a hypervariable immune receptor. These exciting findings showed that via processes of somatic diversification insects have the possibility to produce unexpected immune molecule diversity, and it was hypothesized that Dscam1 could provide the mechanistic underpinnings of specific immune responses. Since these first publications the quest to understand the function of this gene has uncovered fascinating insights from insects and crustaceans. However, we are still far from a complete understanding of how Dscam1 functions in relation to parasites and pathogens and its full relevance for the immune system. In this Hypothesis and Theory article, we first briefly introduce Dscam1 and what we know so far about how it might function in immunity. By focusing on seven questions, we then share our sometimes contrasting thoughts on what the evidence tells us so far, what essential experiments remain to be done, and the future prospects, with the aim to provide a multiangled view on what this fascinating gene has to do with immune defense.
Collapse
Affiliation(s)
- Sophie A O Armitage
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Daniela Brites
- Tuberculosis Research Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Zoological Institute, University of Basel, Basel, Switzerland
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States
| | | | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
37
|
Cooper D, Eleftherianos I. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges. Front Immunol 2017; 8:539. [PMID: 28536580 PMCID: PMC5422463 DOI: 10.3389/fimmu.2017.00539] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/21/2017] [Indexed: 11/13/2022] Open
Abstract
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
Collapse
Affiliation(s)
- Dustin Cooper
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
38
|
Marisa Halim A, Lee PP, Chang ZW, Chang CC. The hot-water extract of leaves of noni, Morinda citrifolia, promotes the immunocompetence of giant freshwater prawn, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2017; 64:457-468. [PMID: 28359947 DOI: 10.1016/j.fsi.2017.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
The hot-water Morinda citrifolia leaf extract (HMLE) was prepared for in vitro assessment on phenoloxidase (PO) activity, respiratory bursts (RBs), and phagocytic activity (PA). Furthermore, the HMLE was administrated in the diet at 0.6, 3, and 6 g (kg diet)-1 for Macrobrachium rosenbergii, and the potential effects on the immunocompetence of prawns were evaluated. PO activity, RBs, and PA in hemocytes incubated with the HMLE at 140, 20, 20, and 140 mg l-1 significantly increased. The immune parameters of the total hemocyte count (THC), differential hemocyte count (DHC), RBs, PO activity, superoxide dismutase (SOD) activity, PA, transglutaminase (TG) activity and hemolymph clotting time were evaluated before and after 1, 3, 5, 7, and 9 weeks of the feeding trial. During 9 weeks of the feeding trial, higher THCs, DHCs, RBs, PO, and TG as well as accelerated clotting times were observed in prawns fed HMLE-containing diets at 0.6 g kg-1. The mRNA expressions of prophenoloxidase, TG, crustin, and lysozyme of prawns fed HMLE-containing diets at 0.6 g kg-1 for 9 weeks of the feeding trial significantly increased. The susceptibility of prawns fed the HMLE at 0.6 g kg-1 to Lactococcus garvieae infection significantly decreased, and the relative survival percentage was 23.1%. We therefore found that HMLE administrated through the diet at 0.6 g kg-1 was capable of enhancing the immunity and resistance against L. garvieae in M. rosenbergii.
Collapse
Affiliation(s)
- Atika Marisa Halim
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC; Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, East Java 65145, Indonesia
| | - Pai-Po Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Zhong-Wen Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
39
|
Lun CM, Bishop BM, Smith LC. Multitasking Immune Sp185/333 Protein, rSpTransformer-E1, and Its Recombinant Fragments Undergo Secondary Structural Transformation upon Binding Targets. THE JOURNAL OF IMMUNOLOGY 2017; 198:2957-2966. [PMID: 28242650 DOI: 10.4049/jimmunol.1601795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022]
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to β strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.
Collapse
Affiliation(s)
- Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington, DC 20052; and
| | - Barney M Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC 20052; and
| |
Collapse
|
40
|
Kim E, Kim Y. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus. PLoS One 2016; 11:e0161661. [PMID: 27598941 PMCID: PMC5012692 DOI: 10.1371/journal.pone.0161661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Zhang F, Li Q, Chen X, Huo Y, Guo H, Song Z, Cui F, Zhang L, Fang R. Roles of the Laodelphax striatellus Down syndrome cell adhesion molecule in Rice stripe virus infection of its insect vector. INSECT MOLECULAR BIOLOGY 2016; 25:413-421. [PMID: 26991800 DOI: 10.1111/imb.12226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The arthropod Down syndrome cell adhesion molecule (Dscam) mediates pathogen-specific recognition via an extensive protein isoform repertoire produced by alternative splicing. To date, most studies have focused on the subsequent pathogen-specific immune response, and few have investigated the entry into cells of viruses or endosymbionts. In the present study, we cloned and characterized the cDNA of Laodelphax striatellus Dscam (LsDscam) and investigated the function of LsDscam in rice stripe virus (RSV) infection and the influence on the endosymbiont Wolbachia. LsDscam displayed a typical Dscam domain architecture, including 10 immunoglobulin (Ig) domains, six fibronectin type III domains, one transmembrane domain and a cytoplasmic tail. Alternative splicing occurred at the N-termini of the Ig2 and Ig3 domains, the complete Ig7 domain, the transmembrane domain and the C-terminus, comprising 10, 51, 35, two and two variable exons, respectively. Potentially LsDscam could encode at least 71 400 unique isoforms and 17 850 types of extracellular regions. LsDscam was expressed in various L. striatellus tissues. Knockdown of LsDscam mRNA via RNA interference decreased the titres of both RSV and Wolbachia, but did not change the numbers of the extracellular symbiotic bacterium Acinetobacter rhizosphaerae. Specific Dscam isoforms may play roles in enhancing the infection of vector-borne viruses or endosymbionts.
Collapse
Affiliation(s)
- F Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Q Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - X Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Y Huo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - H Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - Z Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - F Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - L Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| | - R Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, China
| |
Collapse
|
42
|
Immune priming in arthropods: an update focusing on the red flour beetle. ZOOLOGY 2016; 119:254-61. [DOI: 10.1016/j.zool.2016.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
|
43
|
Rogers SL, Kaufman J. Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics 2016; 68:499-513. [PMID: 27457887 PMCID: PMC5002281 DOI: 10.1007/s00251-016-0938-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
CD1 genes encode cell surface molecules that present lipid antigens to various kinds of T lymphocytes of the immune system. The structures of CD1 genes and molecules are like the major histocompatibility complex (MHC) class I system, the loading of antigen and the tissue distribution for CD1 molecules are like those in the class II system, and phylogenetic analyses place CD1 between class I and class II sequences, altogether leading to the notion that CD1 is a third ancient system of antigen presentation molecules. However, thus far, CD1 genes have only been described in mammals, birds and reptiles, leaving major questions as to their origin and evolution. In this review, we recount a little history of the field so far and then consider what has been learned about the structure and functional attributes of CD1 genes and molecules in marsupials, birds and reptiles. We describe the central conundrum of CD1 evolution, the genomic location of CD1 genes in the MHC and/or MHC paralogous regions in different animals, considering the three models of evolutionary history that have been proposed. We describe the natural killer (NK) receptors NKR-P1 and ligands, also found in different genomic locations for different animals. We discuss the consequence of these three models, one of which includes the repudiation of a guiding principle for the last 20 years, that two rounds of genome-wide duplication at the base of the vertebrates provided the extra MHC genes necessary for the emergence of adaptive immune system of jawed vertebrates.
Collapse
Affiliation(s)
- Sally L Rogers
- Department of Biosciences, University of Gloucestershire, Cheltenham, GL50 4AZ, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|
44
|
Allam B, Pales Espinosa E. Bivalve immunity and response to infections: Are we looking at the right place? FISH & SHELLFISH IMMUNOLOGY 2016; 53:4-12. [PMID: 27004953 DOI: 10.1016/j.fsi.2016.03.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Significant progress has been made in the understanding of cellular and molecular mediators of immunity in invertebrates in general and bivalve mollusks in particular. Despite this information, there is a lack of understanding of factors affecting animal resistance and specific responses to infections. This in part results from limited consideration of the spatial (and to some extent temporal) heterogeneity of immune responses and very limited information on host-pathogen (and microbes in general) interactions at initial encounter/colonization sites. Of great concern is the fact that most studies on molluscan immunity focus on the circulating hemocytes and the humoral defense factors in the plasma while most relevant host-microbe interactions occur at mucosal interfaces. This paper summarizes information available on the contrasting value of information available on focal and systemic immune responses in infected bivalves, and highlights the role of mucosal immune factors in host-pathogen interactions. Available information underlines the diversity of immune effectors at molluscan mucosal interfaces and highlights the tailored immune response to pathogen stimuli. This context raises fascinating basic research questions around host-microbe crosstalk and feedback controls of these interactions and may lead to novel disease mitigation strategies and improve the assessment of resistant crops or the screening of probiotic candidates.
Collapse
Affiliation(s)
- Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States.
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States
| |
Collapse
|
45
|
Peuß R, Wensing KU, Woestmann L, Eggert H, Milutinović B, Sroka MGU, Scharsack JP, Kurtz J, Armitage SAO. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160138. [PMID: 27152227 PMCID: PMC4852650 DOI: 10.1098/rsos.160138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 05/24/2023]
Abstract
Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives.
Collapse
|
46
|
Li D, Yu AQ, Li XJ, Zhu YT, Jin XK, Li WW, Wang Q. Antimicrobial activity of a novel hypervariable immunoglobulin domain-containing receptor Dscam in Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2015; 47:766-776. [PMID: 26497093 DOI: 10.1016/j.fsi.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Down syndrome cell adhesion molecule (Dscam) mediates innate immunity against pathogens in arthropods. Here, a novel Dscam from red claw crayfish Cherax quadricarinatus (CqDscam) was isolated. The CqDscam protein contains one signal peptide, ten immunoglobulin domains, six fibronectin type III domains, one transmembrane domain and cytoplasmic tail. CqDscam phylogenetically clustered with other invertebrate Dscams. Variable regions of CqDscam in N-terminal halves of Ig2 and Ig3 domains, complete Ig7 domain and TM domain can be reshuffled after transcription to produce a deluge of >37,620 potential alternative splice forms. CqDscam was detected in all tissues tested and abundantly expressed in immune system and nerve system. Upon lipopolysaccharides (LPS) and b-1, 3-glucans (Glu) challenged, the expression of CqDscam was up-regulated, while no response in expression occurred after injection with peptidoglycans (PG). Membrane-bound and secreted types of CqDscam were separated on the protein level, and were both extensively induced post LPS challenge. Membrane-bound CqDscam protein was not detected in the serum, but localized to the hemocyte surface by immuno-localization assay. In the antimicrobial assays, the recombinant LPS-induced isoform of CqDscam protein displayed bacterial binding and growth inhibitory activities, especially with Escherichia coli. These results suggested that CqDscam, as one of pattern-recognition receptors (PRRs), involved in innate immune recognition and defense mechanisms in C. quadricarinatus, possibly through alternative splicing.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- Shanghai Fisheries Technical Extension Station, Shanghai Fisheries Research Institute, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
47
|
Contreras-Garduño J, Rodríguez MC, Hernández-Martínez S, Martínez-Barnetche J, Alvarado-Delgado A, Izquierdo J, Herrera-Ortiz A, Moreno-García M, Velazquez-Meza ME, Valverde V, Argotte-Ramos R, Rodríguez MH, Lanz-Mendoza H. Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:172-181. [PMID: 26004500 DOI: 10.1016/j.dci.2015.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Priming in invertebrates is the acquired capacity to better combat a pathogen due to a previous exposure to sub-lethal doses of the same organism. It is proposed to be functionally analogous to immune memory in vertebrates. Previous studies with Anopheles gambiae mosquitoes provide evidence that the inhibitory response to a second challenge by the malaria parasite Plasmodium berghei resulted from a sustained activation of hemocytes by midgut bacteria. These bacteria probably accessed the hemolymph during a first aborted infection through lesions produced by parasites invading the midgut. Since the mosquito immune responses to midgut bacteria and Plasmodium overlap, it is difficult to determine the priming responses of each. We herein document priming induced in the aseptic An. albimanus midgut by P. berghei, probably independent of the immune response induced by midgut bacteria. This idea is further evidenced by experiments with Pbs 25-28 knock out parasites (having an impaired capacity for invading the mosquito midgut) and dead ookinetes. Priming protection against a homologous challenge with P. berghei lasted up to 12 days. There was greater incorporation of 5-bromo-2'-deoxyuridine into midgut cell nuclei (indicative of DNA synthesis without mitosis) and increased transcription of hnt (a gene required for the endocycle of midgut cells) in primed versus unprimed mosquitoes, suggesting that endoreplication was the underlying mechanism of priming. Moreover, the transcription of hnt and antimicrobial peptides related to an anti-Plasmodium response (attacin, cecropin and gambicin) was enhanced in a biphasic rather than sustained response after priming An. albimanus with P. berghei.
Collapse
Affiliation(s)
- Jorge Contreras-Garduño
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico; Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, 36050 Guanajuato, Guanajuato, Mexico
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Javier Izquierdo
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Antonia Herrera-Ortiz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Miguel Moreno-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Veronica Valverde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Rocio Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62508 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
48
|
Burnett KG, Burnett LE. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects? Integr Comp Biol 2015. [DOI: 10.1093/icb/icv094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
49
|
Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GD, Bateman KS, van Aerle R. De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 2015; 16:458. [PMID: 26076827 PMCID: PMC4469326 DOI: 10.1186/s12864-015-1667-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. Results We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. Conclusions We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1667-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Verbruggen
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Lisa K Bickley
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Eduarda M Santos
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Charles R Tyler
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Grant D Stentiford
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Kelly S Bateman
- European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| | - Ronny van Aerle
- Aquatic Health and Hygiene Division, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
50
|
Immune responses to infectious diseases in bivalves. J Invertebr Pathol 2015; 131:121-36. [PMID: 26003824 DOI: 10.1016/j.jip.2015.05.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Many species of bivalve mollusks (phylum Mollusca, class Bivalvia) are important in fisheries and aquaculture, whilst others are critical to ecosystem structure and function. These crucial roles mean that considerable attention has been paid to the immune responses of bivalves such as oysters, clams and mussels against infectious diseases that can threaten the viability of entire populations. As with many invertebrates, bivalves have a comprehensive repertoire of immune cells, genes and proteins. Hemocytes represent the backbone of the bivalve immune system. However, it is clear that mucosal tissues at the interface with the environment also play a critical role in host defense. Bivalve immune cells express a range of pattern recognition receptors and are highly responsive to the recognition of microbe-associated molecular patterns. Their responses to infection include chemotaxis, phagolysosomal activity, encapsulation, complex intracellular signaling and transcriptional activity, apoptosis, and the induction of anti-viral states. Bivalves also express a range of inducible extracellular recognition and effector proteins, such as lectins, peptidoglycan-recognition proteins, thioester bearing proteins, lipopolysaccharide and β1,3-glucan-binding proteins, fibrinogen-related proteins (FREPs) and antimicrobial proteins. The identification of FREPs and other highly diversified gene families in bivalves leaves open the possibility that some of their responses to infection may involve a high degree of pathogen specificity and immune priming. The current review article provides a comprehensive, but not exhaustive, description of these factors and how they are regulated by infectious agents. It concludes that one of the remaining challenges is to use new "omics" technologies to understand how this diverse array of factors is integrated and controlled during infection.
Collapse
|